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Abstract: Substantial emerging evidence supports that dysregulated RNA metabolism is associated
with tumor initiation and development. Serine/Arginine-Rich proteins (SR) are a number of ultracon-
served and structurally related proteins that contain a characteristic RS domain rich in arginine and
serine residues. SR proteins perform a critical role in spliceosome assembling and conformational
transformation, contributing to precise alternative RNA splicing. Moreover, SR proteins have been
reported to participate in multiple other RNA-processing-related mechanisms than RNA splicing,
such as genome stability, RNA export, and translation. The dysregulation of SR proteins has been re-
ported to contribute to tumorigenesis through multiple mechanisms. Here we reviewed the different
biological roles of SR proteins and strategies for functional rectification of SR proteins that may serve
as potential therapeutic approaches for cancer.
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1. Introduction

Advances in our understanding and therapy of cancer have been obtained from co-
ordinated efforts to characterize genomic alterations in cancer through large-scale and
ultra-deep sequencing and delicate models recapitulating clinical cancer features. However,
unlike the heavily interrogated cancer genome, our understanding of RNA metabolism
and translation is still in development. RNA-binding proteins (RBPs) recognize and as-
semble with RNA in RNA transcription. Different RBPs are recruited to or released from
RNA following sequential events, such as 5′ capping, 3′ polyadenylation, RNA splicing,
modification, intracellular trafficking, translation, and degradation. RBPs have various
RNA-binding domains (RBD) that recognize specific RNA cis-elements or structures and
auxiliary non-RNA binding domains with low amino acid complexity associated with
protein–protein interaction [1–3]. RBPs can specifically interact with hundreds and thou-
sands of transcripts and bind to sequence motifs and/or structures in RNA, thereby forming
extensive regulatory networks and contributing to cell homeostasis [2].

Serine/Arginine-Rich proteins (SR) belong to a family of RNA-binding proteins that
consist of one or two RNA recognition motifs (RRMs) that specifically bind to RNA and a C-
terminal RS domain enriched with arginine and serine residues involved in protein–protein
interaction (Figure 1) [4,5]. SR proteins were first identified as potential nucleoproteins
during transcription [6], and they were soon characterized as the splicing factors that
mediate both constitutive and alternative splicing [7–11]. Additionally, several other SR
protein functions have been reported, such as genomic stability, promoter selection, 3′ end
processing, mRNA export, mRNA stability, and translation [12–14]. Here we review recent
advances in our understanding of the SR proteins’ functions in RNA metabolism and

Genes 2022, 13, 1659. https://doi.org/10.3390/genes13091659 https://www.mdpi.com/journal/genes

https://doi.org/10.3390/genes13091659
https://doi.org/10.3390/genes13091659
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://doi.org/10.3390/genes13091659
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes13091659?type=check_update&version=2


Genes 2022, 13, 1659 2 of 17

translation and their roles in tumorigenesis. Targeting SR proteins and their downstream
splicing changes should provide potential cancer therapeutic strategies.
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Figure 1. Schematic representation of the 12 human SR proteins. SR proteins are presented as SRSFs 
with aliases indicated in the parenthesis. Shuttling SR proteins (red letters) are reported to shuttle 
between nucleus and cytoplasm, whereas the others (black letters) have no shuttling activity. Phos-
phorylation of RS domain of SRSF1 by SRPK and CLK kinases is indicated as a representative at the 
top. 
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which the introns (non-coding sequences) dispersing throughout the primary transcripts 
are excised, and exons are ligated together [15,16]. RNA splicing involves two consecutive 
transesterification reactions that occur under the regulation of the spliceosome, a dynamic 
macromolecular machine that is comprised of proteins and small nuclear RNAs. The 
spliceosome contains over 300 components that were recruited and assembled onto the 
pre-mRNA, undergoing a series of dynamic changes via RNA–RNA, protein–protein, 
RNA–protein, and recently discovered protein–phosphoinositide interaction during the 
splicing reaction (Figure 2) [17,18]. The splicing reaction starts with U1 small nuclear ri-
bonucleoprotein (snRNP) recognizing the 5′ splice site in an ATP-dependent manner; to-
gether with SF1, U2 auxiliary factors (U2AF1 and U2AF2) recruited to the branch point 
site (BPS), the polypyrimidine tract (PPT), and the 3′ splice site, respectively. U2 snRNP 
then binds to the BPS to displace and release SF1 in an ATP-dependent manner. This 

Figure 1. Schematic representation of the 12 human SR proteins. SR proteins are presented as SRSFs with
aliases indicated in the parenthesis. Shuttling SR proteins (red letters) are reported to shuttle between
nucleus and cytoplasm, whereas the others (black letters) have no shuttling activity. Phosphorylation of
RS domain of SRSF1 by SRPK and CLK kinases is indicated as a representative at the top.

2. Role of SR Proteins in Splicing

RNA splicing is a critical process for the expression of >95% of human genes, during
which the introns (non-coding sequences) dispersing throughout the primary transcripts
are excised, and exons are ligated together [15,16]. RNA splicing involves two consecutive
transesterification reactions that occur under the regulation of the spliceosome, a dynamic
macromolecular machine that is comprised of proteins and small nuclear RNAs. The
spliceosome contains over 300 components that were recruited and assembled onto the
pre-mRNA, undergoing a series of dynamic changes via RNA–RNA, protein–protein,
RNA–protein, and recently discovered protein–phosphoinositide interaction during the
splicing reaction (Figure 2) [17,18]. The splicing reaction starts with U1 small nuclear
ribonucleoprotein (snRNP) recognizing the 5′ splice site in an ATP-dependent manner;
together with SF1, U2 auxiliary factors (U2AF1 and U2AF2) recruited to the branch point
site (BPS), the polypyrimidine tract (PPT), and the 3′ splice site, respectively. U2 snRNP
then binds to the BPS to displace and release SF1 in an ATP-dependent manner. This
interaction is stabilized by the assembling of SF3a and SF3b protein complexes, as well as
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the U2AF that recognizes the 3’ splice site. Then the pre-assembled U4/U6/U5 tri-snRNP
joins the pre-splicing complex to form a fully assembled spliceosome (complex B). The
complex B further conformationally transforms into the catalytically active spliceosome
by releasing U1 and U4. This active spliceosome cleaves the 5′ splice site and allows the
ligation between the intron and branch point site, forming a lariat. Next, the spliceosome
further transforms to bring the two exons close together and catalyzes the joining of the
exons and the release of the lariat [19].
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Figure 2. The role of SR proteins in spliceosome assembly. Many studies have identified SR proteins
involved in nearly every step of the spliceosome assembly. Firstly, SR proteins could promote the
formation of E complex and its binding to the 5’-splice site to facilitate base pairing between U1
snRNA with the splice site. Next, SR proteins recruit U2 snRNA to the branch point region of
pre-mRNA to form complex A. Then SR proteins form a bridging complex across two splice sites via
binding to U2AF at the 3′-splice site and U1 70K at the 5′-splice site, facilitating the recruitment of
U4/U6 and U5 tri snRNP complex to form complex B.

Though stoichiometric RNA and protein components are present in the spliceosome,
some splice sites are generally not competitive to recruit a functional spliceosome. They
need auxiliary elements nearby to facilitate regulating the splicing events, such as ESEs and
ESSs (exonic splicing enhancers and silencers, respectively) in the exons, and ISEs and ISSs
(intronic splicing enhancers and silencers, respectively) in the introns. As pivotal recog-
nizers of these elements, SR proteins can bind to these elements and facilitate spliceosome
assembling [11]. The function of SR proteins has been identified in nearly every step of the
splicing procedure. Firstly, SR proteins generally recognize the ESE elements and promote
the formation of E complex and its binding to the 5’-splice site by assisting U1 snRNA
in recognizing the splicing site [11]. Next, SR proteins promote U2 snRNA interacting
with pre-mRNA at the branch point region to form complex A. Then SR proteins, such as
SRSF2, enforce the interaction between U2AF and U1 70K to bridge complexes across two
splice sites, which further recruits U4/U6 and U5 tri snRNP complex to form complex B
(Figure 2) [20]. Among these steps, the most critical function of SR proteins is documented
in the early splice site recognition and initiation of spliceosome assembly. Through binding
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with a preferable sequence, SR proteins assist adjacent splice sites to compete in recruiting
spliceosomes, which results in enhanced RNA splicing.

3. Role of SR Proteins in Transcriptional Elongation and Genomic Stability

During transcriptional elongation, nascent RNA can displace the non-template strand
and bind to template DNA to form an RNA:DNA hybrid (R-loop) that extends for about nine
nucleotides [21]. R-loops have been extensively implicated in genome instability: the exposed
non-template ssDNA becomes a vulnerable target to nucleases or other DNA modification
enzymes [22]. Blockage or termination of transcription elongation gives rise to stabilized
R-loops behind the stalled Pol II complex [22,23]. Transcription is processed functionally
coupled with RNA transcript maturation, including 5′ capping, pre-mRNA splicing, cleav-
age/polyadenylation of nascent transcripts, and ribonucleoprotein assembly [24–26]. In
addition to their functions in the spliceosome, SR protein family members also participate
in the Pol II complex, contributing to transcriptional elongation (Figure 3) [27,28]. For exam-
ple, SRSF2 can facilitate P-TEFb binding to Pol II, increasing Pol II phosphorylation at Ser2
positions in its C-terminal repeat domain (CTD) and promoting transcriptional elongation [29].
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Figure 3. SR proteins in transcriptional elongation and genome stabilization. Through binding to
nascent RNA, SR proteins hinder the R-loop formation and dynamically bridge P-TEFb to Pol II,
which further catalyzes Pol II phosphorylation in its C-terminal repeat domain (CTD), promoting
transcriptional elongation in many genes.

Additionally, SR proteins can attach to and prevent the pre-mRNA binding to template
DNA. These features of SR proteins can suppress the R-loops formation, guarantee the
correct transcriptional elongation, and thereby increase genome stability (Figure 3). SRSF1
knockout in chicken DT40 cells results in genome-wide DNA breaks and gross DNA
recombination [12]. Moreover, knocking out SRSF2 in mouse embryo fibroblasts also
results in catastrophic DBS, which may block the cell cycle at the S-phase checkpoint [30].
Overall, SR proteins hinder the formation of the R-loop by promoting transcriptional
elongation and binding to nascent RNA to help release RNA from the template DNA when
a splicing signal emerges, thereby safeguarding the genome stability.

4. Post-Splicing Activities of SR Proteins

In addition to their activities in the nucleus, the nucleo-cytoplasmic shuttling property
of SR proteins confers their noncanonical function in mRNA export, translation, and decay
(Figures 1 and 4) [11,31].
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Figure 4. Regulation of SR proteins and their roles in mRNA export, translation, and decay. (A) SR
proteins require phosphorylation to mediate spliceosome complex formation. With further dephos-
phorylation, SR proteins bind and export the mature mRNA into the cytoplasm. (B) SR proteins
perform a significant role in NMD, which can alter NMD from taking place after mRNA export to
the cytoplasm to coming up before mRNA release from the nucleus. (C) SR protein-bound mRNAs
recruit the mTOR kinase resulting in the phosphorylation and release of 4E-BP, leading to enhanced
translation initiation. SR proteins can enhance the mTOR kinase phosphorylating S6K1, which pro-
motes translation initiation. Meanwhile, The SF2/ASF-dependent alternative splicing leads to Mnk2b
isoform, which can activate translation. (D) Phosphorylated by kinase, such as SRPK1 or/and Clk,
SR proteins are specifically recognized and transported into the nucleus by Transportin-SR protein.

4.1. SR Proteins Promote Mature RNA Export from the Nucleus

After processing, mRNA is exported to the cytoplasm, where the translation is highly
regulated to synthesize polypeptide chains. Nuclear export factor 1 (NXF1) binds to and
transports the processed mRNA through the nuclear pore complex (Figure 4A) [32]. Free
NXF1 forms a closed loop that hides its RNA binding domain and inhibits RNA binding.
Therefore, coordinated binding of adaptors is required to transform NXF1 conformation to
expose its RNA binding domain.

It has been reviewed that RNA-splicing is associated with nuclear export since the
spliceosome can facilitate export factors binding to the mature RNA [33,34]. Canonical SR
proteins exhibit different nucleo-cytoplasmic shuttling properties, grouped by shuttling
to the cytoplasm (SRSF1, SRSF3, SRSF4, SRSF6, SRSF7, and SRSF10) or not (SRSF2, SRSF5,
SRSF8, SRSF9, SRSF11, and SRSF12) (Figure 1) [11,35]. Therefore, SR proteins’ specific RNA-
binding capacity and nucleo-cytoplasmic shuttling property endow them with functions in
mRNA export. Recent work by Müller-McNicoll et al. analyzed transcriptomic-binding
profiles of NXF1 and SRSF1–7 and suggested that, though all the examined SR proteins
exhibit partial RNase A resistance in their interaction with NXF1, SRSF3 exhibits the
most robust binding. Its motif is most similar to that of NXF1 in 3’ UTR, supporting the
mechanism that SRSF3 serves as an adaptor in the recruitment of NXF1 to specific mRNA
3’ ends, coordinating RNA export [31].
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4.2. Regulating mRNA Decay and Translation

Nonsense-mediated mRNA decay (NMD) has been considered a crucial strategy for
protecting cells from the disastrous effects of truncated proteins or degraded transcripts
containing premature termination codons (PTC) [36]. Interestingly, SR proteins can cross-
interact with the exon junction complex (EJC)—the function of which is well-characterized
in NMD, which suggests that SR proteins perform a significant role in NMD (Figure 4B) [37].
Additionally, several studies reported that overexpression of SRSF1, SRSF2, and other SR
proteins, respectively, increase NMD, which is not observed with the overexpression of
the splicing factor hnRNP A1 [38]. SRSF1 promotes NMD both after mRNA is exported
to the cytoplasm and before mRNA is released from the nucleus [38]. Mechanistically,
binding downstream of PTC, SRSF1 enhances the UPF1 recruiting to the spliced mRNA,
which then promotes the NMD in the nucleus. Additionally, once the PTC is encountered,
UPF1 is phosphorylated at its N and C termini, facilitating its binding with mRNA decay
factors, e.g., SMG6 and SMG5/SMG7, and triggering RNA degradation. SRSF1 expedites
UPF1 dephosphorylation by recruiting SMG7 and PP2A, facilitating UPF1’s releasing and
recycling into the SURF complex [39].

In addition to the effect on NMD, SRSF1 is implicated in translational regulation.
SRSF1 could increase the efficiency of eIF4E-initiated mRNA translation by facilitating the
pioneer round of translation [40]. Another study revealed that SRSF1 co-sediments with
the 80S fragment from the ribosome and polysomes, improving the translation of intronless
reporter in HeLa cell-free translation system, which is dependent on the RS domain of
SRSF1, but not on the RRM domain [41]. High-throughput sequencing of polysomal
fractions further identified that mRNA translational targets of SRSF1 are associated with
cell cycle regulation, including kinetochore formation, spindle assembly, and synthesis of
M phase proteins, ensuring chromosome segregation (Figure 4C) [42]. Other shuttling SR
proteins such as SRSF3 and SRSF7 can also function in the mRNA translation [43,44]. SRSF3,
for instance, has been reported to interact with the internal ribosomal entry site (IRES),
regulating poliovirus translation initiation (Figure 4C) [44]. In conclusion, SR proteins
regulate gene expression by controlling multiple mechanisms throughout RNA processing.

5. Dysregulation of SR Proteins in Cancers

For their multiple functions involved in transcriptional and post-translational regula-
tions, dysregulated SR proteins catastrophically disrupt genome stability, RNA metabolism,
and transcriptome, thereby promoting tumorigenesis. Multiple lines of evidence suggest
that SR proteins act as oncoproteins in different tumor types. SR proteins’ activities can be
regulated by various mechanisms, including epigenetics, genomic mutation, expression
level, and protein phosphorylation. Here we review how misregulated SR proteins facilitate
tumor initiation and progression.

5.1. Aberrant SR Proteins Expression Is Associated with Cell Transformation and Tumorigenesis

The expression of SR proteins is generally dysregulated both in solid tumors such as
colon, kidney, lung, liver, pancreas, and breast cancers [45–49] and in non-solid tumors
such as leukemia and acute lymphoblastic leukemia (Table 1) [50–52]. As an oncoprotein,
elevated SRSF1 expression has been reported in various cancers. Slight overexpression
of SRSF1 can sufficiently transform fibroblast and mammary epithelial cells [47,53]. Won
Cheol Park et al. pointed out an increased SRSF7 expression in gastric cancer in contrast to
normal gastric mucosa [54]. Furthermore, colorectal cancer also exhibits increased SRSF3,
SRSF5, and SRSF6 expression.
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Table 1. The effects of SR proteins in cancer cells.

Splicing Factor Name Cancer Type Changes of SR Proteins in Cancer SR Proteins’ Effect

SRSF1 Lung Cancer Protein [55,56]
Phosphorylation [57]

Radioresistance [55]
Autophagy [56]
Apoptosis [57]

Breast Cancer Protein [53]
mRNA [49]

Apoptosis [49,53]
Cell cycle arrest [49]

Colon Cancer mRNA [58] DNA Damage [58]
Glioma mRNA and Protein [59] Cytoskeleton reorganization [59]
Renal Cancer mRNA [60] Apoptosis [60]

SRSF2 Lung Cancer mRNA [61] Angiopoiesis [61]
Liver Cancer mRNA and Protein [62] Proliferation [62]
Renal Cancer mRNA [60] Apoptosis [60]

SRSF3 Ovarian Cancer mRNA [63] Apoptosis [63]
Colon Cancer Protein [64] Angiogenesis [64]
Oral Cancer Protein [65] Autophagy [65]

Glioma mRNA [66]
Protein [66] Cell Mitosis [66]

SRSF4 Acute myeloid
leukemia mRNA [50] Apoptosis [50]

SRSF5 Pancreatic Cancer
Breast Cancer

Phosphorylation [67]
Protein [68]

Cell Cycle [67]
Apoptosis [68]

SRSF6 Colon Cancer
Lung Cancer

mRNA [69]
Protein [48]

Tumorigenesis [69]
Apoptosis [70]
Cell–cell junction [48]

SRSF7 Colon Cancer
Lung Cancer

Protein [71]
mRNA [72]

Apoptosis [71]
Growth Arrest [72]

SRSF9 Colon Cancer mRNA [73]
Protein [73]

Ferroptosis [74]
m6A Modification [73]

SRSF10 Cervical Cancer mRNA [75,76]
Protein [75]

Macrophage Phagocytosis [75]
Nonsense-mediated mRNA decay [76]

Several lines of evidence indicate frequent amplification of genes encoding SR proteins
in different cancers, at least partially contributing to the high expression of SR proteins in
tumors [45,47,69]. For example, extensive amplification of SRSF6 has been identified in
colon, lung, and breast cancers [69]. Meanwhile, SRSF1 copy number gain is associated
with DNA repair and chemo-sensitivity, which predicts poor survival in small cell lung
cancers (SCLC) [45].

In addition to gene amplification, transcriptional regulations have also been reported
to increase SR protein expression. MYC is a potent oncogenic transcription factor frequently
hyper-activated in cancers [77]. Positive correlations between MYC and SRSF1 expression
have been reported across different malignant contexts, including lung and breast cancers.
Mechanistically, CHIP data show that MYC can bind to the SRSF1 promoter directly and
enhance SRSF1 transcription [78]. Moreover, SRSF1 knockdown impaired MYC-induced
cell transformation of Rat1a fibroblast, which in turn suggests the critical role of SRSF1
in MYC’s oncogenic functions [78]. Moreover, SR proteins expression can also be auto-
regulated by individual SR proteins themselves or be cross-regulated by other SR protein
family members via alternative splicing of ultra-conserved “poison exons” that are localized
between protein-coding exons or in 3′UTR, and that contain a premature termination codon
(PTC) associated with NMD-mediated mRNA degradation [9,79]. Further investigation of
the auto- and cross-regulation mechanisms of SR proteins in cancer and how the loss of
their regulation contributes to cancer should improve our understanding of the feedback
loops of SR proteins expression and provide potential therapeutic opportunities.

Due to their canonical function in alternative splicing, the mechanism of dysregulated
SR proteins promoting cancer progression has been well elucidated through aberrant
regulation of alternative splicing and gene expression. For example, highly expressed
SRSF1 in breast cancer promotes cancer progression via the oncogenic splicing switch of
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PTPMT1. In vivo CLIP assays identified a direct SRSF1 binding motif in PTPMT1 exon3
associated with exon inclusion. Expression of PTPMT1 isoforms respectively suggests
that overexpression of exon3-included PTPMT1 isoform promotes, while exon3-excluded
isoform suppresses tumor growth and metastasis [49]. Additionally, upregulated SRSF1,
SRSF2, and SRSF3, respectively, are responsible for aberrant CD44 splicing in ovarian
cancer [80]. Besides promoting tumor progression via aberrant regulation of alternative
splicing, the function of highly expressed SR proteins has been implicated in aberrant
translation in cancer. SRSF1 and SRSF9 have been suggested to facilitate β-catenin mRNA
translation and promote β-catenin accumulation through mTOR signaling, which drives
colon cancer progression [81].

5.2. Aberrant Phosphorylation of SR Protein in Cancer

Phosphorylation of protein can regulate their biological activity, subcellular localiza-
tion, half-life, and docking with other proteins [82]. Subcellular localization of SR proteins
is strictly regulated within mammalian cells via phosphorylation at multiple sites in the
RS domain. Initially, phosphorylation in the RS domain could destabilize the α-helical
structure, forming the “arginine claw” structures, which can be recognized by an SR-
specific transportin (TRN-SR) that transports the splicing factors to the nucleus where the
splicing occurs (Figure 4D) [83,84]. During spliceosomal assembling, the RS domain is
appropriately phosphorylated [85]. Along with the splicing procedure, SR proteins are
partially dephosphorylated during the late stage of splicing and then can be exported to
the cytoplasm [86].

As the upstream regulator of SR proteins, the serine-arginine protein kinase (SRPK)
can efficiently phosphorylate the RS domains of SR proteins and promote their nuclear
import [87]. Recent studies pointed out that the phosphorylation of the RS domain is
not random. SRPK1 phosphorylates the RS domain of its physiological substrate SRSF1
in a directional (C to N) mechanism. Pedro Serrano et al. revealed that, even though
the RRM2 domain of SRSF1 is not the phosphorylation target of SRPK1, it coordinates
the phosphorylation of the RS domain through cross-interaction between these domains.
RRM2 interacts with the N-terminal RS domain to expose its C terminal for initiation
of phosphorylation [88].

Aberrant SRPK1 expression can dysregulate SR proteins’ function, resulting in aberrant
pre-mRNA splicing, which contributes to cancer progression [89]. SRPK1 contributes
to lung and brain metastasis in patients with breast cancer, which is associated with
prognosis [90]. Inhibition of SRPK1 excludes SRSF1 from the nucleus and affects alternative
splicing of VEGF to inhibit angiopoiesis, suppressing the prostate cancer cell line PC-3
forming tumors in vivo [91].

Dysregulated expression of another SR protein kinase, Cdc2-like kinases 1 (CLK1),
has been reported in pancreatic ductal adenocarcinoma, which enhances phosphorylation
on SRSF5250-Ser that is associated with alternative splicing of METTL14 and Cyclin L2.
Aberrant METTL14 exon 10 exclusion enhances the N6-methyladenosine modification in
PDAC cells which promotes tumor metastasis, while aberrant splicing of Cyclin L2 exon
6.3 promotes tumor proliferation [67].

Protein kinase A (PKA), a novel tumor biomarker, phosphorylates SRSF1 at serine 119
in the RRM, which enhances the RNA-binding properties of SRSF1, and increases SRSF1′s
activity in regulating the Minx transcript splicing in vitro [92]. Hyperactive PKA signaling
pathway has been reported in different cancers and can be exploited as potential cancer
therapeutic and diagnosis [93].

Hypoxia is commonly recognized as a prognostic factor negatively related to ther-
apeutic response and cancer patients’ survival [94]. Increasing hypoxia-inducible factor
HIF-1 in hypoxic cells upregulates the transcription level of CDC-like kinase 1 (CLK1),
which subsequently generates hyperphosphorylated RS domain of SR proteins and de-
creases their RNA-binding specificity. Consequently, infrequent or new isoforms were
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generated in hypoxic tumors compared with the normoxic environment, contributing to
tumor progression and resistance to radiation therapy.

Overall, SR proteins can be phosphorylated at multisite by different kinases, which
comprehensively adjust SR proteins’ activity. Further investigating the underlying mecha-
nisms of the spatiotemporal phosphorylation of SR proteins associated with subcellular
distribution and protein–protein interaction should improve our understanding of SR
proteins’ role in tumorigenesis and progression.

5.3. SR proteins Link Alternative Splicing and Epigenetics Promoting Cancer Development

Aberrant epigenetic regulation, a susceptible adapter of multiple biological changes,
increases the risk of cancer [95]. SR proteins have been implicated as potent mediators
for aberrant epigenetic-mediated tumorigenesis and metastasis. For example, histone
methylation affects the affinity of SR proteins to their specific RNA binding sites. DNA
methylation allows for the H3K9me3 modification of histone corresponding to methylated
alternative exons. As a histone methylation reader, HP1 protein recruits SR proteins to
the transcribed nascent RNA, thus leading to specific alternative splicing outcomes [96].
Then SRSF1 and SRSF3 bind directly to HP1α and HP1 via RNA-independent interaction.
However, in the absence of HP1, overexpression of SRSF3 resulted in a diminished effect on
splicing and vice versa. These results indicate that SR proteins provide bridging between
alternative splicing and epigenetics. Further research dissecting the underlying mechanism
of the SR proteins as executors of epigenetic changes should improve our understanding of
SR proteins’ roles in physiological conditions and tumor development.

6. Competition or Coordination between Different SR Proteins

Specific splicing target is often regulated synergically by multiple splicing factor
proteins [97]. As a typical target for SR proteins, alternative splicing of VEGF mRNA leads
to different isoforms with diverse functions. Particularly, the VEGFxxx isoforms and the
VEGFxxxb isoforms (x denotes the number of amino acids) show opposite roles with pro-
or anti-angiogenic properties, respectively (Figure 5) [98,99]. It has been reported that
dysregulated VEGF splicing is associated with cancer progression. Decreased VEGFxxxb
has been reported in several cancers, including renal [100], melanoma [101], and colorectal
carcinoma [102]. Different SR proteins regulate VEGF splicing via multiple mechanisms.
Aberrant expressions of multiple SR proteins disrupt the VEGF splicing. For example, it has
been found that increased expression of SRSF2 can upregulate the VEGF165b/VEGF ratio
and suppress tumor neovascularization [103]. Similarly, SRSF6 can bind directly to the exon
8b of VEGF pre-mRNA favoring distal splice site utilization and VEGF165b expression [104].
On the contrary, increasing SRPK1 in tumor phosphorylates SRSF1 and stimulates its
nuclear import, which favors the splicing at the proximal splice site of VEGF pre-mRNA and
leads to the expression of the VEGFxxx isoform and neovascularization. The mechanism for
the competition or coordination between different SR proteins during individual splicing
events needs to be further explored to clarify the exact roles of SR proteins and their
cross-interaction in splicing. Moreover, investigating other cross-interactions between SR
proteins during RNA processing, mRNA export, mRNA stability, and translation will
expand our understanding of their functions in physiological and pathological conditions.
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Figure 5. Co-regulation of SR proteins on common target through multiple mechanisms. As a
contributor to angiogenesis, dysregulation of VEGF splicing contributes to cancer progression and is
highly correlated with acquired drug resistance. For example, upregulated expression of SRSF2 or
SRSF6, as a result of transcription increased or copy number amplified, is responsible for splicing in
favor of VEGF165b, which is antagonistic to tumor neovascularization in vivo. However, overactivity
of SRPK1 in the tumor could phosphorylate SRSF1 and stimulate its nuclear import, which favors the
selection of the proximal splice site of VEGF pre-mRNA and promotes neovascularization.

7. Targeting SR Proteins as Potential Cancer Therapeutics

To target SR-proteins-mediated aberrant alternative splicing in cancer, a vaccine ap-
proach has recently been developed to apply antibodies specifically to VEGFxxx, and not
to VEGFxxxb isoforms, providing a promising strategy for cancer therapy. A prophylac-
tic immunization using purified immunoglobulins against the pro-angiogenic isoform of
VEGF suppresses melanoma and renal cell carcinoma tumor growth in vivo [105].

Importantly, with advances in the development of antisense oligonucleotides (ASOs)—
synthetic molecules with 15–30 nt in length, base-pair binding to the splice sites or regu-
latory sequences [106]—have been under pre-clinical evaluation for correcting aberrant
alternative splicing in cancer (Figure 6A,B). SRSF3 recognizes and enhances the inclusion
of the exon 10 of the pyruvate kinase M (PKM) that plays a crucial role in regulating
the Warburg effect, favoring the M2 isoform that promotes aerobic glycolysis and tumor
growth [107,108]. Another study suggested that highly expressed SRSF10 in head and neck
cancer is also associated with aberrant PKM splicing resulting in the expression of PKM2
isoform [109]. ASO targeting PKM splicing increases the PKM1 to PKM2 ratio, thereby
redirecting glucose carbons from anabolic processes to the tricarboxylic acid (TCA) cycle in
hepatocellular carcinoma and suppressing the liver-tumor formation and growth [110].
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proteins alter RNA splicing. (B–D) Principles for targeting SR proteins induced aberrant RNA splicing
in cancer. (B) Antisense oligonucleotides bind to RNA and block SR proteins’ effect on target RNA
alternative splicing. (C) Small molecular inhibitors bind to RRM domain of SR proteins and inhibit RNA
binding. Stars represent small molecular inhibitors. (D) Decoy oligonucleotides composed of SR protein
binding sequence bind to SR proteins and block their access to the target RNA.

In addition to RNA alternative splicing, dysregulated SR proteins can disrupt genome
stability, transcription, and further RNA processing, contributing to tumorigenesis and
progression. Therefore, targeting SR proteins instead of their splicing targets may mod-
ulate gene expression extensively and benefit tumor therapeutics. In order to modulate
SR protein phosphorylation, small molecules have been developed to target the kinases
associated with splicing regulation [111–113]. NB-506, a complete inhibitor of topoiso-
merase I, is repositioned to reduce SRSF1 phosphorylation and regulates gene expression
by modulating pre-mRNA splicing. In addition, it has been described that chimeric an-
tibodies of SRPK1 have the capacity to suppress non-small cell lung cancer growth and
metastasis [114]. Meanwhile, small molecules targeting SRPK1 can switch splicing of VEGF
mRNA to generate the VEGF165b isoform and decrease tumor growth [91]. These studies
suggest that inhibition of SRPK1 may provide a strategy for cancer therapeutic.

Modulating the SR protein kinases’ activities tends to change multiple SR proteins’
functions simultaneously. Several efforts have been made to specifically target the indi-
vidual hyperactive SR proteins in tumors (Figure 6C,D). Virtual screening of 4855 FDA-
approved drugs to target the domain-specific role of SRSF6 repurposed a β2-adrenergic
receptor agonist indacaterol, which is approved for chronic obstructive pulmonary disease
(COPD) treatment, for blocking SRSF6′s regulation on its downstream splicing targets,
which suppresses colorectal cancer [48]. In addition, Denichenko et al. developed decoy
oligonucleotides that can compete for RNA binding proteins, such as splicing factors, includ-
ing RBFOX1/2, SRSF1, and PTBP1, rather than their specific RNA targets. SRSF1 splicing
targets, such as INSR, U2AF1, MKNK2, and USP8, respond to decoy oligonucleotides for
SRSF1 while not to those for PTBP1 and RBFOX1/2. Considering the non-RNA-binding
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functions of SR proteins, strategies targeting the splicing regulation activity of SR proteins
may provide more precise on-target therapeutic benefits.

8. Conclusions

In summary, SR proteins’ activities are regulated via multiple mechanisms, including
gene copy number [47], transcriptional regulation [50], alternative splicing [9,79], and
phosphorylation [91], which affects a variety of cellular processes, such as genome stabil-
ity [12,115], RNA metabolism [116], and translation [117]. Connecting upstream regulators
and downstream targets, multiple SR proteins shuttle between the nucleus and cytoplasm
to maintain the precise net of the biological pathways. Dysregulated SR proteins drive
tumorigenesis and cancer development [45–47]. To date, a few therapeutic strategies have
been developed to regulate the activity of SR proteins [48,111–113,118]. Among them,
targeting the regulators of SR proteins will result in extensive modulation of various SR
protein functions simultaneously, which may elicit unwanted off-target effects. On the other
hand, ASOs targeting specific aberrant alternative splicing changes may confer limited
clinical benefit in cancer therapy, considering that hundreds and thousands of transcripts
are aberrantly spliced in cancer due to the dysregulated SR splicing proteins. Therefore, we
speculate that the protein-specific competitive inhibitor or decoy oligonucleotides targeting
individual SR proteins can achieve more significant benefits for cancer therapeutics.

Further investigation of the biological function and regulatory mechanisms of SR
proteins in RNA metabolism and distinguishing the cross-interaction among different
high-homology SR proteins should provide a foundation for the rational development
of precise cancer therapy (Table 1). It has been reported that SR proteins such as SRSF1,
SRSF4, SRSF5, SRSF6, and SRSF9 contain one more RRM domain than the other family
members [119]. Further insights into the functional discrimination of two RRM domains
are needed to specify their respective roles in RNA recognition and other RNA processing.
With further understanding of the biological function of the protein domains in SR proteins,
SR proteins may serve as a precise medicinal target for cancer therapy.
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