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In contrast to the western honey bee, Apis mellifera, other honey bee species have been largely neglected despite their im-

portance and diversity. The genetic basis of the evolutionary diversification of honey bees remains largely unknown.

Here, we provide a genome-wide comparison of three honey bee species, each representing one of the three subgenera

of honey bees, namely the dwarf (Apis florea), giant (A. dorsata), and cavity-nesting (A. mellifera) honey bees with bumblebees

as an outgroup. Our analyses resolve the phylogeny of honey bees with the dwarf honey bees diverging first. We find that

evolution of increased eusocial complexity in Apis proceeds via increases in the complexity of gene regulation, which is in

agreement with previous studies. However, this process seems to be related to pathways other than transcriptional control.

Positive selection patterns across Apis reveal a trade-off between maintaining genome stability and generating genetic diver-

sity, with a rapidly evolving piRNA pathway leading to genomes depleted of transposable elements, and a rapidly evolving

DNA repair pathway associated with high recombination rates in all Apis species. Diversification within Apis is accompanied

by positive selection in several genes whose putative functions present candidate mechanisms for lineage-specific adapta-

tions, such as migration, immunity, and nesting behavior.
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How genomes diverge to give rise to organismal diversity remains
one of the most fundamental questions in biology. Comparative
functional genomics has drastically expanded our knowledge on
the relative contributions of genetic novelty and co-option
(Jasper et al. 2015;Warner et al. 2019), structural and regulatory in-
novation (Deplancke et al. 2016), as well as cis- and trans-regula-
tion of gene expression (Green et al. 2019) to phenotypic
diversification. As a consequence, the genotype–phenotype map
is being elucidated at ever-increasing detail (Zhou et al. 2020). In
addition to broad-scale macroevolutionary studies, taxon-specific
comparative genomics is generating novel insights, particularly
with respect to structural genome evolution (Figueiró et al. 2017;
Chavez et al. 2019; Sun et al. 2021).

The evolution of complex insect societies represents one of
the major evolutionary transitions (Maynard Smith and Szath-
máry 1995). Genomic signatures of this transition share few com-
monalities across taxa, except for an increase in gene regulatory
capacity (Gadau et al. 2012; Simola et al. 2013; Terrapon et al.
2014; Kapheim et al. 2015; Harpur et al. 2017; Harrison et al.
2018). In contrast to themajor focus on studying the genomic bas-
es of the origin of sociality and associated traits, the maintenance
and diversification of social traits has received limited attention
(Simola et al. 2013; Jasper et al. 2015; Araujo and Arias 2021; Sun
et al. 2021).

Here, we use a comparative, lineage-specific approach to iden-
tify genetic loci associated with evolutionary adaptations underly-
ing the organization of complex insect societies in the eusocial
honey bee genus Apis. Because of its scientific and practical impor-
tance, thewestern honey bee Apis mellifera (L.) was among the first
metazoans with a completed genome project (Weinstock et al.
2006). It has since served as a model for genomic studies of adap-
tation (Wallberg et al. 2014), invasion (Calfee et al. 2020), and so-
cial traits such as caste differentiation (Chen et al. 2012), division
of labor (Smith et al. 2008), and other social behaviors (Zayed and
Robinson 2012).

In addition to the cavity-nesting A. mellifera and closely relat-
ed species, the genus Apis contains two other lineages: the dwarf
honey bees and giant honey bees (Raffiudin and Crozier 2007).
Although their evolutionary origins are not clear (Kotthoff et al.
2013), all species share a social lifestyle in complex societies with
thousands of workers and a single, polyandrous queen and nest
in vertical wax comb to store food and raise brood (Oldroyd and
Wongsiri 2006). However, the three subgenera show pronounced
differences in body size, colony size, mating behavior, caste diver-
gence, nesting habits, thermoregulatory ability, recruitment danc-
es, and defensive and migratory behaviors (Dyer and Seeley 1991;
Oldroyd and Wongsiri 2006; Koeniger et al. 2010; Hepburn and
Radloff 2011; Rueppell et al. 2011b).

The genetic architecture underlying the diversification of the
Apis lineages remains largely unknown. Intra-specific studies have
addressed the genetic basis of some key social traits, such as worker
ovary size and caste differentiation (Cardoen et al. 2011; Graham
et al. 2011; Chen et al. 2012), dance language (Johnson et al.
2002), and defensive behavior (Hunt et al. 2007; Alaux et al.
2009) inA.mellifera. However, it is unclear towhat extent the iden-
tified genetic mechanisms involved in intra-specific variation can
explain the inter-specific differentiation among Apis species
(Dieckmann et al. 2004). Broad comparisons in Apis (Sarma et al.
2007, 2009) have been hampered by the lack of available genomic
resources in species other than A. mellifera (Weinstock et al. 2006;
Elsik et al. 2014) and the closely related A. cerana (Park et al. 2015),
although the genome of A. dorsata has recently also been pub-

lished (Oppenheim et al. 2020) and targeted analyses have helped
to resolve particular gene families (Helbing et al. 2017).

Here, we present a comprehensive analysis of the molecular
evolution of protein-coding genes across Apis based on homolo-
gous gene sets derived from genomes of all three major honey
bee lineages. At the genome level, we reconstruct the phylogenetic
relationships among the Apis lineages and identify key targets of
positive selection associated with social complexity, ecological
specialization, and chemosensation, elucidating the genomic basis
of evolutionary diversification within honey bees.

Results

Honey bee genomes and phylogenetic inference

We identified all single-copyorthologs between thewesternhoney
beeApis mellifera, the dwarf honey beeA. florea, and the giant hon-
ey beeA. dorsata, with bumblebees as an outgroup. Our analysis in-
cluded the published genomes of A. mellifera (Elsik et al. 2014) and
Bombus impatiens and B. terrestris (Sadd et al. 2015). In addition, we
sequenced, assembled, and annotated the genomes ofA. florea and
A. dorsata. This produced two high-quality genome assemblies of
similar length and GC content (A. dorsata: 230 Mb, N50: 732 kb,
GC: 32.5%;A. florea: 229Mb, N50: 2.86Mb, GC: 34.9%) but differ-
ent contiguity (A. dorsata: size of scaffolds: 200 bp–3.6 Mb, total
count: 4040;A. florea: size of scaffolds: 500 bp–9.6Mb, total count:
6983), likely explained by differences in repetitive sequences (A.
dorsata: 17.5%, 40.4 Mb; A. florea: 14.3%, 32.9 Mb). Although a
newer assembly for A. mellifera has been published since our anal-
ysis (Wallberg et al. 2019) and our sequencing and assembly strat-
egies for A. florea and A. dorsata have been replaced by more
modern approaches (Phillippy 2017), the generated data sets
proved to be informative and appropriate for our subsequent anal-
yses: A high level of gene completeness (A. dorsata: 93.7%,A. florea:
91.9%) was confirmed by a BUSCO analysis (Simão et al. 2015)
with the Hymenoptera lineage data set.

The gene sets for comparison across species (Methods) were of
similar size among all bees (Fig. 1). A total of 3858 genes were pre-
sent in only a single species (2130 inA. florea, 584 inA. dorsata, and
1144 in A. mellifera) and thus were categorized as lineage specific.
Among the 1506 genes identified as homologs in only two species,
570 were shared between A. mellifera and A. dorsata (570), more
than either species with A. florea (386 and 550, respectively).
Among all species, 15,182 genes were shared with 9310 belonging
to single-copy ortholog groups (Fig. 1). The concatenated single-
copy orthologs resulted in an alignment of 4,680,591 amino acids,
which we used to resolve the relationships among the three honey
bee lineages. We recovered a highly supported phylogeny of Apis
with the dwarf honeybees as an outgroup to the other two lineages
(Fig. 1), agreeing with previous work (Raffiudin and Crozier 2007).

Genome-wide patterns of positive selection

To identify positive selection that acted on protein-coding genes
during the evolution of honey bees, we used the adaptive
branch-site random effects likelihood (aBRSEL) method in
Hyphy (Smith et al. 2015; Kosakovsky Pond et al. 2019) on 8115
single-copy orthogroups (Methods). We identified 149 single-
copy orthogroups (1.85%) with signals of positive selection in at
least one of the four branches at a 10% false discovery rate
(FDR). Patterns of positive selection were equally distributed
among the three honey bee species lineages with a proportion of
0.49%–0.60% of all orthogroups tested (Supplemental Tables S1,

Fouks et al.

1204 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on July 26, 2021 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.272310.120/-/DC1
http://genome.cshlp.org/
http://www.cshlpress.com


S2). The basal Apis branch, however, was under positive selection
in only 0.27% of orthogroups, representing a significantly lower
proportion in comparison to the three species branches (χ2 test:
χ2 = 10.48, d.o.f. = 3, P=0.0149). This result was not caused by re-
duced power associated with short branches (Anisimova and
Yang 2007) because the Apis branch had an overall increased
branch length (mean branch length [± standard error] of Apis:
0.37 ±0.02, A. mellifera: 0.06 ±0.0005, A. florea: 0.05 ±0.0004, A.
dorsata: 0.04 ±0.0003; Kruskal–Wallis test: χ2 = 3280, d.o.f. = 3, P<
2.2 ×10−16) and orthogroup test scores were positively correlated
with the length of the tested branches (log-likelihood ratio;
Spearman’s correlation ρ=0.20, P<2.2 ×10−16).

Next, we categorized each orthogroup by its homology with
genes of known function in A. mellifera, to test whether the iden-
tified patterns of positive selection correlated with known func-
tions. Of the 8115 orthogroups included in the analysis, 6719
(82.8%) could be categorized this way, whereas the function of
1396 (17.2%) remained unknown. The proportion of genes with
known (83.1%) and unknown (16.9%) function under positive se-
lection did not differ from the overall distribution (χ2 test: χ2 <
0.01, d.o.f. = 1, P=1). However, genes with unknown function
had a significantly higher median evolutionary rate ratio (dN/dS
(known function) = 0.077, dN/dS(unknown function) = 0.157; Wilcoxon
rank-sum test: W=5.4 ×107, P<2.2 ×10−16) compared to those
with a known function. Although this result is not surprising
because geneswith higher divergence rates aremore difficult to an-
notate based on homology with genes of known function, it does
emphasize the significance of studying genes of unknown
function.

Most of the significant gene families were found to be posi-
tively selected in a single branch, although the following five
were found to be positively selected in two branches: (1)musclemy-
osin heavy chain, which is involved in muscle contraction (Holmes
2004; Odronitz and Kollmar 2008), was under positive selection in
both A. dorsata and A. florea; (2) four and a half LIM domains

protein 2, involved in heart physiology and muscle formation
(Johannessen et al. 2006), was under positive selection in both
A. dorsata and mellifera; (3) serine-rich adhesin for platelets, which
plays a role in cell adhesion (Sanchez et al. 2010), was positively se-
lected in theApis branch and inA. florea; and (4) alpha-glucosidase 2
(AmGCS2α), which is involved in glucose metabolism, and (5) one
additional orthogroup of unknown function were positively se-
lected in both the Apis branch and A. mellifera. In the three species
branches, as well as the ancestral Apis branch, several positively se-
lected genes were identified with a function in the regulation of
gene expression, cell signaling, and neural processes, as well as
with an association with resistance against pathogens and xenobi-
otics (Supplemental Tables S1, S2).

Tests of functional category enrichment

To identify whether positive selection across the honey bee species
quantitatively relates to particular functions, we classified genes
based on their Gene Ontology (GO) annotation from A. mellifera
orthologs. Using SUMSTAT (Roux et al. 2014) with the topGO R
package (Alexa et al. 2006) to test for gene set enrichment, we iden-
tified 51 significant functional categories, of which 45 were en-
riched and six depleted in genes under positive selection at 20%
FDR. Most functional categories enriched with positively selected
geneswere unique for each branch, with the exception of “ATP-de-
pendent microtubule motor activity,” which was shared among
the threeApis species and “mitochondrial translation-related func-
tions,” which was enriched in all branches but A. florea (Fig. 2). In
addition, A. dorsata and A. mellifera shared similar functional cate-
gories involved in cellular ion exchange (Supplemental Table S3).
GO terms depleted of positively selected genes were mostly found
in the Apis branch and were linked to the regulation of transcrip-
tion (Fig. 3).

The Apis branch revealed 14 enriched GO categories includ-
ing the “piRNA metabolic process” and “cellular response to X-

Figure 1. Phylogenetic, genomic, and gene content comparisons of three honey bee species. (Left to right) Maximum likelihood phylogeny built from
9310 concatenated single-copy orthologous proteins from sequenced honeybees and bumblebee outgroup indicated that A. florea diverged first from the
most recent common ancestor of honey bees (all nodes 100% bootstrap supported). A. florea represents the dwarf honey bees, and A. mellifera and A.
dorsata represent the cavity nesters and the giant honey bees, respectively. Tree visualization was performed using ggtree (Yu 2020). Circles represent col-
ony size ranges with dark gray indicating the lowest and light gray the highest colony size; the yellow bars depict the genome size of each species, and the
red/blue bars correspond to the average GC content of the genome of each species. Average genome GC content decreases with increasing colony size.
The rightmost horizontal bar plots show total gene counts for each species partitioned according to their orthology profiles. A. florea possessed the greatest
number of lineage-specific genes followed by A. mellifera.
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ray.” The former could relate to the particularly low TE content of
honey bees (Petersen et al. 2019) because piRNAs silence transpos-
able elements (Ernst et al. 2017), but the latter might explain the
honey bees’ high genomic recombination rates (Rueppell et al.
2016) owing to its link to DNA double-strand breaks (DSB) that
are required to initiate recombination (Aguilera and Gómez-
González 2008). GO categories enriched in A. florea included “hor-
mone and glucuronate metabolism,” and “retinal proteins.” The
GO categories “glomerular visceral epithelial cell differentiation,”
“dopamine metabolism,” “flight,” and “negative regulation of
DNA biosynthesis” were enriched for positive selection in A. dor-
sata. The A. mellifera branch was enriched in “chitin metabolism”

and “inflammatory response.”

Overlap analyses

A comparison of genes we identified as positively selected with
published lists of genes of functional significance inApis identified
numerous overlapping genes (Supplemental Table S4) but did not
reveal any quantitatively significant overlap. None of our four lists
(Apis branch, A. florea branch, A. dorsata branch, and A. mellifera
branch) showed significantly more overlap than expected by
chance with inter-specific differences in brain gene expression
(Sarma et al. 2007). There was also no significant overlap with
functional gene lists identified by intra-specific studies, such as se-
lected genes within A. mellifera (Wallberg et al. 2014), genes in-
volved in A. mellifera caste determination (Chen et al. 2012),
worker reproduction (Cardoen et al. 2011), worker behavioral on-
togeny (Whitfield et al. 2006; Khamis et al. 2015), and queen–
worker brain differences (Grozinger et al. 2007). The largest over-
lap (P=0.0012) was found between genes selected in the A. melli-

fera branch and genes in the midgut that were up-regulated in A.
mellifera foragers compared to nurses (Jasper et al. 2015), but cor-
recting for the 72 independent comparisons made to this particu-
lar data set alone rendered the overlap nonsignificant.

The positively selected genes were also compared to position-
al candidates in the confidence intervals of published intra-specif-
ic quantitative trait loci for the pollen hoarding syndrome,
specifically foraging behavior (pln1–4) and ovary size (wos1–5)
(Hunt et al. 2007; Graham et al. 2011; Rueppell et al. 2011a).
Nine positively selected genes were located in these genome re-
gions. Five of these genes showed evidence of selection in the
A. dorsata branch and none in the Apis branch. Known functions
of the genes were diverse with a bias toward functions in the ner-
vous system (Table 1).

Lineage-specific genes

Lineage-specific genes have received increased attention owing to
their potential role in lineage- or species-specific trait evolution
(Simola et al. 2013; Jasper et al. 2015). To understand the role of
lineage-specific genes in the diversification of honey bees, we per-
formed a gene set enrichment analysis by comparing GO term an-
notations of the lineage-specific genes (Fig. 1) to our orthogroups.
The majority of lineage-specific genes (1994 in A. florea [92.2%],
560 in A. dorsata [95.2%], and 1218 in A. mellifera [91.5%]) could
not be categorized into a functional group nor into previously
characterized protein families (Supplemental Table S5). Accord-
ingly, the GO analysis revealed only a few enriched terms for
A. florea at 20% FDR, including “carbohydrate metabolic pro-
cess,” “hydrolase activity, hydrolyzing O-glycosyl compounds,”
and “DNA integration” (Supplemental Table S5). Although not

Figure 2. Functional categories enriched with genes under positive selection in each honey bee species and their most recent common ancestor. GO
terms enriched in positively selected genes are depicted as spheres representing the number of annotated genes (sphere size) and the −log10 of their
FDR (color intensity). GO enrichment scores, normalized by the number of annotated genes, are indicated by the x-axis. Most enriched GO terms with
positively selected genes can be interpreted as adaptations to long-distance migration and increased colony size in A. dorsata, colony defense in A. florea,
immunity in A. mellifera, and TE silencing and high recombination rates in the basal Apis lineage. (BP) Biological process; (CC) cellular component; (MF)
molecular function.
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significantly enriched in the GO term analysis, the A. dorsata ge-
nome contained two lineage-specific genes related to vision, gel-
solin-like and calphotin-like, and the A. mellifera genome also
revealed several lineage-specific genes of interest (Supplemental
Table S5).

Chemosensory gene evolution

Chemosensory diversification is important for insect evolution
(McBride et al. 2014; Brand et al. 2020) but automated annotation
of chemosensory genes remains problematic. Thus, we manually
annotated and analyzed five chemosensory gene families involved
in olfaction and gustation: odorant binding proteins (OBPs), che-
mosensory proteins (CSPs), odorant receptors (ORs), gustatory re-
ceptors (GRs), and ionotropic receptors (IRs) (Sánchez-Gracia
et al. 2009; Croset et al. 2010).

The number of chemosensory genes in A. dorsata andA. florea
(Supplemental Table S6) was similar to the previously described
gene sets in A. mellifera for all chemosensory gene families
(Robertson and Wanner 2006; Karpe et al. 2016; Brand and
Ramírez 2017), with a large number of 1:1:1 orthologous genes be-
tween the three species (from 66% in ORs to 100% in CSPs and
IRs). Additionally, we found conservation of genes, such as the
9-ODA receptor gene OR11, across species. Although we did not
detect any variation in CSPs and IRs across the honey bees,
OBPs, ORs, and GRs varied in the number of genes, revealing gains

and losses (Fig. 4; Supplemental Figs. S1,
S2). The most variable clades in all three
of these gene families, previously identi-
fied as specific to honey bees in compar-
ison to other corbiculate bees (Brand and
Ramírez 2017), were similar in numbers
for all three species analyzed but revealed
complex phylogenetic relationships, in-
cluding the OR 9-exon subfamily.

In addition to these patterns shared
among gene families, we found that the
number of GRs in the newly annotated
A. florea and A. dorsata genomes differed
substantially from A. mellifera. Previous
annotationsof theA.mellifera genome re-
porteda total of 15GRgenes including11
functional and four pseudogenized cop-
ies (Robertson and Wanner 2006; Smith
et al. 2011). In addition to single copies
for each of the functional GRs known
from A. mellifera, we identified 19 and

15 GRs in A. dorsata and A. florea, respectively (Fig. 4). Of these,
eight and twowere likelypseudogenes, respectively, andall of these
GRs formed a monophyletic clade with the three previously de-
scribed X, Y, and Z A. mellifera pseudogenes (Fig. 4). Several of the
XYZ-homologous GRs showed 1:1 homology between A. dorsata
andA. florea, aswell as theA.melliferapseudogenes. A reannotation
of the A. melliferaGR gene family, including the previously report-
ed>50 fragmentedGRpseudogenes (RobertsonandWanner2006),
reconstructed all known functional GRs and 88 additional se-
quences with homology with the X, Y, and Z GR pseudogenes.
Six of 11 GRs with a length of at least 300 amino acids contained
premature stop codons, whereas the other five represent new, po-
tentially functional GRs.

To validate potential functionality of the newly described
GRs, we visualized gene models along with RNA-seq tracks in
the A. mellifera Apollo browser (Dunn et al. 2019) available at
the Hymenoptera Genome Database (Elsik et al. 2016). Four of
the GR gene models were supported by RNA-seq reads spanning
predicted exon–intron boundaries, indicating they are actively
transcribed and thus functional receptors. The only novel full-
length GR without expression support was highly similar to
GR13, which was also present in the genomes of A. dorsata and
A. florea and has known orthologs in several other corbiculate
bees (Brand and Ramírez 2017), suggesting it is a conserved func-
tional GR as well. Several of the smaller fragments were also

Figure 3. Functional categories depleted of genes under positive selection in each honey bee species
and their most recent common ancestor. Spheres indicate GO terms depleted of positively selected
genes, for which size represents the number of annotated genes and color intensity the significance
(−log10 of their FDR). The x-axis represents the normalized GO enrichment score divided by the number
of annotated genes. Most of the GO terms depleted in genes under positive selection are found in the
basal Apis branch and relate to transcription functions. No depleted GO term was found in A. dorsata.
(BP) Biological process; (CC) cellular component; (MF)molecular function.

Table 1. Overlap of positively selected genes with genes present in QTL studies

QTL
Branch with sign of

selection RefSeq ID Gene description
Apis mellifera
RefSeq ID Putative function

pln1 A. dorsata 102675389 Forkhead box protein P1-like 408423 Versatile transcription factor
pln4 A. dorsata 102679494 Arrestin domain-containing protein 17-like 725542 Unknown
pln4 A. dorsata 102674786 Intersectin-1-like 550732 Neuronal endocytosis
wos1 A. dorsata 102679612 Dynamin 410923 Membrane fissioning in the

nervous system
wos2 A. mellifera 102653640 Glutamate receptor 1 102653640 Neurotransmission
wos2 A. dorsata 102677058 Deubiquitinase DESI2 550664 Deubiquitination
wos2 A. florea 100867905 Uncharacterized LOC100867905 410865 Unknown
wos2 A. florea 100863251 High affinity camp-specific and IBMX-insensitive

3′,5′-cyclic phosphodiesterase 8
408699 Intracellular signaling

wos3 A. mellifera 726989 E3 ubiquitin-protein ligase listerin 726989 Neurodegeneration
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supported by expression data, suggesting that they might be part
of coding genes that are not well assembled. Indeed, all but one
of the newly identified GR sequences were located on small scaf-
folds not assigned to linkage groups (“Un”-scaffolds), and gene
models were often truncated at the end of a scaffold.
Accordingly, it is likely that the additional five GRs we identified
for A. mellifera are an underestimation of the real number of
honey bee–specific GRs in the XYZ subfamily (Brand and
Ramírez 2017).

Discussion

Fine-scale comparative genomic analyses lead to a better under-
standing of the molecular basis of species diversification and in-
creased resolution of genomic feature evolution. Our genome-
wide analysis reveals increased positive selection pressure during

the diversification of the three honey bee lineages after the diver-
gence of Apis from its most recent common ancestor with Bombus.
Our results parallel previous analyses that indicate accelerated
evolution during the diversification of species within a family
(Nevado et al. 2016; Tollis et al. 2018; Vianna et al. 2020), suggest-
ing a common evolutionary pattern. We also find evidence for se-
lection for sequence changes in existing protein-coding regions
and evolutionary turnover of genes, similar to a genomic study
of the radiation of closely related bumble bees (Sun et al. 2021).
These two sources of evolutionary change may be important in
bee social evolution in addition to regulatory diversification
(Kapheim et al. 2015). Practically, rapid evolutionary divergence
may not be easy to distinguish from evolution of novel genes, un-
less sufficient similarity remains to distinguish orthologs from
paralogs as in ourmanualApis chemoreceptor analyses.Webelieve
that our extensive search for taxonomically restricted genes result-
ed in unrealistically high estimates of novel genes because the ma-
jority of these genes have only support from one prediction
method. However, the findings suggest the existence of at least
some additional species-specific geneswithinApis that deserve fur-
ther study.

We did not identify significant overlap between the genes
found to be positively selected among species and genes that deter-
mine intra-specific variation in key traits of honey bees, which
we predicted based on the hypothesis that phenotypic plasticity
is a main driver of Apis diversification (West-Eberhard 2003;
Kapheim et al. 2020). In contrast to the stark phenotypic differenc-
es of honey bees to their closest contemporary relatives, relatively
few genes were identified as positively selected in the shared evo-
lution of all honey bees (basal Apis branch) compared to the num-
ber of positively selected genes detected across branches within
Apis (species branches). Although we lack a comprehensive expla-
nation for the relatively low number of positively selected genes, it
is plausible that evolution at this stagewasmore strongly driven by
gene regulatory changes (Kapheim et al. 2015) or the appearance
of Apis-specific genes.

In additional to the computational prediction of additional
genes, our manual analysis corrected previous results of low num-
bers of GR genes in honey bees (11 GRs) (Robertson and Wanner
2006): We were able to identify 22, 26, and 16 complete GR genes
inA. dorsata,A. florea, andA.mellifera, respectively, aided by an up-
dated genome assembly for A. mellifera (Elsik et al. 2014). This in-
crease of full-length GRs in A. mellifera by almost 50% is
presumably still an underestimate owing to low quality sequence
assembly of the respective parts of the genome. Thus, the sense
of taste in honey bees may be more sophisticated than previously
thought (Wright et al. 2010). Furthermore, the XYZ subfamily,
which is only found in Apis (although one instance has been re-
ported from Bombus terrestris) (Sadd et al. 2015), revealed complex
evolutionary dynamics suggesting an evolutionary history of gus-
tatory functions specific to honey bees. Together, this makes the
XYZ subfamily an interesting target to understand the evolution
of chemosensory capabilities in honey bees.

The evolution of Apis supports previous studies on the molecular

basis of increased social complexity

The rise of eusociality in insects has been linked with an increased
capacity of gene regulation and the rapid evolution of chemore-
ceptors, despite the small number of fast-evolving genes shared
among eusocial insects (Woodard et al. 2007; Simola et al. 2013;

Figure 4. Gustatory receptor (GR) gene family phylogeny including
newly annotated genes of three honey bee species. The maximum likeli-
hood tree contained two clades, one including a single ortholog of all pu-
tatively functional GRs previously described in A. mellifera (in orange) in
each species (blue: A. dorsata; gray: A. florea), and the XYZ clade (support-
ed with 99% bootstrap support) previously thought to be entirely pseudo-
genized (Robertson and Wanner 2006; Sadd et al. 2015). Five newly
identified full-length GRs for A. mellifera are highlighted in pink, some of
which are among the newly identified XYZ GRs (four in A. mellifera, 15 in
A. florea, and 19 in A. dorsata). All GR groupings outside the XYZ clade
have high bootstrap support (for exact support values, see
Supplemental Fig. S2), highlighting the conservation of GR gene number
in this group across Apis. In addition to >50 small fragments with homol-
ogy to GRs (light green, only A. mellifera fragments shown), we newly iden-
tified a number of full-length genes in the XYZ clade, all of which are
supported by gene expression data in A. mellifera. The fragments are in-
cluded here to represent all of our results, although the GR phylogeny is
much clearer without them (Supplemental Fig. S2). With 16–26 putatively
functional GRs per species, honey bees are similar to other corbiculate bees
(Brand and Ramírez 2017), suggesting that the sense of taste in honey
bees is more sophisticated than previously thought.
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Terrapon et al. 2014; Kapheim et al. 2015, 2020; Harrison et al.
2018).

Although our analyses support the importance of chemosen-
sation, we found that the divergence of the Apis ancestor from the
most recent common ancestor with Bombuswas accompanied by a
depletion of positively selected genes from functional categories
related to transcription, such as “transcription factor binding.”
The major evolutionary transition to eusociality was not captured
in our contrast between Bombus and Apis and our results may thus
reflect a subsequent conservation of gene regulatory mechanisms
that consolidate and stabilize the progress of a rapid transition to
sociality. Subsequent gene regulatory changes in the evolution
of Apis may have been achieved by more specific mechanisms:
Genes involved in growth factor activity, a major pathway of the
regulation of gene expression, were fast evolving in the ancestor
of all Apis species. The rapid evolution of piRNA metabolism in
honey bees might also be linked to the regulation of gene expres-
sion in Apis, as it regulates gene expression and epigenetic effects
in Drosophila (Weick and Miska 2014; Glastad et al. 2019) and
piRNAs target regions antisense of protein-coding genes in honey
bees, suggesting that they could control transcription (Wang et al.
2017).

Chemosensory gene evolution has been hypothesized to be
important during the evolution of eusociality (Harrison et al.
2018). The 9-exonORgene family has beenhypothesized to be im-
portant in social communication in Hymenoptera, owing to a role
of 9-exon ORs in the detection of CHCs in ants (Smith et al. 2011;
McKenzie et al. 2016; Pask et al. 2017; Slone et al. 2017). Our re-
sults show that the OR 9-exon subfamily evolves rapidly between
the three Apis species, which occurs also more widely (Sadd et al.
2015; Brand and Ramírez 2017). In contrast, sex pheromone recep-
tor genes (OR11, OR10, OR18, and OR170) were highly conserved.
Moreover, we found that the expansion of OBPs is not specific to
A. mellifera (Brand and Ramírez 2017) but most likely occurred in
the common ancestor of Apis species, pointing to a role in chemo-
sensory behaviors unique to honey bees.

Apis evolution reveals an evolutionary trade-off between genome

stability and variability

Although genome stability is vital for organisms and crucial for
maintenance of optimally adapted phenotypes, it restricts genetic
diversity, which is essential for evolutionary and physiological
processes, particularly in eusocial insects (Mattila and Seeley
2007; Seeley and Tarpy 2007; Kent et al. 2012). The resulting
trade-off between genome stability and diversity was reflected in
our findings that TE silencing and DSB repair pathways in the
Apis lineage were positively selected. The honey bee genomes are
depleted of TEs (Elsik et al. 2014; Park et al. 2015) and we found
that the regulation of one of the major mechanisms to prevent
TE spread within a genome, piRNAs (Brennecke et al. 2007; Ernst
et al. 2017), was positively selected in Apis. The enrichment of
the piRNA regulatory pathway, as well as the GO term “P granule
cellular component” (Lim and Kai 2007), among positively select-
ed genes in the Apis lineage suggests that positive selection can act
on piRNAs over evolutionary time to limit the spread of TEs despite
consistently high rates of recombination (Rueppell et al. 2016).

The high recombination rates of allApis species studied so far,
ranging from 20 to 25 cM/Mb (Hunt and Page 1995; Meznar et al.
2010; Ross et al. 2015; Rueppell et al. 2016), may increase genetic
diversity and facilitate evolutionary novelties (Kent et al. 2012).
The enrichment of rapidly evolving genes associated with the cel-

lular response toX-rays in theApis ancestor indicates a correspond-
ing adaptation to double-strand breaks (DSBs) of DNA (Rothkamm
and Löbrich 2003). It is unclear whether this selective signature
should be interpreted as a cause or consequence of the high recom-
bination rates, but mutations in genes involved in DSB repair can
lead to higher homologous recombination rates (Aguilera and
Gómez-González 2008). The accelerated molecular evolution of
DSB repair genes may thus have enabled the high meiotic recom-
bination rates of honey bees, with potential effects on genome
evolution and diversity (Kent et al. 2012).

The continuous oogenesis of Hymenoptera (Büning 1994)
can exacerbate the accumulation of mutations during later-life
meiosis (Bromham and Leys 2005; Thomas et al. 2010), particular-
ly in females that produce numerous offspring. The resulting mu-
tational load is particularly severe in mitochondria (Neiman
and Taylor 2009). Nuclear genomes can coevolve to compensate
the loss of mitochondrial function via the accumulation of delete-
rious mutations (Hill 2020), resulting in increased evolutionary
rates of mitochondrion-destined nuclear genes (Li et al. 2017).
Correspondingly, we found positive selection of nuclear genes in-
volved in the mitochondrial translation elongation and termina-
tion pathway in the Apis lineage and in the A. mellifera and
A. dorsata branches, the two species with the largest colony sizes,
suggesting selection for increased efficiency and accuracy of mito-
chondrial translation (Schneider 2011) in the face of increasedmu-
tations with colony size increases. This hypothesis is also
compatible with the strong positive selection targeting the nega-
tive regulation of DNA biosynthesis and the tRNA threonylcarba-
moyladenosine metabolism essential for accurate translation
(Yarian et al. 2002) in A. dorsata, the honey bee species with the
greatest colony size (Oldroyd andWongsiri 2006). Hence, the mo-
lecular evolution of honey bee genomes suggests an evolutionary
trade-off between maintaining genome integrity and generating
genetic diversity.

Fine-scale comparative genomics reveals candidates

for the evolution of key phenotypic traits

Accordingly with fundamental differences in body size and
queen–worker caste divergence among the three Apis lineages
(Oldroyd andWongsiri 2006; Rueppell et al. 2011b), we found sev-
eral positively selected genes predicted to belong to gene families
involved in growth and reproductive processes: a G-protein-coupled
receptor with similarities to the life-history regulator methuselah
(Delanoue et al. 2016) and the ovary determinant tudor (Xie
et al. 2019) in the basal Apis branch, pde8 involved in ERK-signal-
ing that has multiple life-history coordinating roles (Brown et al.
2013) in the A. florea branch, and the putative growth effectors
short neuropeptide F receptor (Lee et al. 2008), farnesol-dehydrogenase
(Mayoral et al. 2009), and cdk2 (Vidwans and Su 2001) in the giant
honey bee lineage.

The evolutionary diversification of nesting behavior into cav-
ity nesting inA.mellifera and related species versus open nesting in
the other lineages has been highly controversial for decades and
has direct ramifications for understanding the evolution of the
honey bee dance language (Koeniger 1976; Oldroyd and
Wongsiri 2006; Raffiudin and Crozier 2007; Koeniger et al.
2011). Our analysis cannot resolve this controversy but provides
some support for a transition from cavity nesting to open nesting
within Apis: Although no genes or GO terms that could be inter-
preted as adaptations to open nesting were found to evolve under
positive selection in the ancestral Apis branch, in A. florea, which
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accurately controls nest temperature despite its open-nesting habit
(Oldroyd andWongsiri 2006), lineage-specific genes were associat-
ed with carbohydrate metabolism, a pathway associated with ther-
moregulation in bees (Woodard et al. 2011).

Although all honey bees migrate, only giant honey bees sea-
sonally migrate over long distances, up to 100–200 km in A. dor-
sata (Oldroyd and Wongsiri 2006). Correspondingly, we found
potential molecular signatures of adaptations to long-distance mi-
gration in the A. dorsata lineage: positive selection in genes linked
to “flight” along with large musculature and body size (Dulta and
Verma 1987), involved in “mitochondrial morphogenesis” that
may affect energy metabolism during migration (Sogl et al.
2000; Li et al. 2018); associated with the renal system (i.e., “glo-
merular visceral epithelial cell differentiation”) allowing water
conservation during migration (Wigglesworth 1932); and “regula-
tion of dopamine secretion,” a pathway involved in migration in
locusts (Ma et al. 2011). The adaptation to night foraging in A. dor-
sata enables them to detect objects at lower light intensity than
expected by their ommatidium structure (Warrant et al. 1996).
This might be explained by two A. dorsata-specific genes, homo-
logs of genes involved in phototaxis, gelsolin-like (Stocker et al.
1999), and vision, calphotin-like (Yang and Ballinger 1994). An en-
hanced floral scent detection in A. dorsata may also be beneficial
for night foraging, which is suggested by the lineage-specific du-
plications and pseudogenization events of OR151 and OR152, im-
portant for detection of floral compounds (Claudianos et al.
2014).

The A. mellifera branch is mainly associated with positive se-
lection on genes involved in chitin metabolic processes, as previ-
ously found to be enriched in positively selected genes in A.
mellifera and bumble bees (Harpur et al. 2014; Sun et al. 2021).
They mostly relate to caste differentiation (Li et al. 2012; Malka
et al. 2014; Santos and Hartfelder 2015) and immunity (Harpur
and Zayed 2013; Oddie et al. 2018), whichmay be caused by path-
ogen pressure in the relative stable and long-lasting nests of cavity-
nesting species.

Focusing on the main lineages of the unique honey bee ge-
nus, our study identifies positively selected genes that warrant fur-
ther study. Of particular interest are selected genes with putative
molecular functions that may link them to key adaptations and
the diversification among Apis species. Although the genus Apis
is small and contains only the three subgeneric lineages included
in this study, sequencing other Apis species to increase phyloge-
netic depth may further refine our conclusions about Apis evolu-
tion and enhance our understanding of genome evolution in
dwarf, giant, and cavity-nesting honey bees. Overall, our results
provide an evolutionary scenario of an Apis ancestor adapted to
building a vertical comb, likely in cavities, that allowed for in-
creased colony size.

Methods

Specimen collection

Haploid drones collected from a single colony per species were
used for A. florea and A. dorsata genome sequencing. The samples
of A. floreawere collected in 2009 from ChiangMai, Thailand. The
samples of A. dorsata were collected in the vicinity of the
Agricultural Research Station Tenom (Sabah, Malaysia: 5.4° N,
115.6° E) in March 2007. Samples were preserved in RNAlater
and subsequently frozen until total DNA extraction from single
individuals.

Genome sequencing and assembly

Two types ofWGS libraries, a fragment library andmate-pair librar-
ies with 8-kb inserts, were used to generate the Apis florea genome
sequencing data using 454 Titanium technology. The Aflo_1.0 ge-
nome assembly was generated by assembling WGS reads using
Newbler (2.3-PreRelease-10/19/2009) (Margulies et al. 2005).
Reads from each Newbler scaffold were grouped, along with any
missing mate-pairs, and reassembled using PHRAP (Bastide and
McCombie 2007) in an attempt to close the gaps within Newbler
scaffolds.

ForA. dorsata, four librarieswere sequencedonan IlluminaGA
platform for the assembly: (1) 2 ×125 bp paired-end reads from a
500 bp library; (2) 2 ×125 bp mate-pairs from a 1.2-kbp library;
(3) 2 ×125 bp mate-pairs from a 3-kbp library, and (4) 2 ×36 bp
mate-pairs from a 5-kbp library. The sequencing reads from all
four libraries were first error corrected and trimmed using Quake
v0.2.0 (Kelley et al. 2010). Error-corrected reads were then assem-
bled using SOAPdenovo v1.0.5 (Supplemental Methods; Li et al.
2010).

Completeness of the two assemblies was assessed by identify-
ing Benchmarking Universal Single-Copy Orthologs (BUSCOs) us-
ing the BUSCO v5beta pipeline in genome mode (Simão et al.
2015). For this analysis, we identified single-copy orthologs based
on the hymenoptera_db10.

Genome annotation

To avoid artifacts stemming from different annotation methods
(Supplemental Methods), a combined gene set was created for
each species, by adding nonoverlapping genes from different
annotation pipelines to a fundamental NCBI RefSeq annotation
in the following orders: A. dorsata, RefSeq → EVM (Haas et al.
2008) → MAKER (Holt and Yandell 2011) → AUGUSTUS -CGP
(Stanke et al. 2008; König et al. 2016; Nachtweide and Stanke
2019); A. florea, RefSeq → EVM → AUGUSTUS -CGP → BGI
(Kapheim et al. 2015); A. mellifera, RefSeq → OGS (Elsik et al.
2014) → AUGUSTUS -CGP. Accuracy of all gene prediction meth-
ods were assessed (Supplemental Tables S7, S8) and combined in
EVM with different weights (Supplemental Tables S9, S10) based
on different sources (Supplemental Tables S11, S12), resulting in
12,172 genes for A. dorsata (Supplemental Table S13) and 14,393
for A. florea (Supplemental Table S14).

Exonerate protein2genome (Slater and Birney 2005) was used
to align protein sequences from each species to the genome assem-
blies of the other two species (A.mellifera: NCBI BioProject [https://
www.ncbi.nlm.nih.gov/bioproject/] PRJNA10625 and Bombus im-
patiens: BioProject PRJNA61101 and B. terrestris BioProject
PRJNA45869). For each species, a new gene model was created
wherever there was a protein alignment that did not overlap with
an existing gene model. At each new gene locus with more than
one alternate species alignment, the alignment with the best score
wasused togenerate a singleprotein-codinggenemodel, correcting
any artifactual frameshifts in protein and coding sequences. The
protein homolog-based gene models were added to the combined
gene sets to create the final gene sets, deemed “comparative gene
sets,” used in this study. Although some of the protein homolog-
based predictions were not of sufficient quality for evolutionary
analysis, including them in the comparative gene sets allowed us
to determine more realistic numbers of species-specific genes.

Gene set annotation

We used InterProScan (Zdobnov and Apweiler 2001) to compare
protein sequences to InterPro (Finn et al. 2017) protein domain
and other motif databases (Supplemental Methods). InterProScan
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assigns Gene Ontology (GO) (The Gene Ontology Consortium
2000) terms and pathway IDs from KEGG (Chen et al. 2012),
MetaCyc (Caspi et al. 2018), and Reactome (Fabregat et al. 2018)
based on protein domain content. We used FASTA (Pearson and
Lipman 1988) with an E-value threshold of 1 ×10−6 to compute re-
ciprocal alignments between Apis comparative proteins and a
Drosophilamelanogasterprotein set consistingof the longest protein
isoform of each gene (annotation version r6.14). We identified re-
ciprocal best hits (RBH) and transferredGO, KEGG, PANTHER, and
REACTOME annotations from the D. melanogaster protein to the
Apis protein for each RBH pair, using the annotation files available
at FlyBase (Gramates et al. 2017). Finally,weobtained genedescrip-
tions from NCBI for the RefSeq (O’Leary et al. 2016) gene
annotations.

Ortholog prediction

We created ortholog groups containing one gene from the two
newly annotated genomes of Apis dorsata and A. florea and the
existing A. mellifera genome (Amel_4.5, under BioProject
PRJNA10625). Protein sequences from the three comparative
gene sets were combined into one file that was used in an
all-by-all protein comparison with FASTA (Pearson and Lipman
1988) using an E-value threshold 0.001 to identify single-copy
orthologs (Supplemental Methods). This process resulted in
15,182 families of Apis orthologs. Of those, 5310 families were
flagged because a translational discrepancy in the NCBI GFF or a
frameshift/gap in the Exonerate alignment were indicated. After
creating the families of Apis orthologs, a Bombus protein to serve
as an outgroup was identified for each family (Supplemental
Methods). In total, 9310 Apis ortholog families were assigned a
Bombus protein.

Multiple sequence alignment

For each ortholog family, the longest protein isoforms for each spe-
cies were used in multiple sequence alignment with PRANK
(v.150803) (Löytynoja andGoldman2008), andunreliably aligned
residuesweremaskedwithGUIDANCE (v2.02) (Penn et al. 2010). A
custom Python script (Supplemental Code) was then used to re-
place protein sequences with coding sequences in the multiple
alignments, resulting in 8115 gene families after filtering
(Supplemental Methods). The mean length of filtered alignment
was 1621 nt (median=1233 nt), ranging from 303 to 22,830 nt.

Phylogeny

Gene family phylogenies were built using RAxML (v7.2.9)
(Stamatakis 2006) from the amino acid sequences (9310 Apis
ortholog families). For each ortholog family, ModelGenerator
was used to select the best amino acid matrix and substitution
model (Keane et al. 2006). The species phylogeny was built from
a concatenation of all amino acid alignments with B. impatiens
data (9275), using RaxML with an estimated amino acid matrix
based on our data (GTR) and the CAT model (Rokas 2011).

Branch-site test for positive selection

The adaptive branch-site random effects model (aBSREL) (Smith
et al. 2015) from Hyphy software package (Kosakovsky Pond
et al. 2019) was used to detect positive selection experienced by
a gene family in a subset of sites in a specific branch of its phyloge-
netic tree. Because of our low phylogenetic depth, test for positive
selection was run only on the Apis, A. mellifera, dorsata, and florea
branches (all “leaves”). To account for multiple testing (Anisimova
andYang 2007), P-values from the successive 32,460 tests were cor-

rected using the false discovery rate (FDR) (Benjamini and
Hochberg 1995). Because of our stringent alignment filtering
and themultiple testing correction as one series, we set our signifi-
cant threshold at 10%.We visually checked alignments of positive
results and excluded GC-biased gene conversion because our ω es-
timates were negatively correlated with GC content (Spearman’s
correlation: S = 6.7 ×1012, rho=−0.17, P<2.2 ×10−16).

Overlap analysis

Our lists of selected geneswere compared tomultiple other studies.
The only other available inter-specific study (Sarma et al. 2009)
and the following intra-specific studies that have identified gene
sets of functional significance for the observed inter-specific differ-
enceswithinApiswere selected: genes involved in caste determina-
tion (Chen et al. 2012), reproductive phenotypes (Grozinger et al.
2007; Cardoen et al. 2011), and genes involved in local adaptation
(Wallberg et al. 2014). In addition, overlap to quantitative trait loci
for ovary size (Graham et al. 2011; Rueppell et al. 2011a) and social
behavior (Hunt et al. 2007; Rueppell 2009) was evaluated.

Tests of functional category enrichment

Gene Ontology (GO) (The Gene Ontology Consortium 2000) an-
notations for our gene families were taken from A. mellifera, anno-
tated with GO terms as described above. To identify functional
biases, the package topGO version 2.4 (Alexa et al. 2006) of
Bioconductor (Gentleman et al. 2004) was used with the full
data set (before filtering) of genes containing a GO annotation as
reference. Functional biases were detected using Fisher’s exact
test with the “elim” algorithm of topGO and selected based on
FDR<20% (Supplemental Methods). Gene Ontology categories
mapped to fewer than 10 genes were discarded. To identify func-
tional categories enriched with genes under positive selection,
the SUMSTAT test was used (Supplemental Methods). We per-
formed bidirectional tests to account for enrichment and deple-
tion for positively selected genes in a gene set. Gene Ontology
categories mapped to fewer than 10 genes were discarded.

Lineage-specific genes

We identified genes specific to one or two Apis genomes using out-
puts of the all-by-all FASTAprotein comparison andExonerate pro-
tein2genome alignments described above. If all protein isoforms
encoded by a particular gene were missing protein or Exonerate
alignments to another species, that gene was considered missing
in the other species.We excluded genes owing to bacterial contam-
ination (Supplemental Methods). To investigate whether lineage-
specific genes of each Apis species are associated with features of
their biology, their GO annotations were compared to the ortho-
log families’ data set using Fisher’s exact test with the “elim” algo-
rithm of topGO. Gene Ontology categories mapped to fewer than
10 genes were discarded.

Chemosensory gene family analysis

Annotation and selection analysis of chemosensory gene families
followed Brand and Ramírez (2017). In brief, high-quality annota-
tions for A. mellifera were used to annotate odorant receptors
(Robertson and Wanner 2006), odorant binding proteins (Forêt
and Maleszka 2006), chemosensory genes (Forêt et al. 2007), gus-
tatory receptors (Robertson andWanner 2006), and ionotropic re-
ceptors (Croset et al. 2010) using Exonerate (Slater and Birney
2005) coupled with manual curation and, if necessary, correction
of gene models for A. dorsata and A. florea. In addition, we reanno-
tated the OR and GR gene families in A. mellifera (Robertson and
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Wanner 2006) and the OR gene family for A. florea (Karpe et al.
2016). The resulting gene models were aligned with MAFFT
(Katoh and Standley 2013) and used to reconstruct gene family-
specific gene trees with RAxML (Stamatakis 2006) using 20 inde-
pendent ML searches and 100 bootstrap replicates. Selection anal-
yses were performed with the aBSREL algorithm in HYPHY. ORs
were divided into subfamilies as defined in Brand and Ramírez
(2017), whereas all other gene families were analyzed as a whole.
P-values for each independent aBSREL run were corrected for mul-
tiple testing using an FDR of 5%.

Data access

The biological data, sequencing data, assembled genome sequenc-
es, and annotations generated in this studyhave been submitted to
the NCBI BioProject database (https://www.ncbi.nlm.nih.gov/
bioproject/) under accession numbers PRJNA174631 (A. dorsata)
and PRJNA45871 (A. florea).
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