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ABSTRACT

Deep learning has been successful at predicting epigenomic profiles from DNA sequences. Most approaches frame this task as
a binary classification relying on peak callers to define functional activity. Recently, quantitative models have emerged to directly
predict the experimental coverage values as a regression. As new models continue to emerge with different architectures and
training configurations, a major bottleneck is forming due to the lack of ability to fairly assess the novelty of proposed models
and their utility for downstream biological discovery. Here we introduce a unified evaluation framework and use it to compare
various binary and quantitative models trained to predict chromatin accessibility data. We highlight various modeling choices
that affect generalization performance, including a downstream application of predicting variant effects. In addition, we introduce
a robustness metric that can be used to enhance model selection and improve variant effect predictions. Our empirical study
largely supports that quantitative modeling of epigenomic profiles leads to better generalizability and interpretability.

Deep learning (DL) has achieved considerable success in predicting epigenomic profiles from DNA sequences, including
transcription factor binding1–3, chromatin accessibility4, 5, methylation6, and histone marks7, 8. By learning a sequence-function
relationship, trained DL models have been utilized on various downstream tasks, such as predicting the functional effects of
single-nucleotide variants associated with human diseases4, 7, 9–13.

Over the past several years, the variety of DL models proposed to address regulatory genomic tasks has increased
substantially14–26. The wide variety of proposed models, the datasets they are trained on, how the datasets are processed, and
the tricks used to train the models make it challenging to assess which innovations are driving performance gains. A direct
comparison of model performance cannot always be made easily due to the variations of how the prediction tasks are framed.
For instance, previous approaches typically frame the task as a binary classification27, where binary labels represent functional
activity based on a peak caller. However, in collapsing the amplitude and shape of a peak into a binary label, information
about differential cis-regulatory mechanisms potentially encoded in these attributes is lost. Recently, quantitative models22–26

have emerged, similarly taking DNA sequences as input but now directly predicting experimental read coverage values as a
regression task, thus bypassing the need for a peak caller and preserving quantitative information of epigenomic tracks. Since
standard metrics differ across classification and regression tasks, it remains unclear how to directly compare models trained on
binary tasks versus quantitative tasks.

To address this issue, Kelley et al25 propose to ‘binarize’ their quantitative predictions using a peak caller, which enables a
comparison of the overlapping regions with binary labels. However, this approach narrowly focuses evaluation on regions of
the genome that have been annotated as functional according to a peak caller, which is noisy and sensitive to parameter choices
of the peak caller28. Alternatively, Avsec et al26 compared the performance of a binary model with an augmented version of the
binary model that appends an output-head that simultaneously predicts quantitative profiles. While this measures the added
benefits of quantitative modeling, this requires retraining multiple versions of the model, which can be sensitive to initialization,
and it does not easily extend to comparisons with existing models.

Moreover, other modeling choices within a prediction task make it challenging to directly make fair comparisons. For
instance, existing quantitative models predict different resolutions of the epigenetic profiles. Basenji25 predicts non-overlapping
binned epigenomic profiles with a resolution of 128 base-pairs (bp), while BPNet26 predicts at base-resolution. Comparing
models across different resolutions is not straightforward, because binning affects the smoothness of the coverage values which,
in turn, can influence performance metrics. Moreover, existing methods employ different data augmentations and analyze
different subsets of training and test data, further complicating any direct comparisons.

As the number of applications continues to grow, a bottleneck of modeling innovations is forming as we lack the ability to
perform a critical assessment of newly proposed models. Here, we propose a unified evaluation framework for DL models
trained on regulatory genomics data that enables a systematic comparison of different models, irrespective of how the prediction
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task is framed. Using this framework, we perform a critical assessment of quantitative models and binary models on a chromatin
accessibility prediction task to elucidate beneficial factors in model architecture, training procedure, and data augmentation
strategies. Moving beyond predictive performance, we assess each model with additional criteria: 1) robustness of predictions
to small perturbations to the input sequence, 2) variant effect predictions, and 3) interpretability of the learned representations.
Our evaluation framework is packaged in a python-based software, called GOPHER (GenOmic Profile-model compreHensive
EvaluatoR).

Results
Many newly proposed DL models are accompanied with custom software; however, their scope is often limited to employing a
specific pipeline, making it difficult to mix-and-match innovations across methods. To gain deeper insights into the factors that
drive model performance, it is critical to be able to make a systematic and fair comparison across existing and newly proposed
DL models. To address this gap, we developed a new, integrative software package called GOPHER that consists of high-level
Tensorflow/Keras-based APIs for data processing, data augmentation strategies, and comprehensive model evaluation, including
variant effect predictions and model interpretability, for binary and quantitative modeling of epigenomic profiles (Fig. 1).

Performance evaluation of best-in-class quantitative models
Prominent quantitative models for regulatory genomics are Basenji25 and BPNet26. Each employ different strategies for model
design, data processing, loss function, evaluation metric, and data augmentations (Supplementary Table 1), which makes it
difficult to identify the key factors that drive performance gains. Thus, we performed a systematic comparison of Basenji-
and BPNet-inspired models on a multi-task quantitative prediction of chromatin accessibility across 15 human cell lines (see
Methods). This dataset provides a sufficient challenge but maintains a dataset size that is amenable to the scale of comprehensive
evaluations performed in this study.

For each base model, we used GOPHER to search for optimal hyperparameters using each model’s original target resolution
and training set selections (Supplementary Fig. 1). Target resolution defines the bin size of the prediction task, which is used to
create non-overlapping windows of coverage values, with the lowest resolution being a bin size of the entire input sequence
(i.e. predicting a single quantitative output) while the highest resolution is a bin size of 1 (i.e. base-resolution). BPNet was
trained at base resolution on peak-centered data (BPNet-base), which consists of a training set selection of genomic regions that

Figure 1. GOPHER overview. (a) Comparison of binary and quantitative prediction tasks for regulatory genomics. (b) Illustration of the 3
main components of DL analysis: data preprocessing (i.e. input size, target selection and resolution), model training (i.e. model architecture,
loss and data augmentations) and evaluation (i.e. generalization performance, robustness, interpretability and variant effect predictions).
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contain at least 1 peak from a target cell-type. On the other hand, Basenji was trained at 128 bin-resolution (Basenji-128) with
coverage-threshold data, which consists of training set selection based on segmenting each chromosome into non-overlapping
regions and then sub-selecting the regions that have a max coverage value above a set threshold. Details of the default choices
for the dataset and training parameters are detailed in Methods.

Overall, the quality of the model predictions were in line with previous studies (Fig. 2a). Using the optimized models as
a baseline, we compared the impact of various factors that influence prediction performance, including loss function, target
resolution, training set selection, and test set selection.

Loss function. The choice of loss function for quantitative models is not as straightforward as binary models, which is
typically a binary cross-entropy. Loss functions can penalize the shapes (e.g. Pearson’s r) or the magnitudes (e.g. mean-squared-

Figure 2. Evaluation of Basenji-based quantitative models. (a) Example visualization of bigWig tracks for experimental measurements
(top) and model predictions (bottom) for a given target cell line (GM23338) on a held-out test chromosome for Basenji-128. (b) Loss function
analysis. Scatter plot of the whole-chromosome Pearson’s r versus the MSE for different loss functions (shown in a different color) and target
resolutions (annotated bin sizes). Predictions were scaled for all models using ground truth mean coverage (see Methods). Lines serve as a
guide-to-the-eye. (c) Target resolution analysis. Heatmap of the whole-chromosome Pearson’s r for models trained on a given bin size
(y-axis) with predictions that were systematically down-sampled to a lower resolution for evaluation (x-axis). (d) Training set selection
analysis. Scatter plot of whole-chromosome Pearson’s r versus different target resolutions (i.e. bin size) for Baenji-based models trained on
datasets with a different coverage threshold applied to the training set (shown in a different color). Peak-centered represents when the data is
trained only on genomic regions identified as a peak. (e) Test set selection analysis. Scatter plot of the thresholded Pearson’s r, which is
average of per sequence correlation in the thresholded test set, versus different coverage thresholds applied to the test set for various
Basenji-based models (of different resolutions) trained on default data, i.e. coverage-threshold data with a threshold of 2 (indicated with the
black dotted vertical line). (b-e) Pearson’s r represents the average across cell lines.
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error (MSE)). BPNet employs a combination of MSE for the magnitude and multinomial loss for the shape. On the other hand,
Basenji employs a single loss, Poisson negative log-likelihood (NLL). To explore the effect of loss function on quantitative
modeling, we systematically evaluated Basenji-based models and BPNet-based models (using the optimized parameter setting
from hyperparameter search) across 5 different loss functions at 8 different target resolutions (Fig. 2b). Evidently, Poisson NLL
outperformed the other losses at all tested bin-resolutions, while Prearson’s r and the combination of Pearson’s r and MSE
yielded the second best overall performance. Interestingly, higher bin sizes tend to yield better performance up to a bin size
of about 1 kb for Basenji-based models, which is roughly the width of a peak. Surprisingly, BPNet-based models yielded a
different trend, where base-resolution models performed the best, albeit Poisson NLL remained the best loss (Supplementary
Fig. 2a). This is expected (to a degree) as each of these models were optimized for different resolutions. This suggests that
model design can be optimized for a given resolution but may not necessarily generalize across resolutions.

Target resolution. To explore whether the observed relationship between a higher bin size (i.e. lower resolution) and
higher prediction performance for Basenji-based models is due to more accurate predictions or because binning effectively
smoothens high-frequency noise, we developed an evaluation scheme that enables a direct comparison across target resolutions.
Specifically, we binned the predictions of the higher resolution models to match the lower resolution predictions. This effectively
provides an avenue to directly compare the performance across target resolutions. As expected, models trained at a given target
resolution yield a higher Pearson’s r with increased smoothing, despite that the biology underlying the predictions remains
unchanged (Fig. 2c). A similar observation was made for BPNet-based models (Supplementary Fig.2b). To further demonstrate
the sensitivity of Pearson’s r on smoothness properties, we systematically smoothed predictions while maintaining the predicted
resolution by applying a box-car filter with window sizes that matched a lower-resolution bin and observed a similar trend
(Supplementary Fig.3).

Training set selection. Generalization performance depends on the composition of training data. To explore the impact of
training set selection, we systematically trained Basenji-based models at different resolutions on new datasets with increasing
stringency of a coverage threshold, which serves to modulate the balance between the original BPNet’s peak-centered training
approach and the original Basenji’s whole-chromosome training approach. For comparison, we also trained each model on
peak-centered data. By evaluating each model on the whole-chromosome test set for consistency, we found that the training set
with the lowest threshold yielded the best performance, while peak-centered models performed the worst (Fig. 2d). Limiting
the model to only higher functional activity reduces the data set size, and hence the number of examples the model has to
learn from, which may explain some of the drop in performance. On the other hand, providing too many inactive regions may
imbalance the model’s focus on features within inactive sites, though we did not observe this undesirable behavior.

Test set selection. Choice of test set can influence the measure of generalization performance. The common approach
is to process the training set and test set in the same way and split them via random splits or held-out chromosome(s).
Alternatively, predictions across the whole chromosome (via tiled predictions) puts a greater emphasis on generalization to
regions of non-functional sites. To explore the influence of test set selection on model performance, we generated new test
sets with progressively stringent coverage thresholds to modulate between the two extremes. To compare performance across
test thresholds, we calculated the average Pearson’s r per sequence, instead of calculating a single Pearson’s r across tiled
predictions. Interestingly, Basenji-base’s performance monotonically increases with the coverage threshold on the test set
(Fig. 2e). A similar trend was observed across other resolutions. This illustrates that predictions are more accurate for higher
coverage regions and thus focusing only on high-activity regions can inflate test performance.

Robustness test to identify models with fragile predictions
Robustness to input perturbations is a widely used criterion for evaluating the trustworthiness of DL models29, 30. Adversarial
attacks using small, targeted noise to the inputs dramatically affects the prediction of non-robust models31. These noise-based
perturbations do not naturally extend to genomic data. Alternative perturbations, such as single-nucleotide mutations, can affect
function and hence are also inappropriate. We developed a robustness test to measure the sensitivity of model predictions to
translational shifts of the input sequences, whose function is largely maintained by also shifting the target predictions (see
Methods). Specifically, our robustness test provides a variation score for a given input sequence that is randomly translated N
times – the predictions are aligned and only overlapping regions are considered for the variation summary statistic (Fig. 3a).

To test the robustness of models across augmentation strategies and choice of training sets, we compared how different
combinations of augmentations, including random reverse-complement (RC) transformations and random shifts of the input
sequence (up to 1024 bp), affect the model’s robustness properties for BPNet-128 and Basenji-128 trained on either peak-
centered or coverage-threshold training data. We opted to compare BPNet-128 at a lower resolution (instead of base-resolution)
to make a direct comparison across models, since the robustness metric is sensitive to bin-resolution. Indeed, models trained
with augmentations yielded improved robustness compared to models without augmentations, especially when trained on
peak-centered data (Fig. 3b). On the other hand, models that were trained on coverage-threshold data already benefited to a large
degree on the non-centered, random nature of the epigenomic profiles. This could explain the observation that in BPNet-128
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Figure 3. Testing model robustness against translational shifts. (a) Schematic overview of robustness test. For each 3 kb
sequence, N random 2 kb sub-sequences were extracted, and the standard deviation across predictions within the overlapping
regions is calculated. Average variation score of predictions (i.e. average per-position standard deviation of coverage values
normalized by the total mean coverage value) was used as a measure of model robustness. (b) Scatter plot of the Pearson’s r
(averaged across a per-sequence analysis) versus the robustness variation score across models with different augmentation
methods (shown in a different color). Each 128 bin-resolution model (shown in a different marker) was trained 3 times with
different random initializations. Pearson’s r represents the average across cell lines.

with RC augmentation alone was sufficient, although Basenji-128 still benefited from both augmentations. Surprisingly, we
observed that models with similar prediction performance could yield large differences in their robustness levels, demonstrating
that prediction performance and model robustness are not strictly correlated. This suggests that robustness can be utilized along
with generalization performance as an additional metric to facilitate model selection.

Comparing quantitative model architectures
The space of binary model architectures has been well explored; however, the exploration in quantitative models has been more
limited. Existing quantitative models often have complex designs, including dilated convolutions with skipped connections and
task-specific output-heads. It remains unclear to what extent that complex model structures are needed to fit quantitative data.
We therefore wanted to address two questions: (1) could standard convolutional neural networks (CNNs) that were successful
on binary classifications have similar success at quantitative regressions, and (2) could further exploration of the architectures
improve performance?

To address these questions, we benchmarked a baseline CNN – with 3 convolutional layers and 1 fully connected hidden
layer – at base and 32 bin-resolutions. We created 2 versions of each model where predictions are made based on task-specific
output-heads, where each task is given a nonlinear prediction module or all predictions are based on a linear mapping from a
single representation, i.e. the common multi-task approach. In addition, we set the first-layer activations of each model either
to be rectified linear units (ReLU) or exponential activations, which has been shown to improve the quality of learned motif

Pearson’s r (whole)
Model Activation Output-head Base 32 Bin
BPNet ReLU Task-specific 0.601 0.583
Basenji GELU Single 0.617 0.654

CNN
ReLU

Single 0.600 0.605
Task-specific 0.607 0.604

Exponential
Single 0.599 0.600

Task-specific 0.599 0.601

ResidualBind
ReLU

Single 0.642 0.655
Task-specific 0.637 0.670

Exponential
Single 0.655 0.665

Task-specific 0.654 0.677

Table 1. Performance comparison across quantitative architectures. Table shows the whole-chromosome Pearson’s r
(averaged across cell lines) for various quantitative models with different activations, output-heads, and trained on different
target resolutions. For activations, Exponential refers to the application of it to only the first-layer filters while ReLU is used in
deeper layers.
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representations32. To test the benefits of a wider receptive field to give context to the patterns learned in lower layers, we created
an augmented version of the baseline models by adding a residual block33, each with 4 dilated convolutional layers34, 35, after
each of the first two convolutional layers in a manner similar to ResidualBind36. Together, this results in a total of 8 custom
models (see Methods for details).

Surprisingly, we found that baseline CNNs perform on par with Basenji- and BPNet-based models, with the exception
of Basenji-32 (Table 1). This shows that simple model architectures can be effective at predicting epigenomic profiles as a
quantitative regression. On the other hand, including dilated residual blocks, but with components arranged differently than
Basenji, substantially improved performance at both tested resolutions for ResidualBind. Interestingly, task-specific output-
heads consistently yielded better performance versus a single output-head, albeit the effect was variable and small. Moreover,
exponential activations yielded comparable results to ReLU-based models, suggesting that high-divergence activations do
not negatively affect the ability to make quantitative predictions. Together, this demonstrates that design considerations for
quantitative models are largely under-explored and can greatly improve performance.

Benchmarking model performance across binary and quantitative models
Although quantitative models were developed with the aim of preserving more information about epigenomic profiles, directly
comparing the different prediction formats between binary and quantitative tasks is not straightforward. To bridge this gap, we
developed a way to directly compare binary models to quantitative models by converting predictions from one format to the
other (Fig. 4a). To convert binary predictions to a quantitative format, we treated the logits (i.e. before the output activation
function) as the predicted coverage values. While binary models are not trained to learn signal strength, the model’s confidence
can be encoded in the unbound logits. Thus, binary models can now be evaluated with quantitative metrics. Moreover, to convert
quantitative predictions to a binary format, we calculated the average coverage predictions at positive regions and negative
regions based on corresponding binary-labelled data. These two distributions can be used to calculate standard classification

Figure 4. Performance comparison between binary and quantitative models. (a) Schematic overview of prediction task
conversion. Binary models can use logits to generate continuous ‘coverage-like’ values to calculate regression metrics. On the
other hand, the coverage predictions of quantitative models can be grouped according to binary labels (i.e. peak and no peak
groups) to calculate standard classification metrics. (b) Scatter plot of the classification-based AUROC versus the
regression-based Pearson’s r for various binary models (blue) and quantitative models (orange) on peak-centered test data (left)
and whole-chromosome test data (right). Metrics represent the averaged value across cell lines.
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metrics, such as the area-under the precision-recall curve (AUPR) and area-under the receiver-operating-characteristic curve
(AUROC).

Using this task-conversion evaluation framework, we directly compared the performance of various quantitative models
with various binary models (Supplementary Table 2). Interestingly, when evaluating on peak-centered data, several binary
models yielded similar (if not better) AUROC and AUPR compared to quantitative models (Fig. 4b and Supplementary Fig. 4a).
However, when converting the binary models to quantitative metrics, quantitative models outperformed all binary models. This
effect became more pronounced when evaluation was extended across the whole chromosome, where all quantitative models
yielded better performance across both metrics (Fig. 4c and Supplementary Fig. 4b). Together, this demonstrates that while
some binary models can be competitive with quantitative models within high-activity functional sites, quantitative models tend
to yield better overall performance across whole chromosomes.

Out-of-distribution generalization: variant effect prediction
A major downstream application for DL models that learn sequence-function relationships is to utilize them to score the
functional effects of mutations. High-performing models can inform how their predictions change relative to wild-type when
queried with a new mutated sequence. Thus, we benchmarked each model on this out-of-distribution (OOD) generalization
task by validating predictions with experimental data from the CAGI5 Competition37, similar to Avsec et al.23 CAGI5 dataset
consists of massively parallel reporter assays (MPRAs) that measure the effect size of single-nucleotide variants through
saturation mutagenesis of 15 different regulatory elements across different cell-types. Instead of a standard approach that
makes a single prediction based on a sequence centered on the variant-of-interest, robust predictions were calculated by
introducing random translations and averaging the central overlapping region, similar to our robustness test (see Methods).
Robust predictions were calculated separately for reference and alternative alleles and the effect size was calculated based

Figure 5. Comparison of functional effect predictions. (a) Example visualization of predictions of a sequence with a reference
allele (black curve) and an alternative allele (red curve) for a given mutation. Below, heat maps show the experimental
measurements of variant effects for the TERT promoter in a GBM cell line (ground truth) and the predicted variant effects from
ResidualBind-32. (b) Scatter plot of the prediction performance across whole-chromosome test set (y-axis) and the average
CAGI5 performance (x-axis). Each dot represents a different model. (c) Bar plot shows the CAGI5 performance difference
between robust predictions minus standard predictions. Each bar represents a different model. Groups of models represent
different training strategies or target resolutions. Inset shows the cumulative distribution of variant effect performance
differences for models trained with and without random shift data augmentation.
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on their log2 fold change. An anecdotal visualization shows that the variant effect predictions by quantitative models are
qualitatively effective despite being trained on OOD data – i.e. chromatin accessibility in different cell lines (Fig. 5a).

By benchmarking various models, we found that quantitative models consistently outperformed binary models (Fig. 5b).
In addition, by cross-comparison with prediction performance, we found that whole-chromosome generalization is a reliable
metric for variant effect performance. As a control, we also compared whether robust predictions are beneficial for predicting
variant effects compared to the standard approach of employing a single-pass prediction centered on the variant-site. Strikingly,
we found that 50 out of 56 models performed better using robust predictions (Fig. 5c). Upon further investigation, models that
did not employ random shift data augmentations were the ones that indeed benefited the most from robust predictions (Fig. 5c,
inset). This suggests that robust models are more trustworthy for variant effect predictions, but our post hoc workaround of
making predictions more robust could improve the efficacy of less robust models.

Model interpretation
A major downstream application of genomic DL models is interpretability analysis, which can lead to the discovery of functional
motifs and their complex interactions38. Here we perform an analysis across several common interpretability approaches: motif
discovery through filter visualizations, foot-printing motifs at base-resolution using attribution methods, and quantitatively
testing hypotheses in silico using global importance analysis (GIA).

Filter interpretability. First-layer convolutional filters provide an inductive bias to learn translational patterns such as
motifs. However, the extent that they learn interpretable motifs largely depends on design choices, such as the max-pool size39,
activation function32, or even the utilization of batch normalization40. However, it is not clear whether the same design principles
established for binary models extends to quantitative models. To evaluate which models yield better motif representations, we
visualized the first-layer filters of various models according to activation-based alignments4, 41 and compared how well they
match motifs in the JASPAR database42 using Tomtom43, a motif search comparison tool. Since the absolute number of hits
can be misleading because of low-quality hits from partial motifs, we also consider the q-value, which specifies the confidence
level of motif-filter matches. We found that among models that employ ReLU-based activations, binary models generally yield
a lower hit-ratio as well as higher q-values, which means poor quality hits (Supplementary Table 2). Nevertheless, models that
employ exponential activations in the first convolutional layer yield higher hit-ratios and higher quality hits for both binary and
quantitative models. This suggests that considerations for design principles can indeed improve first-layer motif representations
in quantitative models without sacrificing performance.

Embedding representations and attribution maps. To visualize structure in the data as seen through the lens of the model,
we embedded the penultimate (or bottleneck) representations of test sequences for a given class using Uniform Manifold
Approximation and Projection (UMAP)44. ResidualBind-32 with exponential activation yielded distinct UMAP structures
and clustered data points with similar profile distributions in each cell line (Supplementary Fig. 5). By exploring different
regions of the UMAP embeddings for the PC-3 cell line as an example, we found that ResidualBind-32 is largely encoding
the magnitudes and locations of the read distributions (Fig. 6a). We generated attribution maps (based on saliency analysis)
from different regions and found that the ResidualBind-32 has learned many known regulatory motifs, such as AP-1, SP1,
and GABPA, among others (Fig. 6a). Interestingly, many accessible regions with high functional activity for PC-3 contained
repeated clusters of AP-1, suggesting that our model considers AP-1 to be a critical motif for accessible sites for PC-3. We also
observed an unknown motif (ATAAA) that flanked the AP-1 motif in many attribution maps potentially corresponding to a
Forkhead family transcription factor binding site42.

Global importance analysis. While attribution maps can help to identify and footprint putative motifs, they cannot quantify
the importance of motifs beyond individual nucleotides. GIA is an interpretability approach that enables direct testing of
hypotheses gained from attribution analysis36. GIA computes the effect size, or global importance score, of hypothesis patterns
that are embedded within a population of background sequence, where the other positions are effectively randomized. This
approach essentially marginalizes out any confounding patterns within any individual sequence, revealing the global importance
of only the embedded patterns on model predictions. Using GIA, we test various hypotheses of AP-1, ATAAA and GATA
motifs.

First, we used GIA to explore how the two flanking nucleotides adjacent to the core motif on either side and the central
nucleotide in AP-1 influences accessibility predictions in PC-3 cells. Strikingly, we find that flanking nucleotide combinations
can drive predictions by a factor of 3 relative to the AP-1’s core binding site with random flanks (Fig. 6b), similar to what
was observed previously45, 46. A position-weight-matrix-based approach47, which considers each position independently,
would score many AP-1 binding sites the same, despite their wide spread in functional activity. A similar observation was
made for other models, both quantitative and binary (Supplementary Fig. 6). This demonstrates that DL models consider
complex higher-order dependencies of flanking nucleotides to be an important feature of TF binding sites, a well-known
phenomenon48, 49.
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Figure 6. Interpretability analysis for ResidualBind-32 on PC-3 cell line. (a) UMAP embedding of the penultimate layer
representations across all test sequences. (Left) Shows the average experimental coverage and predicted coverage from
sequences that map to specific locations in the embedding (shown in a different color). (Right) Representative saliency maps
(zoomed in) for sequences within different embedding regions. The known motifs from the JASPAR database are shown at the
top and an unknown ‘ATAAA’ motif is annotated with a box with black dashed lines. (b) GIA for optimal flanking nucleotides.
Ranked plot of the global importance for each tested flank. Dashed line represents the global importance of the core motif with
random flanks. The hue represents the position-weight-matrix score for an AP-1 motif from the JASPAR database (ID:
MA0491.1). The black dot indicates “TGTGATTCATG”, which has a high position-weight-matrix score but yields a global
importance close to the core motif with randomized flanks. (c) GIA for distance dependence between two motifs with
optimized flanks. Global importance plot for sequences with an AP-1 motif fixed at the center of the sequence and another
motif that is systematically placed in different locations. Positive and negative values represent the first positions the motifs
were embedded to be non-overlapping. (d) GIA for cooperative interactions between AP-1 and another motif. Each subplot
shows a box-plot of the global importance when each motif is placed in random background sequences individually and in
combinations. For comparison, the sum of the global importance scores for each individual motif is also shown (sum).

We then explored to what extent the distance between motifs plays a role in model predictions. Specifically, we performed
GIA experiments where the AP-1 motif was fixed at the center of the sequences and the position of the other motif (i.e. AP-1
or ATAAA) was varied (Fig. 6c). Interestingly, we found that two AP-1 motifs yielded a symmetric 50 bp window where
predictions are plateaued, beyond which, the global importance begins to drop off. On the other hand, the ATAAA motif exhibits
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an asymmetric distance dependence with a favorable location on the 3’ end flanking the AP-1 motif with a few nucleotide gap,
beyond which there is a precipitous drop in global importance. This was also observed across other models, with variable
magnitudes in effect size but a similar relative trend (Supplementary Fig. 7).

From the attribution maps, it appears that multiple motifs are often present in combinations across accessible sites. To test
whether ResidualBind-32 has learned cooperativity between AP-1 and other motifs, we compared the global importance for
the motifs embedded in sequences alone and in combinations with other motifs (at the optimal distance identified through the
distance dependence GIA experiments). We observed the sum of individual effects were lower than when both motifs were
present, indicating ResidualBind-32 has indeed learned cooperative interactions (Fig. 6d). The effect size was varied across
transcription factors, with a smaller effect observed for GATA::AP-1 compared to other motifs, such as ATAAA::AP-1 and
AP-1::AP-1. This was also observed across other models (Supplementary Fig. 8), suggesting that these cooperative interactions,
among many others not studied here, are strongly associated with chromatin accessibility levels. We note that a discrepancy
arose for binary models when considering two AP-1 motifs, for which there was no strong evidence that cooperativity was
learned.

Instead of directly imposing patterns on background sequences, we also conducted occlusion-based interventional experi-
ments where we identified exact instances of the core motif for AP-1 and replaced them with randomized sequences across
the test set – a global importance of motif occlusion within its natural sequence context. We find that the number of AP-1
motifs indeed drives high functional activity for PC-3, while other cell lines depend on a different distribution of motifs for
their functional activity (Supplementary Fig. 9).

Together, the interpretations of quantitative models appear to be more consistent with each other than binary models,
though well-trained binary models can largely capture similar biological interpretations as quantitative models, despite
under-performing on generalization tasks.

Discussion

The variety of deep learning models being proposed to predict regulatory genomic tasks has increased substantially in recent
years. The variations of proposed models, how the prediction tasks are framed, the composition of the data sets, and the
tricks used for training make it challenging to assess which innovations are driving performance gains. Moreover, while
many methods provide software to deploy their methods, which only includes their specific pipeline, it is often challenging
to mix-and-match modeling innovations across methods. To address this gap, we introduced GOPHER to provide a unified
framework to compare various modeling choices and enable a comprehensive and fair evaluation of existing and emerging DL
models in regulatory genomics. While previous software, such as Janggu50 and Selene51, help to process biological data (mainly
focused on peak-centered data) and high-level APIs to train neural network models in TensorFlow52 and Pytorch53, respectively,
they do not focus on downstream evaluation across different prediction tasks. By contrast, GOPHER provides a one-stop-shop
for data processing of peak-based classification and quantitative regression analysis, training with data augmentations, and
comprehensive model evaluation. GOPHER incorporates many popular model interpretability tools, such as first-layer filter
visualization, global importance analysis, and attribution methods, including in silico mutagenesis54, 55, saliency maps56,
integrated gradients57, and SmoothGrad58.

Using GOPHER, we addressed several open questions: (1) how to fairly compare binary models and quantitative models; (2)
how choice of loss function affects performance; (3) how dataset selection influences model performance; (4) how to compare
quantitative models that predict different resolutions; (5) how augmentation strategies influence model performance and
robustness to translational perturbations; how modeling choices influence downstream (6) functional variant effect predictions
and (7) model interpretability.

In general, our work largely supports that quantitative modeling yields better generalization (on average), both on held-out
data and OOD variant effect predictions. Of course, well-tuned binary models can perform comparable to (or even better
than) a poorly designed quantitative model. It remains unclear whether binary models are fundamentally limited based on
their treatment of functional activity or whether incorporating more inactive regions during training would boost performance.
Moreover, it is not clear whether the performance gains of quantitative models are due to learning better biological signals
or whether they are just better at learning noise sources within sequencing experiments. One major limitation arises as a
consequence of focusing on performance – treating experimental measurements as ground truth, despite biological variability
across replicates and technical noise (eg. Supplementary Table 3). Thus, focusing on important downstream tasks, such as
variant effect prediction and model interpretability, as was done here, provides a path to move beyond performance benchmarks
to the beneficial use case of genomic DL models – biological discovery.
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Methods

Training data
ATAC-seq (Assay for Transposase-Accessible Chromatin with high-throughput sequencing) data for human cell lines were
acquired from the ENCODE database59 – fold change over control bigWig files for quantitative analysis and IDR peak bed
files for binary analysis – using experimental accessions in Supplementary Table 4. Each of the 15 cell lines were sub-selected
based on a lower cross-correlation of coverage values at IDR peaks across cell lines below 0.75. Data from replicate 1 for each
experiment was used to generate the train, validation, and test sets. Data from replicate 2 was used to assess the experimental
ceiling of prediction performance.

Coverage-threshold data. Each chromosome is split into equal, non-overlapping input size chunks of 3 kb and each chunk
is included in the dataset if the max coverage value for any of the targets is above the threshold. By default, coverage-threshold
data employed a threshold of 2, unless specified otherwise. Each sequence that passed this threshold was included as part of
the dataset and down-sampled to 2 kb with a strategy that depends on data augmentations (see below). The targets were then
binned with non-overlapping windows according to the specified target resolution and was calculated online during training
and testing. For any given coverage value array of length L and bin size B, it was reshaped into an array with shape (B, L/B) –
down-sampling was achieved according to the mean within each bin.

Peak-centered data. For peak-centered datasets, we selected IDR bedfiles from the ENCODE experiments corresponding to
the same replicate as the coverage-threshold data. The bed files of each cell line were merged into a single bed file, in a manner
similar to Kelley et al4. The Basset data processing pipeline divides the genome into segments of length specified as the input
size and merges peaks according to an overlap size parameter. Each sequence in the dataset contains at least one peak across all
cell lines.

Data splits. We split the dataset into training, validation, and test sets using chromosome 8 for test, chromosome 9 as
validation and the rest as training (excluding Y chromosome). We also removed the unmappable regions across all data splits.

Held-out test evaluation
Pearson correlation can be calculated using the concatenated whole chromosome per cell line, which is referred to as Pearson’s r
(whole), or per sequence correlation averaged across the test set when specified. The difference between these metrics manifests
as a different mean in the correlation calculation; a global mean for whole chromosome versus a per sequence mean. Whole
chromosome evaluation is calculated by concatenating the predictions for the entire chromosome 8 with the exception of
unmappable regions. A per sequence Pearson correlation was calculated for peak-centered data, test selection analysis, and
robustness analysis, unless specified otherwise. For a compilation of all model evaluations see Supplementary Data 1.

Scaling predictions. Predictions were scaled to address the large discrepancy between predictions and experimental values
for shape-based loss functions (eg. Pearson’s r). Though we found that applying it to other losses also yielded slightly better
performance. This was accomplished by calculating a global scaling factor per cell line, which is computed as the ratio of the
mean of experimental and predicted coverage values across the entire test chromosome, and multiplying the scaling factor to
the predictions.

Models
Basenji. Basenji-based model is composed of a convolutional block, max-pooling with pool size of 2 (which shrinks the
representations to 1024), 11 residual blocks with dilated convolutional layers, followed by a final convolutional layer. The
convolutional block consists of: GELU activation60, convolutional layer with a kernel of width 15, batch normalization61. The
residual block is composed of: GELU activation, dilated convolutional layer with a kernel of width 3 and half the number of
filters and a dilation rate that grows by a factor of 1.5 in each subsequent residual block, batch normalization, GELU activation,
convolutional layer with width 1 and the original number of filters, batch normalization, and dropout with a rate 0.3. Each
residual block has a skipped connection to the inputs to residual block. An average pooling layer is applied to the final output
convolutional layer to shrink the representations to the corresponding target resolution. A dense layer with softplus activations
following the last convolutional block then outputs the predictions target. In case of base resolution, the first max-pool size is
set to 1. For additional details, see Supplementary Data 2.

BPNet. BPNet consists of a convolutional layer, followed by 9 dilated convolutional layers that each have a residual connection
to the previous layer. Task-specific output-heads, each with a separate transpose convolution, is built upon the final residual
layer. To adapt BPNet to lower resolutions, all predictions are initially made at base-resolution followed by an average pooling
layer for each task-specific output-head, with a window size and stride that matches the target resolution. A key difference with
the original BPNet architecture is that the negative strand, bias track and read counts output-head was not used throughout this
study. The specific choices of hyperparameters in BPNet can be found in Supplementary Data 2.
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CNN-baseline. The CNN baseline model is composed of 3 convolutional blocks, which consist of a 1D convolution, batch
normalization, activation, max pooling and dropout, followed by 2 fully-connected blocks, which includes a dense layer, batch
normalization, activation, and dropout. The first fully connected block scales down the size of the representation, serving as a
bottleneck layer. The second fully-connected block rescales the bottleneck to the target resolution. This is then reshaped to
match the number of bins × 8. For instance, the number of hidden units for models at 32 bin target resolution are 2048/32 = 64
× 8, then reshaped to (64, 8). Base resolution models set the hidden units to 2048 × 8 then reshaped to (2048, 8). This is
followed by another convolutional block. The representations from the outputs of the convolutional block is then input into
task-specific output heads or is directly fed to a linear output layer with softplus activations. For task-specific output heads,
each head consists of a convolutional block followed by a linear output layer with softplus activations. The activation of the
first layer is either exponential or ReLU, while the rest of the hidden layer activations are ReLU. The specific hyperparameters
of each layer, including the dropout rates, are specified in detail in Supplementary Data 2.

ResidualBind-base. ResidualBind-base builds upon the CNN-baseline models by adding a residual block after the first 3
convolutional layers. The first two residual blocks consist of 5 dilated convolutional layers and the third residual block consists
of 4 dilated convolutional layers. Similar to CNN-baseline models, this is then followed by 2 fully connected blocks, which are
reshaped to a shape (2048, 8), and a convolutional block. Here, another residual block that consists of 5 dilated convolutional
layers was applied. This is then fed into an output head, which has the same composition as the CNN-baseline. The details of
model architecture and hyperparameters can be found in Supplementary Data 2.

ResidualBind-32. ResidualBind-32 also builds upon the CNN-baseline models by adding a residual block after the first 3
convolutional layers, but with a few key differences from ResidualBind-base. The third residual block consists of 3 dilated
convolutional layers instead of 4. Moreover, ResidualBind-32 does not go through a bottleneck layer that is prototypical
of the CNN-baseline design. For task-specific output heads, the representations of the third residual block are input into a
convolutional block followed by a task-specific output heads similar to the CNN-baseline models. For a single output head, the
representations of the third residual block are input into a position-wise fully connected block followed by a linear output layer.
The details of model architecture and hyperparameters can be found in Supplementary Data 2.

Binary models Four main model structures are used for binary models. One fine-tuned Basset4 structure and three re-purposed
quantitative models structures: Basenji, CNN-base, and ResidualBind-base. Basset is composed of three blocks of convolutional
layer followed by batch normalization, activation and max-pooling. The output is then flattened and fed into 2 fully connected
layers with dropout and an output layer with sigmoid activations. Basset hyperparameters were optimized for the binary version
of the ATAC-seq dataset in a similar manner to Basenji. For Basenji-binary, CNN-binary and ResidualBind-binary, their
structure highly resembles the quantitative model based on a single output-head. For CNN-binary and ResidualBind-binary,
we apply a fully connected output layer with sigmoid activations to the bottleneck layer. For Basenji-binary, we take the
penultimate representation and perform a global average pool, followed by a fully connected output layer. The details of model
architecture and hyperparameters can be found in Supplementary Data 2.

Training. Each quantitative model was trained for a maximum of 100 epochs using ADAM62 with default parameters. Early
stopping was employed with a patience set to 6 epochs (monitoring validation loss as a criterion). By default, models were
trained with random reverse-complement and random shift data augmentations unless specified otherwise.

Quantitative CNN and ResidualBind (base and 32 bin-resolution), along with binary versions of these models, were trained
for a maximum of 100 epochs using ADAM with default parameters. Early stopping with a patience of 10 was used. The initial
learning rate was set to 0.001 and decayed by a factor of 0.2 when the loss function did not improve after a patience of 3 epochs.

Data augmentations
Random shift. Random shift is a data augmentation that randomly translates the input sequence (and corresponding targets)
online during training. All datasets were generated with input size set to 3,072 bp. When random shift is used, for each
mini-batch, a random sub-sequence of 2,048 bp and its corresponding target profile was selected separately for each sequence.
When random shift is not used, the central 2,048 bp is selected for all sequences in the mini-batch.

Reverse-complement. Reverse-complement data augmentation is employed online during training. During each mini-batch,
half of training sequences were randomly selected and replaced by their reverse-complement sequence. For those sequences
that were selected, the training target was correspondingly replaced by the reverse of original coverage distribution.

Hyperparameter search
The ATAC-seq datasets in this study differ greatly in complexity, i.e. size and coverage distribution, from the original Basenji
and BPNet studies. Therefore, we performed a hyperparameter search for each base architecture for our ATAC-seq dataset
(Supplementary Fig.1). We used WandB63 to keep track of the model choices and for visualization. We fine-tuned Basenji and
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BPNet at 128 bp and base resolution, respectively, which represent the original resolutions for these models. We also kept
their original training set selection strategy, that is, we trained Basenji on coverage-threshold data and BPNet on peak-centered
data. For Basenji, the number filters across the convolutional layers were varied as well as the presence or absence of dropout
layers (fixed rate for each layer). For BPNet, we performed a hyperparameter search over the number of convolutional filters in
each layer and the kernel size in the task-specific output heads. We employed the original data augmentations (i.e. random
reverse-complement and random shifts for Basenji and only random reverse-complement for BPNet). For each model, we used
the Poisson NLL loss function. We originally used a MSE and multinomial NLL loss for BPNet, but found that optimization
using Poisson NLL yielded better performance. The models were trained for maximum of 40 epochs with an Adam optimizer62

using default parameters. Initialization was given according to Ref.33. The optimal set of hyperparameters for each model was
selected based on the lowest validation loss and the final architectures are given in Supplementary Data 2.

Robustness test
To measure the robustness to translational perturbations, we analyzed the sequences within the held-out test chromosome that
were identified to contain a statistically significant peak for the given cell-type under investigation. This ensures that the robust
predictions are only considered for genomic regions that exhibit statistically significant coverage values. Specifically, we took
each 3072 bp sequence in the dataset and generated 20 contiguous sub-sequences of length 2048 bp. Each sub-sequence was
sent through the model to get a prediction, and all of the predictions were aligned based on the sub-sequence. All sub-sequences
contain a center 1024 bp window that overlaps. Standard deviation is calculated for each position across these 20 sequences
and averaged across the length of prediction. The average sequence coverage across 20 sequences was used to normalize the
average standard deviation to make it invariant to scale. Therefore variation score for each sequence is calculated as average per
position standard deviation divided by average sequence coverage. A higher variation score corresponds to a less robust model,
while a lower variation score corresponds to more stable predictions, irrespective of translations to the inputs. Due to binning
artifacts, we only compare this robustness test for models that share the same bin-resolution.

Variant effect prediction
Dataset. The CAGI5 challenge dataset was used to benchmark model performance on variant calling. Each regulatory element
ranges from 187bp - 600bp in length. We extracted 2048 bp sequences from the reference genome centered on each regulatory
region of interest and converted it into a one-hot representation. Alternative alleles are then substituted correspondingly to
construct the CAGI test sequences.

Standard predictions. For a given model, the prediction of 2 sequences, one with a centered reference allele and the other
with an alternative allele in lieu of the reference allele, is made and the coverage values are summed separately for each
cell-type. For each sequence, this provides a single value for each cell-type. The cell-type agnostic approach employed in this
study then uses the mean across these values to calculate a single coverage value. The effect size is then calculated with the
log-ratio of this single coverage value for the alternative allele and reference allele, according to: log(alternative coverage /
reference coverage).

Robust predictions. For a given model, robust predictions were made by: 1) sampling 20 randomly shifted sequences
centered on a variant-of-interest, 2) sending them through the model to get coverage predictions for each cell-type, 3) align
predictions based on the shifted sub-sequences, 4) calculating the mean coverage within overlapping 1024 bp region for each
cell-type, and 5) averaging the mean coverage values across cell-type. This was done separately for the reference allele and the
alternative allele, and the effect size was calculated similar to the standard predictions as the log-ratio.

Evaluation. To evaluate the variant effect prediction performance, Pearson correlation was calculated within each CAGI5
experiment between the experimentally measured and predicted effect size. The average of the Pearson correlation across all 15
experiments represents the overall performance of the model. A full list of variant effect prediction performances for models
can be found in Supplementary Data 3.

Model interpretability
Tomtom. The motif comparison tool Tomtom43 was used to match the position probability matrix of the first convolutional
layer filters (calculated via activation-based alignments41) to the 2022 JASPAR nonredundant vertebrates database42. Matrix
profiles MA1929.1 and MA0615.1 were excluded from filter matching to remove poor quality hits; low information content
filters then to have a high hit rate with these two matrix profiles. Hit ratio is calculated by measuring how many filters were
matched to at least one JASPAR motif. Average q-value is calculated by taking the average of the smallest q-value for each
filter among its matches.
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Attribution analysis. Attribution analysis was based on grad-times-input with saliency maps56. For a given model, gradients
of the prediction with respect to a given cell-type were calculated with respect to the input sequence to yield a L×A map,
where L is the length of the sequence and A is 4 – one for each nucleotide. Each saliency map was multiplied by the input
sequence, which is one-hot, to obtain just the sensitivity of the observed nucleotide at each position. A sequence logo was
generated from this by scaling the heights of the observed nucleotide, using Logomaker64.

Global importance analysis. For global importance analysis36, we generated background sequences by performing a
dinucleotide shuffle of 1,000 randomly sampled sequences from those within our coverage-threshold test set. The global
importance is calculated via the average difference in predictions of background sequences with embedded patterns-under-
investigation and without any embedded patterns. For quantitative models, the predictions represent the average coverage
predictions for the cell-type under investigation. For binary models, the predictions represent the logits for the cell-type under
investigation.

GIA for flanking nucleotides. We fixed the core motif at the center of all background sequences, i.e. starting at position
1024, and varied the 2 flanking nucleotides on each side (and the central nucleotide for only AP-1) by separately performing a
GIA experiment for all possible combinations of flanking nucleotides.

GIA for distance-dependent motif interactions. To quantify the functional dependence of the distance between 2 motifs
with optimized flanks, we fixed the position of 1 motif at the center of the sequence, i.e. starting at position 1024, and then
systematically performed a GIA experiment with the second motif at different locations ensuring no overlap. This experiment
provides a global importance score for the 2 motifs at different distances in both positive and negative directions.

GIA for motif cooperativity. To quantify whether motifs are cooperatively interacting, we inserted each motif (with
optimized flanks) at the corresponding position (1024 for motif 1 and best position for interaction for motif 2 based on the
distance-dependent GIA experiments) individually and in combinations. We then compared the global importance when both
motifs are embedded in the same sequence versus the sum of the global importance when only one motif is embedded.

Occlusion-based experiments. We randomly sampled 10,000 sequences from those within our coverage-threshold test set.
We performed a string search looking for exact matches to the core motif of AP-1, i.e. TGA-TCA, where the - can be any
nucleotide. For each cell-type, we grouped the sequences according to the number of instances that the core AP-1 motif was
observed – 1 observed motif, 2 observed motifs, and 3 or more observed motifs. For each group, we replaced the core motif
with randomized sequences. Due to spurious patterns from randomized sequences, we performed a GIA experiment where 25
randomized sequences were embedded in lieu of the core binding site and the model predictions were averaged – first across the
coverage for the cell-type under investigation, then across the 25 randomized sequences. This effectively marginalizes out the
impact of the motif for a given sequence. This occlusion-based (or conditional) GIA experiment was done for each sequence in
each group.

Data and code availability
Data and code to reproduce results and figures are available at: https://doi.org/10.5281/zenodo.6464031
The project repository is at: https://github.com/shtoneyan/gopher
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