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SUMMARY

X-chromosome inactivation (XCI) is a random, permanent, and developmentally early epigenetic event that
occurs during mammalian embryogenesis. We harness these features to investigate characteristics of early
lineage specification events during human development. We initially assess the consistency of X-inactivation
and establish a robust set of XCl-escape genes. By analyzing variance in XClI ratios across tissues and indi-
viduals, we find that XCl is shared across all tissues, suggesting that XCl is completed in the epiblast (in at
least 6-16 cells) prior to specification of the germ layers. Additionally, we exploit tissue-specific variability
to characterize the number of cells present during tissue-lineage commitment, ranging from approximately
20 cells in liver and whole blood tissues to 80 cells in brain tissues. By investigating the variability of XCl ratios
using adult tissue, we characterize embryonic features of human XCI and lineage specification that are other-

wise difficult to ascertain experimentally.

INTRODUCTION

Every cell within female mammalian embryos undergoes the pro-
cess of X-chromosome inactivation (XCI), which silences
expression from a single randomly chosen X-allele via epigenetic
mechanisms (Dossin and Heard, 2022; Lyon, 1961; Migeon,
2013). The random choice of which allele to inactivate occurs
early in development and is permanent thereafter with the inac-
tivated allele propagated through each cell’s developmental line-
age (Lyon, 1972). As a result, adult females exhibit mosaic
X-linked allelic expression throughout every tissue within the
body, an enduring phenotypic consequence of an early embry-
onic milestone. The random, permanent, and developmentally
early nature of XCl positions the whole-body mosaicism of
X-linked allelic expression as a lineage marker reaching back
to the earliest embryonic stages (Mclaren, 1972; Nesbitt,
1971). Careful analysis of X-linked allelic expression across indi-
viduals and tissues can thus reveal whole-body lineage relation-
ships stemming from some of the first lineage decisions made
during embryogenesis (Bittel et al., 2008; Fialkow, 1973; Mon-
teiro et al., 1998; Nesbitt, 1971).

Although the probability for inactivation is equal between the
X-alleles in humans, variation in XClI allelic ratios across individ-
uals is a salient feature of XCI. Deviation from the expected XCl
allelic ratio of 0.5 can arise through various mechanisms (Brown
and Robinson, 2000; Naumova et al., 1996; Schmidt and Du
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Sart, 1992; Wu et al., 2014) with the most basic being the
inherent stochasticity of the initial choice of allelic inactivation
(Shvetsova et al., 2019). The variability of the initial XCI ratio
within the embryo is directly linked to the number of cells present
during inactivation where smaller cell numbers result in
increased variability of XCI ratios (Nesbitt, 1971). In fact, one
can estimate the number of cells present at the time of inactiva-
tion by analyzing the variance of XCI ratios across a population.
Several studies using this approach (Amos-Landgraf et al., 2006;
Shvetsova et al., 2019), as well as studies utilizing in vitro embry-
onic models (Moreira de Mello et al., 2017; Petropoulos et al.,
2016; van den Berg et al., 2009), have estimated that XCl occurs
in a small stem cell pool within the human embryo with estimates
as little as 8 cells. The combination of the random nature and
small pool of cells present during XCl imparts an ever-present
basal-level of variability in XCl ratios within adult human
populations.

The stability of XCl down lineages means that minor cell-sam-
pling variation can be used as a marker for any process involving
selection of a set of cells, i.e., lineage specification (Fialkow,
19783; Nesbitt, 1971). Although growing evidence indicates XClI
is initiated early (Moreira de Mello et al., 2017; Petropoulos
et al., 2016; van den Berg et al., 2009), the exact timing of XClI
as it relates to early lineage specification is unclear (Geens and
Chuva De Sousa Lopes, 2017) and has important implications
for the variance in XCl ratios across early lineages. Specifically,
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Figure 1. Timing of XCI determines lineage-specific XCl ratio probability

(A) Schematic representing completed XCI before germ-layer specification. Each germ layer inherits the same randomly determined XCl ratio set prior to germ-
layer lineage specification. The probability distribution of XClI is determined by the number of cells present during inactivation.

(B) Schematic representing completed XCI after germ-layer specification. The XCl ratio for each germ layer is set independent of one another, together along with
variation in cell numbers fated for each germ layer results in variable XClI ratios across the germ-layer lineages.

the extent of variability in XCl across adult tissues—those
derived from the embryonic lineage during embryogenesis—is
a long-standing question (Bittel et al., 2008; Hoon et al., 2015)
and directly linked to the timing of XCl and early lineage events.
Germ-layer specification is the first lineage decision made for all
future embryonic tissues and occurs during post-implantation
embryonic development (Ghimire et al., 2021), a similar time-
frame to XCI. If XCl is completed before germ-layer specification,
each germ layer would be specified from the same pool of cells
with a set XCl ratio (Figure 1A). The germ-layer-specific XCl ratio
would be dependent on the initial XCI ratio resulting in shared
XCl ratios across germ layers (Figure 1A) and the subsequently
derived adult tissues. In contrast, if XCl is completed after
germ-layer specification, germ-layer-specific XCl ratios are set
independently and are not expected to be shared across the
different germ layers (Figure 1B), producing variance in XCl ratios
across adult tissues. Consequently, comparing XCl ratios for tis-
sues within either the same or different germ-layer lineages can
reveal the temporal ordering of XCl and germ-layer specification.

An additional early lineage event that may overlap with XCl is
extraembryonic/embryonic lineage specification (Moreira de
Mello et al., 2017; Petropoulos et al., 2016), which precedes
germ-layer lineage specification. If XCl occurs before or during
extraembryonic/embryonic lineage specification, variance in XClI
ratios across adult tissues will be influenced by the initial stochas-
ticity of XCl and the subsequent cell selection for the embryonic
lineage. In other words, variance in XCl ratios across the germ-
layer lineages is tied to their last developmental common denom-
inator: the specification of the embryonic epiblast. Since extraem-
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bryonic tissues do not contribute to adult tissues, the timing of XClI
and extraembryonic/embryonic lineage specification provides the
developmental context that variance in adult tissues is potentially
tied to the specification of the embryonic epiblast.

In this study, we develop an approach to determine the tissue
XCl ratio from unphased bulk RNA-sequencing data, allowing us
to assess XCl ratios from any publicly available RNA-sequencing
dataset. Utilizing the tissue sampling scheme of the Genotype-
Tissue Expression (GTEx v8) project (Lonsdale et al., 2013), we
analyze XClI ratios for 49 tissues both within and across individ-
uals for 311 female donors (Figure S1). We establish that XCI ra-
tios are shared for tissues both within and across germ layers
demonstrating that XCl is completed before any significant line-
age decisions are made for embryonic tissues. Additionally, we
extend population-level modeling of variance in XClI ratios to all
well-powered tissues, deriving estimates for the number of cells
present at the time of embryonic epiblast and tissue-specific
lineage commitment. By providing cell counts, temporal ordering
of lineage events, and lineage relationships across tissues,
capturing the statistical commonalities that underlie the inher-
ently stochastic nature of XCI is a powerful approach for
resolving questions of early developmental lineage specification.

RESULTS

The folded-normal model accurately estimates XCI
ratios from unphased data

A practical consequence of bulk RNA-sequencing is that the XCI
ratio of a tissue can be estimated from the direction and
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magnitude of X-linked allele-specific expression. For a tissue
with 75% of cells carrying an active maternal X-allele, approxi-
mately 75% of RNA-sequencing reads for heterozygous loci
are expected to align to the maternal X-allele (Figure 2A). Howev-
er, allelic expression for any given gene is affected by a variety of
factors both biological (e.g., eQTLs) and technical (e.g., read
sampling). To derive robust estimates, we aggregate allelic
expression ratios across well-powered intra-genic heterozygous
SNPs for a given tissue, providing a chromosome-wide estimate
of the tissue XCl ratio (Figure 2A).

When aligned to a reference genome, reference alleles will be
composed of both maternal and paternal alleles for a given sam-
ple. It follows that reference allelic expression ratios represent
the expected expression ratios from both the maternal and
paternal alleles, given the XClI ratio of the tissue (Figure 2A). To
account for this, folding the reference allelic expression ratios
about 0.5 aggregates the imbalanced allelic expression within
the tissue across the two alleles. This enables the magnitude
of the XCI ratio to be estimated from unphased expression
data by fitting a folded distribution (Gart, 1970; Urbakh, 1967)
(see STAR Methods; Figures 2A and 2B).

To assess the accuracy of the folded-normal model in esti-
mating XCI ratios, we test our approach with phased bulk
RNA-sequencing data from the EN-TEx (Rozowsky et al., 2021)
consortium, a total of 49 tissue samples from 2 female donors
spanning 26 different tissues. Comparing the unphased esti-
mates derived with the folded-normal model to the phased me-
dian allelic expression per sample, we find nearly perfect XCl ra-
tio estimate correspondence for ratios greater than 0.6
(Figure 2C). For samples skewed closer to the folding point of
0.5, model misspecification of the underlying distribution makes
the estimate overconservative.

Our approach for estimating XCI ratios aggregates allelic
expression across numerous heterozygous loci, averaging
away mechanisms outside of XCI that may impact X-linked allelic
expression. A widespread mechanism that may still impact our
XCl ratio estimates is escape from inactivation, where a gene
is biallelically expressed from the active and inactive X-alleles
(Tukiainen et al., 2017). Between 15% and 30% of genes on
the X-chromosome have documented evidence for escape
(Carrel and Willard, 2005; Tukiainen et al., 2017). Although we
exclude known escape genes (Tukiainen et al., 2017) from our
folded-normal XClI ratio estimates, it is very likely that unanno-
tated escape genes are present within the data. To identify the
impact of escape on our XCI ratio estimates, we compare
folded-normal XCl ratio estimates derived with either excluding
or including known escape genes to the phased XClI ratio of tis-
sues excluding the known escape genes (Figure 2D). Including
known escape genes biases the folded-normal XCI ratio esti-
mates toward 0.5 (Figure 2D). By comparing allelic ratios of
known escape genes to all other genes in EN-TEX tissues with
XClI ratios >0.7, we clearly see escape genes trend toward
balanced biallelic expression, contributing to the underesti-
mated XClI ratios when including escape genes (Figure 2E).

To assess variance in XCl and escape more broadly, we capi-
talize on the tissue sampling structure of the Genotype-Tissue
Expression (GTEx v8) dataset (Figure S1). From an average of
56 + 23.5 (SD) well-powered heterozygous SNPs (genes, see
STAR Methods) per sample (Figure S1), we derive robust XCl ra-
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tio estimates for 4,658 GTEx tissue samples spanning 49
different tissues (Figure S1).

In addition to biological sources of variation (escape), read
depth is a critical source of technical variation to assess when
analyzing allelic expression. Sampled allelic expression is the
result of a binomial sampling event dependent on the number
of reads sampled and the probability of allelic expression.
Although we employ stringent read count requirements (see
STAR Methods), we additionally explore how robust our tissue-
level XClI ratio estimates are in the face of global decreases in
read depths across genes (Figure 2F). As read depths per
gene are decreased (10%, 20%, 30%, etc.), the vast majority
of increased error in the XCl ratio estimates is constrained to
the estimates below 0.6 (Figure 2F), whereas the most skewed
tissue samples (XCI ratio estimates above 0.9) display nearly
zero additional error even up to an 80% reduction in read depth
(Figure 2F). These results are in line with our phased versus un-
phased comparisons demonstrating that XCl ratio estimates
above 0.6 (Figure 2C) are highly accurate. Additionally, these re-
sults appear to be independent of the number of genes used to
estimate the tissue XClI ratio (Figure S1), where we use a mini-
mum of 10 genes per sample. This suggests that aggregating
allelic expression over even a modest number of genes is pow-
ered to accurately estimate tissue XCI ratios above 0.6 from
bulk RNA-sequencing data.

Escape genes exhibit consistent cross-tissue biallelic
expression

Our method to quantitatively determine the tissue XCI ratio via
aggregating signal across genes is especially well-suited to
explore escape from XCI within the GTEx dataset (Figure 2E).
Our basic strategy for detecting escape genes is to calculate
each gene’s consistency with the aggregate chromosomal inac-
tivation ratio. Assessing all X-linked genes utilized in our GTEx
XCl ratio estimates (Figure 3A) and previously annotated consti-
tutively escape genes (Tukiainen et al., 2017) results in a wide
range of correlations between gene and tissue XCl ratios, exem-
plified by the genes SHROOM4 and TCEALS (Figure 3B). As ex-
pected, the transcripts associated with XCl, namely, XIST and
TSIX, show some of the highest correlations to the tissue XCl ra-
tio (i.e., top 8.7%; Figure 3B). Similarly, known escape genes
exhibit some of the smallest correlations (Figure 3B). Interest-
ingly, several genes previously annotated as escape do exhibit
rather strong correlations to the XClI ratio of tissues. We find
that increased gene expression is linked to increased correlation
to the tissue XCI ratio (Figure 3C) suggesting that some gene
variation with respect to the tissue XClI ratio is technical, reflect-
ing read sampling at low expression. At matched expression
levels, previously annotated escape genes have smaller tissue-
gene XCI ratio correlations compared to all other genes (Fig-
ure 3C), demonstrating that known escape genes are less corre-
lated to the tissue XCI ratio as expected by expression
levels alone.

From our analysis in the EN-TEx dataset, escape from inacti-
vation trends toward balanced biallelic expression rather than
achieving completely equal allelic expression (Figure 2E), ex-
plaining how some escape genes retain significant correlations
to tissue XClI ratios in the GTEx dataset. To comprehensively
test the degree to which escape produces balanced allelic
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Figure 2. The folded-normal model accurately estimates XClI ratios from unphased bulk RNA-sequencing data

(A) Schematic demonstrating how allelic expression of heterozygous SNPs reflect the XCl ratio of bulk tissue samples. Aligning expression data to a reference
genome scrambles the parental haplotypes. Folding the reference allelic expression ratios captures the magnitude of the tissue XCl ratio.

(B) Distributions of reference allelic expression ratios for identified heterozygous SNPs across tissue samples exhibiting a range of bulk XClI ratios. Both the
unfolded (top row) and folded distributions with the fitted folded-normal model (bottom row) are shown.

(C) For the EN-TEXx tissue samples, the phased median gene XCl ratio is plotted against the unphased XClI ratio estimate from the folded-normal model. The
folded-normal model produces near identical XCl ratio estimates for samples with XCI ratios greater than or equal to 0.60.

(D) Deviation of the folded-normal model from the phased median gene XCl ratio when excluding or including known escape genes.

(E) Aggregated folded reference allelic expression distributions for known escape and inactive genes in EN-TEx tissues with XClI ratios > 0.70.

(F) Root mean squared error distributions for GTEx tissue samples binned by their original estimated XClI ratio as read depth per SNP are gradually reduced.
See also Figure S1.
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Figure 3. Genes that escape XCI exhibit balanced biallelic expression across XCl-skewed tissues

(A) The genomic location and number of GTEx samples each gene is detected for the 542 genes that pass our quality control filters.

(B) All 542 genes and 45 known escape genes ranked by the Pearson correlation coefficient for each gene’s allelic expression and the XCl ratio of the tissue for
samples that detect that gene.

(C) Distributions of gene-tissue XCl ratio correlations for all 542 genes and 45 escape genes, binned by average expression. The range of average expression is
binned into 4 equally spaced bins. We label the top 50% of “all other genes” in each expression bin as “inactive genes” and the bottom 50% as “unknown” genes,
as they are potentially a mix of inactive and unannotated escape genes.

(D) An example for how the empirical p values are calculated for a given test gene across tissue samples. For a given tissue sample, we calculate each gene’s
allelic expression ratio deviation from 0.5, where the black histogram represents the deviations from the inactive genes in the sample and the blue-dotted line
represents the deviation of the given test gene in the sample, ARHGAP4 in this example. We apply Fisher’s method to aggregate each test gene’s distribution of
empirical p values to calculate a meta-analytic p value to determine significance (ARHGAP4 meta-analytic p value: 4.44e 2!, SLC6A8 meta-analytic p
value: 0.997).

(legend continued on next page)
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expression, we construct a one-sided test to detect whether a
gene consistently trends toward balanced biallelic expression
regardless of the XCl ratio of the tissue (see STAR Methods; Fig-
ure S2). Against a null distribution of inactivated genes, we are
able to identify genes with consistent biallelic expression in op-
position to the aggregate imbalanced tissue XCl ratio, indicating
escape from XCI (Figure 3D).

Testing the known escape genes using this approach results in
significant escape signal (Figure 3E). Similarly, we are able to iden-
tify 19 genes previously unannotated for constitutive escape to
have significant escape signal (p value < 0.001): ARHGAP4,
BTK, CASK, CHRDL1, CLIC2, COX7B, CTPS2, CXorf36, F8,
ITM2A, MECP2, MPP1, NLGN4X, PGK1, RPL36A, SASHS,
SEPT6, STARDS, and VSIG4 (Figures 3E and S2). Revisiting these
genes within the literature, several have prior evidence for escape,
although typically limited in the tissues assessed: BTK (Hagen
et al., 2020; Zito et al., 2021), CASK (Zito et al., 2021), CHRDLA1
(Zito et al., 2021), CLIC2 (Tukiainen et al., 2017; Zito et al.,
2021), COX7B (Larsson et al., 2019), CTPS2 (Balaton et al.,
2021), CXorf36 (Winham et al., 2019), MPP1 (Zito et al., 2021),
NLGN4X (Tukiainen et al., 2017; Zito et al., 2021), SASH3 (Zito
et al.,, 2021), SEPT6 (Zhang et al., 2013), and VSIG4 (Berletch
et al., 2015). Our results suggest these genes escape inactivation
more broadly than previously reported. In addition, our analysis
provides supporting evidence of escape for 34 previously anno-
tated escape genes and supporting evidence of inactivation for
143 genes (Table S1). Although in this analysis, we are powered
to identify more constitutively escape genes, variability in escape
across tissues and individuals is well documented. As such, our
escape annotations are robust to the GTEx data we sample
over and will benefit greatly from future experimental follow-up.

To test the impact of including escape genes on our GTEX tis-
sue XCl ratio estimates, we compare our original tissue XCl ratio
estimates to estimates calculated while including the known
escape genes (Figure 3F). The inclusion of escape genes results
in slightly underestimated XCI ratios (Figure 3F), although the
impact is minimal with an average absolute deviation of 0.0088
(+0.010 SD) between XCI ratio estimates including/excluding
the known escape genes. This demonstrates our folded aggre-
gation of allelic expression across genes to estimate XClI ratios
is robust to noise generated by escape from inactivation.

XCl is completed prior to germ-layer specification

Having developed a robust approach to measure XCI ratios
from unphased data, we turn to assessing the degree that
XClI ratios are shared across tissues within individuals. As an
initial visualization of XClI ratios across tissues, we order all fe-
male GTEx donors by their average XCI ratio and plot the ratio
for all tissues grouped by germ layer (Figure 4A). XCI ratios
qualitatively appear consistent across all tissues and the three
germ layers (Figure 4A). We then ask how well do individual tis-
sues predict all other tissues’ XCl ratios, which we quantify with
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the AUROC (area under receiver operating characteristic curve)
metric (Figure S3). For a given tissue, we take the average XClI
ratio of all other tissues for each donor and use this average to
classify the donors as low/high XClI ratio donors. If the given tis-
sue’s XClI ratio can recapitulate the same low/high classifica-
tions of the donors, this indicates that tissue’s XCI ratio is in
concordance with the average of all other tissues and would
result in an AUROC close to 1. Across various thresholds for
defining low/high donors, we see that performance is high
and consistent across all tissues, suggesting that XCI ratios
are generally shared across all tissues for an individual
(Figure S3).

Stratifying tissue comparisons of XCl ratios by germ-layer line-
age relationships should resolve the temporal ordering of XClI
and germ-layer specification within the human embryo. If XClI
occurs before germ-layer specification, tissue XCI ratios are
expected to positively covary across tissues from different
germ-layer lineages (Figure 1A). In contrast, if XClI occurs after
germ-layer specification, the XClI ratio of each germ layer is set
independently, and there is little expected covariance in XCl ra-
tios for tissues from different germ layers (Figure 1B). We
compute correlations of the XCl ratio for combinations of tissues
derived from either the same or different germ layers, exempli-
fied in Figure 4B. Tissues sharing the same germ-layer lineage
produce strictly positive significant correlation values ranging
from 0.25 to 0.90 (Figure 4C), demonstrating XCI ratios are
shared within individual germ-layer lineages. Strikingly, signifi-
cant positive ratio correlations for tissues derived from different
germ layers are on the same order as the within germ-layer com-
parisons, ranging from 0.24 to 0.87 (Figures 4C and S3). The fact
tissues derived from different germ layers covary for their XCl ra-
tio strongly suggests XCl is completed prior to germ-layer spec-
ification and the initial embryonic XCl ratio is propagated through
all germ-layer lineages.

Although we annotate individual tissues to belong to a single
primary germ layer, tissues are compositions of cell types
derived from different germ layers. This may impact the
observed variance in XCl ratios across tissues if there is a strong
germ-layer-specific effect in XCl ratio variance. We take advan-
tage of the recently released single-nucleus RNA-sequencing
(Eraslan et al., 2022) GTEx data to deconvolve (Newman et al.,
2019) several of the bulk tissues into their germ-layer compo-
nents, allowing us to explore variance in XCI ratios across
germ layers within single tissues. Figure 4D provides examples
of the deconvolved germ-layer proportions of three tissues
with the remaining 6 tissues provided in Figure S4, demon-
strating that there is variation in germ-layer composition within
tissues. We extract germ-layer-specific markers for the lung,
skin, and esophagus mucosa tissues (Table S2; see STAR
Methods) to explore variance in XClI ratios across germ layers
within single tissues. The XCI ratios of germ-layer-specific
markers positively covary in each tissue (Figures 4E-4G,

(E) The aggregated empirical p value distributions for inactive, known escape, and the unknown genes now classified as confident inactive and novel escape are
plotted. The unknown genes are classified as either confident inactive or novel escape by using a significance threshold of meta-analytic p value < 0.001.

(F) The percent of genes previously annotated for escape per sample is plotted against the difference between the sample’s XClI ratio estimates derived when
either including or excluding the previously annotated escape genes. The inset plot compares the XCl ratio estimates derived without the known escape genes

(x axis) or including the known escape genes (y axis).
See also Figure S2 and Table S1.
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Figure 4. XCl ratios are shared across germ-layer lineages

(A) Heatmap of all estimated XCl ratios for the tissues of each donor, with donors ordered by their mean XCl ratio across tissues and tissues grouped by germ-
layer lineage. Black indicates no tissue donation for that donor-tissue pair.

(B) Examples of within and across germ-layer lineage comparisons of XCl ratios. Each data point represents the estimated XCl ratios of the two indicated tissues
for a single donor.

(C) All significant (FDR-corrected p value < 0.05, permutation test n = 10,000) Pearson correlation coefficients for within and across germ-layer lineage com-
parisons.

(D) Stacked bar plots for the germ-layer percentage composition for each sample in the lung, esophagus mucosa, and skin lower leg GTEX tissues. The de-
convolved cell type percentages and their germ-layer annotations are provided in Figure S4.

(E-G) The folded allelic expression ratios for germ-layer markers and all other genes (not markers) are plotted for several example donors per tissue, E, lung; F,
skin lower leg; and G, esophagus mucosa. The adjacent scatter plots compare the median folded allelic expression between germ-layer markers for all donors. E:
lung mesodermal and endodermal markers, Pearson correlation of 0.626 (p value < 0.001), F: skin lower leg mesodermal and ectodermal markers, Pearson
correlation of 0.621 (p value < 0.001), G: esophagus mucosa endodermal and ectodermal markers, Pearson correlation 0.603 (p value < 0.001), mesodermal and
ectodermal markers, Pearson correlation 0.360, (p value < 0.001), and mesodermal and endodermal markers, Pearson correlation 0.537 (p value < 0.001).
See also Figures S3 and S4 and Table S2.
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Pearson correlations: lung mesoderm and endoderm 0.626, skin
mesoderm and ectoderm 0.621, esophagus endoderm and
ectoderm 0.603, esophagus mesoderm and ectoderm 0.360,
and esophagus mesoderm and endoderm 0.537), recapitulating
the result of shared XCI ratios across germ layers that we
demonstrate with the non-deconvolved tissues.

Specific tissue lineages have increased probability for
switching the parental direction of XCI

In addition to demonstrating that XClI ratios are broadly shared
across all tissues, our cross-tissue analysis reveals that there
is a degree of variability in XCI ratios across tissues within indi-
viduals. Comparing distributions of gene-level allelic expression
across tissues for individual donors reveals that there are often
individual tissues that exhibit divergence in XCl ratios in opposi-
tion to the general trend of shared XCl ratios (Figures 5A and 5B).
This is evidenced by the divergent distributions of gene-level
allelic expression for the whole blood, vagina, and skin tissues
in donor 11P81 (Figure 5A) and the esophagus mucosa, vagina,
and skin tissues in donor 1J10Q (Figure 5B). The presence of in-
dividual tissues exhibiting divergent XClI ratios within an individ-
ual suggests that there may be lineage-specific effects contrib-
uting to variance in XClI ratios across tissues.

To further investigate the degree of variation in XClI ratios
across tissues, we take advantage of the cross-tissue sam-
pling of individual donors to determine the parental direction
of XCl. If an expressed heterozygous SNP is captured for
two different tissues of an individual, the reference allele is
on the same haplotype and maintains directional allelic infor-
mation. Thus, calculating the correlation of reference SNP
allelic ratios for shared SNPs between two tissues can reveal
whether those tissues share the same XCI direction
(Figures 5C and 5D; see STAR Methods). When examining a
donor with generally high XCI ratios across all tissues (Fig-
ure 5C; Donor 11P81), we find that all tissues share the
same parental direction in allelic inactivation. Whereas a less
skewed donor (Figure 5D; Donor 1J10Q, ovary and vagina
tissues) exhibits a subset of tissues with opposite parental
inactivation compared with the majority of tissues for that
donor. Across all donors, as the average XCl ratio of their tis-
sues increases, the proportion of their tissues exhibiting
switched parental XCl decreases (Figure 5E), with the most
skewed donors exhibiting zero tissues with switched parental
XCI (Figure 5E). Interestingly, switching parental direction of
XCl is in fact concentrated in a subset of tissues, with 12
of 49 tissues being significantly enriched for instances of
switched XCI (Figure 5F, Fisher’s exact test, p value <
0.05). The existence of individual tissues with increased prob-
ability for switching parental directions of XCl is indicative of
increased variance in XCI ratios for those particular tissue lin-
eages. We explore this model further in cell population esti-
mates at the time of tissue-specific lineage commitment
section.

Cell population estimate at the time of embryonic
epiblast lineage specification

The fact XClI ratios are broadly shared across tissues suggests
the initial embryonic XCI ratio determined at the time of inactiva-
tion is propagated through development. This is strongly evi-
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denced by the consistency of XCl ratios across the developmen-
tally distant germ-layer lineages (Figures 4, 5A, and 5B).
Population-level variance in adult XCl ratios thus, in part, reflects
the sample distribution during XCI, which depends on the num-
ber of cells present during inactivation. We derive estimates for
the number of cells present at the time of inactivation by
modeling XCI ratio variance from tissue-specific ratio distribu-
tions across donors (Figures 6A). Using a maximum likelihood
approach, we fit estimated models to the tails of the empirical
XCl ratio distributions to account for the uncertain unfolded
XCl ratio estimates between 0.4 and 0.6 (Figure 6A; see STAR
Methods). The cell number estimates derived from all well-pow-
ered tissues range from 6 to 16 cells (Figure 6B), i.e., approxi-
mately within a single-cell division, demonstrating a striking de-
gree of similarity in population-level XCl ratio variance across the
assessed tissues. We model variance in XCl ratios as a random
binomial sampling event that is then propagated through devel-
opment. The consistency in XClI ratios across developmentally
distant tissues supports this model, although there are likely
additional contributors to the observed variance in XCI ratios,
such as genetic variation that might drive allelic selection (Brown
and Robinson, 2000; Schmidt and Du Sart, 1992) as well as sto-
chastic deviations during development (Sun et al., 2021). In the
simplest case, observed variance in XCl ratios is derived from
the initial stochasticity of XCl, positing our cell number estimates
as lower bounds for the number of cells that must be involved
in XCl.

Notably, we sample variance in XCI of tissues derived from the
embryonic lineage. If XCl occurs before extraembryonic/embry-
onic lineage specification, the variance we observe in adult tis-
sues is a combination of the initial variance at the time of XClI
and additional sampling variance linked to the lineage specifica-
tion of the embryonic epiblast. This contextualizes our 6-16 cell
number estimate as a potential lower bound for the number of
cells present during embryonic epiblast lineage specification in
the human embryo.

Cell population estimates at the time of tissue-specific
lineage commitment

Tissue-specific lineage commitment can be modeled as a
random sampling event from a pool of unspecified progenitor
cells. In the context of XCI, the XCI ratio of the newly specified
tissue is dependent on the prior XCI ratio of the progenitor
pool and the number of cells fated for that tissue and can be
modeled as a binomial sampling event (Figure 6C). As such,
the GTEx dataset offers a unique opportunity to capture this tis-
sue-specific XCI variance and model the lower bound for the
number of cells present at the time of tissue-specific lineage
commitment across a broad range of human tissues.

To capture the tissue-specific variance in XClI as it relates to
the prior embryonic XCI ratio, we model the deviation of tis-
sue-specific XCl ratios from the average donor XCl ratios for all
donors of a given tissue (see STAR Methods; Figure 6D, 46
well-powered tissues). Our model follows the logic that tissues
with large variation in their deviation from average donor XCl ra-
tios are derived from a smaller pool of cells, a consequence of
increased variability due to small-sample-size effects. On the
low end of the estimated cell numbers, we have liver, whole
blood, and adrenal tissues with ~20 estimated cells compared
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Figure 5. Individual tissue lineages exhibit increased variance in XCl ratios
(A) Folded allele-specific expression distributions for individual tissues from the 11P81 donor with the aggregated germ-layer distributions in the top.
(B) Folded allele-specific expression distributions for individual tissues from the 1J10Q donor with the aggregated germ-layer distributions in the top.
(C) Pearson correlation distributions calculated from all pairwise comparisons of shared heterozygous SNPs between two tissues for all of donor 11P81’s tissues.

Positive correlations indicate the same parental direction of XClI; negative correlations indicate opposite parental directions of XCI.

(D) Similar to (C), displaying results for donor 1J10Q’s tissues.
(E) Box plots of the per donor proportion of tissues that switched parental XClI directions with donors binned by their mean XClI ratio across tissues.

(F) Bar plot indicating the proportion of donors where the specified tissue switched directions compared to other tissues. Asterisks indicate significance from
0.05), identifying tissues enriched for switching XCI directions.

Fisher’s exact test (FDR-corrected p value <
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Figure 6. XCI and tissue-lineage specification can be timed to a pool of cells by exploiting observed variability

(A) Example tissue demonstrating the model for estimating cell numbers at the time of XCl using the population-level variance in XClI ratios. We fit normal dis-
tributions, as a continuous approximation of the underlying binomial distribution of XCl ratios, to the tails of tissue-specific XCl ratio distributions (shaded in blue),
which accounts for the uncertain 0.40-0.60 unfolded XClI ratio estimates (shaded in gray).
(B) The resulting estimated cell numbers present during XCl derived from the XClI ratio variance of all tissues with at least 10 donors. Error bars are 95% con-
fidence intervals, and tissues are grouped by germ-layer lineage.
(C) Schematic for our model of tissue-lineage specification and the implications for tissue-specific XCl ratios. The XCl ratio of a tissue is dependent on the prior
XCl ratio of the embryo and the number of cells selected for that tissue lineage. These two features define the binomial distribution for that tissue’s XCl ratio.
(D) Estimated number of cells selected for individual tissue-lineage specification of 46 different tissues. Error bars represent 95% confidence intervals. The top bar
graph plots the variance in the distribution of tissue XCI ratio deviation from the average XClI ratio of each donor for that tissue. The inset plot compares the
estimated number of cells present at the time of tissue specification with the proportion of that tissue’s samples that switched parental XCI directions, Pearson

correlation —0.663 (p value < 0.001).
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with the brain tissues that occupy most of the higher estimated
cell numbers, ranging from ~40-140 estimated cells. In line
with our model that tissues derived from smaller stem cell pools
are subject to increased variability in XCl ratios, we find a strong
negative relationship between our estimated tissue-lineage-spe-
cific cell numbers and the probability of a tissue switching
the direction of parental XCl (Figure 6D, inset, Pearson
correlation: —0.663, p value < 0.001). A tissue derived from a
small number of cells is more likely to result in a sample of oppo-
sitely skewed cells compared with the parental XCI ratio of the
unspecified progenitor pool simply through increased sampling
variance. Our estimated lineage-specific cell numbers and line-
age-specific probability for switching parental XCI are internally
consistent with a model of lineage-specific variance in XCl ratios
being driven by cell-sampling variation at the time of lineage
specification.

DISCUSSION

In this work, we exploited the random, permanent, and develop-
mentally early nature of XCl to investigate characteristics of early
lineage specification events during human development. By
analyzing variance in XClI ratios across tissues and individuals,
we showed human XCl is completed before tissue specification
and the stochastically determined XCI ratio set during embryo-
genesis is a shared feature across all tissue lineages. We esti-
mate a lower bound of 6-16 cells are fated for the embryonic
epiblast lineage based on population-level variance in XCl ratios.
Additionally, we provide lower bound estimates of the number of
cells present during tissue-specific lineage specification for 46
different tissues. To conduct this analysis, we developed a
method to estimate the ratio of XCI using unphased allele-spe-
cific expression, a highly scalable approach applicable to any
bulk RNA-sequencing sample.

This work provides insight into the observed variance of XCl
ratios in normal female populations, an area of ongoing debate
(Brown and Robinson, 2000; Clerc and Avner, 2006; Migeon,
1998; Peeters et al., 2016). Our results indicate that the initial em-
bryonic XCI ratio is propagated through development and is a
shared feature across all tissue lineages. This demonstrates
the stochasticity of the initial choice for inactivation within the
embryo has a measurable impact on XCl ratios in adult females.
Importantly, GTEx donors presumably represent a phenotypi-
cally normal population; as such, our analysis captures XClI vari-
ance in the absence of potential drivers (X-linked diseases) of
allelic selection, representing the null distribution of XCl variation
in adult females.

Additional contributors to the observed variance in XCI ratios
across tissues may be genetic variation that can drive allelic se-
lection over development (Brown and Robinson, 2000; Schmidt
and Du Sart, 1992) or stochastic deviations in XCl ratios caused
by developmental proliferation (Sun et al., 2021). In contrast to
these models, we report strikingly consistent XClI ratios across
tissues for individual donors and, importantly, across tissues
derived from different germ layers. If allelic selection or sto-
chastic deviations from proliferation were strong contributors
to variance in XCI, we would not expect consistent XCI ratios
across developmentally distant adult tissues. Nevertheless, it
is unlikely that the initial embryonic XCI ratio is propagated
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through development with perfect fidelity, which contextualizes
our cell number estimates as lower bound estimates for the
number of cells that must have been involved in XClI or lineage
specification events. In general, our results suggest that XCl ra-
tios are broadly shared across tissues with lineage-specific
stochasticity due to cell-sampling effects during lineage
specification.

For the timing of XCI, there is a wealth of complimentary
research on the exact molecular mechanisms (Dossin and
Heard, 2022; Vallot et al., 2017) that define the highly complex
biological process of XCl. XCl is a continuous molecular process
and recent studies from human embryos suggest the timing of
XCI may overlap the lineage specification of the extraembryonic
and embryonic tissues (Moreira de Mello et al., 2017; Petropou-
los et al., 2016), which precedes germ-layer specification. In this
study, we aimed to interrogate the timing of XCl as it relates to
germ-layer specification within the embryonic lineage. Any over-
lap in timing for the molecular process of XCl and extraembry-
onic/embryonic lineage specification will have no impact on
our results and conclusions of shared variance in XCl within
the embryonic lineage. The consideration of extraembryonic tis-
sues provides the developmental context that XCl ratio variance
within the germ-layer lineages may be a combination of XCI sto-
chasticity and cell sampling during embryonic epiblast
specification.

One alternative model consistent with our results is the poten-
tial for rapid allelic changes in the time between XCI and germ-
layer specification, allowing for selection or drift to occur, with
the XCI ratio then stabilized after germ-layer specification.
Although possible, we find this improbable due to the small num-
ber of cell divisions estimated to occur between XCI and germ-
layer specification, as well as the lack of evidence for any
continued effects after germ layer specification.

Our work is part of a broader history of using X-linked mosai-
cism as a useful tool for studying lineage relationships, with
studies ranging from investigations of early lineage events in
mice (Nesbitt, 1971) to ascertaining tumor clonality (Linder and
Gartler, 1965). Typically, these approaches will capitalize on a
single locus of the X-chromosome to determine XCI status (Bou-
dewijns et al., 2007). One of our methodological contributions is
demonstrating the allelic expression imbalance generated via
XClI can be aggregated across multiple loci to provide near-per-
fect estimates of XCI ratios, even in the absence of phased
information.

Although GTEx represents the premier dataset for human
cross-tissue functional genomics, more data are always helpful.
As our approach for estimating XCI ratios is applicable to any
bulk RNA-sequencing data, we envision this work providing an
informative control for any future functional genomic investiga-
tions involving the X-chromosome.

Limitations of the study

Although the GTEx dataset aims to sample non-diseased tis-
sues, we cannot rule out potential disease-states, genetic or
otherwise, for all tissue samples, where disease may impact
allelic selection and contribute to variance inn XCI ratios.
When assessing escape from XCI, we focus on genes with
constitutive rather than facultative signal and cannot make
conclusions on likely tissue- or donor-specific escape. Our
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tissue-specific cell-count estimations depend on the sample
size of the given tissue and the number of tissues sampled for
individual donors, both of which vary considerably across tis-
sues and individuals. As such, these estimates are likely rough
approximations that can be improved with additional tissue and
donor sampling.
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REAGENT or RESOURCE

SOURCE

IDENTIFIER

Deposited data

GTEXx V8 protected access data, bulk RNA-seq

GTEx V9 open access data,
single nucleus RNA-seq

EN-TEx phased bulk RNA-seq

Human reference genome, GRCh38.p7

Gencode annotations v.25
dbSNP
Original code

Lonsdale et al. (2013)
Eraslan et al. (2022)

Rozowsky et al. (2021)

Frankish et al. (2021)

Sherry et al. (2001)
This paper

https://gtexportal.org/home/protectedDataAccess
https://gtexportal.org/home/datasets

https://www.encodeproject.org/
entex-matrix/?type=Experiment&status=
released&internal_tags=ENTEx

https://www.gencodegenes.org/human/release_25.html

https://www.ncbi.nlm.nih.gov/snp/
https://doi.org/10.6084/m9.figshare.20216816e

Software and algorithms

R v4.0.5

ggplot2
ComplexHeatmap

karyoploteR

STAR v2.4.2a and v2.5.2b

Samtools v1.9
Bedtools v2.26.0

R Core Team (2021)
Wickham (2016)
Gu et al. (2016)

Gel and Serra (2017)

Dobin et al. (2013)

Li et al. (2009)
Quinlan and Hall (2010)

https://cran.r-project.org/
https://CRAN.R-project.org/package=ggplot2
https://www.bioconductor.org/packages/
release/bioc/html/ComplexHeatmap.html
http://bioconductor.org/packages/release/
bioc/html/karyoploteR.html
https://github.com/alexdobin/STAR/
releases/tag/STAR_2.4.2a
https://github.com/alexdobin/STAR/releases/tag/2.5.2b
https://sourceforge.net/projects/samtools/files/samtools/
https://github.com/arg5x/bedtools2/releases/tag/v2.26.0

GATK v4.1.3.0 McKenna et al. (2010) https://github.com/broadinstitute/gatk/releases/tag/4.1.3.0
CIBERSORTXx Newman et al. (2019) https://cibersortx.stanford.edu/
RESOURCE AVAILABILITY

Lead contact

Requests for further information should be directed to and will be fulfilled by the lead contact, Jesse Gillis (jesse.gillis@utoronto.ca).

Materials availability

This study did not generate new unique reagents.

Data and code availability

® This paper analyzes existing, publicly available data. Links to access these datasets are listed in the key resources table. The
generated allele-specific expression information per sample (variant information removed) and the CIBERSORTx deconvolu-
tion results are made available at the FTP site: http://labshare.cshl.edu/shares/gillislab/people/werner/werner_et_
al_Dev_Cell_2022/data. Descriptions of the data are available at github.com/JonathanMWerner/human_cross_tissue_XCI.

® All original code has been deposited at figshare: https://doi.org/10.6084/m9.figshare.20216816 and at Github (github.com/
JonathanMWerner/human_cross_tissue_XClI) and is publicly available as of the date of publication.

® Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon

request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Detailed explanation of donor enroliment, sample collection, and ethical details of the GTEx dataset are provided in Lonsdale

et al. (2013).
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METHOD DETAILS

GTEx and EN-TEx data

Fastq files for all female donors from the GTEX project v7 release (Lonsdale et al., 2013) were obtained from dbGaP accession num-
ber phs000424.vN.pN. BAM files for additional female samples from the v8 release were obtained from the associated AnVIL repos-
itory (gtexportal.org/home/protectedDataAcccess). All GTEx v7 data files can also be accessed in the GTEx v8 AnVIL repository.
Phased expression data from the EN-TEx project (Rozowsky et al., 2021) were obtained in collaboration with the ENCODE con-
sortium. EN-TEx data is available on the online portal. Expression data and annotations for the GTEX single nucleus RNA-sequencing
data were obtained from the GTEx data portal.

RNA-seq alignment and SNP identification

For aligning RNA-sequencing data, the GRCh38.p7 human reference genome using GENCODE v.25 (Frankish et al., 2021)
annotations was generated with STAR v2.4.2a (Dobin et al., 2013) and data was aligned with STAR v2.4.2a or STAR
v2.5.2b. STAR was run using default parameters with per sample 2-pass mapping. BAM files for the additional GTEx v8 samples
(originally aligned to GRCh38.p10 with GENCODE v.26 annotations) were sorted using samtools v1.9 (Li et al., 2009) and con-
verted to fastq files using bedtools v.2.26.0 (Quinlan and Hall, 2010). For each sample, alignment to the X-chromosome was
extracted using samtools and passed to GATK (McKenna et al., 2010) for SNP identification. Using GATK v.4.1.3.0 and
following the best practices workflow for RNAseq short variant discovery (GATK best practices), we utilized the following pipe-
line of GATK tools using default parameters unless otherwise stated: AddorReplaceReadGroups -> MarkDuplicates ->
SplitNCigarReads -> HaplotypeCaller (-stand-call-conf 0.0) -> SelectVariants (-select-type SNP) -> VariantFiltration. The
following filters were used in VariantFiltration to set flags for downstream filtering: QD < 2.0, QUAL < 30.0, SOR > 3.0,
FS > 60.0, MQ < 40.0, MQRankSum < -12.5, and ReadPosRankSum < -8.0. These filters were determined from GATK recom-
mendations and empirical evaluation of the identified SNPs’ metrics.

SNP quality control

SNPs identified through GATK were further filtered on various metrics to increase confidence in SNPs identified from RNA-
sequencing data and ensure well-powered SNPs for allele-specific expression analysis. The resulting .vcf files from GATK were
filtered to only contain SNPs present within dbSNP (Sherry et al., 2001). The remaining SNPs were filtered to be heterozygous
with 2 identified alleles and at least 10 reads mapped to each allele for a minimum threshold of 20 reads per SNP. Additionally,
SNPs were required to pass the SOR, FS, and ReadPosRankSum filters set in the GATK pipeline. Only SNPs located within
annotated genes (excluding the PAR regions of the X-chromosome) were considered and in the case of multiple identified
SNPs in the same gene for a sample, the SNP with the highest total read count was taken as the max-powered representative
for that gene. SNPs with a total read count above 3000 were excluded as they demonstrated a uniform distribution of allelic
expression.

Gene filtering (reference bias and XCI escape)

From the observation of a heavy tail towards allelic expression in the reference direction across all called SNPs in the GTEx dataset,
we compiled gene specific distributions of allelic expression to determine if a select few genes/SNPs were at fault. The majority of
genes demonstrated distributions of relative allelic expression centered around 0.5 with several considerable exceptions, some
genes exhibited bimodal or extremely biased distributions. We excluded genes that failed the dip test for unimodality as well as
the top and bottom 5% of genes ranked by the deviation of their mean reference expression ratio from 0.5. Additionally, we excluded
genes previously annotated to constitutively escape XCI (Tukiainen et al., 2017). In total, we end up with well-powered SNPs from 542
genes along the X-chromosome for modeling XClI ratios.

Folded normal model for estimating XCI ratios

We aggregate the allelic expression imbalance of the X-chromosome over both alleles by folding the reference allelic expression ra-
tios about 0.5 (Figures 2A and 2B). To obtain our XCl ratio estimates we fit a folded normal distribution to the folded reference allelic
expression ratios of each sample, using the maximum log likelihood estimate as the estimated XCl ratio. Theoretically, the captured
bulk allelic expression for a heterozygous X-linked SNP follows a binomial distribution characterized by the read depth of the SNP and
the XCl ratio of the sample. Without phasing information, the allelic expression of heterozygous X-linked SNPs can be characterized
by the folded-binomial model (Gart, 1970; Urbakh, 1967). Since SNPs vary in read depth and various biological factors (e.g. eQTLs)
are not accounted for in the binomial model, we take the folded normal model as a continuous approximation. We require samples to
have XCl ratio estimates derived from at least 10 filtered SNPs for downstream analysis, resulting in 4659 samples with a mean of 56
well-powered SNPs per sample (Figure S1). Additionally, we calculate 95% confidence intervals (Cl) for each XCl ratio estimate via a
nonparametric bootstrap percentile approach (n = 200), excluding XCI ratio estimates with a Cl width >=.15 from downstream anal-
ysis. For donors with multiple samples for the same tissue, we average the XCl ratio estimates together, duplicated tissue samples
have minor differences in estimated XCl ratios (mean difference in XClI ratios for duplicate tissue samples: 0.018 +- 0.023 SD).
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Modeling read sampling error when estimating XCI ratios

The sampled allelic reads for any expressed heterozygous loci will follow a binomial distribution defined by the total number of
reads sampled (n) and the probability for allelic expression (p). For a given GTEx sample, we define SNP-specific binomial distri-
butions as Binomial(n = total number of reads, p = sampled reference allelic expression ratio). For each individual GTEx tissue sam-
ple, we randomly sample a single instance from each SNP-specific binomial distribution to simulate SNP expression ratios with
noise from allelic read sampling. We estimate the XCl ratio using the folded normal model on the simulated SNP expression ratios
and repeat the simulation 50 times to generate a distribution of estimated tissue XClI ratios. We compute the root mean squared
error of the simulated tissue XClI ratios about the original estimated tissue XCI ratio. We repeat the entire analysis with a percent
reduction in each SNP’s total read count (10%, 20%, 30%, etc.) to model variance in our estimated XClI ratios as read depth
decreases.

Gene-tissue XClI ratio correlations

To test individual gene’s propensity to follow the aggregate chromosomal XClI ratio, we calculate Pearson correlations between a
gene’s reference allelic expression ratio and the estimated XClI ratio leaving out that gene for all samples the gene is detected.
We calculate these correlations for each of the 542 filtered genes described above and for 45 previously annotated constitutively
escape genes detected in our dataset. We only consider genes detected in at least 30 samples and with an FDR corrected (Benja-
mini-Hochberg) correlation p-value <=.05 determined by a permutation test (n = 10000) for further investigation of escape status,
resulting in 380 putative inactive genes and the 45 previously annotated escape genes.

Testing for escape from XCI

To detect escape genes, it is necessary to compare against genes that undergo complete inactivation and do not escape. After strat-
ifying by mean expression, we reason the genes most likely to undergo complete inactivation are genes with high gene-tissue XCl
ratio correlations within each expression bin (Figure 3C). Accordingly, we take the top 50% of putative inactive genes within each
bin to define the null distribution of allelic expression under the hypothesis of complete inactivation (191 genes). The remaining
189 putative inactive genes and the 45 known escape genes comprise our test set. We reason a gene that escapes XCI will be biased
for balanced biallelic expression regardless of the XClI ratio of the tissue. Using only tissues with an estimated XCl ratio >= 0.70, we
compute the deviation from 0.5 (balanced allelic expression) for all inactive genes and the test gene. We rank the gene deviations and
calculate the empirical p-value as the rank of the test gene divided by the total number of ranks i.e. the number of null inactive genes +
1 (Figure S2). We only consider empirical p-values derived from samples with at least 20 null inactive genes detected. Additionally, we
only consider test genes with at least 50 empirical p-values. For each remaining test gene, we aggregate the distribution of empirical
p-values using Fisher’s method and apply an FDR correction (Benjamini-Hochberg) to the resulting meta-analytic p-values. We use a
threshold of meta-analytic p-value <.001 to call significance for escape. For Fisher’s method, under the null hypothesis, the log sum
of all p-values follows a chi-squared distribution with 2k degrees of freedom, where k is the number of independent tests being com-
bined. We use R’s pchisq function to compute the meta-analytic p-value for the following test statistic:

K
Xoe ~ — 22 log(p;)-

i=1

Tissue XCI ratio predicting donor XCI ratio

For the donors that contribute to a given tissue, we calculate the mean XClI ratio across all other tissues for each donor and use that
mean as an approximation for the true XCl ratio for each donor. We classify donors as low/high XClI ratio donors if they have a mean
XCl ratio greater than or equal to various thresholds (0.65, 0.7, 0.75). We calculate the AUROC of a given tissue’s XCl ratio predicting
the low/high donors via the Mann-Whitney U test statistic where

u

nhigh donorsMow donors

A UCtr'ssue =

Cross-tissue XClI ratio correlations

For all pairwise combinations of the 49 tissues present within the GTEx dataset, we take the subset of donors that contribute both
tissues for a given comparison and calculate the Pearson correlation for the folded XCI ratio of the tissues. Figures 4C1-4C2
depicts only the correlation values derived with a sample size of at least 20 donors and an FDR corrected (Benjamini-Hochberg)
p-value <=.05 derived from a permutation test (n = 10000). Figure S3 depicts all computed correlations regardless of sample size
or p-value.

CIBERSORTX deconvolution and germ layer-specific marker identification

CIBERSORTX (https://cibersortx.stanford.edu (Newman et al., 2019)) was run using the recommended settings following the “Build a
signature matrix file from single-cell RNA sequencing data” and “Impute cell fractions” tutorials, batch correction was enabled when
imputing cell fractions. Briefly, the annotated single-cell RNA sequencing data from GTEX is used to build a signature matrix that
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identifies genes that define the annotated cell types. This signature matrix is used to impute the cell type composition of bulk RNA
sequencing samples. We extract germ layer-specific marker genes from the signature matrices identified from CIBERSORTX, clas-
sifying a gene as a germ layer marker if it is a gene that identifies cell types exclusively from a single germ layer. Our annotated germ
layer markers, the cell types they define, and the tissue they are derived from are available in Table S2. The signature matrices and
imputed cell types per tissue with associated statistics from CIBERSORTx are made available on the FTP site http://labshare.cshl.
edu/shares/gillislab/people/werner/werner_et_al_Dev_Cell_2022 /data.

Inference on direction of XCl ratios

To infer the direction of XCl ratios from unphased data, we look at allelic expression of heterozygous SNPs captured in multiple tis-
sues for an individual donor. The reference allele of a heterozygous SNP captured in two different tissues of a single donor represents
the same parental X-allele in both tissues. If the direction of XCl is the same for both tissues, the heterozygous SNP is expected to
exhibit the same degree of reference allelic expression across the two tissues (positive correlation). If the direction of XCl is different,
reference allelic expression will be inverted for one of the tissues resulting in a negative correlation. For each donor, for all pairwise
combinations of their donated tissues with XClI ratios >= 0.6, we calculate Pearson correlations for unfolded reference allelic expres-
sion ratios using only SNPs detected in both tissues (Figure 5). We only use SNPs that are within the previously filtered 542 genes
described above and only consider correlations derived from tissue comparisons with at least 30 shared SNPs. Using positive or
negative correlations as a readout for switched XClI direction between tissues, we perform Fisher’s exact test with a Benjamini-Hoch-
berg correction to identify any tissue significantly enriched for switching XCI directions. We use the hypergeometric distribution to
calculate raw p-values for Fisher’s Exact Test. For a given tissue, we input the number of times that tissue switched XCI directions
minus 1, the total number of switched XCI cases across all tissues, the total number of non-switched XClI cases across all tissues, and
the sample size for the given tissue.

Evaluating XCI cell number estimates

XCl is a binomial sampling event defined by the number of cells present during inactivation and the equal probability of inactivation
between the alleles Binomial(N = # of cells, p = 0.5). As such, the variance in XClI ratios within a population is directly linked to the
number of cells present during XCI. We derive estimates for the number of cells present during XCI by fitting a normal model to tis-
sue-specific XCl skew distributions as a smoothened estimate for the underlying binomial distribution. We take the theoretical vari-
ance from the binomial model as the variance for the normal approximation.

varxe = var (W) = b9 - %;f’) where p,q = probability of allelic inactivation.

For a range of cell numbers (N = 2:50), we select the normal model with minimum error between its CDF and the empirical XCl ratio
CDF of a given tissue for the tails of the distribution (XCl ratio <= 0.4 and XCl ratio >= 0.6). This accounts for the uncertain folded 0.5 -
0.6 XCl ratios estimates in the unfolded space. We calculate 95% Cls for each estimated cell number via a nonparametric bootstrap
percentile approach (n = 2000). We only consider cell number estimates from tissues with at least 10 donors.

Evaluating tissue-specific lineage cell number estimates
We model tissue-specific lineage specification as a cell sampling event from a large pool of cells. As such, the XCI ratio of a
tissue will follow a binomial model defined by the number of cells fated for that tissue and the XCI ratio of the embryo
(Figure 6C).

Binomial(N,p,q) Binomial (Ngssue: XClembryo, 1 — XClembryo)

XCliissue ~ N = Niissue

Binomial(N, p,q)) PG XClamryo(1 ~ XClampryo)

varxcy = var =
tissue N N Nﬁssue

SDXC/ﬁssue = \/XC/embryo (1 — XClemb’yO)

N tissue

For a given tissue, across donors with variable XCl ratios (XClempryo) the variation in the tissue XCl ratio is defined by the constant
Nsissue, the number of cells fated for that tissue. To estimate this constant, we calculate z-scores for each tissue-donor pair of a given
tissue using the mean XCl ratio of all other tissues for each donor as an approximation for the XClempryo-

Ztissue = XCltissue - XClembryo = XC/USSUE — XC/embryo V Ntissue = thissue V Ntissue
SDﬁssue \/ XClembryo(1 - XCIembryo)

As the standard deviation of a distribution of z-scores is 1, we solve for Njssye:
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m —
SDZ) = - > (@ - Z)* = 1, where m = number of donors for a given tissue
i=1
m —1
Nissie = —————=3
tissue Z:n: ; (tl B t)2

We calculate 95% Cls for each Nyjssue Via @ nonparametric bootstrap percentile approach (n = 2000) using the tsssue distribution. We
require a tissue to have at least 10 donors in order to calculate Njjsse-

Data analysis and visualization
All analysis was conducted in R version 4.0.5 (R Core Team, 2021). Graphs were generated using the ggplot2 (Wickham, 2016),
ComplexHeatmap (Gu et al., 2016), karyoploteR (Gel and Serra, 2017), and base R packages.

QUANTIFICATION AND STATISTICAL ANALYSIS

When correcting p-values, we use the Benjamini-Hochberg procedure implemented by R’s p.adjust function with “method = BH”
parameter. Significance is determined with p-value <= 0.05 unless otherwise stated. We use the R dip.test function from the diptest
package to perform Hartigan’s dip test of unimodality. For Fisher’'s method of aggregating p-values, we use the R function pchisq
with ‘lower.tail = FALSE’ parameter to compute the meta-analytic p-value from the calculated chi-square test statistic. All confidence
intervals are computed using a nonparametric bootstrap percentile approach, where the underlying data is sampled with replace-
ment to generate a bootstrapped distribution of the variable in question (tissue XCI ratio estimates, cell number estimates). The
95% confidence interval is defined by the 2.5™ and 97.5™ percentile of the bootstrapped distribution. We determine if tissues are
enriched for switching parental XClI directions using the hypergeometric implementation of Fisher’s Exact Test, using R’s phyper
function. When fitting normal distributions to tissue XClI ratio distributions, we use the R quantile function with parameter “type =
1” to compute the empirical CDF and the R gnorm function to compute the theoretical normal CDF. For any given correlation calcu-
lated, we permute the underlying data to get a null distribution of correlations under the hypothesis of independence, using R’s cor
function with “method = pearson” parameter. We derive a raw p-value for the original correlation value from the empirical null dis-
tribution of correlations (permutation test). In the analyses where we generate many correlations, we apply a Benjamini-Hochberg
FDR correction to the associated distribution of raw p-values to call significance, using a threshold of p-value <= 0.05.
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