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Abstract

Diastole is the sequence of physiological events that occur in the heart during ventricular filling 

and principally depends on myocardial relaxation and chamber stiffness. Abnormal diastolic 

function is related to many cardiovascular disease processes and is predictive of health outcomes, 

but its genetic architecture is largely unknown. Here, we use machine learning cardiac motion 

analysis to measure diastolic functional traits in 39,559 participants of the UK Biobank and 

perform a genome-wide association study. We identified 9 significant, independent loci near 

genes that are associated with maintaining sarcomeric function under biomechanical stress and 

genes implicated in the development of cardiomyopathy. Age, sex and diabetes were independent 

predictors of diastolic function and we found a causal relationship between genetically-determined 

ventricular stiffness and incident heart failure. Our results provide insights into the genetic 
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and environmental factors influencing diastolic function that are relevant for identifying causal 

relationships and potential tractable targets.

Diastole is not a passive phase of the cardiac cycle, but is a complex sequence of inter-

related physiological processes dependent on myocardial relaxation, stiffness and recoil, that 

are modulated by loading conditions, heart rate, and contractile function. Diastolic function 

therefore plays a central role in determining left ventricular filling and stroke volume with 

dysfunction shown to be a predictor of major adverse cardiovascular events and all cause 

mortality1. Decline in diastolic function is also a hallmark of cardiac ageing which occurs 

through multiple pro-fibrotic and energetic pathways2, 3. While several candidate genes have 

been implicated in various systolic function phenotypes through genome wide association 

studies (GWAS)4, 5, the genetic architecture of diastolic function and causal associations 

with disease are largely unknown. Efforts to better define the molecular mechanisms 

of diastolic dysfunction could enable the development of innovative therapies for many 

cardiovascular disease states.

Pre-clinical models of diastolic dysfunction are associated with alterations in left ventricular 

stiffness on atomic force microscopy that occur at the level of the cardiomyocyte sarcomere 

as well as due to extracellular matrix protein expansion6. Such tissue level changes can be 

assessed at macroscopic scale in human populations through analysis of diastolic mechanics. 

Here we use data from participants in UK Biobank with cardiac magnetic resonance imaging 

(CMR)7, and apply deep learning computer vision techniques for precision motion analysis 

to derive image-based phenotypes of diastolic function8, 9. In a GWAS of diastolic traits 

we identify associated loci that map to genes involved in actin assembly, cardiac myocyte 

survival, and heart failure phenotypes. We also describe the relationship between diastolic 

function and cardiovascular risk factors, and identify potential causal relationships with 

disease through Mendelian randomisation.

Results

Study Overview

We analysed CMR data from 39,559 participants in UK Biobank using machine learning 

segmentation and motion tracking to measure three validated parameters of diastolic 

function - radial and longitudinal peak early diastolic strain rate (PDSRrr and PDSRll) 

(Fig. 1), and maximum body surface area-indexed left atrial volume (LAVmaxi)
10. A flow 

chart of the analysis steps is depicted in Extended Data Fig 1. Baseline characteristics 

of the population are shown in Extended Data Table 1. For the GWAS the population 

was partitioned into discovery and validation sets by the release of data tranches by UK 

Biobank. To assess the association between these diastolic function traits and other clinical 

measurements, we further considered a broad selection of 30 imaging and 110 non-imaging 

phenotypes that included biophysical data and circulating biomarkers (Supplementary 

Data 1). Independent GWASs were undertaken for each image-derived phenotype and 

heritability estimated. We used a phenome-wide association study (PheWAS) to identify 

multiple phenotypes associated with a polygenic instrumental variable score (PIVS) for 

diastolic function. Potentially causal associations were examined using 2-sample Mendelian 
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randomisation (MR). The results are reported in accordance with GWAS reporting 

guidelines and a checklist is provided as Supplementary Information.

Imaging and non-imaging phenotype associations

Strain rates declined with age and were lower in men (P < 10−16 for both associations) (Fig. 

2), but no univariable association was observed between age and LAVmaxi (Extended Data 

Fig 2). Multiple linear regression analysis was used to develop a model for predicting each 

diastolic trait from demographic, haemodynamic and cardiovascular risk factors (Fig. 3a, 

Extended Data Fig 3a). In this multivariable analysis strain rate and left atrial volumes were 

negatively associated with age, male sex and pulse rate in the full model (P < 10−16 for all 

associations). Significant associations were also observed for body surface area (BSA) and 

systolic blood pressure (SBP). Diabetes also added significantly to the associations with the 

diastolic function traits in the model (PDSRll : P = 2.36 × 10−8; PDSRrr: P = 9.98 × 10−6; 

LAVmaxi: P = 1.04 × 10−3).

We investigated the association between image-derived measures of atrial, ventricular and 

aortic function with a broader range of non-imaging phenotypes using regularized regression 

analysis (Extended Data Fig 4, Fig. 3b, Extended Data Fig 3b) (see Supplementary Material 

for further information).

C-reactive protein (CRP), a circulating biomarker of inflammation, showed a positive 

relationship with serum triglycerides, but we found no circulating biomarkers independently 

associated with diastolic function. We found that reduced peak diastolic strain rates were 

associated with reduced LAVmaxi. Left atrial function was related to indicators of right 

ventricular function emphasising their functional interdependence11.

Genetic architecture of diastolic function traits

Genome-wide common and rare variant association analyses of diastolic 
function traits—The SNP-based heritability (i.e. the proportion of variance per trait 

explained by all considered SNPs) was 12% for PDSRll, 13% for PDSRrr, and 21% for 

LAVmaxi. The observed genetic correlation between the diastolic function traits was 0.22 

(SE 0.07) between PDSRll and LAVmaxi, 0.12 (SE 0.08) between PDSRrr and LAVmaxi, and 

0.85 (SE 0.04) between PDSRll and PDSRrr.

In total, we identified 9 independent loci from our GWAS analyses, 5 loci for PDSRrr, 4 

for PDSRll, and 2 for LAVmaxi (2 loci are shared between PDSRrr and PDSRll). Within the 

discovery set, we identified 5 independent loci (LAVmaxi, 1; PDSRrr, 3; PDSRll, 1) reaching 

genome-wide significance (P = 5 · 10−8; Supplementary Fig 3), which were also significant 

in the validation dataset also (P < 0.05/5). Considering the full dataset, the number of 

significant independent loci increased to 9 with 2 additional loci associating with PDSRrr, 1 

additional with LAVmaxi, and 1 additional with PDSRll (Fig. 4).

Variant annotation—Summary information for the 9 loci identified using the full 

GWAS dataset and two predicted loss of function variants are presented in Table 1 

(further information can be found in Supplementary Material, Supplementary Fig 5 and 

Supplementary Table 1). The closest gene to each locus is depicted, with further variant to 
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gene mapping presented as the “likely gene” given by evidence of a functional effect on 

a gene (details in Supplementary Material), additional heart-related phenotype associations, 

or a previously reported mechanism linking the gene to diastolic function. Taking lead 

variants identified from GWAS and the loss of function analysis were able to highlight 

several structural genes associated with diastolic function that also have a known role 

in myocardial contractility (e.g. TTN, PLN, GJA1), and in the functional maintenance 

and stress-response of the cytoskeleton (e.g. FHOD3, BAG3)12. Moreover, we were also 

able to identify a novel link between the NPR3 locus and left atrial volume. The signal 

co-localizes with a previously discovered association with blood pressure traits (systolic, 

diastolic and mean arterial blood pressure). The C-allele of the lead SNP (rs1173727) at 

this locus increases NPR3 expression, and is associated with increased blood pressure and 

LAVmaxi, and an increase in risk of heart failure (Supplementary Material). The NPR3 
gene encodes the C-type natriuretic peptide receptor, which has a high drug tractability 

score (https://platform.opentargets.org/target/ENSG00000113389), making it a potential 

therapeutic target.

The relationship between common variants in NPR3 and genes encoding other proteins in 

the natriuretic peptide pathway with traits linked to the lead SNP (rs1173727) are shown in 

Supplementary Fig 6, and an abridged version is provided in Extended Data Fig 5.

Potential causes and consequences of diastolic function

Creation of polygenic instrumental variable scores (PIVS and PheWAS)—
PIVSs for each diastolic function trait consisted of 20 SNPs for PDSRrr, 15 SNPs for 

PDSRll, and 8 for LAVmaxi. The PIVS explained 1.5 % of the variability of PDSRrr, 1.1 % 

of PDSRll and 0.2 % of LAVmaxi. There was good agreement between the distribution of the 

PIVS in the UK Biobank participants with and without CMR indicating no systematic bias 

in genetic architecture (Supplementary Fig 9). The Pearson correlation coefficient for the 

PIVS for PDSRll and PDSRrr was 0.35 whereas the correlation coefficient between LAVmaxi 
and PDSRll or PDSRrr, respectively, was much lower (<0.01). PheWAS was undertaken and 

we considered traits that have been previously associated with cardiac phenotypes in the 

literature, but in addition included an unbiased selection of phenotypes for exploration. 

In total, we considered 71 quantitative phenotypes and 63 (binary) disease endpoints 

(Supplementary Data 1). Out of these, 31 phenotypes were significantly associated (Padj 

< 0.05) with at least one of the diastolic function PIVSs after leave-one-out cross validation 

(Fig. 5). Some of the identified PheWAS associations are consistent with the phenotype 

correlation analysis (e.g. pulse rate and blood pressure). We also confirmed associations 

between diastolic function and previously reported biomarkers of heart failure (e.g. SHBG13 

and IGF-114). Furthermore, we identified an association of PDSRrr to heart failure, 

cardiomyopathy and dilated cardiomyopathy, implicating diastolic function in cardiovascular 

endpoints.

Mendelian randomization—Diastolic dysfunction is a substrate for the subsequent 

development of heart failure and, in observational studies, diabetes and hypertension are 

associated risk factors15. Here we used Mendelian Randomization (MR) to identify potential 

causal relationships between diastolic function as an exposure and two key clinical outcomes 
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(mixed aetiology heart failure and atrial fibrillation). We also assessed causal effects of 

biochemical, metabolic and haemodynamic exposures on diastolic function. These were 

chosen on the basis of clinical plausibility and the findings of the phenotype correlation 

analysis.

We tested a number of MR techniques, each addressing different assumptions, and excluded 

potentially confounding instruments. A strong bidirectional causal relationship was observed 

between pulse rate and PDSRrr, PDSRll and LAVmaxi (Extended Data Fig 6, Supplementary 

Figs 12 to 14, Supplementary Tables 2 to 4), consistent with findings from pre-clinical 

models16. Diastolic blood pressure was causally associated with PDRSrr, and had a 

bidirectional association with PDSRll. Systolic blood pressure was causally associated 

PDSRll, but not PDSRrr. In addition, higher total peripheral resistance was strongly 

associated with higher PDSRll, PDSRrr and LAVmaxi, adding to the evidence implicating 

ventriculo-vascular coupling in the development of the diastolic dysfunction17.

We also identified a potential causal relationship between lower PDSRrr (stiffer ventricle) 

and increased risk of heart failure Supplementary Fig 11, which was further corroborated 

using GWAS summary results18 from the HERMES consortium (Supplementary Table 5), a 

GWAS meta-analysis from 47309 heart failure cases and 930014 controls. The magnitude of 

the effect observed in the MR analysis is consistent with the observational epidemiological 

estimate, derived from correlating PDSRrr with incident heart failure (Extended Data Fig 6). 

We found no causal relationship between longitudinal PDSRll and heart failure, and neither 

was one observed in our epidemiological analysis (Extended Data Fig 6).

Diastolic dysfunction is frequently present in diabetic patients19, however the effects are 

mostly mediated by an increased risk of coronary artery disease18. We found parameter 

estimates that support a causal relationship between diabetes as an exposure and diastolic 

function as an outcome, as well as a potential link with instruments for lipid profiles.

Lastly, we found a causal association between LAVmaxi and an outcome of atrial 

fibrillation20, but there was no evidence that ventricular stiffness also has a causal 

association.

Discussion

Diastole is a complex series of molecular, biophysical and electro-mechanical processes that 

initiate contractile deactivation and promote efficient ventricular filling. Impairment of these 

coordinated mechanisms may lead to diastolic dysfunction which is associated with the 

presence of multiple cardiovascular risk factors leading to reduced quality of life and higher 

mortality21, 22. Here, we used deep learning cardiac motion analysis to perform the first 

reported GWAS of diastolic function traits with the aim of determining tractable causative 

mechanisms. We found that diastolic function was a heritable trait with associations in loci 

related to myofilament mechanics, protein synthesis during mechanical stress and regulation 

of cardiac contractility. Furthermore, we find a role for a gene implicated in endothelium-

derived signalling in diastolic function that is a potential therapeutic target23. Lastly, through 
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Mendelian randomisation we observe a causal relationship between genetically-determined 

diastolic function and heart failure outcomes.

A decline in diastolic function is a feature of the ageing heart and we found that age 

was a strong independent predictor of diastolic function, with a greater decrease present in 

males. Outcome studies have suggested that this is a prognosticallybenign feature of healthy 

ageing that is not related to adverse effects of cardiac senescence2,24,25. Changes in titin 

protein phosphorylation, myocardial redox state and impairment of nitric oxide signalling 

have been proposed as potential mechanisms26, and clinical studies indicate that age-related 

myocardial fibrosis, cardiomyocyte hypertrophy, and reduced microvascular density, may 

be a consequence rather than an initiating cause of diastolic dysfunction27. Non-invasive 

imaging biomarkers of fibrosis have also shown promise in identifying biologically relevant 

pathways for myocardial fibrosis in adult hearts28.

We found that diabetes was causally associated with impaired diastolic function after 

excluding potentially confounding instruments. In epidemiological analyses this relationship 

was independent of age, BSA, and systolic blood pressure. Increased myocardial 

stiffness is recognised as one of the earliest, and potentially reversible, manifestations of 

myocardial dysfunction in diabetes29. Several underlying mechanisms related to insulin 

resistance have been proposed that include altered cardiac energetics and accumulation of 

advanced glycation end products that promote ventricular stiffness30. We also observed 

a unidirectional causal relationship between genetically-determined diastolic function and 

an outcome of heart failure, as well as associations with cardiovascular endpoints and 

circulating biomarkers of heart failure through PheWAS. Longitudinal cohort studies have 

suggested that persistence or progression of diastolic dysfunction is a risk factor for 

subsequent heart failure15, and our findings suggest that ventricular stiffness is a substrate 

for the evolution of mixed aetiology heart failure. We also found a unidirectional causal 

association between left atrial volume and atrial fibrillation, suggesting that it is atrial 

remodelling that drives this arrhythmic outcome31. Lipid profiles are associated with adverse 

changes in cardiac structure and systolic function, and our findings extend that causal 

association to diastolic traits32.

Our study provides insights into the biological basis of diastolic function with potential 

implications for therapy development. We identified common variants within genes 

implicated in cardiomyopathies (e.g. BAG3, FHOD3, PLN), suggesting sarcomere 

homeostasis during mechanical stress may affect diastolic function in both health and 

disease33. Phospholamban (PLN) is a key regulator of cardiac diastolic function, which 

modulates sarcoplasmic reticulum calcium-ATPase activity34. Common variants in this gene 

are also associated with trabeculation which has been implicated in promoting ventricular 

filling9. Speckle-tracking echocardiography of Pln knockout mice reveals alterations 

in longitudinal strain but not radial strain35, which is concordant with our observed 

associations with diastolic function and may relate to associated changes in ventricular 

geometry36. Although there is a genetic correlation between strain rate vectors the majority 

of SNPs used as polygenic instruments were independent of each other for these traits. 

We also identified a potential therapeutic target through the association of variants at the 

locus of NPR3 influencing diastolic function and risk of heart failure. Previous studies have 
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highlighted its role in blood pressure control37, and in mediating the cardioprotective effects 

of cardiomyocyte and fibroblast-released CNP23.

This analysis has some limitations. UK Biobank is a large-cross sectional study that is 

subject to selection bias and latent population stratification, however risk factor associations 

appear to be broadly generalisable38. The population is predominantly European and further 

work is required to explore diastolic traits and outcomes in people of diverse ancestries. 

Echocardiography has been the cornerstone of assessing diastolic function by characterising 

features of ventricular relaxation, stiffness and recoil39. However, feature-tracking CMR 

has excellent agreement with speckle-tracking echocardiography40 and invasive measures 

of diastolic function41. While analysis of myocardial deformation is performed throughout 

the cardiac cycle the measures of early diastolic strain rate may not capture variation in 

active relaxation prior to ventricular filling. While the relationship between quantitative and 

dichotomous outcomes may be non-linear such a relationship has not been observed between 

other genetically-driven diastolic traits and outcomes42.

In conclusion, we found that diastolic function is a heritable trait that is causally upstream 

of incident heart failure. Associated common variants are related to genes that maintain 

functional homeostasis under biomechanical stress. We also identify a gene encoding an 

atrial natriuretic peptide receptor as a potential therapeutic target for modulating aspects of 

diastolic function.

Methods

All analyses in this study can be found here https://github.com/ImperialCollegeLondon/

diastolic_genetics/43 and were conducted with R version > 3.6.0.

Participants

For UK Biobank, approximately 500,000 community-dwelling participants aged 40–69 

years were recruited across the United Kingdom between 2006 and 201044. All subjects 

provided written informed consent for participation in the study, which was also approved 

by the National Research Ethics Service (11/NW/0382). Our study was conducted under 

terms of access approval number 28807 and 40616. A range of available data were included 

in this study comprising genotyping arrays and whole exome sequencing, cardiac imaging, 

health-related diagnoses, and biological samples.

There are 488,252 genotyped participants of which 200,640 have whole exome sequencing. 

We partitioned 39,559 participants with both CMR imaging and genotyping array data into 

two tranches by date of release from UK Biobank providing a discovery dataset of 26,893 

participants and a validation dataset of 12,666 participants.

Imaging protocol

A standardised CMR protocol was followed to assess cardiac structure and function 

using two-dimensional retrospectively-gated cine imaging on a 1.5T magnet (Siemens 

Healthineers, Erlangen, Germany). A contiguous stack of images in the left ventricular 

short-axis plane from base to apex was acquired, with long axis cine imaging in the two and 
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four chamber views. Each cine sequence had 50 cardiac phases with an acquired temporal 

resolution of 31 ms7. Transverse cine imaging was also performed in the ascending and 

descending thoracic aorta. All imaging phenotypes used for the analysis underwent quality 

control assessment8. Participants also underwent a resting 12 lead electrocardiogram which 

was automatically analysed using proprietary software (CardioSoft, GE Healthcare).

Cardiac image analysis

Segmentation of the short-axis and long-axis cine images in UK Biobank was made using 

fully convolutional networks, a type of deep learning neural network, which predict a 

pixel-wise image segmentation by applying a number of convolutional filters onto each input 

image for feature extraction and classification9. The accuracy of image segmentation on 

the UK Biobank dataset is equivalent to expert human readers45. End-diastolic volume, 

end-systolic volume, stroke volume, and ejection fraction were determined for both 

ventricles. Left ventricular myocardial mass was calculated from the myocardial volume 

assuming a density of 1.05 g.ml –1. Left atrial volume was calculated from the segmented 

images using the biplane area–length formula V = 8
3π ⋅

A2Cℎ ⋅ A4Cℎ
L , where A2Ch and A4Ch 

indicate the atrial area on the two and four-chamber cines respectively, and L indicates 

the longitudinal diameter averaged across two views. Measurements were indexed to 

body surface area (BSA) according to the Du Bois formula: 0.20247 * (Weight0.425) * 

(Height0.725), with weight in kg and height in m. The heart was divided into 16 standardised 

anatomical segments, excluding the true apex, according to American Heart Association 

nomenclature46.

The aorta was segmented on the cine images using a spatio-termporal neural network47. 

The maximum and minimum cross-sectional areas were derived from the segmentation and 

distensibility calculated using estimates of central blood pressure obtained using peripheral 

pulse-wave analysis (Vicorder, Wuerzburg, Germany)8.

Motion tracking was performed on the cine images using non-rigid image registration 

between successive frames (in GitHub repository ukbb_cardiac)48, 49. To reduce the 

accumulation of registration errors motion tracking was performed in both forward and 

backward directions from the end-diastolic frame and an average displacement field 

calculated8. This motion field was then used to warp the segmentation contours from 

end-diastole onto successive adjacent frames. Circumferential (Ecc) and radial (Err) strains 

were calculated on the short axis cines by the change in length of respective line segments 

(Fig. 1A) as Edir =
ΔLdir
Ldir

, where dir represents the direction, Ldir the length of a line 

segment along this direction and ΔLdir its change over time. Motion tracking was also 

performed on the long-axis four-chamber cines to derive longitudinal (Ell) strain. Peak strain 

for each segment and global peak strain were then calculated (Fig. 1B). Strain was measured 

from slices acquired at basal, mid-ventricular, and apical levels. For comparison between 

each component absolute strain values are reported. Strain rate was estimated as the first 

derivative of strain and peak early diastolic strain rate in radial (PDSRrr) and longitudinal 

(PDSRll) directions was detected using an algorithm to identify local maxima (in GitHub 

repository peak_detection) (Fig. 1C).
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Non-imaging phenotypes

In total we consider 110 non-imaging cardiovascular-related phenotypes in UK Biobank 

participants for the phenotype regression analysis and the genetic analysis. These 

phenotypes contain information acquired by touch screen questionnaire, interview, 

biophysical measurement, hospital episode statistics, primary care data and biochemical 

analysis of venous blood. Details of how each phenotype was acquired are available on 

the UK Biobank Showcase (http://biobank.ctsu.ox.ac.uk/crystal/). It should be noted that the 

biochemical markers used here were acquired at the initial assessment visit that preceded 

imaging assessment. Also, note that not all phenotypes were used in both the phenotype and 

the genetic analysis (e.g., due to lack of available data at the imaging visit). We refer to the 

Supplementary Material both for details on the definition of the considered phenotypes and 

for information on the inclusion of specific phenotypes for each analysis.

Statistical significance testing and multiplicity control

We consider in all phenotype analysis a P-value < 0.05 as significant. Where not stated 

otherwise, we control the false discovery rate with the Benjamini-Hochberg adjustment. 

Significance thresholds and decision criteria for GWAS significant loci and causality 

assessment (Mendelian Randomization) are described in the respective sections and/or in 

the Supplementary Material.

Phenotype Association Analysis

Continuous variables are expressed as mean ± standard deviation (SD). Differences in 

continuous variables between groups were performed using Student’s t-test. Univariable 

and multiple linear regression analysis was used to explore the phenotype relationship 

between each diastolic parameter and cardiovascular risk factors. To identify relationships 

between diastolic function and a broader range of imaging and non-imaging phenotypes, 

including circulating biomarkers, we used the least absolute shrinkage and selection operator 

(LASSO) with stability selection, to optimise the model coefficients. We then ran regression 

diagnostics on the model with the selected variables, to exclude a possible collinearity 

inappropriately influencing our model (see Supplementary Material for details on the 

phenotype analysis and LASSO analysis procedure).

Genotyping and sample QC

Genotyping of UK Biobank participants has been described elsewhere in detail50. Briefly, 

UK Biobank genotyping for 488,252 subjects was performed on the UK BiLEVE or UK 

Biobank Axiom arrays. Imputation was based on the HaplotypeReference Consortium 

panel and the UK10K+1000 Genomes panel. In this study, UK Biobank Imputation V3 

(in GRCh37 coordinates) were used. Whole exome sequencing (WES) was performed on 

data released in 2020 collected from 200,640 UK Biobank participants51. The sequencing 

methods and variant calling procedures have been described in detail52. In the present 

study, genotypes in their released PLINK-format files are utilized, and samples were 

restricted to the European population. Quality control of the genetic data was performed 

as recommended by UK Biobank (see Supplementary Material for details on the procedure 

and number of excluded samples).
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GWAS analysis

For the genetic analysis, there were 34,242 participants of European ancestry (see 

Supplementary Material for criteria) providing a discovery dataset of 23,321 participants and 

a validation set of 10,924 participants. GWAS analyses for the three diastolic function traits 

and additional quantitative traits of interest (as described for the causality assessment) were 

performed with BOLT-LMM (version 2.3.2) which accounts for ancestral heterogeneity, 

unknown population structure, and sample relatedness53, 54. GWAS analyses were adjusted 

for imaging traits for the first ten genetic principal components, sex, age at time of MRI, the 

genotyping array and the MRI assessment center and for non-imaging quantitative traits for 

the first ten principal components, sex, age at measurement of the trait and the genotyping 

array. GWAS analyses for clinical endpoints of interest (binary endpoints) were conducted 

with PLINK2 and adjusted for the first ten principal components, sex, age at baseline 

and the genotyping array. Post-GWAS filtering removed any SNPs with a Hardy-Weinberg 

equilibrium p-value < 0.05 and MAF < 0.005.

Assessment of shared genetic architecture

For the assessment of shared genetic architecture between diastolic function traits, LD 

score regression (LDSC (LD SCore) v1.0.1, PMID 25642630) was used to obtain a genetic 

correlation score between each pair of traits.

Variant annotations

Lead variants for each locus were assigned causal genes, where possible, using a 

combination of variant annotations and additional functional genomic data sources 

(colocalisation). Each lead variant was systematically tested for any evidence of functional 

consequence using VEP. In addition, QTL evidence was extensively searched using Open 

Targets Genetics55. Where eQTL data was available for the locus, the full summary statistics 

were downloaded to assess colocalisation (see Suppplementary Material).

Variant Effect Predictor (VEP)56 and Loss-of-Function Transcript Effect Estimator 

(LOFTEE)57 plugin were applied on all genomic variants of WES data. In the present 

study, we considered the genomic variants predicted by LOFTEE with high-confidence label 

"HC", non-dubious (no "LoF flag" such as variants that located in poorly conserved exons, 

or splice variants that affect NAGNAG sites or non-canonical splice regions), and minor 

allele frequency < 0.05, as a Loss-of-function (LoF) mutation.

LoF association analysis

A Loss-of-Function (LoF) carrier indicator was created for each WES sample and each of 

the human protein-coding genes based on the collapsed information of LoF annotations. A 

subject was considered as an LoF carrier of the gene if there was at least one LoF mutation 

(based on methods in the variant annotation section), and a non-carrier if there was none. 

We then conducted the association test between LoF carrier indicator and the three diastolic 

function imaging phenotypes. Linear regression was performed with the adjustment of sex, 

age at time of MRI, and the top ten genetic principal components. The association results 

were further filtered as those with at least two carriers and the endpoint available. The 

association was considered significant after multiple testing correction at α = 0.05 (FDR, 
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calculated for three diastolic function traits). We identified 18,660 participants with both 

whole exome sequencing data and CMR imaging data.

Polygenic instrumental variable scores (PIVS)

Candidate variants for PIVS for the three diastolic function traits (LAVmaxi, PDSRll, 

PDSRrr) were obtained based on the respective GWAS (full imaging cohort) results by 

performing clumping (PLINK 1.9) using an LD threshold of R2 = 0.1 (in a window 

of 1000kb) and considering all SNPs with P < 10−6. Unlike more traditional polygenic 

risk scores we do not use thousands of variants as instruments but aim to identify a set 

of instrumental variables that are minimally correlated. This comes with the price of a 

relatively small set of instruments that explains less variability of a trait, but can be used 

as proper instruments for the Mendelian randomization analysis. Candidate variants were 

included in multivariate linear modelling evaluated on the European subset of the full 

imaging cohort with the first ten genetic principal components, age at MRI, sex, genotyping 

array and the MRI center as additional covariates and the respective diastolic function trait 

as dependent variables. The diastolic function traits were scaled to standard deviation (sd) 

1 prior to the model estimation - therefore, a unit change in the PIVS score represents a 

change of 1 sd unit in the respective diastolic function trait. PIVS estimates per individual 

were then calculated by multiplying the observed genotype with the estimated beta from the 

multivariate linear model for each SNP and summing these values up. Missing genotypes 

were imputed using a mean imputation. The variance explained for the PIVS is measured 

by R2, estimated in a linear regression with the PIVS as only variable and the respective 

diastolic function trait as endpoint.

Next, we conducted a PheWAS using the obtained PIVS (see above and Supplementary 

Material for a full definition of included phenotypes in the PheWAS). Evaluation of the 

PIVS were performed in the European non-imaging cohort, i.e. an independent set of 

subjects compared to the PIVS construction set. Only results are shown that are significant 

after multiple testing correction at α = 0.05 (FDR, calculated per diastolic function trait) 

and, as a sensitivity analysis, for which all leave-one-SNP out cross validations analysis lead 

to a significant result at α = 0.05 after multiple testing correction (FDR) for the number of 

considered phenotypes. The latter condition is supposed to exclude spurious results which 

are only driven by one single variant. Leave-one-SNP out cross-validation is performed by 

excluding one SNP from the list of candidate variants, then re-estimating the PIVS and 

performing the PheWAS as described above. For the leave-one-SNP out cross-validation, 

FDR adjustment is performed per combination of diastolic trait and phenotype, considering 

the number of included SNPs.

Mendelian randomization

For exploring the causes and consequences of diastolic function parameters, we used a 

bidirectional Mendelian randomization (MR) approach, i.e. two MR analysis are performed: 

first, an MR analysis using the first chosen trait as exposure is conduced and secondly a 

MR analysis using the selected second trait is run. By considering both results, evidence can 

be gathered for a one-directional causal relationship, a bi-directional causal relationship or 

no causal relationship at all. We performed this analysis taking into account one diastolic 
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and one non-diastolic function trait and for that, we selected non-diastolic function traits 

of interest by taking into account the results from the observational correlation analysis 

and clinical expertise. This approach lead to the consideration of six dichotomous risk 

factors associated with diastolic dysfunction, Arteriosclerosis, Atrial Fibrillation, Heart 

failure, Hypertension and Diabetes - considering Type I and Type II separately. Further, 

we considered four physiological variables as potential causes or consequences of changes 

in diastolic function, as well as five quantitative lipid traits as surrogate for arteriosclerotic 

risks as potential confounder source for changes in diastolic function. In total we analysed 

15 non-diastolic phenotypes and the 3 diastolic phenotypes in our MR.

We established a workflow for the MR analysis which briefly described in this section. 

Full details are provided in the Supplementary Material. Genetic instrumental variables 

were selected from the UK Biobank GWAS results generated -as described above- via 

clumping with PLINK1.9 as described for the PIVS approach. The candidate SNP set 

prior to clumping was restricted to the intersection between the SNP sets of the pair 

of GWAS results (hypothesised causal trait GWAS and hypothesised consequence trait 

GWAS). A full list of the instrumental variables is contained in supplementary table file 

SupplementaryTable_InstrumentalVariantsMR.xlsx.

We aimed to remove potential confounding instruments by two filtering steps. First, 

we ran phenotype association analysis to identify and remove instruments that associate 

significantly with any of the traits Arteriosclerosis, Triglycerides, Apoliprotein B and 

LDL-Cholesterol. Second, we ran Steiger Filtering to remove instruments with potentially 

wrongly inferred causal directions.

All MR analysis are based on the point estimates and standard deviations obtained from 

the respective GWAS. We follow a similar approach to van Oort et al.58 by using inverse-

variance weighted method (IVW) as the main analysis and applying several other MR 

methods for ensuring robustness of the obtained results as sensitivity analyses. We used 

weighted median-based methods, MR-PRESSO and MR-Egger. Consistent effect estimates 

across the different methods improves our confidence in a truly causal effect. We consider 

an association as "potential causal" if the main analysis indicates a causal relationship 

(P < 0.01), at least two of the sensitivity analyses indicate at least a suggestive causal 

relationship (P < 0.05) and none of the sensitivity analyses indicate associations with 

inconsistent effect directionality, i.e. none of the methods showed a suggestive association 

with conflicting directionality (P < 0.05). No explicit multiplicity adjustment is performed 

for MR experiments. For "potential causal" associations, we next conducted a supplementary 

sensitivity analysis using published GWAS results as described in the Supplementary 

Material - if published GWAS data was available.

All analysis, which involved diastolic and non-diastolic function traits, were conducted in 

a two-sample approach, i.e., the diastolic function trait GWAS was calculated in the full 

imaging cohort and the non-diastolic function trait GWAS was calculated in the non-imaging 

cohort.
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For comparison of the effect estimates from the MR-analysis to the observed correlation of 

diastolic function measurement and disease status, we restricted the analysis population to 

subjects which were disease-free at the CMR visit. We then fitted a logistic regression model 

by coding subjects who experienced a first event of the selected disease during follow-up 

time as 1 and event-free subjects during follow-up as 0. As covariates, we included age at 

CMR visit, gender, diabetes status, diastolic blood pressure and BMI. Note that this analysis 

was only performed for relationships judged as potential causal and that involves a disease 

endpoint (and not a quantitative measurement like pulse rate).

NPR3 Pathway Analysis

In order to increase our understanding of the association of NPR3 with LAVmaxi and 

to further characterize the role of natriuretic peptides, we looked for additional genetic 

associations within genes of the natriuretic peptide pathway (so in addition to NPR3 - NPR1, 

NPR2, NPPA, NPPB, and NPPC). We conducted GWAS using BOLT-LMM for all imaging 

traits listed in Extended Data Table 1 as described above, as well as any non-imaging traits 

associated with rs1173727 (the lead variant for NPR3) across the 4 loci (NPPA and NPPB 
share the same locus). The GWAS summary statistics were filtered to a 1MB window around 

each gene (for NPPA/B, the gene used for centering was NPPA). Across these summary 

statistics, we performed clumping with a p-value threshold of 10−5 and R2 < 0.1.

For the identified tag SNPs and associated variants in LD from the clumping analysis, we 

then tested which of these variants we could confidently link to the natriuretic gene in the 

locus. If any variant was classified as missense, we selected that variant directly. For eQTL 

variants, we used colocalisation analysis to link these SNPS to the natriuretic genes in each 

locus. Relevant eQTL and pQTL data was used (eQTL summary statistics were taken from 

eQTL Catalog59 and pQTL data from Sun et al.60) and SNPs with only a clear association 

with the gene of interest and traits of interest were kept (i.e. p < 1−4 for association with 

gene or protein expression, P < 10−5 for association with the trait, and H12 > 0.5 was used as 

a threshold for the co-localization analysis).

Hierarchical clustering was then performed on the −log(P) × β values with the βs aligned to 

have a negative sign on the diastolic blood pressure. Extended Data Fig 5 shows all SNPs 

and traits with a genome-wide significant association. The SNPs and traits with suggestive 

associations (P < 10−5) are shown in the Supplementary Material (Supplementary Fig 6).
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Extended Data

Extended Data Fig. 1. 
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Extended Data Fig. 2. 
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Extended Data Fig. 3. 
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Extended Data Fig. 4. 
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Extended Data Fig. 5. 
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Extended Data Fig. 6. 

Extended Data Table 1

Baseline characteristics Mean ± SD or n 
(%)

Cardiac Characteristics from CMR Mean ± SD or n 
(%)

Age (years) 63.6 ± 7.6 LV wall thickness (mm) 5.7 ± 0.8

Sex, men, n (%) 18,988 (48%) LV end-diastole volume indexed 
(mL/m2)

79 ± 13.8

Race, Nonwhite, n (%) 1,130 (2.8%) LV end-systole volume indexed 
(mL/m2)

32.1 ± 8.4

Body mass index (kg/m2) 26.5 ± 4.4 LV stroke volume indexed (mL/m2) 46.9 ± 8.4

Body surface area (m2) 1.9 ± 0.2 LV ejection fraction (%) 59.6 ± 6.1

Systolic Blood pressure 
(mmHg)

138.2 ± 18.3 LV cardiac output (ml) 5.4 ± 1.2

Diastolic blood pressure 
(mmHg)

78.6 ± 9.9 LV cardiac index (ml/m2) 2.5 ± 0.5

Thanaj et al. Page 19

Nat Cardiovasc Res. Author manuscript; available in PMC 2022 April 26.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Baseline characteristics Mean ± SD or n 
(%)

Cardiac Characteristics from CMR Mean ± SD or n 
(%)

Pulse rate (bpm) 70 ± 12 LV mass indexed (mL/m2) 45.7 ± 8.5

Pulse wave arterial stiffness 
index (SI)

9.6 ± 2.9 LA maximum volume indexed (ml/m2) 39 ± 11.2

Diabetes mellitus, n (%) 2,432 (6.2%) LA minimum volume indexed (ml/m2) 15.7 ± 7.5

Heart failure, n (%) 260 (0.66%) LA stroke volume indexed (ml/m2) 23.3 ± 5.8

Smoking status LA emptying fraction (%) 61.2 ± 9.5

Current, n (%) 1,374 (3.5%) RV end-diastole volume indexed(ml/m2) 83.6 ± 15.2

Previous, n (%) 13,330 (34.1%) RV end-systole volume indexed (ml/m2) 35.9 ± 9.3

Never, n (%) 24,443 (62.4%) RV stroke volume indexed (ml/m2) 47.7 ± 8.9

Daily alcohol intake 6,597 (16.7%) RV ejection fraction (%) 57.3 ± 6.1

Duration of physical activity 
in minutes per day

RA maximum volume indexed (ml/m2) 46.4 ± 13.5

Moderate 53.9 ± 66.2 RA minimum volume indexed (ml/m2) 24.7 ± 9.2

Vigorous 40.3 ± 40.4 Right atrial stroke volume 
indexed(ml/m2)

21.6 ± 6.8

Number of treatment/
medications taken

1.9 ± 2.1 RA emptying fraction (%) 47.2 ± 9.5

Blood pressure medication 2,042 (5.2%) AAo distensibility indexed 
(10−3·mmHg−1)

0.97 ± 0.63

Cholesterol medication 6,015 (15.2%) AAo maximum area (mm2) 852.3 ± 188.4

Assessment centre AAo minimum area (mm2) 775.1 ± 183.9

Cheadle 25,176 (63.6%) DAo distensibility indexed 
(10−3·mmHg−1)

1.29 ± 0.8

Reading 4,361 (11%) DAo maximum area (mm2) 476.7 ± 96.8

Newcastle 10,022 (25.3%) DAo minimum area (mm2) 418.1 ± 91.6

Laboratory Biochemical Markers Strains and Strain rates

HbA1c (log (mmol/mol)) 3.5 ± 0.13 Peak diastolic longitudinal strain 
rates (PDSRll, s−1)

1.64 ± 0.6

C-reactive protein (log 
(mg/L))

0.13 ± 1.02

LDL (mmol/L)) 3.6 ± 0.8 Peak diastolic radial strain rates 
(PDSRrr, s−1)

5.71 ± 1.9

Glucose (mmol/L) 5.0 ± 0.93 Global circumferential strain (Ecc, 
%)

22.3 ± 3.4

Triglycerides (log (mmol/L)) 0.36 ± 0.51 Global longitudinal strain (Ell, %) 18.5 ± 2.8

eGFR cystatin (mL · min−1 · 
1.73 m−2)

92 ± 12.2 Global radial strain (Err, %) 45.1 ± 8.4

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Analysis of cardiac motion.
Motion analysis of cardiac magnetic resonance imaging performed on left ventricular short 

axis cines. A) An example from one individual where deep learning segmentation and image 

registration were used to determine the radial components of myocardial deformation. Data 

from the basal, mid-ventricular, and apical levels are shown at four representative phases 

from the 50 acquired. B) Radial strain and strain rate (first derivative of strain) for all UK 

Biobank subjects (median and interquartile ranges, n=39,559 individuals).
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Figure 2. Population strain data.
Scatterplots of a) longitudinal peak diastolic strain rate (PDSRll) (n = 38,923) and b) radial 

peak diastolic strain rate (PDSRrr) with age (n = 38,700); with density contours, linear 

model fit and marginal density plots. Violin plots of c) longitudinal (n = 38,923) and d) 

radial (n = 38,700) peak diastolic strain rate with sex; ****P<10−16 (Wilcoxon signed-rank 

test). Boxplots show the median, hinges indicate interquartile ranges (IQR), and whiskers 

1.5 × IQR.
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Figure 3. Regression analysis.
a) Multiple linear regression analysis of left ventricular longitudinal peak diastolic strain 

rate (PDSRll), radial peak diastolic strain rate (PDSRrr) and indexed left atrial maximum 

volume (LAVmaxi) with age, sex body surface area (BSA) systolic blood pressure (SBP), 

pulse rate and diabetes as predictors. All associations were significant after false discovery 

rate correction. Data are presented as beta coefficient point estimates (95 % confidence 

intervals). b) Circular plot visualisation of the associations between the imaging (red - 

PDSRll, PDSRrr, global systolic radial strain (Err), global systolic longitudinal strain (Ell), 

ascending aortic (AAo) distensibility, descending aortic (DAo) distensibility, indexed left 

ventricular stroke volume (LVSVi), left ventricular cardiac index (LVCI), LAVmaxi, indexed 

right ventricular stroke volume (RVSVi), and right atrial ejection fraction (RAEF) and the 

non-imaging phenotypes (green for environmental; blue for biochemical). The strength of 

the connection between each pair is presented as a ribbon, whose size is proportional to their 

regression coefficient. All associations with a regression coefficient <0.3 are shown in faint 

colours (apart from the associations between PDSRll, PDSRrr and LAVmaxi and all other 

phenotypes). The coefficients for the associations of the circular plot are shown in Extended 

Data Fig 3b. Standardised beta coefficients are shown with units in standard deviations for 

each variable.
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Figure 4. Manhattan plots of the GWAS results for three diastolic function traits
a) indexed left atrial maximum volume (LAVmaxi), b) longitudinal peak diastolic strain rate 

(PDSRll) and c) radial peak diastolic strain rate (PDSRrr) (full dataset). This figure shows 

the -log10(P-value) on the y-axis across all autosomal chromosomal positions (x-axis) from 

BOLT-LMM. The dotted line indicates genome-wide significance (P = 5 · 10−8, N = 34245). 

Significant loci are labeled by their likely causal gene and lead SNP, see Table 1.
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Figure 5. Significant associations of the polygenic instrumental variable scores for diastolic 
function traits with UK Biobank phenotypes.
a) Quantitative traits that significantly associated with the polygenic instrumental variable 

scores (PIVSs) of diastolic function (beta coefficient point estimates standardised to change 

per 1 standard deviation (SD) increase in diastolic function trait with 95 % confidence 

intervals). b) Binary traits that significantly associated with the PIVSs of diastolic function. 

Point estimates are Log(Odds ratios) per 1 SD increase in diastolic function trait (95 % 

confidence intervals). Detailed results, including numerical P-values and 95 % confidence 

intervals are shown in Supplementary Fig 10. One unit change in the PIVS represents a 

change of 1 SD in the respective diastolic function trait. All dependent variables (traits) 
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were standardized representing the change in dependent variable standard deviations for 

a 1-SD change in the respective measurement. Associations not significant after multiple 

testing correction (conducted per PIVS) are displayed as grey bars. PDSRll, longitudinal 

peak diastolic strain rate; PDSRrr, radial peak diastolic strain rate; LAVmaxi, indexed left 

atrial maximum volume; SBP, systolic blood pressure; MAP, mean arterial pressure; DBP, 

diastolic blood pressure; BMI, body mass index; SHBG, sex hormone binding globulin; Log, 

natural logarithm; SD, standard deviation; nonsig: non-significant. N = 449,263.
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Table 1
Genome-wide Association Results.

Summary information on the lead variants identified from each GWAS analysis and the significant genes 

from the Loss of Function analysis. For each significant locus across the 3 diastolic phenotypes, variant 

information, GWAS summary statistics and variant to gene annotation is provided. The evidence column is 

split by: MS - missense variant; eQTL - colocalisation between the GWAS signal and an eQTL for the gene 

in a plausible tissue type (see Supplementary Material); M - plausible mechanistic link between the gene 

and the measured heart phenotypes i.e. the gene function suggests a link to diastolic function; Overall - the 

confidence of variant to gene mapping given all the available evidence. Loci highlighted in grey are those that 

reached genome-wide significance in the discovery, validation, and full datasets, loci in white reach suggestive 

significance in the discovery dataset and genome-wide significance in the full dataset. Further information is 

provided in the Supplementary Material. (GWAS, genome-wide association study; Chr, Chromosome, Ref, 

Reference allele; Alt, Alternative allele; MAF, minor allele frequency; PDSRll, longitudinal peak diastolic 

strain rate; PDSRrr, radial peak diastolic strain rate; LAVmaxi, indexed left atrial maximum volume; Disc, 

Discovery; Repl, Replication.)

Lead Variant GWAS Annotation Evidence

rsIDFull Chr Ref Alt MAF Phenotype EstimateFull SEFull PFull Disc Repl Full Locus 
Genes

Closest 
Gene

Likely 
Causal 
Gene

MS eQTL M Overall

rs2234962 10 T C 0.21 PDSRrr 0.1118 0.0175 2.3e-10 Y Y Y MCMBP, 
BAG3

BAG3 BAG3 Y Y Y High

rs2644262 18 T C 0.28 PDSRrr/
PDSRll

0.1087 0.0164 1.7e-11 Yrr Y Y FHOD3, 
TPGS2

FHOD3 FHOD3 N Y Y High

rs11970286 6 C T 0.45 PDSRll 0.0278 0.0043 1.9e-10 Y Y Y PLN, 
CEP85L, 
SLC35F1

PLN PLN N Y Y High

rs1580396 12 C A 0.46 PDSRrr/
PDSRll

0.0807 0.0146 4.1e-8 Yrr Y Y AC023158.2, 
AC023158.1, 
ALG10

AC023158.2 AC023158.1 N Y N Low

rs59985551 2 C T 0.23 LAVmaxi 0.0117 0.0020 5.3e-9 Y Y Y Multiple EFEMP1 EFEMP1 N Y N Low

rs1173727 5 T C 0.40 LAVmaxi 0.0096 0.0017 1.7e-8 N N Y NPR3, 
LINC02120

LINC02120 NPR3 N Y Y High

rs12206253 6 C T 0.11 PDSRrr -0.1413 0.0244 8.4e-9 N N Y HSF2, 
GJA1, 
SERINC1

GJA1 GJA1 N Y Y Medium

rs10261575 7 T C 0.18 PDSRll 0.0336 0.0056 1.2e-9 N N Y NDUFA4, 
PHF14

PHF14 PHF14 N Y Y Medium

rs11170519 12 C T 0.43 PDSRrr 0.0872 0.0146 3.9e-9 N N Y Multiple SP1 SP1 N Y N Low

Predicted Loss of Function Results

Chr Carriers Phenotype EstimateFull SEFull PFull Causal Gene MS M Overall

2 187 PDSRrr -0.71 0.14 1.4e-7 TTN Y Y High

6 29 PDSRrr -1.56 0.34 5.6e-6 LMBRD1 Y ? High
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