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Abstract

Diastole is the sequence of physiological events that occur in the heart during ventricular filling
and principally depends on myocardial relaxation and chamber stiffness. Abnormal diastolic
function is related to many cardiovascular disease processes and is predictive of health outcomes,
but its genetic architecture is largely unknown. Here, we use machine learning cardiac motion
analysis to measure diastolic functional traits in 39,559 participants of the UK Biobank and
perform a genome-wide association study. We identified 9 significant, independent loci near
genes that are associated with maintaining sarcomeric function under biomechanical stress and
genes implicated in the development of cardiomyopathy. Age, sex and diabetes were independent
predictors of diastolic function and we found a causal relationship between genetically-determined
ventricular stiffness and incident heart failure. Our results provide insights into the genetic
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and environmental factors influencing diastolic function that are relevant for identifying causal
relationships and potential tractable targets.

Results

Diastole is not a passive phase of the cardiac cycle, but is a complex sequence of inter-
related physiological processes dependent on myocardial relaxation, stiffness and recoil, that
are modulated by loading conditions, heart rate, and contractile function. Diastolic function
therefore plays a central role in determining left ventricular filling and stroke volume with
dysfunction shown to be a predictor of major adverse cardiovascular events and all cause
mortalityl. Decline in diastolic function is also a hallmark of cardiac ageing which occurs
through multiple pro-fibrotic and energetic pathways? 3. While several candidate genes have
been implicated in various systolic function phenotypes through genome wide association
studies (GWAS)* °, the genetic architecture of diastolic function and causal associations
with disease are largely unknown. Efforts to better define the molecular mechanisms

of diastolic dysfunction could enable the development of innovative therapies for many
cardiovascular disease states.

Pre-clinical models of diastolic dysfunction are associated with alterations in left ventricular
stiffness on atomic force microscopy that occur at the level of the cardiomyocyte sarcomere
as well as due to extracellular matrix protein expansion®. Such tissue level changes can be
assessed at macroscopic scale in human populations through analysis of diastolic mechanics.
Here we use data from participants in UK Biobank with cardiac magnetic resonance imaging
(CMR), and apply deep learning computer vision techniques for precision motion analysis
to derive image-based phenotypes of diastolic function8 9. In a GWAS of diastolic traits

we identify associated loci that map to genes involved in actin assembly, cardiac myocyte
survival, and heart failure phenotypes. We also describe the relationship between diastolic
function and cardiovascular risk factors, and identify potential causal relationships with
disease through Mendelian randomisation.

Study Overview

We analysed CMR data from 39,559 participants in UK Biobank using machine learning
segmentation and motion tracking to measure three validated parameters of diastolic
function - radial and longitudinal peak early diastolic strain rate (PDSR,-and PDSR/)

(Fig. 1), and maximum body surface area-indexed left atrial volume (LAVmaX,)lo. A flow
chart of the analysis steps is depicted in Extended Data Fig 1. Baseline characteristics

of the population are shown in Extended Data Table 1. For the GWAS the population

was partitioned into discovery and validation sets by the release of data tranches by UK
Biobank. To assess the association between these diastolic function traits and other clinical
measurements, we further considered a broad selection of 30 imaging and 110 non-imaging
phenotypes that included biophysical data and circulating biomarkers (Supplementary

Data 1). Independent GWASs were undertaken for each image-derived phenotype and
heritability estimated. We used a phenome-wide association study (PheWAS) to identify
multiple phenotypes associated with a polygenic instrumental variable score (PIVS) for
diastolic function. Potentially causal associations were examined using 2-sample Mendelian
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randomisation (MR). The results are reported in accordance with GWAS reporting
guidelines and a checklist is provided as Supplementary Information.

Imaging and non-imaging phenotype associations

Strain rates declined with age and were lower in men (P < 10716 for both associations) (Fig.
2), but no univariable association was observed between age and LAV, ; (Extended Data
Fig 2). Multiple linear regression analysis was used to develop a model for predicting each
diastolic trait from demographic, haemodynamic and cardiovascular risk factors (Fig. 3a,
Extended Data Fig 3a). In this multivariable analysis strain rate and left atrial volumes were
negatively associated with age, male sex and pulse rate in the full model (P< 10716 for all
associations). Significant associations were also observed for body surface area (BSA) and
systolic blood pressure (SBP). Diabetes also added significantly to the associations with the
diastolic function traits in the model (PDSR;: A= 2.36 x 1078; PDSR,,: #=9.98 x 1075;
LAVmax; P=1.04 x 1073).

We investigated the association between image-derived measures of atrial, ventricular and
aortic function with a broader range of non-imaging phenotypes using regularized regression
analysis (Extended Data Fig 4, Fig. 3b, Extended Data Fig 3b) (see Supplementary Material
for further information).

C-reactive protein (CRP), a circulating biomarker of inflammation, showed a positive
relationship with serum triglycerides, but we found no circulating biomarkers independently
associated with diastolic function. We found that reduced peak diastolic strain rates were
associated with reduced LAV may; Left atrial function was related to indicators of right
ventricular function emphasising their functional interdependencel.

Genetic architecture of diastolic function traits

Genome-wide common and rare variant association analyses of diastolic
function traits—The SNP-based heritability (i.e. the proportion of variance per trait
explained by all considered SNPs) was 12% for PDSR;, 13% for PDSR,,, and 21% for
LAVmax,- The observed genetic correlation between the diastolic function traits was 0.22
(SE 0.07) between PDSR and LAV ax ; 0.12 (SE 0.08) between PDSR ;-and LAV yax , and
0.85 (SE 0.04) between PDSRand PDSR,.

In total, we identified 9 independent loci from our GWAS analyses, 5 loci for PDSR,,, 4

for PDSR;, and 2 for LAV k(2 loci are shared between PDSR-and PDSR ). Within the
discovery set, we identified 5 independent loci (LAVmayx; 1; PDSR; 3; PDSR 1) reaching
genome-wide significance (P=5 - 1078; Supplementary Fig 3), which were also significant
in the validation dataset also (£ < 0.05/5). Considering the full dataset, the number of
significant independent loci increased to 9 with 2 additional loci associating with PDSR; 1
additional with LAV may; and 1 additional with PDSR; (Fig. 4).

Variant annotation—Summary information for the 9 loci identified using the full
GWAS dataset and two predicted loss of function variants are presented in Table 1
(further information can be found in Supplementary Material, Supplementary Fig 5 and
Supplementary Table 1). The closest gene to each locus is depicted, with further variant to
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gene mapping presented as the “likely gene” given by evidence of a functional effect on

a gene (details in Supplementary Material), additional heart-related phenotype associations,
or a previously reported mechanism linking the gene to diastolic function. Taking lead
variants identified from GWAS and the loss of function analysis were able to highlight
several structural genes associated with diastolic function that also have a known role

in myocardial contractility (e.g. 77N, PLN, GJAI), and in the functional maintenance
and stress-response of the cytoskeleton (e.g. FHOD3, BAG3)12. Moreover, we were also
able to identify a novel link between the APR3 locus and left atrial volume. The signal
co-localizes with a previously discovered association with blood pressure traits (systolic,
diastolic and mean arterial blood pressure). The C-allele of the lead SNP (rs1173727) at
this locus increases NPR3 expression, and is associated with increased blood pressure and
LAVmax,» and an increase in risk of heart failure (Supplementary Material). The NPR3
gene encodes the C-type natriuretic peptide receptor, which has a high drug tractability
score (https://platform.opentargets.org/target/ENSG00000113389), making it a potential
therapeutic target.

The relationship between common variants in PR3 and genes encoding other proteins in
the natriuretic peptide pathway with traits linked to the lead SNP (rs1173727) are shown in
Supplementary Fig 6, and an abridged version is provided in Extended Data Fig 5.

Potential causes and consequences of diastolic function

Creation of polygenic instrumental variable scores (PIVS and PheWAS)—
PI1VSs for each diastolic function trait consisted of 20 SNPs for PDSR,,; 15 SNPs for
PDSRy; and 8 for LAV sy The PIVS explained 1.5 % of the variability of PDSR,,, 1.1 %
of PDSR and 0.2 % of LAV, There was good agreement between the distribution of the
PIVS in the UK Biobank participants with and without CMR indicating no systematic bias
in genetic architecture (Supplementary Fig 9). The Pearson correlation coefficient for the
PIVS for PDSR ,and PDSR,,was 0.35 whereas the correlation coefficient between LAV yax
and PDSRyor PDSR , respectively, was much lower (<0.01). PheWAS was undertaken and
we considered traits that have been previously associated with cardiac phenotypes in the
literature, but in addition included an unbiased selection of phenotypes for exploration.

In total, we considered 71 quantitative phenotypes and 63 (binary) disease endpoints
(Supplementary Data 1). Out of these, 31 phenotypes were significantly associated (Pqgj

< 0.05) with at least one of the diastolic function PIVSs after leave-one-out cross validation
(Fig. 5). Some of the identified PheWAS associations are consistent with the phenotype
correlation analysis (e.g. pulse rate and blood pressure). We also confirmed associations
between diastolic function and previously reported biomarkers of heart failure (e.g. SHBG13
and IGF-114). Furthermore, we identified an association of PDSR,, to heart failure,
cardiomyopathy and dilated cardiomyopathy, implicating diastolic function in cardiovascular
endpoints.

Mendelian randomization—Diastolic dysfunction is a substrate for the subsequent
development of heart failure and, in observational studies, diabetes and hypertension are
associated risk factors®. Here we used Mendelian Randomization (MR) to identify potential
causal relationships between diastolic function as an exposure and two key clinical outcomes
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(mixed aetiology heart failure and atrial fibrillation). We also assessed causal effects of

biochemical, metabolic and haemodynamic exposures on diastolic function. These were
chosen on the basis of clinical plausibility and the findings of the phenotype correlation
analysis.

We tested a number of MR techniques, each addressing different assumptions, and excluded
potentially confounding instruments. A strong bidirectional causal relationship was observed
between pulse rate and PDSR; PDSR ;and LAV 5y ; (Extended Data Fig 6, Supplementary
Figs 12 to 14, Supplementary Tables 2 to 4), consistent with findings from pre-clinical
models'8. Diastolic blood pressure was causally associated with PDRS,;, and had a
bidirectional association with PDSR . Systolic blood pressure was causally associated
PDSR/;, but not PDSR,,. In addition, higher total peripheral resistance was strongly
associated with higher PDSR , PDSR ;rand LAV, ; adding to the evidence implicating
ventriculo-vascular coupling in the development of the diastolic dysfunctionl’.

We also identified a potential causal relationship between lower PDSR , (stiffer ventricle)
and increased risk of heart failure Supplementary Fig 11, which was further corroborated
using GWAS summary results!® from the HERMES consortium (Supplementary Table 5), a
GWAS meta-analysis from 47309 heart failure cases and 930014 controls. The magnitude of
the effect observed in the MR analysis is consistent with the observational epidemiological
estimate, derived from correlating PDSR,, with incident heart failure (Extended Data Fig 6).
We found no causal relationship between longitudinal PDSR,and heart failure, and neither
was one observed in our epidemiological analysis (Extended Data Fig 6).

Diastolic dysfunction is frequently present in diabetic patients®, however the effects are
mostly mediated by an increased risk of coronary artery disease8. We found parameter
estimates that support a causal relationship between diabetes as an exposure and diastolic
function as an outcome, as well as a potential link with instruments for lipid profiles.

Lastly, we found a causal association between LAV nay ;and an outcome of atrial
fibrillation20, but there was no evidence that ventricular stiffness also has a causal
association.

Discussion

Diastole is a complex series of molecular, biophysical and electro-mechanical processes that
initiate contractile deactivation and promote efficient ventricular filling. Impairment of these
coordinated mechanisms may lead to diastolic dysfunction which is associated with the
presence of multiple cardiovascular risk factors leading to reduced quality of life and higher
mortality?l: 22, Here, we used deep learning cardiac motion analysis to perform the first
reported GWAS of diastolic function traits with the aim of determining tractable causative
mechanisms. We found that diastolic function was a heritable trait with associations in loci
related to myofilament mechanics, protein synthesis during mechanical stress and regulation
of cardiac contractility. Furthermore, we find a role for a gene implicated in endothelium-
derived signalling in diastolic function that is a potential therapeutic target?3. Lastly, through
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Mendelian randomisation we observe a causal relationship between genetically-determined
diastolic function and heart failure outcomes.

A decline in diastolic function is a feature of the ageing heart and we found that age

was a strong independent predictor of diastolic function, with a greater decrease present in
males. Outcome studies have suggested that this is a prognosticallybenign feature of healthy
ageing that is not related to adverse effects of cardiac senescence?24:25. Changes in titin
protein phosphorylation, myocardial redox state and impairment of nitric oxide signalling
have been proposed as potential mechanisms28, and clinical studies indicate that age-related
myocardial fibrosis, cardiomyocyte hypertrophy, and reduced microvascular density, may
be a consequence rather than an initiating cause of diastolic dysfunction?’. Non-invasive
imaging biomarkers of fibrosis have also shown promise in identifying biologically relevant
pathways for myocardial fibrosis in adult hearts2.

We found that diabetes was causally associated with impaired diastolic function after
excluding potentially confounding instruments. In epidemiological analyses this relationship
was independent of age, BSA, and systolic blood pressure. Increased myocardial

stiffness is recognised as one of the earliest, and potentially reversible, manifestations of
myocardial dysfunction in diabetes2?. Several underlying mechanisms related to insulin
resistance have been proposed that include altered cardiac energetics and accumulation of
advanced glycation end products that promote ventricular stiffness30. We also observed

a unidirectional causal relationship between genetically-determined diastolic function and
an outcome of heart failure, as well as associations with cardiovascular endpoints and
circulating biomarkers of heart failure through PheWAS. Longitudinal cohort studies have
suggested that persistence or progression of diastolic dysfunction is a risk factor for
subsequent heart failurel®, and our findings suggest that ventricular stiffness is a substrate
for the evolution of mixed aetiology heart failure. We also found a unidirectional causal
association between left atrial volume and atrial fibrillation, suggesting that it is atrial
remodelling that drives this arrhythmic outcome3L. Lipid profiles are associated with adverse
changes in cardiac structure and systolic function, and our findings extend that causal
association to diastolic traits32,

Our study provides insights into the biological basis of diastolic function with potential
implications for therapy development. We identified common variants within genes
implicated in cardiomyopathies (e.g. BAG3, FHOD3, PLN), suggesting sarcomere
homeostasis during mechanical stress may affect diastolic function in both health and
disease33. Phospholamban (PLN) is a key regulator of cardiac diastolic function, which
modulates sarcoplasmic reticulum calcium-ATPase activity34. Common variants in this gene
are also associated with trabeculation which has been implicated in promoting ventricular
filling®. Speckle-tracking echocardiography of P/nknockout mice reveals alterations

in longitudinal strain but not radial strain3®, which is concordant with our observed
associations with diastolic function and may relate to associated changes in ventricular
geometry36. Although there is a genetic correlation between strain rate vectors the majority
of SNPs used as polygenic instruments were independent of each other for these traits.

We also identified a potential therapeutic target through the association of variants at the
locus of NMPR3influencing diastolic function and risk of heart failure. Previous studies have
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highlighted its role in blood pressure control3?, and in mediating the cardioprotective effects
of cardiomyocyte and fibroblast-released CNPZ3,

This analysis has some limitations. UK Biobank is a large-cross sectional study that is
subject to selection bias and latent population stratification, however risk factor associations
appear to be broadly generalisable38. The population is predominantly European and further
work is required to explore diastolic traits and outcomes in people of diverse ancestries.
Echocardiography has been the cornerstone of assessing diastolic function by characterising
features of ventricular relaxation, stiffness and recoil3. However, feature-tracking CMR

has excellent agreement with speckle-tracking echocardiography“® and invasive measures
of diastolic function*l. While analysis of myocardial deformation is performed throughout
the cardiac cycle the measures of early diastolic strain rate may not capture variation in
active relaxation prior to ventricular filling. While the relationship between quantitative and
dichotomous outcomes may be non-linear such a relationship has not been observed between
other genetically-driven diastolic traits and outcomes*2.

In conclusion, we found that diastolic function is a heritable trait that is causally upstream
of incident heart failure. Associated common variants are related to genes that maintain
functional homeostasis under biomechanical stress. We also identify a gene encoding an
atrial natriuretic peptide receptor as a potential therapeutic target for modulating aspects of
diastolic function.

All analyses in this study can be found here https://github.com/ImperialCollegeLondon/
diastolic_genetics/43 and were conducted with R version > 3.6.0.

For UK Biobank, approximately 500,000 community-dwelling participants aged 40-69
years were recruited across the United Kingdom between 2006 and 201044. All subjects
provided written informed consent for participation in the study, which was also approved
by the National Research Ethics Service (11/NW/0382). Our study was conducted under
terms of access approval number 28807 and 40616. A range of available data were included
in this study comprising genotyping arrays and whole exome sequencing, cardiac imaging,
health-related diagnoses, and biological samples.

There are 488,252 genotyped participants of which 200,640 have whole exome sequencing.
We partitioned 39,559 participants with both CMR imaging and genotyping array data into
two tranches by date of release from UK Biobank providing a discovery dataset of 26,893
participants and a validation dataset of 12,666 participants.

Imaging protocol

A standardised CMR protocol was followed to assess cardiac structure and function

using two-dimensional retrospectively-gated cine imaging on a 1.5T magnet (Siemens
Healthineers, Erlangen, Germany). A contiguous stack of images in the left ventricular
short-axis plane from base to apex was acquired, with long axis cine imaging in the two and
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four chamber views. Each cine sequence had 50 cardiac phases with an acquired temporal
resolution of 31 ms7. Transverse cine imaging was also performed in the ascending and
descending thoracic aorta. All imaging phenotypes used for the analysis underwent quality
control assessment8. Participants also underwent a resting 12 lead electrocardiogram which
was automatically analysed using proprietary software (CardioSoft, GE Healthcare).

Cardiac image analysis

Segmentation of the short-axis and long-axis cine images in UK Biobank was made using
fully convolutional networks, a type of deep learning neural network, which predict a
pixel-wise image segmentation by applying a number of convolutional filters onto each input
image for feature extraction and classification®. The accuracy of image segmentation on

the UK Biobank dataset is equivalent to expert human readers®®. End-diastolic volume,
end-systolic volume, stroke volume, and ejection fraction were determined for both
ventricles. Left ventricular myocardial mass was calculated from the myocardial volume
assuming a density of 1.05 g.ml ~1. Left atrial volume was calculated from the segmented

AxCh - AdCh
L

indicate the atrial area on the two and four-chamber cines respectively, and L indicates

the longitudinal diameter averaged across two views. Measurements were indexed to

body surface area (BSA) according to the Du Bois formula: 0.20247 * (Weigh-425) *
(Heigh-725), with weight in kg and height in m. The heart was divided into 16 standardised
anatomical segments, excluding the true apex, according to American Heart Association
nomenclature*®.

images using the biplane area—length formula v = % . , Where Ay cpand Agcp

The aorta was segmented on the cine images using a spatio-termporal neural network?’.
The maximum and minimum cross-sectional areas were derived from the segmentation and
distensibility calculated using estimates of central blood pressure obtained using peripheral
pulse-wave analysis (Vicorder, Wuerzburg, Germany)8.

Motion tracking was performed on the cine images using non-rigid image registration
between successive frames (in GitHub repository ukbb_cardiac)*8: 49. To reduce the
accumulation of registration errors motion tracking was performed in both forward and
backward directions from the end-diastolic frame and an average displacement field
calculated®. This motion field was then used to warp the segmentation contours from
end-diastole onto successive adjacent frames. Circumferential (£¢.) and radial (&) strains
were calculated on the short axis cines by the change in length of respective line segments

ALgjr

(Fig. 1A) as Eg;. = T

where djrrepresents the direction, L4, the length of a line

segment along this direction and AL 4 its change over time. Motion tracking was also
performed on the long-axis four-chamber cines to derive longitudinal (&) strain. Peak strain
for each segment and global peak strain were then calculated (Fig. 1B). Strain was measured
from slices acquired at basal, mid-ventricular, and apical levels. For comparison between
each component absolute strain values are reported. Strain rate was estimated as the first
derivative of strain and peak early diastolic strain rate in radial (PDSR,,) and longitudinal
(PDSRy) directions was detected using an algorithm to identify local maxima (in GitHub
repository peak_detection) (Fig. 1C).
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Non-imaging phenotypes

In total we consider 110 non-imaging cardiovascular-related phenotypes in UK Biobank
participants for the phenotype regression analysis and the genetic analysis. These
phenotypes contain information acquired by touch screen questionnaire, interview,
biophysical measurement, hospital episode statistics, primary care data and biochemical
analysis of venous blood. Details of how each phenotype was acquired are available on

the UK Biobank Showcase (http://biobank.ctsu.ox.ac.uk/crystal/). It should be noted that the
biochemical markers used here were acquired at the initial assessment visit that preceded
imaging assessment. Also, note that not all phenotypes were used in both the phenotype and
the genetic analysis (e.g., due to lack of available data at the imaging visit). We refer to the
Supplementary Material both for details on the definition of the considered phenotypes and
for information on the inclusion of specific phenotypes for each analysis.

Statistical significance testing and multiplicity control

We consider in all phenotype analysis a P-value < 0.05 as significant. Where not stated
otherwise, we control the false discovery rate with the Benjamini-Hochberg adjustment.
Significance thresholds and decision criteria for GWAS significant loci and causality
assessment (Mendelian Randomization) are described in the respective sections and/or in
the Supplementary Material.

Phenotype Association Analysis

Continuous variables are expressed as mean # standard deviation (SD). Differences in
continuous variables between groups were performed using Student’s t-test. Univariable

and multiple linear regression analysis was used to explore the phenotype relationship
between each diastolic parameter and cardiovascular risk factors. To identify relationships
between diastolic function and a broader range of imaging and non-imaging phenotypes,
including circulating biomarkers, we used the least absolute shrinkage and selection operator
(LASSO) with stability selection, to optimise the model coefficients. We then ran regression
diagnostics on the model with the selected variables, to exclude a possible collinearity
inappropriately influencing our model (see Supplementary Material for details on the
phenotype analysis and LASSO analysis procedure).

Genotyping and sample QC

Genotyping of UK Biobank participants has been described elsewhere in detail0. Briefly,
UK Biobank genotyping for 488,252 subjects was performed on the UK BiLEVE or UK
Biobank Axiom arrays. Imputation was based on the HaplotypeReference Consortium
panel and the UK10K+1000 Genomes panel. In this study, UK Biobank Imputation V3
(in GRCh37 coordinates) were used. Whole exome sequencing (WES) was performed on
data released in 2020 collected from 200,640 UK Biobank participants®l. The sequencing
methods and variant calling procedures have been described in detail®2. In the present
study, genotypes in their released PLINK-format files are utilized, and samples were
restricted to the European population. Quality control of the genetic data was performed
as recommended by UK Biobank (see Supplementary Material for details on the procedure
and number of excluded samples).
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GWAS analysis

For the genetic analysis, there were 34,242 participants of European ancestry (see
Supplementary Material for criteria) providing a discovery dataset of 23,321 participants and
a validation set of 10,924 participants. GWAS analyses for the three diastolic function traits
and additional quantitative traits of interest (as described for the causality assessment) were
performed with BOLT-LMM (version 2.3.2) which accounts for ancestral heterogeneity,
unknown population structure, and sample relatedness®3 54, GWAS analyses were adjusted
for imaging traits for the first ten genetic principal components, sex, age at time of MRI, the
genotyping array and the MRI assessment center and for non-imaging quantitative traits for
the first ten principal components, sex, age at measurement of the trait and the genotyping
array. GWAS analyses for clinical endpoints of interest (binary endpoints) were conducted
with PLINK2 and adjusted for the first ten principal components, sex, age at baseline

and the genotyping array. Post-GWAS filtering removed any SNPs with a Hardy-Weinberg
equilibrium p-value < 0.05 and MAF < 0.005.

Assessment of shared genetic architecture

For the assessment of shared genetic architecture between diastolic function traits, LD
score regression (LDSC (LD SCore) v1.0.1, PMID 25642630) was used to obtain a genetic
correlation score between each pair of traits.

Variant annotations

Lead variants for each locus were assigned causal genes, where possible, using a
combination of variant annotations and additional functional genomic data sources
(colocalisation). Each lead variant was systematically tested for any evidence of functional
consequence using VEP. In addition, QTL evidence was extensively searched using Open
Targets Genetics®. Where eQTL data was available for the locus, the full summary statistics
were downloaded to assess colocalisation (see Suppplementary Material).

Variant Effect Predictor (VEP)®6 and Loss-of-Function Transcript Effect Estimator
(LOFTEE)®’ plugin were applied on all genomic variants of WES data. In the present

study, we considered the genomic variants predicted by LOFTEE with high-confidence label
"HC", non-dubious (no "LoF flag" such as variants that located in poorly conserved exons,
or splice variants that affect NAGNAG sites or non-canonical splice regions), and minor
allele frequency < 0.05, as a Loss-of-function (LoF) mutation.

LoF association analysis

A Loss-of-Function (LoF) carrier indicator was created for each WES sample and each of
the human protein-coding genes based on the collapsed information of LoF annotations. A
subject was considered as an LoF carrier of the gene if there was at least one LoF mutation
(based on methods in the variant annotation section), and a non-carrier if there was none.
We then conducted the association test between LoF carrier indicator and the three diastolic
function imaging phenotypes. Linear regression was performed with the adjustment of sex,
age at time of MR, and the top ten genetic principal components. The association results
were further filtered as those with at least two carriers and the endpoint available. The
association was considered significant after multiple testing correction at a = 0.05 (FDR,
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calculated for three diastolic function traits). We identified 18,660 participants with both
whole exome sequencing data and CMR imaging data.

Polygenic instrumental variable scores (PIVS)

Candidate variants for PIVS for the three diastolic function traits (LAVmax; PDSR
PDSR,,) were obtained based on the respective GWAS (full imaging cohort) results by
performing clumping (PLINK 1.9) using an LD threshold of £%=0.1 (in a window

of 1000kb) and considering all SNPs with < 1076, Unlike more traditional polygenic

risk scores we do not use thousands of variants as instruments but aim to identify a set

of instrumental variables that are minimally correlated. This comes with the price of a
relatively small set of instruments that explains less variability of a trait, but can be used

as proper instruments for the Mendelian randomization analysis. Candidate variants were
included in multivariate linear modelling evaluated on the European subset of the full
imaging cohort with the first ten genetic principal components, age at MRI, sex, genotyping
array and the MRI center as additional covariates and the respective diastolic function trait
as dependent variables. The diastolic function traits were scaled to standard deviation (sd)

1 prior to the model estimation - therefore, a unit change in the PIVS score represents a
change of 1 sd unit in the respective diastolic function trait. PIVS estimates per individual
were then calculated by multiplying the observed genotype with the estimated beta from the
multivariate linear model for each SNP and summing these values up. Missing genotypes
were imputed using a mean imputation. The variance explained for the PIVS is measured
by A2, estimated in a linear regression with the PIVS as only variable and the respective
diastolic function trait as endpoint.

Next, we conducted a PheWAS using the obtained PIVS (see above and Supplementary
Material for a full definition of included phenotypes in the PheWAS). Evaluation of the
PIVS were performed in the European non-imaging cohort, i.e. an independent set of
subjects compared to the PIVS construction set. Only results are shown that are significant
after multiple testing correction at a = 0.05 (FDR, calculated per diastolic function trait)
and, as a sensitivity analysis, for which all leave-one-SNP out cross validations analysis lead
to a significant result at @ = 0.05 after multiple testing correction (FDR) for the number of
considered phenotypes. The latter condition is supposed to exclude spurious results which
are only driven by one single variant. Leave-one-SNP out cross-validation is performed by
excluding one SNP from the list of candidate variants, then re-estimating the PIVS and
performing the PheWAS as described above. For the leave-one-SNP out cross-validation,
FDR adjustment is performed per combination of diastolic trait and phenotype, considering
the number of included SNPs.

Mendelian randomization

For exploring the causes and consequences of diastolic function parameters, we used a
bidirectional Mendelian randomization (MR) approach, i.e. two MR analysis are performed:
first, an MR analysis using the first chosen trait as exposure is conduced and secondly a

MR analysis using the selected second trait is run. By considering both results, evidence can
be gathered for a one-directional causal relationship, a bi-directional causal relationship or
no causal relationship at all. We performed this analysis taking into account one diastolic
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and one non-diastolic function trait and for that, we selected non-diastolic function traits
of interest by taking into account the results from the observational correlation analysis
and clinical expertise. This approach lead to the consideration of six dichotomous risk
factors associated with diastolic dysfunction, Arteriosclerosis, Atrial Fibrillation, Heart
failure, Hypertension and Diabetes - considering Type | and Type Il separately. Further,
we considered four physiological variables as potential causes or consequences of changes
in diastolic function, as well as five quantitative lipid traits as surrogate for arteriosclerotic
risks as potential confounder source for changes in diastolic function. In total we analysed
15 non-diastolic phenotypes and the 3 diastolic phenotypes in our MR.

We established a workflow for the MR analysis which briefly described in this section.
Full details are provided in the Supplementary Material. Genetic instrumental variables
were selected from the UK Biobank GWAS results generated -as described above- via
clumping with PLINK1.9 as described for the PIVS approach. The candidate SNP set
prior to clumping was restricted to the intersection between the SNP sets of the pair

of GWAS results (hypothesised causal trait GWAS and hypothesised consequence trait
GWAS). A full list of the instrumental variables is contained in supplementary table file
SupplementaryTable_InstrumentalVariantsMR.xIsx.

We aimed to remove potential confounding instruments by two filtering steps. First,

we ran phenotype association analysis to identify and remove instruments that associate
significantly with any of the traits Arteriosclerosis, Triglycerides, Apoliprotein B and
LDL-Cholesterol. Second, we ran Steiger Filtering to remove instruments with potentially
wrongly inferred causal directions.

All MR analysis are based on the point estimates and standard deviations obtained from
the respective GWAS. We follow a similar approach to van Oort et al.?8 by using inverse-
variance weighted method (IVW) as the main analysis and applying several other MR
methods for ensuring robustness of the obtained results as sensitivity analyses. We used
weighted median-based methods, MR-PRESSO and MR-Egger. Consistent effect estimates
across the different methods improves our confidence in a truly causal effect. We consider
an association as "potential causal" if the main analysis indicates a causal relationship
(P<0.01), at least two of the sensitivity analyses indicate at least a suggestive causal
relationship (P < 0.05) and none of the sensitivity analyses indicate associations with
inconsistent effect directionality, i.e. none of the methods showed a suggestive association
with conflicting directionality (£ < 0.05). No explicit multiplicity adjustment is performed
for MR experiments. For "potential causal" associations, we next conducted a supplementary
sensitivity analysis using published GWAS results as described in the Supplementary
Material - if published GWAS data was available.

All analysis, which involved diastolic and non-diastolic function traits, were conducted in

a two-sample approach, i.e., the diastolic function trait GWAS was calculated in the full
imaging cohort and the non-diastolic function trait GWAS was calculated in the non-imaging
cohort.
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For comparison of the effect estimates from the MR-analysis to the observed correlation of
diastolic function measurement and disease status, we restricted the analysis population to
subjects which were disease-free at the CMR visit. We then fitted a logistic regression model
by coding subjects who experienced a first event of the selected disease during follow-up
time as 1 and event-free subjects during follow-up as 0. As covariates, we included age at
CMR visit, gender, diabetes status, diastolic blood pressure and BMI. Note that this analysis
was only performed for relationships judged as potential causal and that involves a disease
endpoint (and not a quantitative measurement like pulse rate).

NPR3 Pathway Analysis

In order to increase our understanding of the association of NPR3 with LAV, ;and

to further characterize the role of natriuretic peptides, we looked for additional genetic
associations within genes of the natriuretic peptide pathway (so in addition to NPR3- NPRI,
NPRZ, NPFA, NPPB, and NPPC). We conducted GWAS using BOLT-LMM for all imaging
traits listed in Extended Data Table 1 as described above, as well as any non-imaging traits
associated with rs1173727 (the lead variant for NPRS3) across the 4 loci (MPFA and NPPB
share the same locus). The GWAS summary statistics were filtered to a 1IMB window around
each gene (for NPPA/B, the gene used for centering was NVPPA). Across these summary
statistics, we performed clumping with a p-value threshold of 1075 and /2 < 0.1.

For the identified tag SNPs and associated variants in LD from the clumping analysis, we
then tested which of these variants we could confidently link to the natriuretic gene in the
locus. If any variant was classified as missense, we selected that variant directly. For eQTL
variants, we used colocalisation analysis to link these SNPS to the natriuretic genes in each
locus. Relevant eQTL and pQTL data was used (eQTL summary statistics were taken from
eQTL Catalog®® and pQTL data from Sun et al.5%) and SNPs with only a clear association
with the gene of interest and traits of interest were kept (i.e. p< 174 for association with
gene or protein expression, < 107° for association with the trait, and Ay, > 0.5 was used as
a threshold for the co-localization analysis).

Hierarchical clustering was then performed on the —log(#) x S values with the Ss aligned to
have a negative sign on the diastolic blood pressure. Extended Data Fig 5 shows all SNPs
and traits with a genome-wide significant association. The SNPs and traits with suggestive
associations (P< 1075) are shown in the Supplementary Material (Supplementary Fig 6).
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to dervive diastolic function parameters

Discovery and validation datasets
split by date

Regression analyses of imaging
and non-imaging phenotypes
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Extended Data Fig. 1.
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a Association estimates of diastolic parameters b Radial peak diastolic strain rate
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Extended Data Table 1
Baseline characteristics Mean £ SDorn Cardiac Characteristics from CMR Mean = SD or n
(%) (%)
Age (years) 63.6+7.6 LV wall thickness (mm) 57+0.8
Sex, men, n (%) 18,988 (48%) LV end-diastole volume jngexed 79+13.8
(mL/m?)
Race, Nonwhite, n (%) 1,130 (2.8%) LV end-systole volume jngexed 32.1+84
(mL/m?)

Body mass index (kg/m?) 265+ 4.4 LV stroke volume jngexeq (ML/M?) 46.9+84
Body surface area (m?) 19+0.2 LV ejection fraction (%) 59.6 £6.1
Systolic Blood pressure 138.2+18.3 LV cardiac output (ml) 54+12
(mmHg)

Diastolic blood pressure 78.6+9.9 LV cardiac index (ml/m?) 25+05
(mmHg)
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Baseline characteristics Mean £ SDorn

Cardiac Characteristics from CMR

Mean £ SD or n

(%) (%)
Pulse rate (bpm) 70+ 12 LV Mass indexed (ML/M?) 45785
Pulse wave arterial stiffness 9.6+29 LA maximum volume jngexeq (MI/M?) 39+11.2
index (SI)
Diabetes mellitus, n (%) 2,432 (6.2%) LA minimum volume jdexed (Ml/m?) 15775
Heart failure, n (%) 260 (0.66%) LA stroke volume jngexeq (MI/M2) 23358
Smoking status LA emptying fraction (%) 61.2+95
Current, n (%) 1,374 (3.5%) RV end-diastole volume jqexeq(ml/m?) 83.6+15.2
Previous, n (%) 13,330 (34.1%) RV end-systole volume jqexed (MI/M?) 359+93
Never, n (%) 24,443 (62.4%) RV stroke volume jngexeqg (MI/M2) 47.7+8.9
Daily alcohol intake 6,597 (16.7%) RV ejection fraction (%) 57.3+6.1
Duration of physical activity RA maximum volume ingexed (MI/M?) 46.4+13.5
in minutes per day
Moderate 53.9 £ 66.2 RA minimum volume jngexeq (MI/M?) 247+9.2
Vigorous 40.3+40.4 Right atrial stroke volume 216+6.8
indexed (ml/mz)
Number of treatment/ 1921 RA emptying fraction (%) 47.2+95
medications taken
Blood pressure medication 2,042 (5.2%) AAo distensibility jndexed 0.97 £ 0.63
(1073mmHg™)
Cholesterol medication 6,015 (15.2%) AAo0 maximum area (mm?) 852.3 +£188.4
Assessment centre AAo0 minimum area (mm?) 775.1+£183.9
Cheadle 25,176 (63.6%) DAo distensibility ingexed 1.29+0.8
(1073mmHg™)
Reading 4,361 (11%) DAo maximum area (mm?) 476.7 £ 96.8
Newcastle 10,022 (25.3%) DAo minimum area (mm?) 418.1+91.6
Laboratory Biochemical Markers Strains and Strain rates
HbA1c (log (mmol/mol)) 35+0.13 Peak diastolic longitudinal strain 1.64+0.6
. . rates (PDSR;, s1)
C-reactive protein (log 0.13+1.02
(mg/L))
LDL (mmol/L)) 36+0.38 Peak diastolic radial strain rates 571+19
(PDSRyy, s
Glucose (mmol/L) 5.0+0.93 Global circumferential strain (Ec, 22334
%)
Triglycerides (log (mmol/L)) 0.36 £0.51 Global longitudinal strain (E;;, %) 185+28
eGFR cystatin (mL - min™® - 92+12.2 Global radial strain (E;, %) 45.1+8.4

1.73m™)

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Analysis of cardiac motion.
Motion analysis of cardiac magnetic resonance imaging performed on left ventricular short

axis cines. A) An example from one individual where deep learning segmentation and image
registration were used to determine the radial components of myocardial deformation. Data
from the basal, mid-ventricular, and apical levels are shown at four representative phases
from the 50 acquired. B) Radial strain and strain rate (first derivative of strain) for all UK
Biobank subjects (median and interquartile ranges, n=39,559 individuals).
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Figure 2. Population strain data.
Scatterplots of a) longitudinal peak diastolic strain rate (PDSR) (1= 38,923) and b) radial

peak diastolic strain rate (PDSR,) with age (/7= 38,700); with density contours, linear
model fit and marginal density plots. Violin plots of c) longitudinal (n7=38,923) and d)
radial (/7= 38,700) peak diastolic strain rate with sex; ****P<10716 (Wilcoxon signed-rank
test). Boxplots show the median, hinges indicate interquartile ranges (IQR), and whiskers
1.5 x IQR.
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Figure 3. Regression analysis.
a) Multiple linear regression analysis of left ventricular longitudinal peak diastolic strain

rate (PDSR/), radial peak diastolic strain rate (PDSR ) and indexed left atrial maximum
volume (LAVmax,) With age, sex body surface area (BSA) systolic blood pressure (SBP),
pulse rate and diabetes as predictors. All associations were significant after false discovery
rate correction. Data are presented as beta coefficient point estimates (95 % confidence
intervals). b) Circular plot visualisation of the associations between the imaging (red -
PDSR/, PDSR,, global systolic radial strain (E,,), global systolic longitudinal strain (E),
ascending aortic (AA0) distensibility, descending aortic (DAO0) distensibility, indexed left
ventricular stroke volume (LVSV)), left ventricular cardiac index (LVCI), LAV, ; indexed
right ventricular stroke volume (RVSV)), and right atrial ejection fraction (RAEF) and the
non-imaging phenotypes (green for environmental; blue for biochemical). The strength of
the connection between each pair is presented as a ribbon, whose size is proportional to their
regression coefficient. All associations with a regression coefficient <0.3 are shown in faint
colours (apart from the associations between PDSR;, PDSR -and LAV yay;and all other
phenotypes). The coefficients for the associations of the circular plot are shown in Extended
Data Fig 3b. Standardised beta coefficients are shown with units in standard deviations for
each variable.
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Figure 4. Manhattan plots of the GWAS results for three diastolic function traits
a) indexed left atrial maximum volume (LAV ), b) longitudinal peak diastolic strain rate

(PDSR/) and c) radial peak diastolic strain rate (PDSR ) (full dataset). This figure shows
the -log10(P-value) on the y-axis across all autosomal chromosomal positions (x-axis) from
BOLT-LMM. The dotted line indicates genome-wide significance (P=5 - 1078, N'= 34245).
Significant loci are labeled by their likely causal gene and lead SNP, see Table 1.
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2 Associations to quantitative traits
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Figure 5. Significant associations of the polygenic instrumental variable scores for diastolic
function traits with UK Biobank phenotypes.

a) Quantitative traits that significantly associated with the polygenic instrumental variable
scores (PIVSs) of diastolic function (beta coefficient point estimates standardised to change
per 1 standard deviation (SD) increase in diastolic function trait with 95 % confidence
intervals). b) Binary traits that significantly associated with the PIVSs of diastolic function.
Point estimates are Log(Odds ratios) per 1 SD increase in diastolic function trait (95 %
confidence intervals). Detailed results, including numerical P-values and 95 % confidence
intervals are shown in Supplementary Fig 10. One unit change in the PIVS represents a
change of 1 SD in the respective diastolic function trait. All dependent variables (traits)
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were standardized representing the change in dependent variable standard deviations for

a 1-SD change in the respective measurement. Associations not significant after multiple
testing correction (conducted per PIVS) are displayed as grey bars. PDSR;, longitudinal
peak diastolic strain rate; PDSR,, radial peak diastolic strain rate; LAV, ; indexed left
atrial maximum volume; SBP, systolic blood pressure; MAP, mean arterial pressure; DBP,
diastolic blood pressure; BMI, body mass index; SHBG, sex hormone binding globulin; Log,
natural logarithm; SD, standard deviation; nonsig: non-significant. /= 449,263.
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Table 1
Genome-wide Association Results.

Summary information on the lead variants identified from each GWAS analysis and the significant genes
from the Loss of Function analysis. For each significant locus across the 3 diastolic phenotypes, variant
information, GWAS summary statistics and variant to gene annotation is provided. The evidence column is
split by: MS - missense variant; eQTL - colocalisation between the GWAS signal and an eQTL for the gene
in a plausible tissue type (see Supplementary Material); M - plausible mechanistic link between the gene

and the measured heart phenotypes i.e. the gene function suggests a link to diastolic function; Overall - the
confidence of variant to gene mapping given all the available evidence. Loci highlighted in grey are those that
reached genome-wide significance in the discovery, validation, and full datasets, loci in white reach suggestive
significance in the discovery dataset and genome-wide significance in the full dataset. Further information is
provided in the Supplementary Material. (GWAS, genome-wide association study; Chr, Chromosome, Ref,
Reference allele; Alt, Alternative allele; MAF, minor allele frequency; PDSR/, longitudinal peak diastolic

strain rate; PDSR , radial peak diastolic strain rate; LAV may; indexed left atrial maximum volume; Disc,

Discovery; Repl, Replication.)

Lead Variant GWAS Annotation
rsIDFull Chr Ref Alt MAF Phenotype Estimate™u!l  SgFull pFull Disc Repl Full Locus Closest Likely MS
Genes  Gene Causal
Gene
rs2234962 10 T C 0.21 PDSR,, 0.1118 0.0175 2.3e-10 Y Y Y MCMBP, BAG3 BA
BAG3
rs2644262 18 T C 0.28 PDSR,/ 0.1087 0.0164 1.7e-11 vy Y Y FHODS3, FHODS3 FH
PDSR, TPGS2
rs11970286 6 C T 0.45 PDSR, 0.0278 0.0043 1.9e-10 Y Y Y PLN, PLN PL,
CEP85L,
SLC35F1
rs1580396 12 C A 0.46 PDSR,,/ 0.0807 0.0146 4.1e-8 vy Y Y AC023158.2, AC023158.2 AC
PDSRy, AC023158.1,
ALGI10
rs59985551 2 C T 0.23 LAV max; 0.0117 0.0020 5.3e9 Y Y Y Multiple EFEMP1 EF,
rs1173727 5 T C 0.40 LAV nax; 0.0096 0.0017 1.7e-8 N N Y NPR3, LINC02120 NP
LINC02120
rs12206253 6 C T 0.11 PDSR,, -0.1413 0.0244  8.4e-9 N N Y HSF2, GJAL GJ
GJAL,
SERINCI
rs10261575 7 T C 0.18 PDSRy, 0.0336 0.0056 1.2e-9 N N Y NDUFA4, PHF14 PH
PHF14
rs11170519 12 C T 0.43 PDSR,, 0.0872 0.0146 3.9e-9 N N Y Multiple SP1 SP.
Predicted Loss of Function Results
Chr Carriers Phenotype Estimate™!  sgrull - prull Cal
2 187 PDSR,, -0.71 0.14 1.4e-7 TT
6 29 PDSR,, -1.56 0.34 5.6e-6 LWV
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