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Simple Summary: Colorectal cancer is the third most common cause of cancer-related deaths.
The Wnt signaling pathway is activated by genetic mutations in most patients with colorectal cancer.
A number of different types of Wnt pathway mutation have been described: some increase the
sensitivity of tumor cells to Wnt ligands produced by stromal cells (ligand-dependent), while others
drive downstream activation of the pathway (ligand-independent). Ligand-dependent tumors are of
particular interest as there are a number of emerging treatment options, such as porcupine inhibitors,
that can specifically target these tumors. In this review, we discuss what is known about these different
types of Wnt activating mutations. We propose that ligand-dependent tumors should be viewed as a
separate subset of colorectal cancer with its own biomarkers, prognosis and targeted therapies.

Abstract: Wnt signaling is ubiquitously activated in colorectal tumors and driver mutations are
identified in genes such as APC, CTNNB1, RNF43 and R-spondin (RSPO2/3). Adenomatous polyposis
coli (APC) and CTNNB1 mutations lead to downstream constitutive activation (ligand-independent),
while RNF43 and RSPO mutations require exogenous Wnt ligand to activate signaling
(ligand-dependent). Here, we present evidence that these mutations are not equivalent and that
ligand-dependent and ligand-independent tumors differ in terms of underlying Wnt biology, molecular
pathogenesis, morphology and prognosis. These non-overlapping characteristics can be harnessed
to develop biomarkers and targeted treatments for ligand-dependent tumors, including porcupine
inhibitors, anti-RSPO3 antibodies and asparaginase. There is emerging evidence that these therapies
may synergize with immunotherapy in ligand-dependent tumors. In summary, we propose that
ligand-dependent tumors are an underappreciated separate disease entity in colorectal cancer.
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1. Introduction

Metastatic colorectal cancer (CRC) is a lethal malignancy with a five-year survival of less than
15% [1]. Patients with metastatic CRC are treated with combination cytotoxic chemotherapy alongside
monoclonal antibodies targeting angiogenesis or epidermal growth factor receptor (EGFR) [2]. There is
a need to develop new therapeutic strategies for metastatic cancer, especially in light of evidence
showing rapid increases in CRC incidence affecting younger patients [3]. Molecular profiling of CRC
has shown considerable disease heterogeneity, suggesting that patients might benefit from precision
medicine, in which treatments are personalized for their tumor profile [4]. For example, immunotherapy
targeting PD-1/PD-L1 signaling is only active in hypermutated tumors, while anti-EGFR antibodies are
only effective in tumors without downstream mutations [5–7].
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Colorectal cancer is characterized by near-ubiquitous activation of the Wnt signaling pathway [8].
The Wnt pathway is an evolutionarily conserved mechanism for intercellular communication,
with essential roles in embryogenesis and adult tissue development [9]. In the colonic crypt,
Wnt signaling is necessary to maintain the adult intestinal stem cell niche and epithelial homeostasis [10].
Colorectal tumors are dependent upon aberrant Wnt signaling to maintain stemness and a
de-differentiated phenotype and genetic Wnt inhibition leads to rapid tumor regression [11].
Additionally, Wnt signaling can protect cells from immune surveillance, thus restricting anti-tumoral
immunity [12,13]. Altogether, this suggests that the Wnt pathway could be a viable therapeutic target
for patients with CRC.

Colorectal tumors are thought to evolve through the sequential acquisition of mutations driving
progression from a normal founder cell to adenoma and then carcinoma [14]. Adenomas can be
histologically classified as either conventional, such as tubular or tubulovillous (TVA), or serrated,
such as sessile serrated lesions (SSL) or traditional serrated adenomas (TSA) [15]. Serrated adenomas
are characterized histologically by a saw-tooth morphology. The cell-of-origin for TVA is likely the
crypt-based columnar stem cell [16] while the cell-of-origin for serrated lesions is unknown, but may
derive from ectopic crypt foci in the rare traditional serrated adenoma subtype [17].

Here, we present evidence for a new model of CRC in which Wnt pathway activation can take
one of two distinct trajectories, ligand-dependent (LD) and ligand-independent (LI), with implications
spanning tumor biology, screening, diagnosis and treatment. We will first outline the Wnt signaling
pathway in the normal colon and types of recurrent Wnt mutations in CRC. We will then discuss
morphological and molecular biomarkers that can be used to identify LD tumors in the clinic.
Finally, we will argue that this model has the potential to transform the landscape of precision medicine
in CRC.

2. Wnt Signaling Pathway

The Wnt signaling pathway in normal colon crypts is summarized in Figure 1. Briefly, canonical Wnt
ligands are secreted by the cells in the stem cell niche following O-acylation by porcupine [18,19].
Wnt ligands bind to Frizzled (FZD) and lipoprotein receptor-related protein (LRP) receptor complexes
on the plasma membrane of neighboring cells [20]. Both Wnt ligand secretion and binding to
FZD depend upon acylation of Wnt ligands [21]. The downstream effector of Wnt signaling is the
transcriptional co-activator β-catenin (CTNNB1). In the absence of Wnt ligands, CTNNB1 is degraded
by the action of a destruction complex containing adenomatous polyposis coli (APC), axin-like protein
(AXIN1/2), glycogen synthase kinase (GSK3) and casein kinase (CSNK1A) [22]. Wnt ligand binding
inhibits the destruction complex, thus stabilizing CTNNB1 and activating expression of Wnt target
genes. An additional level of regulation comes from E3 ubiquitin ligases ring finger protein 43 (RNF43)
and zinc and ring finger 3 (ZNRF3), which constitutively degrade FZD to repress Wnt signaling [23].
R-spondin (RSPO) ligands bind to leucine-rich repeat-containing G protein-coupled (LGR) receptors,
inhibiting RNF43/ZNRF3 and substantially amplifying Wnt signaling [24]. There are four homologous
human RSPO ligands (RSPO1-4) and, while all four can bind to LGR-family receptors, the EC50 for
activation of Wnt signaling varies 100-fold, with RSPO2 and RSPO3 demonstrating the highest potency
(0.02–0.05 nM) [25]. R-spondins are produced by stromal cells adjacent to the stem cell niche [26].
Consistent with this, R-spondin signaling is necessary to maintain the stem cell niche, both in vivo and
as part of organoid culture systems [24,27,28]. Wnt target genes, such as notum palmitoleoyl-protein
carboxylesterase (NOTUM) and AXIN2 are negative regulators of Wnt signaling, functioning as
negative feedback loops to fine-tune and limit downstream signaling [29]. AXIN2 is an inducible
component of the destruction complex, while NOTUM works in the extracellular space to deacetylate
and inactivate Wnt ligands [30].
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Figure 1. Overview of Wnt signaling pathway. Wnt ligands secreted from stromal cells are activated 
by porcupine-mediated post-translational modification and bind to Frizzled (FZD) receptors on Wnt 
receiving cells. This functions to inhibit a destruction complex containing axin-like protein (AXIN)1/2 
and adenomatous polyposis coli (APC) thus disinhibiting β-catenin (CTNNB1), the master 
transcriptional regulator of Wnt singaling. Frizzled receptors are degraded due to the action of ring 
finger protein 43 (RNF43), which is in turn inhibited by binding of R-spondin (RSPO) ligands to 
leucine-rich repeat-containing G protein-coupled (LGR) family receptors, thus augmenting Wnt 
signaling tone. Wnt pathway activation is regulated at multiple levels by negative feedback loops, 
including those mediated by AXIN2 and notum palmitoleoyl-protein carboxylesterase (NOTUM). 
Recurrent mutations in CTNNB1 and APC result in ligand-independent pathway activation while 
mutations in RSPO and RNF43 depend upon binding of Wnt ligands to Frizzled receptors. GSK: 
glycogen synthase kinase; LRP: lipoprotein receptor-related protein. 

3. Ligand-Dependent and Ligand-Independent Alterations in Colorectal Cancer 

Large-scale sequencing studies in CRC have established the presence of pervasive Wnt pathway 
mutations. Recurrent mutations include loss-of-function mutations in APC and RNF43, and gain-of-
function mutations in CTNNB1 and RSPO2/3 (Figure 1, Table 1) [8,31,32]. Consistent with driver 
mutation status, in vivo modeling indicates that these mutations can be sufficient for colorectal 
tumorigenesis [33–36]. For tumor suppressors APC and RNF43, we only consider protein-truncating 
mutations or deletions as potential driver alterations [37]. ZNRF3 is a homolog of RNF43 but 
truncating mutations are rare in colorectal tumors, potentially reflecting its comparably low mRNA 
expression in normal colon and colorectal tumors [8,38]. This is in contrast to the situation in murine 
intestine, in which Znrf3 and Rnf43 gene expression is comparable, and loss-of-function alterations 
in both Znrf3 and Rnf43 are necessary to activate Wnt signaling [36,39]. 

While APC and CTNNB1 alterations drive downstream, constitutive activation of the Wnt 
pathway that is independent of Wnt ligand binding (ligand-independent, LI), RSPO and RNF43 
alterations disrupt the synergistic RSPO axis and by doing so, amplify endogenous and otherwise 
intact, Wnt ligand signaling (ligand-dependent, LD). APC mutations are characteristically nonsense 
or frameshift alterations affecting the “mutation cluster region”, often with a second “hit” from loss 
of heterozygosity [40]. CTNNB1 mutations are gain-of-function missense mutations affecting specific 
amino acid residues that are phosphorylation sites for components of the destruction complex [41]. 

RSPO mutations induce R-spondin ligand overexpression either from epithelial cells (autocrine), 
as RSPO fusion genes [42]. R-spondin gain-of-function is only observed for RSPO2 and RSPO3, 
consistent with their enhanced potency to induce Wnt signaling in vitro [25]. RSPO3 fusion genes 

Figure 1. Overview of Wnt signaling pathway. Wnt ligands secreted from stromal cells are activated
by porcupine-mediated post-translational modification and bind to Frizzled (FZD) receptors on
Wnt receiving cells. This functions to inhibit a destruction complex containing axin-like protein
(AXIN)1/2 and adenomatous polyposis coli (APC) thus disinhibiting β-catenin (CTNNB1), the master
transcriptional regulator of Wnt singaling. Frizzled receptors are degraded due to the action of ring finger
protein 43 (RNF43), which is in turn inhibited by binding of R-spondin (RSPO) ligands to leucine-rich
repeat-containing G protein-coupled (LGR) family receptors, thus augmenting Wnt signaling tone.
Wnt pathway activation is regulated at multiple levels by negative feedback loops, including those
mediated by AXIN2 and notum palmitoleoyl-protein carboxylesterase (NOTUM). Recurrent mutations
in CTNNB1 and APC result in ligand-independent pathway activation while mutations in RSPO and
RNF43 depend upon binding of Wnt ligands to Frizzled receptors. GSK: glycogen synthase kinase;
LRP: lipoprotein receptor-related protein.

3. Ligand-Dependent and Ligand-Independent Alterations in Colorectal Cancer

Large-scale sequencing studies in CRC have established the presence of pervasive Wnt
pathway mutations. Recurrent mutations include loss-of-function mutations in APC and RNF43,
and gain-of-function mutations in CTNNB1 and RSPO2/3 (Figure 1, Table 1) [8,31,32]. Consistent with
driver mutation status, in vivo modeling indicates that these mutations can be sufficient for colorectal
tumorigenesis [33–36]. For tumor suppressors APC and RNF43, we only consider protein-truncating
mutations or deletions as potential driver alterations [37]. ZNRF3 is a homolog of RNF43 but truncating
mutations are rare in colorectal tumors, potentially reflecting its comparably low mRNA expression
in normal colon and colorectal tumors [8,38]. This is in contrast to the situation in murine intestine,
in which Znrf3 and Rnf43 gene expression is comparable, and loss-of-function alterations in both Znrf3
and Rnf43 are necessary to activate Wnt signaling [36,39].

While APC and CTNNB1 alterations drive downstream, constitutive activation of the Wnt
pathway that is independent of Wnt ligand binding (ligand-independent, LI), RSPO and RNF43
alterations disrupt the synergistic RSPO axis and by doing so, amplify endogenous and otherwise
intact, Wnt ligand signaling (ligand-dependent, LD). APC mutations are characteristically nonsense or
frameshift alterations affecting the “mutation cluster region”, often with a second “hit” from loss of
heterozygosity [40]. CTNNB1 mutations are gain-of-function missense mutations affecting specific
amino acid residues that are phosphorylation sites for components of the destruction complex [41].
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Table 1. Driver Wnt alterations in colorectal cancer. Prevalence refers to the frequency of each
mutation in the subset of colorectal tumors with a detectable driver Wnt alteration, as derived from [42].
Loss-of-function alterations in APC and RNF43 are frequently accompanied by loss of heterozygosity
(LOH) affecting the second allele [13].

Mutation Type Gene Type of Alteration Prevalence in CRC

Ligand-dependent

RNF43
Loss-of-function

10%- Nonsense
- Frameshift

R-spondin (RSPO2, RSPO3)
Gain-of-function

8%- Stromal overexpression
- Epithelial gene fusions

Ligand-independent

APC
Loss-of-function

81%- Nonsense
- Frameshift

CTNNB1
Gain-of-function

2%- Missense (affecting codons
31–35, 37, 40, 41, 45, 383 and 387)

RSPO mutations induce R-spondin ligand overexpression either from epithelial cells (autocrine),
as RSPO fusion genes [42]. R-spondin gain-of-function is only observed for RSPO2 and RSPO3,
consistent with their enhanced potency to induce Wnt signaling in vitro [25]. RSPO3 fusion genes
commonly result in the replacement of RSPO3 exon one and promoter with that of a gene with higher
basal expression, resulting in a functional epithelial-expressed protein [32]. A wide range of fusion
partners have been identified including PTPRK, EIF3E, NRIP1 and PIEZO1 [43,44], all of which are
associated with relatively high constitutive gene expression [38]. RSPO fusions cannot be reliably
identified even from whole-genome sequencing due to large inconsistency in genomic alterations,
while the transcript breakpoints are more stereotypical [32]. Alternatively, in a rare subset of colorectal
tumors, we identified R-spondin overexpression in the absence of RSPO fusions or any other detectable
Wnt driver alteration [42]. In situ hybridization demonstrated high stromal RSPO3 expression in these
tumors, implicating a role for paracrine R-spondin signaling driven by stromal overexpression [42].
RSPO3 overexpression in the absence of gene fusions has been previously detected in lung cancer, where
it was associated with RSPO3 hypomethylation [45]. The concept that RSPO overexpression can derive
from either epithelial or stromal sources is consistent with previous evidence that RSPO3 expression is
significantly and positively correlated with stromal expression signatures [46]. RNF43 mutations are
mostly recurrent frameshift mutations at amino acid positions 117 and 659 that result in a truncated
gene product [31]. These recurrent mutations occur at tandem repeats called microsatellites whose
stability is dependent upon proficient mismatch repair (MMR) [47]. As a result, these mutations tend
to occur in tumors with MMR deficiency, detected as microsatellite instability (MSI), which is often
caused by promoter hypermethylation of MLH1 [8,48].

Recently, there has been some controversy about whether the RNF43 G659Vfs*41 mutation
demonstrably leads to impaired protein function. In vitro transfection experiments have indicated
that this mutant RNF43 protein retains the ability to bind R-spondin and repress Frizzled [49].
However, this alteration is associated with significantly reduced RNF43 expression, potentially consistent
with nonsense-mediated decay [49], and CRISPR-Cas9 editing of the endogenous RNF43 locus to
mimic the G659Vfs*41 mutation, was sufficient to increase cell surface Frizzled expression [50].
Furthermore, the G659Vfs*41 mutation occurs substantially more often than would be expected by
chance in microsatellite-unstable tumors, indicating strong positive selection [31,51].

It is important to note that driver Wnt alterations affecting APC, CTNNB1, RNF43 and RSPO
in pre-cancerous polyps and tumors show marked mutual exclusivity [42]. There are two logical
implications from this: firstly, these alterations are redundantly able to activate Wnt signaling.
Secondly, there may be selection against the accumulation of driver alterations in more than one gene.
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This is consistent with the “just right” theory of Wnt signaling: that there is an optimal level of Wnt
activation to drive tumorigenesis. It has been observed that there is a non-random distribution of
second “hit” mutations in APC that is consistent with selection for APC genotypes that retain some
CTNNB1 repression [52]. Additionally, ectopic expression of R-spondin in APC-mutant mice results
in reduced proliferation and increased apoptosis [53], consistent with evidence that Wnt can directly
promote apoptosis [54].

4. Mutation Selection in Lesion Subtypes

Molecular profiling in pre-cancerous polyps has shown that ligand-dependent alterations
are predominantly seen in the serrated pathway (Figure 2) [44,55]. A total of 55% of TSAs
have ligand-dependent alterations, namely truncating RNF43 mutations or RSPO fusions (mostly
PTPRK-RSPO3) [44]. In sessile serrated lesions (SSL), mutations in the Wnt signaling pathway are
not thought to be initiating lesions as Wnt disruption is observed predominantly in dysplastic rather
than non-dysplastic lesions. A total of 50% of SSLs had ligand-dependent RNF43 mutations [55],
whereas APC mutations are much rarer in serrated lesions, being detected in 13% and 9% of TSAs and
dysplastic SSLs, respectively [44,55]. In contrast, conventional adenomas have a high frequency (>85%)
of ligand-independent alterations [56]. APC mutation is sufficient to initiate adenoma pathogenesis [57]
and no ligand-dependent alterations have been reported in conventional adenomas [44].
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Figure 2. Molecular pathogenesis of different colorectal precursor subtypes. Colorectal cancer develops
from three types of pre-cancerous polyps: conventional and serrated adenomas—divided into traditional
serrated adenomas (TSAs) and sessile serrated lesions (SSLs). Conventional adenomas are driven by
ligand-independent mutations that likely arise in the crypt base columnar (CBC) stem cells. TSAs arise
from APC, RSPO or RNF43 mutations, possibly in ectopic crypts. SSL pathogenesis is characterized by
the late acquisition of APC or RNF43 mutations, concurrent with the onset of the detectable dysplasia.
Ligand-dependent CRC arises from TSAs and SSLs while ligand-independent CRC arises from all three
types of polyp (bottom panel).
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Altogether, this raises the possibility that different intestinal lesions follow distinct molecular
carcinogenesis pathways. These different evolutionary trajectories appear to result in the selection of
either ligand-dependent or independent mutations. This may also partly explain the mutual exclusivity
of Wnt driver mutations discussed above. Why polyp subtypes acquire apparent obligatory Wnt
disruption through these different mechanisms is unknown, but may be influenced by the variable
cell-of-origin in different lesion subtypes (Figure 2). Indeed, APC mutations induce tumorigenesis
in vivo if introduced into the LGR5+ intestinal stem cell but not transit-amplifying cells [16], while RSPO
fusions significantly co-occur with loss-of-function mutations in the Bone morphogenic protein (BMP)
signaling pathway that are known to induce ectopic crypt formation [58,59]. These data would also
suggest that RSPO-mutant colorectal tumors are wholly derived from TSAs.

5. Negative Regulation of Wnt Signaling

In some ways, it is surprising that despite multiple levels of negative feedback, ligand-dependent
mutations, which act upstream in an otherwise normal pathway, can induce activation of Wnt signaling
at all. Ligand-dependent pathway activation would be expected to induce physiological expression
of Wnt negative regulators such as AXIN2 or NOTUM, which would function to proportionately
constrain activation of the pathway. In contrast, ligand-independent alterations result in downstream,
constitutive activation that is uncoupled from the action of negative regulators. We have recently
shown that tumors with ligand-dependent alterations are associated with significant repression of
Wnt negative regulators, especially AXIN2 [42]. This repression may be at least partly explained by
AXIN2 methylation [60]. This raises the possibility that ligand-dependent Wnt activation requires two
”hits”—firstly a driver mutation affecting RNF43 or RSPO, and secondly, epigenetic downregulation
of Wnt negative regulators. Indeed, serrated adenomas which are enriched for ligand dependent
mutations, have lower AXIN2 expression and increased AXIN2 methylation compared to conventional
tubulovillous adenomas [61,62], as do MSI-high cancers that progress via this pathway [45,53].
AXIN2 expression is also decreased in an in vivo model of ligand-dependent tumors, generated by
orthotopic engraftment of CRISPR-edited organoids [63]. Furthermore, ectopic expression of AXIN2,
leading to re-activation of Wnt negative feedback in an RNF43-mutant cell line (HCT116) resulted in
rapid cell death [60,61]. In fact, AXIN2 is not the only Wnt negative regulator known to be silenced
by promoter hypermethylation in colorectal cancer: hypermethylation has been detected in negative
regulators including WIF1, SFRP1/2/4, DKK1–3 and NOTUM [42,62,64]. These genes are predominantly
hypermethylated in ligand-dependent or microsatellite-unstable tumors. This suggests that repression
of negative regulators is a more global phenomenon in ligand-dependent CRC, with loss of negative
feedback mechanisms at multiple levels of the Wnt signaling pathway.

6. Application of AXIN2 as a Biomarker for Ligand-Dependent Wnt Biology

Our finding that ligand-dependent tumors exhibit suppressed expression of negative regulators
of Wnt can be harnessed to utilize AXIN2 as a single-gene biomarker to distinguish between
ligand-dependent and ligand-independent tumors at the point of diagnosis. This is particularly
important as otherwise ligand-dependent tumors would need to be identified from expensive and
time-consuming analysis of paired DNA (for APC, CTNNB1 and RNF43) and RNA sequencing
(RSPO fusions). Paired DNA and RNA sequencing is simply not practical for routine diagnostic
assessment in the clinic, both in terms of cost and the relatively high failure rate of sequencing (>10%)
from diagnostic clinical samples [65].

We recently demonstrated that AXIN2 mRNA expression could be used as a discriminatory
biomarker with an area under the curve (AUC) greater than 0.93 in three independent cohorts,
indicating excellent diagnostic performance. This analysis incorporated both RNA sequencing and
microarray profiling to assay gene expression in resection and biopsy specimens [42]. The diagnostic
performance corresponded to sensitivity and specificity >90%. We also demonstrated similar
results with high-throughput AXIN2 profiling by quantitative real-time polymerase chain reaction
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(qRT-PCR). These findings were recently supported by the use of an organoid biobank derived from
patients with colorectal cancer, in which organoids with RSPO fusions or RNF43 mutations exhibited
lower AXIN2 expression than APC-mutant organoids [58]. Our analysis of paired qRT-PCR and
immunohistochemistry for AXIN2 showed that there was only weak correlation between AXIN2 mRNA
and scored AXIN2 protein expression, suggesting that AXIN2 may undergo significant translational
regulation, as has been described previously [66]. This would suggest that profiling of AXIN2 mRNA
expression would be the preferred approach to translate this biomarker into the clinic.

It is worth noting that AXIN2 gene expression is widely used as a read-out of global Wnt
pathway activation [67] and our findings suggest that this should be interpreted with caution,
as AXIN2 expression can be confounded by the type of acquired Wnt disrupting pathway mutation.
This confounding has important implications for the interpretation of analyses that have demonstrated
inverse correlations between AXIN2 (used as a read-out of Wnt activation) and immune infiltration [13].
Tumors with low AXIN2 expression are enriched with RNF43-mutant MSI-high tumors that have
enhanced anti-tumoral immune responses, thought to result from an increased neoantigen load [68].
As a result, the inverse relationship between AXIN2 and immune infiltration may be partly explained
by increased mutational load in RNF43-mutant ligand-dependent tumors, rather than reduced
Wnt activation.

In summary, the distinction between ligand-dependent and ligand-independent tumors is
clinically-actionable because tumors can be robustly discriminated using a low-cost single-gene
molecular biomarker.

7. Non-Overlapping Clinicopathological Features of Ligand-Dependent Tumors

Consistent with altered Wnt pathway biology and an altered trajectory through the serrated
pathway, ligand-dependent tumors have non-overlapping morphological and clinical characteristics
with ligand-independent tumors, reflecting an underappreciated separate disease entity in colorectal
cancer. Using manual and automated digital pathological approaches, we have demonstrated
that ligand-dependent tumors are enriched with mucin [13,42]. Mucin is a high molecular-weight
glycoprotein that is secreted by goblet cells and forms a key component of the mucous layer that provides
physical protection in the gastrointestinal tract [69]. Mucinous differentiation has long been recognized
in a subset of colorectal tumors (around 10%) and is diagnosed in tumors where mucin comprises >50%
of the tumor volume [70]. Indeed, mucinous differentiation is associated with microsatellite instability,
implicating a link with RNF43-mutant tumors. We have demonstrated that computational-scored
mucin area alone could discriminate between ligand-dependent and ligand-independent tumors
with an AUC > 0.75. Based on our findings, we propose that mucinous differentiation may well
either be induced by ligand-dependent Wnt signaling or reflect the association with the serrated
pathway. Consistent with the former hypothesis, the induction of ligand-dependent alterations
in organoids is sufficient to generate orthotopic colon tumors with mucinous differentiation [63].
Furthermore, RNF43 mutations in biliary malignancies are associated with mucin hypersecretion [71].
Altogether, this suggests that mucin content, which is routinely scored by histopathologists, can be
used as a phenotypic biomarker for ligand-dependent tumors with good diagnostic performance.

In our comparison of ligand-dependent and ligand-independent tumors in a pooled cohort
of over 600 tumors with available outcome data, we did not identify any significant differences in
prognosis [42]. However, this is likely to mask, considerably, the prognostic heterogeneity between
the subsets of ligand-dependent tumors. One way to examine this is to compare specific subsets with
their consensus molecular subtype (CMS) classifications, as this study was well-powered to identify
prognostic associations incorporating over 2000 patients [72]. Ligand-dependent tumors appear
to lie on a continuum between RNF43-mutant tumors which mostly classify as CMS1 (associated
with good prognosis) and tumors with stromal RSPO overexpression which mostly classify as CMS4
(associated with poor prognosis). Consistent with this, we observed a high frequency of tumor budding
and enriched desmoplastic stroma in tumors with stromal RSPO overexpression, both of which are
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associated with poor prognosis [73,74]. Of note, mucinous differentiation is associated with marginally
reduced overall survival [75]. These data suggest that the prognostic implications of ligand-dependent
Wnt biology are likely to be highly heterogenous.

8. Selective Vulnerabilities in Ligand-Dependent Tumors

Downstream ligand-independent Wnt signaling has proved difficult to target in solid tumors,
reflecting challenges in designing small-molecule inhibitors to inhibit constitutive pathway activation
through transcription factors such as beta-catenin [76]. In contrast, from a conceptual and experimental
standpoint, ligand-dependent Wnt activation is inherently “druggable” through deprivation of
extracellular ligand (Wnt or R-spondin) or attenuation of negative regulator suppression with
demethylating agents (Figure 3) [27,60,77]. Furthermore, emerging evidence would indicate that these
selective vulnerabilities in ligand-dependent tumors could synergize with immunotherapy targeting
PD-1/PD-L1 signaling in tumors [78]. This makes ligand-dependent tumors a fascinating subset of
colorectal cancer, with the real possibility of new transformative treatments.
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Figure 3. Target therapies for ligand-dependent tumors. All ligand-dependent tumors require Wnt
ligands for pathway activation and so are sensitive to porcupine inhibitors that impair Wnt ligand
activation. RSPO3 overexpression can be antagonized by anti-RSPO3 antibodies. Ligand-dependent
GSK3 inhibition results in reduced proteasomal degradation to generate amino acids such as asparagine,
making tumor cells sensitive to asparagine depletion with asparaginase treatment. Ligand-dependent
tumors are characterized by AXIN2 repression which can be antagonized with licensed demethylating
agents such as azacitidine.

By definition, ligand-dependent Wnt alterations can only induce downstream Wnt pathway
activation in the presence of Wnt ligand. As a result, depletion and inactivation of Wnt ligand by
inhibition of porcupine is a viable therapeutic approach for ligand-dependent tumors. In vitro models
of ligand-dependent tumors, including organoids with RNF43 mutations [79] and cell lines with RSPO
fusions [46], are exquisitely sensitive to porcupine inhibitors. This has also been demonstrated in various
in vivo settings, including xenografts with RSPO fusions [77] and autochthonous Rnf43/Znrf3-null
intestinal tumors [80]. Porcupine inhibition is associated with marked repression of Wnt pathway
activity, reduced tumor size and substantial remodeling the transcriptomic landscape that includes
increased intestinal differentiation [77,80]. Porcupine inhibitors have entered early-phase clinical trials
(NCT01351103, NCT03447470, NCT03507998). Preliminary evidence from a phase 1 trial identified a
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partial response in one patient with a detectable RNF43 mutation [81] while porcupine inhibition was
associated with reduced AXIN2 expression, suggesting on-target effects [82].

However, in vitro modeling of porcupine inhibition in ligand-dependent CRC cell lines has
identified selection for resistance mutations, such as loss-of-function alterations to AXIN1, leading to
loss of function of the destruction complex and downstream constitutive pathway activation [46]. It is
worth noting that AXIN2 repression seen in ligand-dependent tumors does not result in downstream
pathway activation because of redundancy with AXIN1. AXIN1 is a constitutive component of the
destruction complex and not a Wnt pathway target. This would suggest that AXIN1 inactivation alone
would not be sufficient to drive Wnt pathway activation unless AXIN2 was concurrently repressed—we
would hypothesize that this situation could only arise in ligand-dependent tumors. This might explain
the relatively low frequency (<0.05%) of truncating AXIN1 mutations seen in CRC [8].

In tumors with epithelial RSPO fusions, the autocrine signaling loop can be blocked by an
anti-RSPO3 antibody. For example, treatment with anti-RSPO3 antibody has been shown to result
in inhibition of xenograft tumor growth with tumor regression in some cases [27,83–85]. As with
porcupine inhibitors, this was associated with evidence of increased intestinal differentiation on
morphological and transcriptomic analysis [27,83]. This differentiated phenotype was associated with
reduced expression of stem cell markers and key Wnt targets such as LGR5 and ASCL2. A phase
1 trial of an anti-RSPO3 antibody in patients with metastatic colorectal cancer was associated with
partial responses in some patients, although this was not clearly associated with baseline RSPO3
expression [86]. In addition, while it has not been formally tested, it is entirely plausible that anti-RSPO3
therapy would also be effective for tumors with stromal RSPO overexpression.

The Wnt pathway plays a critical role in bone homeostasis [87] and unsurprisingly inhibition of
ligand-dependent Wnt signaling via porcupine inhibitors or anti-RSPO3 antibodies results in on-target
bone toxicity, including reduced bone strength and pathological fractures [86,88,89]. Consistent with
this, porcupine-null mice have widespread bone defects, while germline loss-of-function Wnt ligand
mutations in humans are associated with high fracture risk [90–92]. Preliminary evidence has shown
that bone toxicity could be reduced with co-administration of denosumab, which inhibits bone
degradation [89]. Altogether, concerns about resistance and on-target toxicity would likely limit the
use of direct Wnt inhibitions (porcupine, anti-RSPO3) to short durations of time, likely in conjunction
with other treatments.

In light of evidence that ligand-dependent tumors may depend upon repression of negative
regulators, possibly via promoter hypermethylation [42], demethylating agents could be a viable
therapeutic strategy in ligand-dependent tumors. Demethylation treatment with azacitidine in HCT116,
a colorectal cancer cell line with an RNF43 mutation and comparatively low AXIN2 expression, resulted
in increased AXIN2 expression and increased cell death [60,93]. Azacitidine is an approved treatment
for myelodysplastic syndrome with a well-established toxicity profile suggesting that this would be a
feasible treatment for ligand-dependent CRC [94].

Unexpectedly, recent work in acute myeloid leukemia found that asparaginase treatment
was synthetically lethal with inhibition of GSK3 [95]. Asparaginase functions to deaminate
and so degrade the nonessential amino acid asparagine, which is required for leukemic cell
growth [96]. GSK3 mediates ubiquitination of a wide range of proteins, such as APC, and resulting
proteasomal degradation provides a source of asparagine in the cell. Asparaginase treatment has
a relatively favorable toxicity profile and is licensed for acute myeloid leukemia [97]. In contrast to
ligand-independent alterations, which act downstream and by-pass GSK3, ligand-dependent mutations
directly lead to inhibition of GSK3 (Figure 1) through activation of the canonical Wnt pathway,
thus explaining a unique selective vulnerability for asparaginase treatment in ligand-dependent
tumors. Specifically, asparaginase treatments were highly toxic for organoids with RSPO fusions but
had no activity against organoids with APC or CTNNB1 mutations [98]. Treatment of mice with
subcutaneous implantation of RSPO-mutant organoids was associated with marked tumor regression
and prolonged progression-free survival, with no evidence of early therapy resistance [98]. No benefit
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was seen for implanted APC-mutant organoids. Altogether, these data would suggest that asparaginase
could be a viable and well-tolerated treatment for patients with ligand-dependent CRC.

In summary, ligand-dependent Wnt biology is associated with a range of therapeutic vulnerabilities
that could be exploited as effective anti-cancer therapy.

9. Combination Therapy for Ligand-Dependent Tumors

Considering that direct inhibition of the Wnt pathway is unlikely to be feasible for extended
periods of time, it is important to consider how treatments for ligand-dependent tumors might synergize
with existing anti-cancer therapy. Wnt pathway activation is often detected as a marker of resistance
to cytotoxic chemotherapy [99]. Resistance to paclitaxel, which is a type of cytotoxic chemotherapy
that inhibits microtubule detachment from centrosomes, is associated with Wnt pathway activation,
detected as increased CTNNB1 protein expression. Considering that Wnt functions as a regulator
of centrosome separation [100], it is feasible that Wnt activation could directly promote survival of
tumor cells. Consistent with this, anti-Wnt treatments such as anti-RSPO3 antibodies synergize with
paclitaxel in patient-derived xenografts with RSPO3 fusions [84].

More generally, inhibition of Wnt signaling in ligand-dependent tumors is consistently shown to
skew cells from a stem-like phenotype to a more differentiated phenotype [27,101,102]. Resistance to
cancer radiotherapy and chemotherapy is often driven by acquisition of stem-like phenotypes,
with enrichment of tumor cells that are able to repopulate a tumor on transplantation, often termed
cancer stem cells [103,104]. This suggests that short courses of Wnt pathway inhibitors could be
synergistic with a wide range of existing and innovative drug regimens, especially if Wnt inhibitors
are early in the treatment schedule.

The Wnt signaling pathway appears to play a role in protecting cells from immune surveillance.
As a result, there is considerable interest in the combination of immunotherapy that targets PD-L1/PD-1
signaling and direct inhibition of the Wnt signaling pathway. Signaling through the PD-1 receptor is
thought to promote an exhausted phenotype in cytotoxic T cells that impairs effective anti-tumoral
immunity [105]. While immunotherapy has demonstrated activity in diverse tumor types, it has
proved ineffective in unselected patients with CRC [5]. There are multiple lines of evidence that the
Wnt signaling pathway can directly promote an immune suppressive environment [106]. Early data
from trials of porcupine inhibitors have shown evidence for increased expression of activated immune
signatures [82]. Furthermore, porcupine inhibition was synergistic with anti-CTLA4 immunotherapy
in a murine melanoma model [107]. Altogether, this raises the question of whether anti-Wnt therapies
would act synergistically with immunotherapy in colorectal tumors and this hypothesis is under active
investigation in several early-phase clinical trials (NCT01351103, NCT02521844, NCT02675946).

Furthermore, as discussed above, the microsatellite-unstable subset of colorectal tumors
ligand-dependent tumors is enriched with tumors, which have enhanced responses to immunotherapy [6].
Unexpectedly, a recent analysis incorporating a large cohort of patients with colorectal cancer who were
treated with immunotherapy, demonstrated that RNF43-mutant tumors responded significantly better
to immunotherapy than would have been expected from their mutational burden [108]. This is an
exciting finding that raises the possibility the ligand-dependent Wnt biology might be independently
associated with responses to immunotherapy and warrants further investigation in additional cohorts.

10. Outlook—Landscape of Precision Medicine in CRC

Approximately 15% of colorectal tumors have ligand-dependent alterations in the Wnt signaling
pathway, affecting RNF43 or RSPO2/3. This unique Wnt biology is associated with a range of specific
therapeutic vulnerabilities, especially to depletion of Wnt ligand by porcupine inhibitors. There is a
strong theoretical basis for the combination of immunotherapy with a time-limited course of porcupine
inhibition. Inhibitors of ligand-dependent Wnt signaling are known to be ineffectual in tumors with
ligand-independent alterations such as APC mutations [79]. As a result, due to the low frequency of
ligand-dependent alterations, clinical trials of these selective treatments will fail in unselected patients.
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Precision medicine depends upon the ability to stratify patients into clinically meaningful subsets,
followed by targeting with biologically appropriate therapies. It is contingent on the existence of
biomarkers specific for each subset that can be feasibly adopted into routine clinic practice. We propose
that AXIN2 is one such biomarker and could be measured at low cost from routine clinical specimens.
It can be measured by high-throughput qRT-PCR and does not require costly and time-consuming
DNA and RNA sequencing. On the basis of AXIN2 expression, it would be possible to identify patients
with ligand-dependent Wnt biology who could then be targeted with effective personalized therapies.
In summary, we propose that the concept of ligand-dependent tumors as an individual disease entity
has the potential to revolutionize precision medicine and improve the outcomes for patients with
colorectal cancer.
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