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Single-cell alternative polyadenylation
analysis delineates GABAergic neuron types
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Abstract

Background: Alternative polyadenylation (APA) is emerging as an important mechanism in the post-transcriptional
regulation of gene expression across eukaryotic species. Recent studies have shown that APA plays key roles in
biological processes, such as cell proliferation and differentiation. Single-cell RNA-seq technologies are widely used
in gene expression heterogeneity studies; however, systematic studies of APA at the single-cell level are still lacking.

Results: Here, we described a novel computational framework, SAPAS, that utilizes 3′-tag-based scRNA-seq data to
identify novel poly(A) sites and quantify APA at the single-cell level. Applying SAPAS to the scRNA-seq data of
phenotype characterized GABAergic interneurons, we identified cell type-specific APA events for different
GABAergic neuron types. Genes with cell type-specific APA events are enriched for synaptic architecture and
communications. In further, we observed a strong enrichment of heritability for several psychiatric disorders and
brain traits in altered 3′ UTRs and coding sequences of cell type-specific APA events. Finally, by exploring the
modalities of APA, we discovered that the bimodal APA pattern of Pak3 could classify chandelier cells into different
subpopulations that are from different laminar positions.

Conclusions: We established a method to characterize APA at the single-cell level. When applied to a scRNA-seq
dataset of GABAergic interneurons, the single-cell APA analysis not only identified cell type-specific APA events but
also revealed that the modality of APA could classify cell subpopulations. Thus, SAPAS will expand our
understanding of cellular heterogeneity.
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Background
Alternative cleavage and polyadenylation of pre-mRNA
is a process that generates diverse mRNA isoforms with
different 3′-ends [1, 2]. APA is a pervasive post-
transcriptional regulatory mechanism as approximately
70% of mammalian protein-coding genes contain mul-
tiple polyadenylation sites (poly(A) sites) [3, 4]. As post-
transcriptional regulation events, APA contributes ex-
tensively to the diversity of the 3′ untranslated regions
(3′ UTR) that harbor cis-regulatory elements interacting
with RNA-binding proteins and/or microRNAs [5–8].

Through this mechanism, APA has been implicated in
the regulation of mRNA degradation rates, translation
efficiency, transport, and localization [7, 9–11].
Accumulated case studies of specific genes have vali-

dated the important roles of APA in numerous bio-
logical processes including cell differentiation,
tumorigenesis, neuron activation, and cell reprogram-
ming [11–17]. For example, previous studies reported
that several oncogenes in cancer cells exhibit 3′ UTR
shortening [13, 17]. The short 3′ UTR isoform of mRNA
encoding insulin-like growth factor 2 mRNA binding
protein 1 (IGF2BP1) shows increased mRNA stability
and produces a higher abundance of proteins. Moreover,
expressing the short isoform could promote oncogenic
transformation, thereby linking APA with cancer
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development [17]. Another intriguing example is the
Bdnf gene encoding the brain-derived neurotrophic fac-
tor that is subjected to APA and contains two different
3′ UTR isoforms with distinct functions in neurons. The
short Bdnf isoform is restricted to the somata, whereas
the long Bdnf isoform is localized in the dendrites. Mice
lacking the long isoform exhibit deficits in pruning and
enlargement in the dendritic spine and decreased synap-
tic plasticity in hippocampal neurons [18, 19].
To facilitate a deep understanding of APA at a

genome-wide scale, several high-throughput sequencing
techniques have been developed to capture the 3′-end of
mRNAs, such as PAS-seq [20], 3′READS [4], 3′-seq
[21], and PolyA-seq [3]. In addition, several bioinfor-
matic methods have been developed to examine APA
using conventional RNA-seq data, such as DaPars, APA-
trap, and QAPA [13, 22, 23]. Recently, varieties of
single-cell RNA-seq (scRNA-seq) techniques have
emerged as powerful tools that allow us to characterize
the transcriptional landscape at the resolution of individ-
ual cells. Moreover, the amount of scRNA-seq data from
various tissues of different species increases at an unpre-
cedented pace. Among these scRNA-seq protocols, 3′-
tag-based scRNA-seq protocols provide us opportunities
to analyze APA at the single-cell level as they are based
on sequencing of the 3′-end of the RNA molecules.
In this study, we have developed a bioinformatics

framework called SAPAS (Systematic Alternative Polya-
denylation Analysis at Single-cell level) to characterize
the alternative polyadenylation landscape by leveraging
3′-tag-based scRNA-seq data. SAPAS could be utilized
to identify poly(A) sites, quantify APA events, and detect
cell type-specific APA events. To demonstrate the effect-
iveness of our method, multiple lines of evidence were
presented. In addition, we employed SAPAS to profile
the APA landscape of six different GABAergic inter-
neuron types in the mouse cerebral cortex. The results
suggested that APA occurs in a cell type-specific man-
ner. Remarkably, those identified genes with cell type-
specific APA events are related to synaptic vesicle cyc-
ling, neurotransmitter release, ion transport, and cell res-
piration, suggesting that APA is involved in shaping
synaptic communication and neuron identity determin-
ation. Furthermore, we found 3′ UTR of the neuron
type-specific APA genes are significantly enriched for
schizophrenia and intelligence heritability. Finally, we
sought to explore the modality of APA in GABAergic
neurons. Among the cortical interneurons, chandelier
cells (CHCs) are a unique type of GABAergic inter-
neuron with specific spatial and temporal origins, target
the axon initial segment of pyramidal neurons and im-
plicated in brain disorders, including schizophrenia, epi-
lepsy, and autism spectrum disorder [24–26]. The
results of modality analysis showed that the bimodal

APA pattern of Pak3 could demarcate subpopulations of
CHCs that are from different laminar positions. This
study provides insight into the understanding of APA
regulation at the single-cell level and demonstrates a re-
liable computational method for APA analysis using
scRNA-seq data.

Results
3′-tag-based scRNA-seq data could be applied to poly(A)
site identification
Currently available scRNA-seq protocols are developed
from two main strategies, tag-based and full-length. The
tag-based scRNA-seq methods with a designed unique
molecular identifier (UMI) are either 3′-tag- or 5′-tag-
based. It should be mentioned that 3-tag-based scRNA-
seq methods are based on the strategy using oligo-dT
priming to enrich the 3′-ends of transcripts, which are
similar to several widely used high-throughput APA pro-
filing methods. Based on the read coverage of 3′-tag-
based scRNA-seq methods (Fig. 1a), we set out to ex-
plore whether this kind of scRNA-seq data could be ap-
plied to APA analysis.
To address this question, we collected five recently

published 3′-tag-based scRNA-seq datasets, including
two replicated CEL-Seq2 (cell expression by linear amp-
lification and sequencing) datasets (A/B) for mouse em-
bryonic stem cells (mESC), two replicated SCRB-seq
(single-cell RNA barcoding and sequencing) datasets (A/
B) for mESC and a Microwell-seq dataset for HEK293
cell line [27, 28]. In order to accurately evaluate the reli-
ability of scRNA-seq data in poly(A) site identification,
we first need to ensure that 3′-tag scRNA-seq methods
indeed preferentially capture 3′-end of transcripts. We
extracted the coordinates of 3′-ends from all aligned
reads in scRNA-seq data and compared them with
poly(A) sites annotated in two widely used poly(A) data-
bases, including PolyA_DB 3 and GENCODE, respect-
ively (Additional file 1: Fig. S1A-B) [29, 30]. The results
suggested 3′-ends of scRNA-seq reads are enriched adja-
cent to annotated poly(A) sites, although different proto-
cols exhibited distinct cumulative distributions
(Additional file 1: Fig. S1A-B). To further evaluate the
validity of these scRNA-seq data in poly(A) site identifi-
cation, we pooled all aligned reads together and ex-
tracted reads containing poly(A) sequence (poly(A)
reads) as poly(A) reads (see the “Methods” section). Not-
ably, the poly(A) reads coverage decreased sharply
around the annotated poly(A) sites to create peaks that
could be used to infer the coordinates of poly(A) sites
(Fig. 1b, Additional file 1: Fig. S1C-I).
According to these observations in 3′-tag-based

scRNA-seq data, we referred to previous studies [20, 31]
and developed a computational method that aim to de
novo identify poly(A) sites using 3′-tag-based scRNA-
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Fig. 1 (See legend on next page.)
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seq data, regardless of any prior poly(A) sites annotation
(Additional file 1: Fig. S2A). Firstly, we trimmed con-
secutive poly(A) sequences and tagged scRNA-seq reads
into poly(A) and non-poly(A) reads. Then, we could ob-
tain the genomic coordinates of 3′-ends of those tagged
poly(A) reads and count the number of aggregated 3′-
ends on each position from the aligned reads. The sum-
mits of clusters could be regarded as potential poly(A)
sites. As the poly(A) reads may originate from internal
poly(A) regions, we excluded those poly(A) sites adjacent
to consecutive poly(A) sequences that were suspected to
generate from internal priming. By further filtering
those adjacent to annotated poly(A) sites, additional
sites were regarded as novel poly(A) sites (Additional
file 1: Fig. S2A).
Taking advantage of the collected 5 scRNA-seq data-

sets [27, 28], we set out to identify poly(A) sites for each
dataset. To determine how well the poly(A) sites were
identified using scRNA-seq data match annotated
poly(A) sites, we calculate the distances from poly(A)
sites identified using SAPAS to the closet annotated
poly(A) sites for each scRNA-seq dataset. The results
showed that the identified poly(A) sites exhibit a sharp
peak around annotated poly(A) sites within 10 nt, sug-
gesting that SAPAS could accurately identify the exact
positions of annotated poly(A) sites using scRNA-seq
data (Fig. 1c–e, Additional file 1: Fig. S2B-C).
In order to further evaluate the performance of

poly(A) identification using SAPAS on scRNA-seq data,
we conducted motif enrichment analysis on the novel
poly(A) sites identified in each scRNA-seq dataset. The
poly(A) signals are required for pre-mRNA cleavage and
polyadenylation and usually found at approximately 15–
30 nt upstream of the poly(A) sites. The canonical
poly(A) signal is AAUAAA, which is predominant with
greater than 50% frequency [3, 32]. The results of motif
enrichment showed that the canonical poly(A) signal
(AAUAAA) is top significantly enriched for each

scRNA-seq dataset (Fig. 1f). Furthermore, the position-
dependent frequency of the canonical poly(A) signal also
illustrated that the novel poly(A) sites have the canonical
poly(A) signal at the expected position, ~ 21 nucleotides
upstream of poly(A) sites (Fig. 1g). These observations
demonstrated the authenticity of poly(A) sites identified
by SAPAS, indicating SAPAS could accurately identify
the exact position of poly(A) sites. Additionally, two ex-
amples of novel identified poly(A) sites in mESC were
shown in Additional file 1: Fig. S2D-E.
Moreover, novel intronic poly(A) site could also be

identified using SAPAS. For example, a novel poly(A)
sites (chr2:169686455-169686456:-) located in the first
intron of coiled-coil domain containing 173 (CCDC173)
was identified in the HEK293 scRNA-seq data, indicating
that a truncated coding sequence was used in HEK293
cells (Fig. 1h). In addition, this intronic poly(A) site was
also supported by bulk RNA-seq reads, but it was not re-
ported in PolyA_DB 3 and GENCODE before [29, 30].
Interestingly, the intronic poly(A) site was used in a cell
type-specific manner that it was mainly expressed in
HEK293 cells that originally derived from human embry-
onic kidney cells, but other cells prefer to use the distal
poly(A) sites, such as human GM12878 lymphoblastoid
cells and HepG2 liver cancer cells (Fig. 1h). Together,
these results demonstrated that 3′-tag-based scRNA-seq
data could be used to identify poly(A) sites, allowing fur-
ther exploration of APA in different cell types.

Quantification of APA using 3′-tag-based scRNA-seq data
The pooled aligned reads of 3′-tag-based scRNA-seq
data were clustered using the parametric clustering algo-
rithm implemented in paraclu to identify the peak re-
gions [33]. Combining defined poly(A) sites, we could
assign peak regions to poly(A) sites for further quantifi-
cation of APA. Once the genomic intervals of all poly(A)
sites’ peak regions were identified, the transcript-level
expression of distinct poly(A) isoforms could be

(See figure on previous page.)
Fig. 1 Identification of poly(A) sites using 3′-tag-based scRNA-seq data. a The schematic diagram depicts the read distribution along the gene
model for different scRNA-seq methods, including the tag-based methods, including STRT-seq and CEL-seq, and the full transcript method, such
as Smart-seq2. b The plots depict the read coverage of poly(A) reads around poly(A) sites annotated in GENCODE, including canonical and
variants, in different scRNA-seq datasets, including CEL-Seq2/A dataset, SCRB-seq/A dataset, and Microwell-seq dataset. The upper panels depict
the average read coverage of poly(A) reads around poly(A) sites. Y-axis: the average read coverage; X-axis: the distance from upstream 100 nt to
downstream 100 nt to annotated poly(A) sites. The lower panels show the read coverage for each poly(A) site using heatmaps. Additional
examples are shown in Additional file 1: Fig. S1C-I. c–e Comparisons between identified poly(A) sites and annotated poly(A) sites. The Y-axis
represents the count of poly(A) sites, and the X-axis represent the distance between the identified poly(A) sites and the closest annotated poly(A)
sites, c is for CEL-seq2/A dataset, d is for SCRB-seq/A dataset, and e is for Microwell-seq dataset. Additional examples are shown in Additional file
1: Fig. S2B, C. f Canonical poly(A) motif (AAUAAA) enrichments for novel poly(A) sites identified using five different scRNA-seq datasets, including
CEL-seq2/A, CEL-seq2/B, SCRB-seq/A, SCRB-seq/B, and Microwell-seq. P-values and percentage of targets are shown. g The line plots illustrate the
canonical poly(A) signal (AAUAAA) distribution from upstream 50 nt to downstream 50 nt to novel poly(A) sites. Y-axis: the canonical poly(A)
signal (AAUAAA) frequency; X-axis: the distance from upstream 50 nt to downstream 50 nt to novel poly(A) sites. h The IGV plot depicts the read
distributions on human CCDC173 gene. The upper three tracks represent the bulk RNA-seq read distributions of Gm12878, HepG2, and HEK293
cell line. The bottom track represents pooled scRNA-seq read distributions of HEK293 cell line. The identified novel poly(A) site is marked by the
dashed red line
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estimated by counting reads aligned to each poly(A)
site’s peak region for each single cell. Furthermore, to
quantify the relative usage for each poly(A) site, we cal-
culated the relative expression level of a specific poly(A)
site isoform with respect to the total expression level of
all poly(A) isoforms of the gene. Through this way, we
could profile the poly(A) site usage at the single-cell
level (Fig. 2a).

To assess the reproducibility and reliability of quantifi-
cation of APA using SAPAS, we calculated the pairwise
Pearson correlations of gene expression level and
poly(A) isoform expression level across all single cells
for each scRNA-seq dataset, respectively (Fig. 2b, c,
Additional file 1: Fig. S3A-D, Additional file 1: Fig. S4A-
D). The pairwise Pearson correlations of gene expression
level were highly correlated that could reach about 0.8

Fig. 2 Quantification of poly(A) site usage using 3′-tag-based scRNA-seq data. a Schematic illustration of SAPAS to quantify poly(A) site usage
using 3′-tag-based scRNA-seq data. b The smooth scatterplots pairwise comparing gene expression level of four randomly selected single cells
from SCRB-seq/A dataset. The lower left indicates the Pearson correlation coefficients (R) for each comparison. c The smooth scatterplots pairwise
comparing poly(A) isoform expression level of 4 randomly selected single cells from SCRB-seq/A dataset. The lower left indicates the Pearson
correlation coefficients (R) for each comparison. d The boxplots depict the distributions of pairwise Pearson correlation coefficients of the
expression level estimated in five different scRNA-seq datasets. The upper boxplot is for gene expression level and the lower boxplot is for
poly(A) isoform expression level. Different datasets are represented in different colors as shown. e The boxplots depict the distributions of
Pearson correlation coefficients of expression level between each single cell and pooled single-cell data. The upper boxplot is for gene expression
level and the lower boxplot is for poly(A) isoform expression level. Different datasets are represented in different colors as shown
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and the correlations dropped slightly in isoform expres-
sion levels (Fig. 2d), suggesting that the estimation of
poly(A) isoform expression level is reproducible as gene
level, despite the fact that poly(A) isoforms only con-
tained a fraction of the reads. One major challenge of
scRNA-seq data analysis is the presence of dropout
events where one gene is observed at a moderate or even
high expression level in one cell but undetected in
another cell, which is due to low amounts of RNA
sequenced for each single cell [34]. To assess the effect
of dropout events on quantification of APA, we calcu-
lated the Pearson correlations of gene expression level
and poly(A) isoform expression level between each indi-
vidual cell and artificial bulk sample constructed by sim-
ply summing the single-cell read counts, respectively
(Fig. 2e). The marginal difference of Pearson correlations
of poly(A) isoform expression level and gene expression
level demonstrated that the dropout events do not
introduce too many additional biases which could dra-
matically affect the accuracy of quantification of APA
(Fig. 2e).
To further illustrate the reliability of SAPAS, we also

compared the APA profiles estimated from scRNA-seq
data to those computed using bulk 3′-end sequencing
data in HEK293 cells [21]. Despite the fact that the
scRNA-seq data and bulk 3′-seq data were generated in

different labs and using obviously different sequencing
technologies, the estimated poly(A) isoform expression
level correlated well between scRNA-seq data and bulk
3′-seq data (Pearson correlation R = 0.67, P < 2.2 ×
10−16) (Additional file 1: Fig. S5A, B). In addition, to fur-
ther demonstrate the performance of SAPAS on quanti-
fying APA at the single-cell level, we applied SAPAS and
other existing bioinformatics methods developed to
analyze APA dynamics using conventional RNA-seq
data, such as Dapars [13] and QAPA [22], to conduct
benchmarking analysis on a CEL-seq2 dataset of periph-
eral blood mononuclear cells (PBMCs) [35]. The results
of t-distributed stochastic neighbor embedding (t-SNE)
showed that the single-cell APA profiles estimated by
SAPAS could clearly separate single cells into different
cell-type clusters, including B cells, T cells, monocytes,
and megakaryocytes (Fig. 3a). Besides, several cell sub-
types could also be revealed by single-cell APA profiles,
such as CD4+ T cell and cytotoxic T cell (Fig. 3a). How-
ever, the single-cell APA profiles estimated using Dapars
and QAPA could only cluster one or two cell types and
failed to distinguish others (Fig. 3b, c). We also con-
ducted silhouette analysis to quantitatively evaluate the
clustering results. The silhouette width is widely used to
quantitatively assess the quality of the clustering results.
The observations showed that the silhouette widths of

Fig. 3 Benchmarking analysis of SAPAS on quantification of APA at single-cell level. a–c The t-SNE plots of single-cell APA profiles estimated by
SAPAS (a), QAPA (b), and Dapars (c) on a benchmarking scRNA-seq dataset of PBMCs. The cell types are labeled using different colors as shown,
including B cell, CD14+ monocyte, CD16+ monocyte, CD4+ monocyte, cytotoxic T cell, megakaryocyte, and natural killer cell. d–f The bar charts
show the silhouette analysis of clustering results from single-cell APA profiles estimated by SAPAS (d), QAPA (e), and Dapars (f). The Y-axis
represents the silhouette width, and the X-axis represents single cells ordered by corresponding silhouette width decreasingly by cell types
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SAPAS are higher than Dapars and QAPA, indicating
SAPAS outperform Dapars and QAPA on quantifying
APA at the single-cell level using 3′-tag-based scRNA-
seq data (Fig. 3d–f).

SAPAS enables identification of novel poly(A) sites in
GABAergic interneurons
We next employed SAPAS to study the genome-wide
landscape of APA in phenotype-characterized GABAer-
gic interneurons, using recently published 3′-tag-based
scRNA-seq data generated from six non-overlapping
GABAergic subpopulations with anatomical, physio-
logical, and molecular evidence [36]. These GABAergic
neurons include 64 CCK-positive basket cells (CCKC)
[37], 132 chandelier cells (CHC) that innervate the axon
initial segment of pyramidal neurons [25], 63
interneuron-selective cells (ISC) [38], 136 long-range-
projecting GABAergic neurons (LPC) [39], 62 Martinotti
cells (MNC) [40], and 127 fast-spiking parvalbumin-
positive interneurons (PVBC) [41]. These individual neu-
rons were manually sorted from micro-dissected motor
and somatosensory cortexes of 6-week-old mice [36].
To systematically explore APA in these genetically la-

beled and phenotypically characterized GABAergic neu-
rons, we first applied SAPAS to identify novel poly(A)
sites for each GABAergic neuron type (Additional file 1:
Fig. S6). As a result, several novel poly(A) sites were
identified in each subtype (1,356 in CCKC, 1,016 in
CHC, 620 in ISC, 961 in LPC, 674 in MNC, and 905 in
PVBC, Additional file 1: Fig. S7A). Combining the novel
poly(A) sites of each GABAergic neuron type, we
altogether identified 3777 novel poly(A) sites in these
GABAergic neurons. Among these combined novel
poly(A) sites, 121 poly(A) sites were discovered in all 6
GABAergic neuron types (Additional file 1: Fig. S7A).
Further motif analysis showed that the canonical poly(A)
signal (AAUAAA) is top significantly enriched for each
GABAergic neuron type (Additional file 1: Fig. S7B) and
located at the expected position, ~ 21 nucleotides up-
stream of poly(A) sites, which is similar to the annotated
poly(A) sites (Additional file 1: Fig. S7C). These observa-
tions demonstrated the reliability of these poly(A) sites
in GABAergic neurons identified by SAPAS. As an ex-
ample, across all GABAergic neuron types, a previously
unannotated poly(A) site was identified in the 3′ UTR of
the gene Ran, coding for a small GTP-binding protein
that plays fundamental roles in regulating the transloca-
tion into and out of the cell nucleus [42] (Additional file
1: Fig. S7D). In addition, the canonical poly(A) motif
(AAUAAA) was found ~ 20 nucleotides upstream of the
poly(A) site (Additional file 1: Fig. S7D). Furthermore, to
explore the potential underlying biological function of
these novel poly(A) sites, we performed Gene Ontology
(GO) enrichment analysis to assess whether these genes

with novel poly(A) sites belong to specific GO terms.
The enrichment results revealed that the novel poly(A)
sites identified in different GABAergic neuron types are
enriched for genes with synaptic communication-
associated GO terms, such as presynaptic membrane,
postsynaptic membrane, and axon part (Additional file
1: Fig. S8).

APA profiles could be used to classify different GABAergic
neuron types
Given that APA is known to be involved in numerous bio-
logical processes including development, cell differenti-
ation, cell proliferation, and cell reprogramming [11–17],
we next sought to investigate whether APA profiles could
be used to determine GABAergic neuron identity. To ad-
dress this question, we employed SAPAS to compute
poly(A) site usage for all six different GABAergic neuron
types. Taking the clustering result using gene expression
level as reference, the t-SNE plots demonstrated that both
poly(A) isoform expression and poly(A) site usage could
also be used to separate different GABAergic neuron types
clearly [43] (Additional file 1: Fig. S9).
Furthermore, in order to detect the cell type-specific

APA events of GABAergic neuron types, we imple-
mented a supervised machine learning-based method in
SAPAS (Fig. 4a). The basic rationale was that single cell
of the same cell type should exhibit a similar APA pat-
tern for each gene. For each gene, we first calculate the
similarity between all pairs of single cells based on the
poly(A) site usage of this gene. In contrast to gene ex-
pression level, the poly(A) sites usage of one gene are
not scalar, but vector. Thus, we used the Hellinger dis-
tance [44] commonly used to measure the similarity of
two probability distributions to measure the similarity of
cell pairs and construct the cell-to-cell similarity net-
work. Next, we made use of the cross-validation strategy
to randomly select some single cells as test set and
others are training set. Then, we could predict cell types
of the held-out test set by using a neighbor-voting algo-
rithm based on the predefined cell-to-cell similarity net-
work. Thus, the performance (area under the receiver
operating characteristic (AUROC)) of separating one cell
type from others using poly(A) site usage was calculated
as cell-type specificity of APA events, and gene set
enrichment analysis (GSEA) could be applied based on
the AUROC ranks to probe potential functional associa-
tions (Fig. 4a).
Next, we have calculated the cell-type specificity of

APA events in the GABAergic neuron dataset, and 4269
genes with multiple poly(A) sites were tested (Fig. 4b,
Additional file 1: Fig. S10). In addition, we also per-
formed differential usage analysis using one-versus-rest
scheme for each GABAergic neuron type to detect sig-
nificantly differential used poly(A) sites by constructing
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Fig. 4 (See legend on next page.)
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artificial bulk data from single-cell data. The observa-
tions showed that the genes with significantly differential
used poly(A) sites rank top on AUROC in each neuron
type (Additional file 1: Fig. S10). By setting a threshold
on AUROC (AUROC > 0.8), we could define a set of
genes with cell type-specific APA events for each neuron
type. Several genes with cell type-specific APA events
were shown in Fig. 4c, d. For example, the gene coding
for Calmodulin 1 (Calm1), a key integrator of calcium
signaling that is involved in guiding axon projections to
create connections with other neurons or tissues [45, 46],
predominantly uses the distal poly(A) site (chr12:
100209791:+) in PVBCs compared with other GABAergic
neuron types.
Furthermore, we performed GSEA to assess whether

genes with cell type-specific APA events belong to spe-
cific biological functions or pathways. The results
showed that those genes with higher cell-type specificity
were significantly enriched in synaptic connectivity and
input-output signaling-related function categories, in-
cluding synaptic vesicle release machinery, cell adhesion
molecules, ion channels, and intracellular receptor sig-
naling (Fig. 4e). In addition, GSEA using cellular compo-
nent gene sets suggested that these genes encode
proteins that localize along or close to the cell or synap-
tic membrane, such as presynapse, postsynapse, and
vesicle membrane (Additional file 1: Fig. S11). Collect-
ively, these observations suggested that the anatomical
and physiological differences across different GABAergic
neuron types may in part be mediated by APA of genes
involved in synaptic communication.
Given that the GABAergic neuronal identity is re-

ported to be encoded in functionally congruent gene ex-
pression [36], we next sought to investigate whether the
cell-type specificity of APA events is primarily due to
gene expression specificity. To address this question, we
applied the EWCE method to calculate the cell-type ex-
pression specificity for each gene in each GABAergic
neuron type (Additional file 1: Fig. S12), which is a
metric that represents the proportion of expression of
one gene found specifically in one cell type compared to
all cell types [47, 48]. We plotted the gene expression
specificity of gene sets with cell type-specific APA events
for each GABAergic neuron type (Additional file 1: Fig.

S13). The results showed that the large majority (> 80%)
of genes with cell type-specific APA do not display high
cell-type expression specificity, suggesting that the APA
profiles difference could be another source of heterogen-
eity across different GABAergic neuron types, partially
independent of gene expression level.

Cell type-specific APA events alter 3′ UTR length and CDS
of genes
In addition to 3′ UTR length difference, the coding se-
quence (CDS) could also be affected by APA located in
upstream introns and internal exons in about 40% of
mammalian genes [49, 50]. To explore the biological
functions of cell type-specific APA events, we assessed
potential 3′ UTR or CDS changes due to cell type-
specific APA events for each GABAergic neuron type.
Most cell type-specific APA events resulted in 3′ UTR
length difference only, without impact on CDS. For ex-
ample, Syt7 coding for Synaptotagmin-7, brain-specific
calcium-dependent proteins which have been shown to
regulate synaptic exocytosis and neurotransmitter re-
lease [51, 52], predominantly used the distal poly(A) sites
in ISC compared to other types of GABAergic neurons
(Fig. 5a). Conversely, Itsn1, a multidomain scaffolding
and adaptor protein involved in the synaptic vesicle, pre-
dominantly expressed the short 3′ UTR APA isoforms
in ISC, whereas other GABAergic neurons expressed
long 3′ UTR APA isoforms (Fig. 5b). In addition, cell
type-specific APA events with impact on the CDS were
also found in different GABAergic neuron types. For in-
stance, Rufy3, a neuronally enriched protein which has
been implicated in regulating the generation of neuronal
polarity formation and axon growth [53, 54], mostly
expressed the full-length isoform in ISC and MNC,
whereas an intronic poly(A) site of Rufy3 was predomin-
antly used in other types of GABAergic neurons, result-
ing in the APA isoform with a truncated CDS (Fig. 5c).
In further, we found that the truncated protein of Rufy3
generated by intronic polyadenylation lacks the FYVE-
related domain compared to the full-length protein (Fig.
5d). Notably, the FYVE-related domain is an evolution-
arily conserved domain which could bind with high spe-
cificity to phosphatidylinositol 3-phosphate (PI(3)P) to
localize proteins to endosomes [55, 56]. In addition, a

(See figure on previous page.)
Fig. 4 Cell type-specific APA events across GABAergic neurons. a Schematic overview of the machine learning-based method in SAPAS used to
identify cell type-specific APA events. b The histogram depicts the distribution of AUROCs of all genes on classifying PVBC neurons from other
GABAergic neuron types. The Y-axis represents the counts, and the X-axis represents the AUROC. c The t-SNE plot of six different GABAergic
neuron types on gene expression level. The neuron types are labeled using different colors as shown. d The t-SNE plots depict the signal
distributions of the poly(A) site usage of identified cell type-specific APA events for different GABAergic neuron types (Calm1 for PVBC, Kif3c for
MNC, Map4 for LPC, Pcmt1 for ISC, Ube2d3 for CHC, and Naa50 for CCKC). The blue gradient represents the poly(A) site usage as indicated. e
Synaptic communication-related GO terms (biological process) enriched in genes with cell type-specific APA events for each GABAergic neuron
type. The normalized enrichment scores (NES) calculated by GSEA are shown by red gradient, and the P-values are shown by circle size
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recent study demonstrated that Rufy3 is essential for
caspase-mediated axon degeneration [57]. Collectively,
the result suggested that the intracellular localization

and biological function of Rufy3 protein may be altered
by APA in different GABAergic neuron types. In
addition, to further illustrate the cell-type specificity of

Fig. 5 3′ UTR and CDS altered by cell type-specific APA events. a, b Examples of cell type-specific APA events of ISC that could alter the 3′ UTR
length. Pooled scRNA-seq read coverages around poly(A) sites are displayed using IGV. Each row represents a specific GABAergic neuron type. a
distal poly(A) site of Syt7 is predominantly used in ISC, leading to a longer 3′ UTR. b proximal poly(A) site of Itsn1 is predominantly used in ISC,
leading to a shorter 3′ UTR. c An example of cell type-specific APA events that could alter CDS. The intronic poly(A) site located in the 12th intron
of Rufy3 is predominantly used in CCKC, CHC, LPC, and PVBC, leading to a truncated CDS, but ISC and MNC prefer to use the distal poly(A) site.
Pooled scRNA-seq read coverages around poly(A) sites of Rufy3 are displayed, and each row represents a specific GABAergic neuron type. d
Difference between the protein product generated from full-length and truncated Rufy3 isoforms. The truncated protein of Rufy3 lacks a FYVE-
related domain. e The heatmap depicts the LDSC results of genetic variants associated with brain-related diseases and quantitative traits for each
GABAergic neuron type. The significance of enrichment for the altered regions of cell type-specific APA events is displayed as -log10(P-value)
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these APA events, we collected an independent public
scRNA-seq dataset of mouse neocortex that containing
GABAergic interneurons [58]. This dataset is generated
by Smart-seq2 method which is a full-length scRNA-seq
method. We could extract those single cells with cell
types corresponded to the GABAergic neuron type in
our study (Additional file 1: Fig. S14A, B). Then, we
exploited QAPA, which are suitable for full-length RNA-
seq data, to compute the single-cell APA profiles. The
observations showed that the APA patterns of Syt7,
Itsn1, and Rufy3 among different neuron types are in
agreement with previous results, demonstrating the au-
thenticity of cell type-specific APA events identified by
SAPAS in our study (Additional file 1: Fig. S14C-H).
To further explore the potential functional conse-

quences of altered 3′ UTR or CDS of APA, we sought to
intersect GWAS signals with cell type-specific APA
events with the goal of systematically linking particular
diseases or traits to APA. Given a large faction of APA
events are quite well conserved between human and
mouse [29], we applied the linkage disequilibrium (LD)
score regression (LDSC) method to quantify the enrich-
ment of heritability for human traits and diseases within
altered 3′ UTR or CDS of cell type-specific APA events
[59]. To do so, we first lifted over human SNPs to ortho-
logous coordinates in mouse genome and then calcu-
lated the enrichment of heritability for 15 brain-related
diseases and quantitative traits, including Alzheimer’s
disease, amyotrophic lateral sclerosis (ALS), multiple
sclerosis (MS), epilepsy, Tourette syndrome, autism, de-
pression, bipolar disorder, attention deficit hyperactivity
disorder (ADHD), schizophrenia, educational attain-
ment, intelligence, insomnia, neuroticism, and risky be-
havior (Fig. 5e). As a result, we observed statistically
significant enrichments for heritability for psychiatric
disorders and brain traits, such as schizophrenia, ADHD,
bipolar disorder, and educational attainment (Fig. 5e). In
previous studies, converging evidence suggests that
dysfunction of GABAergic interneurons is critical for
basic neural circuit function whose dysfunction is linked
to the pathophysiology of several psychiatric diseases
[60, 61]. Taken together, these results suggested that cell
type-specific APA events were involved in defining the
physiological properties of GABAergic neurons.

Bimodality of APA could reveal subpopulations of
chandelier cells
Quantification of APA at the single-cell level provides
us an opportunity to study the cell-to-cell variability
of APA. To categorize the distributions of poly(A)
site usage at the single-cell level, we implemented a
method to classify each gene into one of five modal-
ities, including (1) distal, where the distal poly(A)
sites were predominantly used in the majority of cells;

(2) proximal, where the proximal poly(A) sites were
predominantly used in most cells; (3) bimodal, where
two subpopulations of cells with either distal poly(A)
sites or proximal poly(A) sites were used; (4) middle,
where the moderate usage of distal poly(A) sites can
be observed; and (5) multimodal, where distal poly(A)
site usages were random from 0 to 1 (Fig. 6a). We
binned poly(A) site usage into [0~1/3, 1/3~2/3, 2/
3~1] and set binned distributions for different modal-
ities as reference (Fig. 6a). Through computing the
distance measured by Jensen-Shannon divergence be-
tween each gene’s binned distribution of distal
poly(A) site usage and reference binned distributions,
the modality of reference binned distribution with the
smallest distance was assigned. Thus, we designated
genes into different modalities for each GABAergic
neuron type (Fig. 6a). For instance, the gene Tardbp
with critical roles in splicing in neurons exhibits the
middle modality of distal poly(A) site usage in CCKC.
In all six GABAergic neuron types, genes within distal
modality account for more than 50% of all genes ana-
lyzed (Fig. 6b, c), which lines up with previous studies
that distal poly(A) sites are favored in nervous sys-
tems, resulting in isoforms with longer 3′ UTRs [62,
63]. Besides, genes that exhibit proximal modality ac-
count for ~ 25% of all genes, whereas bimodality and
multimodality account for ~ 10% and ~ 15%, respect-
ively (Fig. 6b, c).
As genes within bimodality exhibited higher variability

of distal poly(A) site usage compared with other modal-
ities (Additional file 1: Fig. S15), we surmised that they
could be used to identify subpopulations from a specific
GABAergic neuron type. As an example, we observed
that the gene Pak3 (p21-activating kinase 3) exhibited
bimodality of distal poly(A) site usage in CHCs (Fig. 6d,
e). Pak3 is a serine/threonine kinase preferentially
expressed in neurons that functions as a downstream ef-
fector of the Rho family of GTPase and plays a critical
role in regulating neurite growth, as well as synapse for-
mation and plasticity [64–66]. CHCs could be separated
into two groups (Group1 and Group2) by distal poly(A)
site usage of Pak3 (Fig. 6f). In addition, we identified
genes that top correlated and anticorrelated with distal
poly(A) site usage of Pak3, which also clustered the
CHCs into two groups (Fig. 6f). We observed that the
distal poly(A) site was predominantly used in Group2
CHCs compared to Group1 CHCs (Fig. 6f, g). Notably,
we found that all of the Group1 CHCs were obtained
from deeper layers (L5/6), whereas Group2 CHCs were
from upper layers (L2/3) (Fig. 6h), which was consistent
with previous studies showing CHCs in distinct layers
are different subgroups that are recruited by distinct cor-
tical inputs and regulate different populations of pyram-
idal neurons [25]. Besides, several additional examples
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with the potential to subtype GABAergic neurons were
also found, such as Ythdf3, Dicer1, Efr3a, and Cbx5
(Additional file 1: Fig. S16). Collectively, these results
demonstrated that the modalities estimated from quanti-
fication of APA at the single-cell level provide us an
additional layer of information to reveal cell
subpopulations.

Discussion
In this study, we presented a computational approach,
SAPAS, to conduct APA analysis using 3′-tag-based
scRNA-seq data. First, making use of several published

3′-tag-based scRNA-seq datasets utilizing different pro-
tocols in different cell lines, we have provided multiple
lines of evidence to reveal the reliability and validity of
single-cell APA analysis using SAPAS. These results
demonstrated the potential of using scRNA-seq data to
characterize APA, although these data were intentionally
generated to quantify gene expression level at a single-
cell level. Furthermore, we have applied SAPAS to a
comprehensive scRNA-seq dataset of six different
GABAergic neuron types. From the dataset, 3777
poly(A) sites not annotated before were identified to ex-
pand the poly(A) site repository of the mouse. Moreover,

Fig. 6 Modality of poly(A) site usage in GABAergic neurons. a The distributions of poly(A) site usage for five different modalities, including distal,
proximal, middle, bimodal, and multimodal. The leftmost column shows the reference distributions for modality assignment. Examples of genes
with different modalities in CCKC, CHC, ISC, LPC, MNC, and PVBC are shown. B, C The table (b) depicts the numbers of genes with different
modalities for each GABAergic neuron type. Accordingly, the stacked bar chart in c depicts the proportion of genes with different modalities. d
The violin plots show the distributions of distal poly(A) site usage of Pak3 in different GABAergic neuron types. e The violin plots show the
distribution of Pak3 gene expression level in different GABAergic neuron types. f Bimodality of distal poly(A) site usage of Pak3 could reveal
different subpopulations of CHCs. The heatmap depicts the genes top correlated with distal poly(A) site usage of Pak3 cluster CHCs into two
groups (Group1 vs Group2). The columns represent CHC single cells, and the rows represent correlated genes. The gradient blue to red
represents gene expression level in log2(uTPM + 1). The gradient green represents distal poly(A) site usage of Pak3. g The violin plot shows the
distributions of distal poly(A) site usage of Pak3 in Group1 and Group2 CHCs. h The stacked bar chart depicts the proportions of Group1 and
Group2 single cells of CHCs in upper (L2/3) and deeper (L5/6) cortical layers. NA is for those single cells in which poly(A) site usage of Pak3 are
not detected
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based on the quantification of APA at the single-cell
level, we discovered that the poly(A) site usage exhibits a
cell type-specific manner. To better understand APA in
GABAergic neurons, a machine learning-based method
in SAPAS was used to identify cell type-specific APA
events for each neuron type. GSEA enabled us to dis-
cover that these cell type-specific APA events are
enriched for genes related to synaptic architecture and
communications. Further integrative analysis with
GWAS data demonstrated that 3′ UTR or CDS differ-
ences derived from cell type-specific APA events were
involved in regulating the physiological function of
GABAergic neurons. Finally, taking advantage of single-
cell methods, we could classify APA patterns into five
categories, including distal, proximal, middle, bimodal,
and multimodal. As demonstrated in this study, the bi-
modality of APA at the single-cell level could demarcate
cell subpopulations.
An inherent limitation of SAPAS in detecting novel

poly(A) sites using 3′-tag-based scRNA-seq data is
that it could lead to the identification of artifactual
poly(A) sites due to internal priming events. 3′-tag-
based scRNA-seq methods have relied on priming
with oligo-dT containing primers for library construc-
tion. However, the oligo-dT priming could occur in
internal homo-polymeric stretches of adenines, lead-
ing to the identification of artifactual poly(A) sites.
To address this question, we have applied a heuristic
filters method to removing potential internal priming
events based on the arbitrary cutoff of the number of
adenines in the genome sequences. However, this
could lead to unavoidably excluding some true
poly(A) sites or including some artifactual poly(A)
sites. In addition, we could integrate a machine-
learning method that utilizing more sequence features
around poly(A) sites to exclude internal priming
events, in order to further increase the accuracy of
SAPAS in the identification of poly(A) sites. Another
limitation of SAPAS is that the accuracy of quantifi-
cation of APA is influenced by sequencing depth of
scRNA-seq libraries. If the sequencing depth of
scRNA-seq libraries is too low, the poly(A) isoforms
may not be sampled adequately, leading to inaccurate
quantification of APA at the single-cell level. There-
fore, we have to filter those single cells with low se-
quencing depth and could only capture APA profiles
for genes with enough UMI counts but not for genes
with low abundance.
By applying SAPAS to the scRNA-seq data of

GABAergic neurons, a comparison of APA profiles of
different GABAergic neuron types reveals cell type-
specific APA events. Through GSEA, we observed en-
richments for synaptic communication-related genes
among those genes with cell type-specific APA events,

suggesting another layer of regulation of neuronal
identities and properties. This study further discov-
ered that cell type-specific APA events could not only
alter 3′ UTR, which potentially affect miRNA- or
RBP-based regulation, but also alter the coding se-
quence, leading to different protein products. Further-
more, to bridge the gap between cell type-specific
APA patterns and biological functions, we combined
the GWAS data to calculate the enrichment of herit-
ability for brain-related diseases and traits. The obser-
vations showed that the altered gene regions by cell
type-specific APA were significantly associated with
several psychiatric diseases, such as schizophrenia,
ADHD, and bipolar disorder, suggesting potential
links between APA and psychiatric-related functions.
Besides, the cell type-specific APA were also associ-
ated with several cognitive traits, such as educational
attainment. These results are in agreement with previ-
ous studies that GABAergic neurons are implicated in
cognitive functions. GABAergic interneurons are the
main inhibitory neurons that modulate excitatory sig-
nals, which are critical to cognitive function-related
neural oscillation and information integration and
processing [67–69]. Dysfunctional GABAergic activity
could disrupt the excitatory/inhibitory balance in the
cortex, leading to impaired neural oscillations under-
lying cognitive dysfunction [70]. These observations
raised the possibility that APA events are implicated
in cell identity of GABAergic neurons and play im-
portant roles in neural circuit formation. However,
the underlying mechanisms of these APA events in
cellular properties or function maintenance should be
further experimentally validated in the future.
Finally, the scRNA-seq data of GABAergic neurons

provides us an opportunity to assess the cell-to-cell mo-
dality of APA for each neuron type. The results showed
that the distal modality is the predominant APA pattern
in different GABAergic neurons, which is consistent
with previous reports that long 3′ UTRs are favored in
neurons [62, 63]. Interestingly, we found that the bi-
modal APA patterns of several genes could be used to
subtype GABAergic neuron types. For instance, we have
shown that Pak3 exhibits a bimodal APA pattern in
CHCs, which could be used to classify CHCs into two
groups from different laminar positions, upper and dee-
per layers. Therefore, further studies of these results
could expand our understanding of the molecular gen-
etic basis of GABAergic neuron types.

Conclusions
In this study, we developed and applied SAPAS, a new
method that quantitatively infers APA at the single-cell
level from scRNA-seq data. Application of SAPAS re-
veals cell type-specific APA events across different
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GABAergic neuron types. Significant enrichments of
heritability for several psychiatric disorders and brain
traits were observed in cell type-specific APA events.
Also, as demonstrated in this study, the bimodal APA
events could demarcate cell subpopulations. SAPAS thus
enabled systematic APA characterization at the single-
cell level, expanding our understanding of APA by lever-
aging the wealth of existing scRNA-seq data.

Methods
Systematic Alternative Polyadenylation Analysis at Single-
cell level (SAPAS)
Data preprocessing of 3′-tag-based scRNA-seq data
For each 3′-tag-based scRNA-seq dataset, we first ex-
tracted the cell barcode and UMI from read1 and added
them to read name to label the read2. Then, the labeled
read2 were processed by trimming consecutive poly(A)s
(A = 8), and those trimmed reads shorter than 20 bp
were discarded. Besides, the “polyA” or “non-polyA” tag
was added to each read name based on whether con-
secutive poly(A) located in the read sequence. Then,
these processed reads were aligned to the reference gen-
ome using HISAT2 with default settings [71]. The refer-
ence genomes are downloaded from ENSEMBL,
including the GRCh38 (hg38) for humans and the
GRCm38 (mm10) for mice. Uniquely mapped reads
were extracted, and PCR duplicates were removed using
the cell barcode, UMI, and the aligned read end coordin-
ate. Finally, the aligned reads could be split to each sin-
gle cell in bam format by demultiplexing reads using the
cell barcode.

Identification of poly(A) sites using scRNA-seq data
For each cell type, we pooled the aligned reads to-
gether and retrieved poly(A)-containing reads based
on the “polyA” tags in read name. From these
poly(A)-containing reads, those potential internal
primed reads were removed using a heuristic
method that reads with six or more consecutive ad-
enines in the 20 bp immediately downstream from
the reads’ end in the genomic sequence. Then, we
got the 3′-end for each filtered poly(A)-containing
read and retained those 3′-ends located in 3′ UTR
regions defined from GENCODE annotations for
human and mouse genes (GENCODE releases v28
and vM16, respectively) as poly(A) tags [30]. To call
the poly(A) site, these poly(A) tags located within
short distance (20 bp) of each other were clustered
using distance clustering algorithm. The poly(A) tag
cluster regions were further filtered by setting a
threshold on normalized poly(A) tag counts. Finally,
the summits of the filtered cluster regions were
assigned as poly(A) sites.

Quantification of poly(A) site usage using scRNA-seq data
First, combining the novel identified poly(A) sites and
annotated poly(A) sites defined in polyA_DB 3 [29], we
could compile a comprehensive poly(A) sites set. Then,
the pooled aligned reads of each cell type were clustered
using parametric clustering algorithm to identify peak
regions [33]. The peak regions across different cell types
were merged using bedtools merge [72]. By intersecting
with gene bodies defined from GENCODE annotations,
only peak regions overlapped with gene bodies were
remained for further analysis. The retained peaks regions
could be assigned to previously compiled poly(A) sites
set. Then, using the genomic intervals of peak regions
assigned to poly(A) sites, we could count total reads
aligned to each peak region for each gene at the single-
cell level. Furthermore, to quantify the relative usage of
poly(A) sites, we calculated the relative expression level
of a specific poly(A) site isoform over the total expres-
sion level of all poly(A) isoforms of the gene, defined by

Uig ¼ CigPn

i
Cig

, where g is a given gene, Cig is the UMI

counts of poly(A) isoform i in gene g, and n is the num-
ber of poly(A) isoforms of the gene. To avoid zeros in
the denominator, poly(A) site usage was only calculated
for the genes detected. Through this way, we could pro-
file the poly(A) site usage at the single-cell level for each
scRNA-seq dataset.

Identification of cell type-specific APA events
To measure the cell-type specificity of APA events, we
designed a supervised machine learning-based method.
For each APA gene, we first computed the pairwise simi-
larity of APA to construct the cell-to-cell similarity net-

work. The poly(A) site usage is defined by Uijg ¼ CijgPn

i
Cijg

,

where g is a given gene, j is a given single cell, Cijg is the
UMI counts of poly(A) isoform i of gene g in single cell
j, and n is the number of poly(A) isoforms of the gene.
Because the sum of poly(A) sites usage is equal to one
for any specific gene, a gene with n poly(A) isoforms in
a specific single cell could be represented as a point in a
n-dimensional space, where the coordinates are the
poly(A) site usages. In addition, we could measure the
distance using Hellinger distance between two single
cells for any specific gene in this n-dimensional space.
Thus, the Hellinger distance between single cell j and k

is defined by : djkg ¼ 1ffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i ð
ffiffiffiffiffiffiffiffi
Uijg

p
−

ffiffiffiffiffiffiffiffiffi
Uikg

p Þ2
q

, and the

similarity between single cell j and k is defined by : Sjkg =
1 − djkg as Hellinger distance is naturally between 0 and
1. Pairwise similarity of all single cells could be calcu-
lated to construct the cell-to-cell similarity network.
Next, we employed the cross-validation strategy to ran-
domly separate all single cells into training and test sets.
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Then a neighbor-voting algorithm was employed to pre-
dict cell types of single cells in test sets based on their
similarity to single cells in training sets. Thus, the mean
AUROC for cross-validation was calculated for each
gene.

Benchmark analysis of SAPAS
To illustrate the performance of SAPAS on quantifying
single-cell APA profiles, we applied SAPAS, DaPars [13],
and QAPA [22] to a CEL-seq2 dataset of PBMCs to con-
duct benchmark analysis [35]. This scRNA-seq dataset was
downloaded from Gene Expression Omnibus (GEO) under
accession number GSE132044 [35]. The single-cell APA
profiles estimated by SAPAS, Dapars, and QAPA were then
used for clustering and visualized by t-SNE. Then, we con-
ducted a silhouette analysis to compute the silhouette width
using the silhouette function of R package cluster.

APA analysis of the scRNA-seq data of GABAergic
neurons
We applied SAPAS to the scRNA-seq data of six different
GABAergic neuron types [36]. Novel poly(A) site sets
were first identified for each neuron type separately. Then,
the final novel poly(A) site set was identified by merging
the novel poly(A) sites form different neuron types using
bedtools merge [72]. Next, SAPAS was used to quantify
poly(A) site usage for each single cell in this scRNA-seq
dataset. Genes were filtered to be detected in at least 10
single cells of a given neuron type for following analyses,
including identification of cell type-specific APA events
and estimation of modality of poly(A) site usage.

Calculation of enrichment of heritability
We adapted the method in Cusanovich et al.’s study [73]
to compute the enrichment of heritability for brain-
related diseases or traits within the altered regions of cell
type-specific APA events. First, we lifted over all the
SNPs used in LDSC software from human genome to
mouse genome (https://github.com/bulik/ldsc) [74]. We
then obtained full summary statistics for GWAS studies
on Alzheimer disease, autism, depression, bipolar dis-
order, schizophrenia, and neuroticism from Broad LD
Hub (https://data.broadinstitute.org/alkesgroup/
sumstats_formatted). Additional summary statistics for
GWAS on multiple sclerosis [75], amyotrophic lateral
sclerosis (ALS) [76], Parkinson’s disease [77], epilepsy
[78], attention deficit hyperactivity disorder (ADHD)
[79], insomnia [80], educational attainment [81],
intelligence [82], and risky behavior [83] were down-
loaded separately. Then, we calculated the enrichments
of heritability within the altered regions of cell type-
specific APA events using LDSC according to the rec-
ommended workflow.

Estimation of modality of poly(A) site usage
For each gene, we divided the distal poly(A) site usage
into three parts [0~1/3, 1/3~2/3, 2/3~1] and counted
the percentage for each part. Taking reference distribu-
tions for five different modalities, including distal, prox-
imal, middle, bimodal, and multimodal (Fig. 6a), we
could calculate Jensen-Shannon divergence between the
percentage and reference distributions [84]. Finally, we
selected the modality of the closest reference distribu-
tion as the modality of the gene’s poly(A) site usage.

Identification of genes that correlate with APA events
To identify the genes that correlate with bimodal APA
events, we first normalized the absolute UMI counts of
each gene to the total unique UMI counts across all
genes in each single cell in order to calculate the unique
transcripts per million (uTPM) as normalized expression
level. Then, we calculated the Pearson correlations be-
tween all genes’ normalized expression level and distal
poly(A) site usage of the given gene. Genes with Pearson
correlations that rank top 50 correlated and anticorre-
lated were regarded as correlated genes. Then, the corre-
lated genes were subsequently used to cluster single cells
by hierarchical clustering method. The heatmap was
plotted using aheatmap function of R package NMF.
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