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Abstract 

 
Motivation: Fusion genes created by genomic rearrangements can be potent drivers of tumorigenesis. 

However, accurate identification of functionally fusion genes from genomic sequencing requires whole 

genome sequencing, since exonic sequencing alone is often insufficient. Transcriptome sequencing 

provides a direct, highly effective alternative for capturing molecular evidence of expressed fusions in the 

precision medicine pipeline, but current methods tend to be inefficient or insufficiently accurate, lacking in 

sensitivity or predicting large numbers of false positives. Here, we describe STAR-Fusion, a method that is 

both fast and accurate in identifying fusion transcripts from RNA-Seq data. 

Results: We benchmarked STAR-Fusion’s fusion detection accuracy using both simulated and genuine 

Illumina paired-end RNA-Seq data, and show that it has superior performance compared to popular 

alternative fusion detection methods. 

Availability and implementation: STAR-Fusion is implemented in Perl, freely available as open source 

software at http://star-fusion.github.io, and supported on Linux. 

Contact: bhaas@broadinstitute.org  
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Introduction 

 
Major efforts are underway to dissect the molecular underpinnings of cancer development, progression, 

evolution, and resistance to therapies (Cancer Genome Atlas Research, et al., 2013; International Cancer 

Genome, et al., 2010).  Research has shown there are many paths to tumorigenesis, often involving genetic 

mutations leading to activation of oncogenes and inactivation of tumor suppressors (Hanahan and 

Weinberg, 2000; Hanahan and Weinberg, 2011). Chromosomal rearrangements leading to the formation of 

fusion transcripts represent one class of genomic aberrations that occur at high frequencies in certain cancer 

types, including leukemias and prostate cancer (Yoshihara, et al., 2015), as well as produce strong genetic 

drivers of the disease across a wide range of cancers (Stransky, et al. 2014).  Among the known cancer-

driving fusion transcripts with high prevalence in specific cancer types are BCR—ABL1, found in ~95% of 

chronic mylogenous leukemia patient samples (Lim, et al., 2005), TMPRSS2—ERG in ~50% of prostate 

cancers (Tomlins, et al., 2005), and DNAJB1—PRKACA found to be the hallmark and likely driver of 

fibrolamellar carcinoma, a rare liver tumor affecting young individuals (Honeyman, et al., 2014). 

Determining the driver of a given tumor is important to inform the best therapeutic strategy and match 

drugs effective against certain oncogenic fusions with the patients who could benefit from them. For 

example, tyrosine kinase inhibitors have been highly effective in the treatment of tumors harboring kinase 

fusion transcripts in leukemia and other cancers (Zhao, et al., 2015) (Shaw and Solomon, 2015) (Druker, et 

al., 2006) (Gross, et al., 2015).   

 

Genome and transcriptome sequencing are powerful methods to capture evidence for chromosomal 

rearrangements and fusion transcripts. Unlike point mutations and indels, which can be readily captured 

from efficient Whole Exome Sequencing (WES), genome sequencing evidence for fusion genes typically 

requires Whole Genome Sequencing (WGS). Conversely, transcriptome sequencing by RNA-Seq is highly 

suited for fusion transcript detection, since it represents the “expressed exome” of the tumor itself: it 

captures only the transcriptionally active regions of the genome, reflects any rearrangements, and reduces 

sequencing costs compared to WGS, thus focusing fusion-finding efforts on actively transcribed gene 

fusions that are most likely relevant to tumorigenesis.  

 

Several bioinformatics methods and software tools have been developed to identify candidate fusion 

transcripts from RNA-Seq (reviewed in (Latysheva and Babu, 2016; Wang, et al., 2013)). The general 

strategies fall into two conceptual classes: mapping-first approaches that align RNA-Seq reads to genes and 

genomes to identify discordantly mapping reads suggestive of rearrangements, and assembly-first 

approaches that directly assemble reads into longer transcript sequences followed by identifying chimeric 

transcripts consistent with chromosomal rearrangements. Evidence supporting predicted fusions is typically 

measured by the number of RNA-Seq fragments found as split (junction) reads that directly overlap the 

fusion transcript chimeric junction, or as spanning fragments (bridging read pairs) where each paired read 
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maps to opposite sides of the chimeric junction without directly overlapping the chimeric junction itself 

(shown in Figure 1).  

 

Implementations of the various prediction methods vary in the read alignment tools, the genome database 

and gene set resources used, criteria for reporting candidate fusion transcripts and excluding false positives, 

all resulting in varying prediction accuracies in addition to installation complexity, execution time, 

robustness, and hardware requirements. Depending on the fusion prediction tool chosen, processing a 

single RNA-Seq sample containing tens of millions of reads can take several days worth of computing and 

result with a list of hundreds to thousands of gene fusion candidates, most of which are likely false, having 

little evidence supporting their prediction.  Faster and more accurate methods for fusion detection are 

urgently needed, particularly as RNA-Seq ventures into the realm of precision medicine and clinical care. 

 

A critical component of mapping-first approaches is the read alignment step. In particular, the STAR 

aligner was originally developed as a fast and accurate RNA-Seq alignment tool with capabilities to report 

split reads and discordantly aligned pairs (Dobin, et al., 2013; Dobin and Gingeras, 2015; Dobin and 

Gingeras, 2016). Based on these capabilities, STAR was incorporated into a fusion detection pipeline to 

explore the landscape of kinase fusion transcripts in cancer (Stransky, et al., 2014), demonstrating that 

STAR could be leveraged to identify novel driver fusion transcripts. STAR has since been incorporated 

into ensemble fusion prediction pipelines (Nicorici, et al., 2014).  

 

Here, we describe STAR-Fusion – a fusion prediction tool leveraging the speed and accuracy of the STAR 

RNA-Seq aligner. STAR-Fusion builds upon and significantly expands a previously described successful 

strategy for calling fusions (Stransky et al, 2014), and is implemented here as a freely available open source 

software tool. STAR-Fusion performs a fast mapping of fusion evidence to reference transcript structure 

annotations and filters likely artifacts to report accurate fusion predictions. We demonstrate that STAR-

Fusion provides accurate fusion transcript prediction using both simulated and genuine RNA-Seq data 

derived from cancer cell lines, and show that it is both more accurate and substantially faster than other 

alternatives. 

 

Methods 
 

STAR-Fusion pipeline 

 

The STAR-Fusion pipeline (Figure 1) takes Illumina RNA-Seq data (ideally paired-end, but compatible 

with single-end data) as input and generates lists of candidate fusion transcripts as output.  It also requires 

several genomic resources which are packaged into a Genome Resource Lib: the reference genome, 

reference transcript structure annotations, and results from an all-vs-all BLAST+ (Camacho, et al., 2009) 
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search of reference transcript sequences.  The Genome Resource Lib is compiled once for a given set of 

genomic resources and simply pointed to as a parameter to STAR-Fusion at run time.  Genome Resource 

Libs are provided for human and mouse, and instructions and software are available to facilitate compiling 

a new Genome Resource Lib for a different reference genome or different reference transcript annotation 

set (below). We discuss each of the components in turn. 

 

Aligning RNA-Seq reads to the genome using STAR, capturing split and discordantly mapping reads 

 

The chimeric detection in STAR is implemented as an extension of the STAR standard mapping procedure. 

In the first step, the maximum mappable prefix algorithm is used to find the seeds exactly matching to the 

genome. Next, genomic alignment windows are selected by clustering the anchor seeds, which are defined 

as those mapping to the genome fewer times than a user-defined parameter (--

winAnchorMultimapNmax=50 by default). The maximum window size determines the maximum genomic 

length of the local alignment, and is controlled by --alignMatesGapMax and --alignIntronMax. In each 

genomic window, a local alignment of the read sequence is performed by stitching together all seeds within 

the window. If the best alignment among all windows does not cover the entire read sequence, chimeric 

detection is performed by finding the next best scoring window that covers the remainder of the read 

sequence. Thus, the resulting chimeric alignment consists of two “segments”, each being a local linear 

alignment, with the minimum lengths restricted by --chimSegmentMin to prevent output of unreliable 

chimeras with short alignments. If a chimeric segment contains an intervening splice junction proximal to 

the chimeric junction, the minimum sequence segment length for the chimeric junction-proximal segment 

is specified by --chimJunctionOverhangMin. The maximum unmapped read sequence in-between two 

chimeric segments is limited by --chimSegmentReadGapMax.  

 

The STAR-Fusion mapping parameters are based upon the best practices for STAR (Dobin and Gingeras, 

2015; Dobin and Gingeras, 2016), as well as parameters optimized to capture fusion genes, as described 

above (Stransky, et al., 2014): 

    “STAR --chimSegmentMin 12 --chimJunctionOverhangMin 12 --chimSegmentReadGapMax 3 --

alignSJDBoverhangMin 10 --alignMatesGapMax 200000 --alignIntronMax 200000  --

alignSJstitchMismatchNmax 5 -1 5 5  --twopassMode Basic” 

 

Mapping split and discordant read alignments to reference gene annotations (STAR-Fusion.predict) 

 

To determine the candidate gene pairs of potential fusions, the discordant read pairs and split read 

alignments reported by STAR are next mapped to exons of reference transcript annotations based on 

coordinate overlaps, leveraging interval tree data structures (as implemented in the Perl CPAN module 

Set::IntervalTree (http://search.cpan.org/~benbooth/Set-IntervalTree-0.01/lib/Set/IntervalTree.pm) for fast 
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coordinate overlap queries. STAR-Fusion selects those candidate gene pairs for which the fusion-

supporting evidence indicates a sense-sense orientation between the fusion pairs and scores them according 

to the number of split reads supporting the fusion breakpoint and the number of paired-end fragments that 

span the breakpoint. Duplicate paired-end read alignments are removed.  

 

While most filtering of fusion candidates is performed by the STAR-Fusion.filter step as described below, 

some initial filtering based on read support is performed here simply to remove the weakest supported 

candidates and limit the subsequent more rigorous STAR-Fusion.filter step to a smaller number of 

candidates. This improves overall computing efficiency and reduces unnecessary input/output. STAR-

Fusion applies minimal read support criteria of at least one junction-defining split read and at least two total 

supporting fragments (sum of junction reads and spanning fragments). If the chimeric junction occurs at a 

position that does not coincide with a reference annotated exon splice junction, then at least three 

breakpoint reads are required. All minimal support criteria are configurable as program parameters.   

 

Filtering fusion predictions (STAR-Fusion.filter) 

 

Finally, STAR-Fusion determines the most likely correct fusions, filtering out unlikely candidates from the 

initial predictions. To this end, the candidates are further grouped according to gene pairings and 

breakpoint proximity and then further filtered according to read support, extent of alignment at the putative 

breakpoint, and sequence similarity between putative fusion gene partners, performed in the following 

order: 

 

1. Grouping by breakpoint proximity. Fusions with non-reference breakpoints that fall within a 

window of +/-5 bases of a dominantly supported breakpoint are merged into single fusion predictions with 

the dominant breakpoint.   

2. Assessing strength of alignment evidence. Those fusions that have only split-read support 

(lacking spanning fragment support) are required to have at least 25 bases of read alignment at each end of 

the breakpoint, though not necessarily from a single read, as different reads can provide the required 

alignment overlap at either end.   

3. Filtering lowly supported fusion isoforms. If multiple fusion isoforms are predicted for a given 

gene pair, we discard those isoforms having less than 10% of split-read supporting evidence compared to 

the dominantly supported breakpoint.   

4. Filtering sequence-similar fusion pairs. We exclude fusion candidates A—B where there exist a 

significant sequence alignment (BLAST, E<=10-3) between any two reference isoforms of the genes. 

Instead of performing BLAST at runtime, the results from an all-vs-all BLAST search are stored and 

indexed for immediate retrieval at runtime. 
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5. Filtering promiscuous fusion partners. Finally, promiscuous fusion genes, defined as those gene 

partners found to have multiple fusion partners predicted within a single sample, are filtered in two stages: 

first, those fusions containing a fusion gene that has less than 20% supporting evidence than a dominant 

fusion pair containing that same gene are discarded; second, any fusion pair containing a partner observed 

in at least 3 remaining fusion predictions are altogether excluded.   

 

Those fusions that pass the above filters are reported in a tab-delimited summary file identifying the fusion 

pairs, the inferred fusion breakpoint (chromosomal exon boundaries), counts of supporting split reads and 

spanning fragments, and identification of the RNA-Seq reads that support the fusion prediction. 

 

Compiling a Genome Resource Lib 

 

Compiling a Genome Resource Lib for use with STAR-Fusion requires three inputs:  (1) a reference 

genome in FASTA format, (2) reference transcript structure annotations in GTF format, and (3) results 

from an all-vs-all BLAST search of repeat-masked transcript sequences. Note that repeat masking is 

required in order to avoid detecting sequence similarities between transcripts that derive from mobile 

elements and other repeats that often occur within noncoding regions such as within lncRNAs or 

untranslated regions of otherwise unrelated coding transcripts. The results from the all-vs-all BLAST 

search are stored into a Berkeley DB for fast querying based on gene identifiers. We provide full 

instructions and helper utilities for building the Genome Resource Lib at http://fusionfilter.github.io . 

 

In the work described here, the Genome Resource Lib was constructed with the reference genome and 

transcript annotations in Gencode Release 19 (https://www.gencodegenes.org/releases/19.html), and 

restricted to the reference chromosomes (1-22, X, Y, and MT). Reference transcript sequences were 

reconstructed based on the GTF annotation file and then repeat masked using RepeatMasker (Smit A.F.A)  

as follows:   

    “RepeatMasker -pa 6 -s -species human -xsmall ref_annot.cdna" 

 

The repeat masked transcript sequences were then searched all-vs-all for sequence similarity using BLAST 

as follows: 

    “blastn -query ref_annot.cdna.masked -db ref_annot.cdna.masked -max_target_seqs 10000 -outfmt 6 -

evalue 1e-3 -lcase_masking  -num_threads 20 -word_size 11  >  blast_pairs.outfmt6” 

 

The genome was then indexed by STAR as follows: 

    “STAR --runThreadN 4 --runMode genomeGenerate --genomeDir ref_genome.fa.star.idx --

genomeFastaFiles ref_genome.fa --limitGenomeGenerateRAM 40419136213 --genomeChrBinNbits 16  

 --sjdbGTFfile ref_annot.gtf --sjdbOverhang 100” . 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 24, 2017. ; https://doi.org/10.1101/120295doi: bioRxiv preprint 

https://doi.org/10.1101/120295
http://creativecommons.org/licenses/by-nd/4.0/


 

Benchmarking Fusion Prediction Accuracy 

 

We assessed fusion prediction accuracy using simulated and genuine RNA-Seq data, and compared it to 15 

previously developed methods. Specifically, we downloaded and installed each of PRADA (Torres-Garcia, 

et al., 2014), TopHat-Fusion (Kim, et al., 2013; Kim and Salzberg, 2011), deFuse (McPherson, et al., 2011), 

nFuse (McPherson, et al., 2012), EricScript (Benelli, et al., 2012),  ChimeraScan (Iyer, et al., 2011), 

FusionCatcher (Nicorici, et al., 2014), FusionHunter (Li, et al., 2011), JAFFA-Assembly, JAFFA-Hybrid, 

and Jaffa-Direct (Davidson, et al., 2015), SOAPfuse (Jia, et al., 2013), MapSplice (Wang, et al., 2010), 

ChimPipe (Rodriguez-Martin, et al., 2017), and InFusion (Okonechnikov, et al., 2016). To ensure 

consistency, we reconfigured SOAPfuse and TopHat-Fusion to leverage the Gencode v19 annotation. All 

fusion prediction methods with the exception of JAFFA-Assembly leverage read alignment to target 

reference genomes or transcriptomes, whereas JAFFA-Assembly first performs de novo assembly to 

reconstruct transcripts and then aligns the reconstructed transcripts to target sequences to identify likely 

fusions. JAFFA-Hybrid leverages both direct read mapping and de novo transcriptome assembly (Davidson, 

et al., 2015). Programs and parameters used are provided in Supplementary Table 1.  Benchmarking data, 

scripts, and the analysis protocols followed are provided at https://github.com/STAR-Fusion/STAR-

Fusion_benchmarking_data and in the Supplementary Text. 

 

 Simulated fusion transcripts and RNA-Seq data 

 

We generated simulated chimeric transcripts using custom scripts, developed and released here as the 

Fusion Simulator Toolkit (https://FusionSimulatorToolkit.github.io). FusionSimulator selects two protein-

coding genes at random from the Gencode v19 annotations. It then constructs a fusion transcript by 

randomly fusing a pair of exons randomly selected from each gene, requiring that each gene contributes at 

least 100 bases of transcript sequence to the generated fusion, and that the fusion breakpoint occurs 

between two exons that have consensus dinucleotide splice sites. In generating a set of fusion genes, any 

gene participating as a fusion partner is allowed to exist in only one fusion pair.   

 

We simulated RNA-Seq reads using ‘rsem-simulate-reads’ in the RSEM software (Li and Dewey, 2011). 

RSEM was first used to estimate the expression values of the Gencode v19 reference transcripts 

supplemented with the simulated fusion transcripts. Next, the expression values of the simulated fusion 

transcripts were reset randomly according to a log2 distribution of TPM expression values in the dynamic 

range of 1 to 15.  Simulated read lengths and read quality characteristics were modeled based on genuine 

RNA-Seq data sets as described below. After directly setting fusion transcript expression values, all 

transcript expression values were renormalized to TPM values (summing to 1 million) and subject to RNA-

Seq read simulation using ‘rsem-simulate-reads’.  
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This process was applied separately for ten samples, each generating 500 random fusions and simulating 30 

million PE Illumina RNA-Seq reads. Half of the simulated samples generated 50 base reads and the other 

half 101 base reads, the former modeled on short RNA-Seq reads generated by the Illumina Human Body 

Map 2.0 study (ArrayExpress study E-MTAB-513; http://www.ebi.ac.uk/arrayexpress), and the latter based 

on a set of cancer cell lines from the Cancer Cell Line Encyclopedia (CCLE) (Barretina, et al., 2012) 

(sources for the targeted data sets are listed in Supplementary Table 2).  Simulated fusion transcripts and 

simulated RNA-Seq data are made available at 

https://data.broadinstitute.org/Trinity/STAR_FUSION_PAPER/SupplementaryData/sim_reads/ . 

 

 

Fusion prediction in cancer cell line transcriptomes 

 

Paired-end Illumina RNA-Seq data were obtained from 60 publicly available cancer cell line data sets, 

spanning a variety of cancer types (data sources and representative cancer types are listed in 

Supplementary Table 3). Cancer cell lines included 52 from the CCLE project, and further supplemented 

with 8 other cancer cell lines popularly studied for fusion detection including: the breast cancer cell lines 

BT474, KPL4, MCF7, and SKBR3 (Edgren, et al., 2011); VCaP (prostate cancer); LC2/ad and H2228 

(lung adenocarcinoma); and K562 (erythroleukemia). To facilitate benchmarking and runtime analysis, 20 

million paired-end reads were randomly sampled from each data set and targeted for fusion prediction.  All 

sampled cancer cell line RNA-Seq data targeted for fusion discovery are available at 

https://data.broadinstitute.org/Trinity/STAR_FUSION_PAPER/SupplementaryData/cancer_cell_lines/FAS

TQ/ . 

 

Fusion prediction accuracy computation 

 

True positive (TP), false positive (FP), and false negative (FN) fusion predictions were assessed for each 

method.  The true positive rate (TPR; or recall or sensitivity), positive predictive value (PPV, precision), 

and F1 accuracy measure (the harmonic mean of TPR and PPV) were computed according to standards: 

 

Recall = TPR = TP / (TP + FN) 

 

Precision = PPV = TP / (TP + FP) 

 

F1 = 2 * (TPR * PPV) / (TPR + PPV) 
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TP and FP were assessed at each minimum supporting evidence threshold to generate precision-recall 

curves, and prediction accuracy was measured as the area under the precision-recall curve (AUC), which is 

better suited than the popular receiver operating characteristic curve for studies such as fusion prediction 

where the numbers of true negatives (at least ~20k2, considering possible gene pairings) far exceeds the 

number of true positive fusions (Davis, 2006).  

 

Additional details regarding benchmarking methods, software, result files, and links to input RNA-Seq data 

and related resources are provided in the Supplementary Text and at https://github.com/STAR-

Fusion/STAR-Fusion_benchmarking_data . 

 

 

Results 
 

STAR-Fusion accurately and sensitively predicts fusion on simulated data 

 

We compared STAR-Fusion and the 15 other methods on ten sets of simulated RNA-Seq data sets, each 

containing 30 M PE reads and each including 500 fusion transcripts expressed at a broad range of 

expression levels.  To examine the effect of read length on fusion prediction accuracy, half the samples 

contained 50 base reads and the other half contained 101 base reads, reflective of read lengths of 

contemporary RNA-Seq data sets. 

 

Most methods performed well on the simulated RNA-Seq data with high recall (TPR) and precision (PPV), 

with top contenders having slight differences in prediction accuracy (Figure 2a, Supplementary Tables 4-

7).  Most predictors had improved performance with longer (101 base) reads. Notably, JAFFA-Direct and 

JAFFA-Hybrid were restricted for use with longer reads (Davidson, et al., 2015).  Most fusions that were 

not captured had the lowest expression levels and hence had little to no corresponding read evidence.  

 

STAR-Fusion had superior accuracy with high sensitivity for fusion detection across the full dynamic range 

of gene expression (Figure 2, Supplementary Tables 4-8).  Since de novo assembly generally requires 

higher sequence coverage for transcript reconstruction and fusion detection, JAFFA-Assembly had limited 

sensitivity for fusion prediction. However, it is peculiar that JAFFA-Assembly demonstrated reduced 

sensitivity at the highest fusion transcript expression levels; this may result from JAFFA-Assembly using 

the Oases de novo transcriptome assembler, as similar approaches leveraging Trinity for de novo assembly 

continued to retain high sensitivity for the same highly expressed fusion transcripts (data not shown), and 

the assembly-free JAFFA-Direct did not exhibit this aberrant behavior.   

The vast majority of false positives obtained on the simulated data were due to paralogous genes of fusion 

transcripts being reported in addition to or in place of the known fusion gene; eg. Fusion A—B reported as 
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A’—B where A’ is a paralog of gene A. Scoring fusions containing paralogs as true positives improves 

reported prediction accuracies for all methods (Supplementary Fig 1), with STAR-Fusion continuing to 

demonstrate top performance.    

 

STAR-Fusion accurately and sensitively predicts fusions on cancer cell line transcriptomes 

 

Next, we compared the fusion transcript predictions of STAR-Fusion and each of the 15 methods in 60 

cancer cell line transcriptomes. Several of the 60 cell lines are well studied and include fusion transcripts 

that have been well documented and experimentally validated (Edgren, et al., 2011) (Suzuki, et al., 2013). 

Nevertheless, unlike with simulated data, there is no perfect truth set by which prediction accuracies can be 

computed with absolute certainty.  Instead, we used concordance between methods as a proxy for accuracy: 

we hypothesized that those fusions predicted by multiple different predictors are the most likely to be true 

and those uniquely predicted by a given predictor are more likely to be false.  Based on this concordance 

benchmarking approach, we defined the truth set as those fusions agreed upon by at least four different 

methods , and those uniquely predicted by a single method as false positives.  Those predictions agreed 

upon by only 2 or 3 methods were treated as ambiguous (neither TP nor FP).  

 

Unlike simulated data, there was much more substantial variation in the performance of different methods 

on the cancer cell line data, particularly in the numbers of putative FPs observed across methods (Figure 3, 

Supplementary Tables 9, 10).  The numbers of uniquely predicted fusions ranged from the tens to over a 

thousand at points of maximum prediction accuracy (peak F1 score in Figure 3D and Supplementary 

Table 9). Not all of the methods that performed well on simulated data were observed to excel on the 

cancer cell line data; for example, nFuse was among the top performers using simulated data (Figure 2), 

but lacked predictive power on the cancer cell line data (Figure 3).  

 

Nevertheless, STAR-Fusion was the top performing method on these data, having the highest AUC, 

followed by the recently published ChimPipe software.  Alternative definitions of truth sets might change 

the relative rankings of methods, but STAR-Fusion continues to demonstrate superior performance 

(Supplementary Figure 3 and Supplementary Text). For example, defining the truth set as fusions 

agreed upon anywhere between 2 and 5 methods, ignoring ambiguous predictions or treating ambiguous 

predictions as FP, and/or considering paralogs as proxies to TP predictions had no effect on STAR-Fusion's 

top ranking among all methods. 

 

Fusion prediction accuracy highly depends on the minimum threshold of evidence for split reads and 

junction-bridging fragments. For example, STAR-Fusion has peak accuracy on the cancer cell line data at a 

minimum of three total fusion-supporting RNA-Seq fragments (Figure 3D), whereas TopHat-Fusion 

reaches peak accuracy at a minimum of 5 fragments, but exhibits a steep decline in accuracy when 
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lowering the threshold to 3 fragments (Figure 3D), due to an influx of false positives with few additional 

true positives (Figure 3C). Notably, STAR-Fusion exhibited better performance across a range of 

minimum evidence thresholds (Figure 3D). In general, requiring at least 3 supporting RNA-Seq fragments 

per 20 M total reads (or normalized to 0.15 fusion fragments per million total RNA-Seq fragments (FFPM)) 

appears to provide near-optimal fusion prediction accuracy for the well-behaved prediction methods in this 

study. 

 

STAR-Fusion prediction pipeline is fast  

 

Finally, we compared the run time of each fusion prediction pipeline on conventional hardware leveraging 

the computing grid at the Broad Institute, with each of the 60 cancer cell line samples run as a separate 

compute job for each fusion prediction tool (Figure 4). Run times for fusion predictors on single samples 

(20 M PE reads) ranged from hours to days. 

 

STAR-Fusion has the shortest run time, taking on average 2.3 hours per sample, given a single compute 

core; STAR-Fusion can run at approximately 30 minutes per sample when provided with 10 compute cores 

(Supplementary Figure 4).  Most of STAR-Fusion’s execution time involves running STAR to align the 

RNA-Seq reads to the reference genome. Mapping the split read alignments and discordantly aligned pairs 

to the reference annotations and subsequent filtering of fusion candidates is comparably fast, taking only 9 

minutes per sample on average.  

 

 

Discussion 
 

Fast and accurate fusion detection is essential to ensure progress in cancer research and to bring next-

generation sequencing to the precision medicine pipeline.  The National Cancer Institute Genomic Data 

Commons (https://gdc-portal.nci.nih.gov), current home for The Cancer Genome Atlas data, now contains 

RNA-Seq samples for over 10,000 tumors and totaling over 100 TB of data, and with current trends, the 

data deluge is expected to grow exponentially.  Further cancer genome sequencing is expected as it 

becomes more commonly deployed in the clinical setting and routinely used for treatment decision-making 

and prognostics (Gagan and Van Allen, 2015; Horak, et al., 2016).  We hope that the advances enabled by 

STAR-Fusion will enable it to play an important role in identifying known and actionable fusion transcripts 

in the clinical context, in addition to discovering new hallmarks of diverse cancer types in pan-cancer 

research studies.  

Fusion transcript discovery is just one aspect of the application of next-gen transcriptome sequencing to 

cancer research. RNA-Seq and genome read alignment already exist as standard methods in cancer 

sequencing studies.  Due to the fast speed and accuracy of the STAR aligner (Dobin, et al., 2013; Engstrom, 
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et al., 2013), STAR is already being used as a key component of production pipelines for aligning reads to 

genomes and estimating gene expression (https://www.encodeproject.org/pipelines/ENCPL002LPE/), and 

STAR is an integral component of the GATK best practices for variant calling using RNA-Seq data 

(https://software.broadinstitute.org/gatk/guide/article?id=3891). By enabling the STAR option to report the 

chimeric read alignments, these data will be readily available for running STAR-Fusion in the faster 

‘kickstart’ mode, and quickly provide access to lists of candidate fusion transcripts.  

 

STAR-Fusion is freely available as open source and included with documentation and sample data at 

http://star-fusion.github.io . We also provide access to running STAR-Fusion on user-provided RNA-Seq 

data via a point-and-click interface at our Trinity Cancer Transcriptome Analysis Toolkit Galaxy Portal: 

https://galaxy.ncgas-trinity.indiana.edu . 
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Figure 1: Overview of the STAR-Fusion pipeline.  Illumina RNA-Seq reads are aligned to the genome 

using STAR. Discordant and split-read alignments are identified, mapped to reference transcript structure 

annotations, filtered to remove likely artifacts, and scored according to the abundance of fusion-supporting 

reads.  Fusion candidates containing sequence-similar gene pairs or promiscuous fusion partners are 

excluded as likely false positives. 
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Figure 2. Benchmarking of fusion prediction accuracy on simulated data. A. Distribution of precision-
recall AUC values for each predictor using short (blue, 50 base) or longer (red, 101 base) simulated reads. 
Boxplots show the distribution of AUC values among the 5 replicates, with the median drawn as the center 
line, boxes extending to the 1st and 3rd interquartile, and whiskers extending to furthest data points within 
1.5 * the interquartile range. B. Sensitivity of fusion prediction (recall) for simulated fusions at different 
expression levels.  Shows is the percent of simulated fusions (color bar) identified by each method (rows) 
at each expression level (log2(TPM)) bin, where bins range from 21 to 210. Ordering of rows in the heatmap 
is based on hierarchical clustering. 
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Figure 3. Benchmarking of fusion prediction accuracy on cancer cell line transcriptomes. A.  

Precision-recall curve AUC values for each method ranked from highest to lowest.  B.  Precision-recall 

curves from which AUC values were computed.  C. True positives (TP, Y axis) and false positives (FP, X 

axis) at each minimum fusion-supporting read evidence thresholds.  D. F1 accuracy measurements (Y axis) 

at each minimum read evidence thresholds (X axis). 
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Figure 4. Distribution of run times for fusion predictors on the 60 cancer cell line data sets.  Boxplots 

are drawn to represent the median, interquartile range, and whiskers drawn to furthest data points within 1.5 

* the interquartile range.  
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Supplementary	  Figure	  1:	  Fusion	  prediction	  TP	  and	  FP	  before	  and	  after	  treating	  paralogs	  of	  
true	  fusion	  partners	  as	  equivalent.	  	  The	  impact	  is	  most	  notably	  a	  decrease	  in	  the	  number	  of	  false	  
positives	  with	  a	  small	  increase	  in	  the	  number	  of	  true	  positives.	  Results	  are	  shown	  for	  the	  A.	  	  
simulated	  101	  base	  length	  PE	  reads	  and	  B.	  simulated	  50	  base	  length	  PE	  reads.	  
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Supplementary	  Figure	  2:	  Correlation	  of	  predicted	  fusion	  gene	  pairs	  among	  different	  fusion	  
prediction	  methods	  for	  the	  60	  cumulative	  cancer	  cell	  line	  data	  sets.	  	  Only	  JAFFA-‐Direct	  and	  
JAFFA-‐Hybrid	  demonstrate	  high	  correlation	  among	  predictions,	  and	  so	  JAFFA-‐Hybrid	  was	  excluded	  
from	  the	  majority	  voting	  process	  of	  defining	  candidate	  truth	  sets	  to	  avoid	  unintended	  bias.	   	  
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Supplementary	  Figure	  3:	  	  Fusion	  prediction	  accuracy	  (AUC)	  computed	  using	  different	  truth	  set	  
definitions.	  	  The	  minimum	  threshold	  for	  the	  number	  of	  methods	  that	  must	  agree	  to	  define	  the	  truth	  
set	  is	  shown	  at	  left	  and	  ranges	  from	  2	  to	  5.	  	  True	  positive	  fusions	  are	  identified	  by	  strict	  gene	  identity	  
(A-‐-‐B)	  (left	  two	  columns)	  or	  allowing	  paralogs	  of	  fusion	  partners	  to	  suffice	  as	  proxies	  to	  the	  true	  
fusion	  partner	  (A'-‐-‐B'	  where	  A'	  is	  either	  A	  or	  a	  	  paralog	  of	  A,	  and	  B'	  is	  either	  B	  or	  a	  paralog	  of	  B).	  	  In	  all	  
cases,	  uniquely	  predicted	  fusions	  are	  treated	  as	  false	  positives.	  	  In	  the	  columns	  indicated	  'Ignore	  
Unsure',	  those	  predictions	  agreed	  upon	  by	  >1	  predictor	  and	  <	  threshold	  predictors	  are	  ignored	  and	  
not	  counted	  as	  TP,	  FP,	  or	  FN.	  
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Supplementary	  Figure	  4:	  STAR-‐Fusion	  runtime	  using	  multiple	  threads.	  	  The	  STAR	  aligner	  was	  
run	  as	  part	  of	  STAR-‐Fusion	  with	  multithreading	  set	  to	  the	  specified	  number	  of	  threads	  and	  total	  
STAR-‐Fusion	  execution	  time	  was	  recorded.	  	  Using	  10	  threads,	  runtime	  was	  approximately	  30	  
minutes.	  
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