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Abstract

Major depressive disorder involves changes in synaptic structure and function, but

the molecular underpinnings of these changes are still not established. In an initial

pilot experiment, whole-brain synaptosome screening with quantitative western blot-

ting was performed to identify synaptic proteins that may show concentration

changes in a congenital rat learned helplessness model of depression. We found that

the N-methyl-D-aspartate receptor (NMDAR) subunits GluN2A/GluN2B, activity-

regulated cytoskeleton-associated protein (Arc) and syntaxin-1 showed significant

concentration differences between congenitally learned helpless (LH) and nonlearned

helpless (NLH) rats. Having identified these three proteins, we then performed more

elaborate quantitative immunogold electron microscopic analyses of the proteins in a

specific synapse type in the dorsal hippocampus: the Schaffer collateral synapse in

the CA1 region. We expanded the setup to include also unstressed wild-type

(WT) rats. The concentrations of the proteins in the LH and NLH groups were com-

pared to WT animals. In this specific synapse, we found that the concentration of

NMDARs was increased in postsynaptic spines in both LH and NLH rats. The concen-

tration of Arc was significantly increased in postsynaptic densities in LH animals as

well as in presynaptic cytoplasm of NLH rats. The concentration of syntaxin-1 was

significantly increased in both presynaptic terminals and postsynaptic spines in LH

animals, while pre- and postsynaptic syntaxin-1 concentrations were significantly

decreased in NLH animals. These protein changes suggest pathways by which synap-

tic plasticity may be increased in dorsal hippocampal Schaffer collateral synapses dur-

ing depression, corresponding to decreased synaptic stability.

Abbreviations: AZ, active zone; Arc, activity-regulated cytoskeleton associated protein; LH, congenitally learned helpless; NLH, congenitally nonlearned helpless; HSA, human serum albumin;

LTP, long-term potentiation; NMDAR, N-methyl-D-aspartate receptor; PSD, postsynaptic density; SNARE, soluble NSF attachment protein receptor; SD, standard deviation; SEM, standard error

of the mean; TBST, tris buffered saline with Tween20, pH 7.4; WT, wild-type.
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1 | INTRODUCTION

Long-term or uncontrollable stress increases the risk of developing

depression. Depression is a leading cause of disability worldwide

(Lopez & Murray, 1998), inflicting individuals with great emotional

suffering and burdening societies economically due to work produc-

tivity loss and therapeutic treatment (Sobocki et al., 2006; Wang

et al., 2003). Early clinical observations lead to the widely accepted

notion that a decrease in monoamines is a major cause of depressive

symptoms (Krishnan & Nestler, 2008).

However, later evidence suggests that selective serotonin reuptake

inhibitors (SSRIs) do not relieve symptoms of depression by modulating

serotonin neurotransmission but rather by increasing the rate of syn-

aptogenesis (Oved et al., 2013). Theoretical explanations of depression

have shifted in the last decades from regarding the cause of depression

solely as a deficiency in monoamines to a more pronounced dysfunction

of synaptic plasticity, especially in glutamatergic synapses (Freudenberg

et al., 2015; Williams & Schatzberg, 2016). The dysregulation of both

pre- and postsynaptic exo/endocytosis proteins might be a major cause

of the disturbed function seen in depression, as has been suggested

through studies on a chronic mild-stressed rat model (Hu et al., 2013).

In order to understand the neurobiology underlying psychiatric

disorders, animal models are indispensable (Harro, 2019). Such models

make it possible to perform neurobiological analysis at a higher resolu-

tion, allowing experiments or observations on selected components in

the brain circuits that may underlie psychopathology. The learned

helplessness model used in the present study is regarded as specific

for depression (Cryan et al., 2002).

Ketamine, an antagonist of the NMDA type of glutamate receptors,

is known to rapidly reduce depressive symptoms in patients (Berman

et al., 2000), suggesting that NMDA receptor signaling plays an impor-

tant role in depression. Long-term potentiation (LTP) is inhibited for

several weeks in WT rats exposed to excessive acute inescapable stress

in the form of learned helpless training, while LTP in LH rats is similar to

or elevated compared to WT animals (Ryan et al., 2010).

Using western blot, we performed an initial screening of selected

synaptic proteins in a synaptosome preparation in order to identify

proteins that would show differences in overall synaptic expression

levels. Any such proteins would be expected to be changed in at least

some synapses, and these proteins would then be subject to more

detailed analysis in a specific hippocampal synapse with post-

embedding immunogold electron microscopy.

We thus identified three candidate proteins for further investiga-

tion. Not surprisingly, the NMDA receptor subunits GluN2A/GluN2B

were significantly changed in the screening, as well as Arc, which is

important in synaptic function and plasticity (Guzowski et al., 2000;

Peebles et al., 2010; Plath et al., 2006), and syntaxin-1, a membrane-

associated soluble NSF attachment protein receptor (SNARE) protein,

which is a key component of the pre- and postsynaptic exocytotic

machinery (Hussain et al., 2016; Hussain & Davanger, 2011, 2015).

We here present data from semiquantitative postembedding immu-

nogold electron microscopy experiments performed to investigate

changes in the relative concentrations of the synaptic proteins identified

in the pilot experiments. We used a rat LH model of depression (Henn &

Vollmayr, 2005). In this model, we distinguish between a line of animals

selectively bred for their learned helpless behavior, a line of animals

selectively bred for their resilience against helplessness, that is, the non-

learned helpless behavior, and animals not subjected to the helplessness

paradigm, that is, WT. We selected a single type of synapse, the Schaffer

collateral synapse from CA3 neurons to CA1 pyramidal cell apical den-

drites in the hippocampus for detailed analyses. In order to get more

information on the effect of stress in itself, we here also included the

unstressed WT strain of rats in our analysis.

2 | MATERIALS AND METHODS

2.1 | Antibodies

The following primary antibodies were used in the western blot experi-

ments: The monoclonal mouse synaptophysin antibody (Abcam, Cam-

bridge, UK; Cat#AB18008, Lot#GR49452, RRID: AB_444181) was raised

against immunoprecipitated synaptophysin from human brain homoge-

nate, used at 1:40,000. The monoclonal mouse β-tubulin antibody

(Covance, CA; Cat#MMS435P, Lot#E10082CF, RRID: AB_2313773) was

raised against microtubules derived from rat brain, used at 1:20,000. The

monoclonal mouse PSD-95 antibody (Novus Biologics, ON, Canada;

Cat#NB300-556, Lot#KF132757, RRID: AB_2092366) was raised against

purified recombinant rat PSD-95, used at 1:40,000. The polyclonal rabbit

GluA1 antibody (Abcam, Cambridge, UK; Cat#AB31232, Lot#GR56603-1,

RRID: AB_2113447) was raised against synthetic peptide derived from

within residues 850 to the C-terminus of human GluA1, used at 1:1000.

The polyclonal rabbit GluA2 antibody (Alomone Labs, Jerusalem, Israel;

Cat#AGC-005, Lot#AN-03, RRID: AB_2039881) was raised against pep-

tide NVGNINNDKKDETYR(C), corresponding to amino acid residues 179–

193 of rat GluA2, used at 1:10,000. The polyclonal rabbit GluN2A/

GluN2B antibody (Millipore, Billerica MA; Cat#AB1548, Lot#LV1759226,

RRID: AB_11212156) was raised against synthetic peptide (LNSCS

NRRVYKKMPSIESDV) corresponding to the C-terminus of rat GluN2A

conjugated to BSA, used at 1:10,000. The polyclonal rabbit Arc antibody

(Santa Cruz Biotechnology, Dallas TX; Cat#SC-15325, Lot#G2110, RRID:

AB_634092) was raised against recombinant full-length protein, used at

1:600. The polyclonal rabbit syntaxin-1 antibody (Alomone Labs, Jerusa-

lem, Israel; Cat#ANR-002, Lot#AN-04, RRID: AB_2040224) was raised

BIELER ET AL. 3195



against GST fusion protein with the residues 1–265 of rat syntaxin-1A

(accession number P32851), used at 1:40,000.

The following primary antibodies were used for immunogold elec-

tron microscopy: The polyclonal rabbit GluN2B antibody (Abcam, Cam-

bridge, UK; Cat#AB65783, Lot# GR98904-1, RRID: AB_1658870) was

raised against a synthetic peptide conjugated to KLH derived from resi-

due 1450 to the C-terminus of rat GluN2B, used at 1:600. The antigenic

sequence bears high homology to GluN2A. However, any cross-

reactivity with GluN2A is not a problem in the current study, as the anti-

body is basically used as a marker for NMDARs. The GluN2B antibody

has previously been shown to produce characteristic staining of postsyn-

aptic spines at electron microscopical level in our own study (Hussain

et al., 2016). According to manufacturer's technical information, GluN2B

was successfully immunoprecipitated from mouse brain tissue lysate

using GluN2B antibody. A GluN2A/B specific antibody was used in the

western blot experiments, while a GluN2B specific antibody was used

for immunogold electron microscopy. We used anti-GluN2B at the elec-

tron microscopical level because it was the NMDAR subunit antibody

that gave the best labeling and GluN2B antibody gives a valid estimate

of NMDAR concentrations in hippocampal synapses (Rauner & Kohr,

2011). The polyclonal rabbit Arc antibody (Synaptic Systems, Göttingen,

Germany; Cat#156003, RRID: AB_887694) was raised against recombi-

nant protein corresponding to AA 1 to 396 from mouse Arc (UniProt Id:

Q9WV31), used at 1:400. The specificity of the Arc antibody was veri-

fied by immunocytochemistry of dissociated hippocampal neuron cul-

tures prepared from WT and Arc KO littermates (Niere et al., 2012). The

polyclonal rabbit syntaxin-1 antibody (Alomone Labs, Jerusalem, Israel;

Cat#ANR-002, lot#AN-04, RRID: AB_2040224) was raised against GST

fusion protein with the residues 1–265 of rat syntaxin-1 (accession num-

ber P32851), used at 1:30. The specificity of the antibody was confirmed

by dual immunofluorescence labeling with a mouse monoclonal synaptic

SV2 antibody and anti-syntaxin-1, which resulted in colocalization of the

proteins in motor-nerve terminals (Macleod et al., 1999). In another study,

the authors of Fili et al. (2001) examined the well-established interaction

between SNAP-25 and syntaxin-1 in oocytes coexpressing these pro-

teins. Double immunofluorescence labeling with syntaxin-1 antibody and

anti-SNAP-25 showed complete colocalization of the proteins in oocytes.

Secondary antibodies were used in the western blot experiments

included goat anti-rabbit alkaline phosphatase (Sigma, MO; Cat#A3687,

RRID: AB_258103) at 1:10,000 and goat anti-mouse alkaline phospha-

tase (Sigma, MO; Cat#A3562, RRID: AB_258091) at 1:10,000.

The following secondary antibody was used for immunogold elec-

tron microscopy: Goat anti-rabbit conjugated to 10 nm gold particles

(Abcam, Cambridge, UK; IgG H&L antibody, Cat#AB27234,

Lot#GR73433 and Lot#GR104536-1, RRID: AB_954427) at 1:40.

2.2 | Animals

Adult Harlan Sprague–Dawley rats (17 weeks old) that had been outbred

for over 50 generations at SUNY, Stony Brook, according to the learned

helplessness model (see below) were used for western blot (n = 7, of

these four were LH and three were NLH) and for electron microscopy

(n = 10, of these four were LH, four were NLH, and two were WT)

experiments. Experimental protocols were approved by the Institutional

Animal Care and Use Committee. The protocols conformed to the

National Institute of Health guidelines for the care and use of animals, as

well as international laws on protection of laboratory animals. They were

approved by a local bioethical committee and were supervised by a vet-

erinary commission for animal care and comfort of the Cold Spring Har-

bor Laboratory and Brookhaven National laboratory. Every effort was

made to minimize the number of animals used and their sufferings.

2.3 | Learned helpless model

The helplessness model was chosen here because of two main rea-

sons. First, it has good face and predictive validity for depressive like

behavior (Henn & Vollmayr, 2005). Second, males and females of the

helplessness model reliably expressed either the LH or NLH pheno-

type following uncontrollable stress (Henn & Vollmayr, 2005).

Methods for the learned helplessness paradigm were optimized pre-

viously (Schulz et al., 2010; Vollmayr & Henn, 2001). Briefly, rats of each

generation of the breeding paradigm were exposed to one induction ses-

sion consisting of 120 inescapable and uncontrollable foot-shocks over a

40 min period in an operant chamber (30.5 cm × 24.5 cm × 30.5 cm;

Coulbourn Instruments) equipped with an electrical grid floor and fully

automated by Graphic State software (Coulbourn Instruments). The

shock intensity was 0.4 mA; shock durations and the inter-shock inter-

vals were randomized between 5 and 15 s. The testing session was con-

ducted 24 h following the induction and consisted of 15 trials of foot

shocks, during which an illuminated lever was added to the chamber so

that animals could terminate the foot shocks by pressing the lever. The

shock intensity was 0.4 mA, shock duration 60 s and the inter-shock

interval 24 s in the testing phase. Animals that frequently escaped the

foot shocks by lever pressing were classified as being nonlearned helpless,

or NLH, (≥10 lever presses of the 15 trials) and used for further breeding,

whereas those that had deficits in escaping were classified as being

learned helpless, or LH, (≤5 lever presses of the 15 trials). For increased

stringency, only lever presses occurring within the first 20 s of shock

onset was counted. The experiments were conducted between 9 a.m.

and 11 a.m. Animals having an intermediate number of lever presses

were excluded from further breeding or analysis.

Congenital animals were maintained in a large colony (at least

200 animals at any time), making sure not to interbreed closely related

relatives (siblings, and maternal/paternal relations). At regular intervals,

WT Sprague Dawley rats were integrated into the breeding to maintain

outbred genetics. After acclimation to the animal facility, the WT animals

(purchased from Taconic Biosciences) were subjected to training and

testing identical to what is described above. The purchased WT animals

which showed responses closer to the extremes were then used for

breeding together with the established colony. Animals used for the

experiments described in this article were obtained from this outbred

colony (after more than 50 generations) of either LH or NLH strains.

Routinely, offspring were also tested to ensure that they could be classi-

fied as either LH or NLH, before using them for further breeding.
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2.4 | Preparation of pure synaptosomes

One day after testing (LH: n = 4, NLH: n = 3), the rats were sacrificed by

rapid decapitation with guillotine, before the brains were extracted as

quickly as possible and freezing on dry ice and subsequently stored in a

−80�C freezer. Before shipment, Falcon tubes with the brains were

packed in dry ice, before again being stored in a −80�C freezer.

For preparation of synaptosomes, the brains were placed and

thawed in cold homogenization buffer (0.32 M sucrose in 5 mM

Hepes, pH 7.4 containing a protease inhibitor cocktail). The brains

were homogenized with 10 strokes in a glass/Teflon homogenizer.

The homogenate was centrifuged in a Sorvall ss-34, 1000g for 10 min

at 4�C to remove the nuclear fraction. The supernatant was placed on

top of a 1.2 M sucrose solution (1.2 M sucrose in 5 mM Hepes,

pH 7.4) and centrifuged in a Ti-70 rotor; 165,000g, 25 min at 4�C.

The gradient interphase containing synaptosomes and myelin was col-

lected, diluted in homogenization buffer, and placed on top of a 0.8 M

sucrose solution (0.8 M sucrose in 5 mM Hepes, pH 7.4). The synap-

tosomes were then centrifuged in a Ti-70 rotor, 165,000g, 30 min at

4�C. The pellet was washed two times in homogenization buffer by

centrifugation in a Sorvall ss-34 rotor at 19,000g, for 6 min at 4�C.

The pure synaptosomal fraction was stored at −80�C.

2.5 | Western blotting and quantification

The synaptosomes were run on 4–20% SDS–acrylamide gels. They

were then electroblotted onto PVDF membranes (Hoefer Scientific

Instruments, San Francisco, CA) and immunostained with primary anti-

bodies and alkaline–phosphatase linked secondary antibodies. The

signal was detected by using ECF substrate (Amersham Biosciences,

UK). The fluorescence signals were visualized by a fluorescence digital

camera detection system (Kodak scanner). Semiquantitative analyses

of blots were performed using Photoshop and Excel. Three blots were

used for each brain per antibody. A rectangular marker was made so

that it could tightly fit the bands. Values “mean” and “pixels” were

transferred to an Excel sheet. The intensity of each band was calcu-

lated by taking the mean times the pixels divided by 1000. The back-

ground was measured and subtracted from this number. Protein

concentrations were determined with a Bicinchoninic Acid (BCA) pro-

tein assay kit and measured on a microplate reader at 570 nM (Tecan

Sunrise). Homogenized rat hippocampus was used to make a standard

curve, which was used to standardize the measures of the quantified

proteins. Thus, the observed number from quantifying the signals is

equivalent to the number of micrograms of protein from the homoge-

nized hippocampus standard protein that will give an equally strong

signal.

2.6 | Rat perfusion fixation

For electron microscopy studies the rats (LH: n = 4, NLH: n = 4, WT:

n = 2) were deeply anesthetized with an i.p. injection of a mixture of

ketamine (100–200 mg/kg) and xylaxine (10–20 mg/kg), immediately

before being sacrificed by transcardial perfusion with 10–15 s flush of

4% Dextran-T70 in sodium phosphate buffer (pH 7.4), followed by fix-

ation with 0.5 L of a mixture of 4.0% formaldehyde and 0.1% glutaral-

dehyde in the same buffer. The brains were left in situ overnight in a

cold room before being dissected out and stored in a mixture of 0.4%

formaldehyde and 0.01% glutaraldehyde in sodium phosphate buffer

(pH 7.4). As an extra control, two of the congenital LH animals and

two of the congenital NLH animals were behaviorally tested 24 h

prior to sacrifice, confirming the difference between the two lines of

breeding (0 and 1 lever presses within 21 min vs. 14 and 15 lever

presses within 8 min for LH and NLH animals, respectively).

2.7 | Postembedding immunocytochemistry

Tissue pieces (0.5 × 1.0 mm) of the dorsal hippocampal CA1 region

were freeze substituted, sectioned, and immunolabeled as described

previously (Mathiisen et al., 2006). The small tissue blocks were

cryoprotected in increasing concentrations of glycerol (30 min in 10%,

30 min in 20%, and overnight in 30% at 4�C) in 0.1 M phosphate

buffer and then frozen in a cryofixation unit (Reichert KF80, Vienna,

Austria) filled with propane which was cooled down by liquid nitrogen.

The tissue pieces were placed in Reichert capsules in a flow through

chamber filled with 1.5% uranyl acetate diluted in anhydrous metha-

nol in a precooled chamber (−90�C) in a Reichert automatic freeze-

substitution unit (AFS) (Leica, Germany). Following 30 h in −90�C, the

temperature was raised with 4�C increments per hour from −90 to

−45�C. The tissue pieces were rinsed with anhydrous methanol and

infiltrated with Lowicryl HM20 resin (Polysciences Inc., Warrington,

PA; Cat#15924) at a temperature of −45�C. Infiltration in 1:1 and 2:1

in methanol to pure Lowicryl lasted for 2 h each, and 2 h in pure

Lowicryl as well as overnight in pure Lowicryl. The Reichert capsules

were moved to Lowicryl-filled gelatin capsules and then transferred to

another container filled with ethanol. The resin/tissue was polymer-

ized with UV-light for 24 h at −45�C. The temperature was increased

by 5�C increments to a final 0�C where it was polymerized for further

35 h. Ultrathin sections (90 nm) were cut with a diamond knife

(Diatome ultra 45�, Diatome) on an ultramicrotome (Reichert Ultracut

S-2.GA-E-12/92, Leica Microsystems, Germany) and placed on coated

(Coat-Quick “G”) nickel grids (Electron Microscopy Sciences,

G300-Ni).

The postembedding immunogold labeling procedure was carried

out as described previously (van Lookeren et al., 1991). In brief, the

sections were incubated in TBST (Tris buffered saline with Tween20,

pH 7.4) buffer containing 50 mM glycine (10 min) and in TBST con-

taining 2% human serum albumin (HSA) (10 min) to neutralize free

aldehyde groups and blocking nonspecific antibody binding sites

respectively. The sections were incubated with anti-GluN2B (1:400 in

2% HSA in TBS with 0.1% Triton X-100, 4 h), anti-Arc primary anti-

body (1:600 in 2% HSA in TBS with 0.1% Triton X-100, overnight), or

anti-syntaxin-1 (1:30 in 2% HSA in TBS with 0.01% Triton X-100,

30 min at 37.5�C). The sections were rinsed and immersed in TBST
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(10 min), before they were incubated in 10 nm goat anti-rabbit IgG

colloidal gold-secondary antibody 1:20, in 2% HSA and 1 mg/mL PEG

in TBST for 90 min. The sections were then rinsed with distilled water

and poststained with 2% uranyl acetate (90 s) and 0.3% lead citrate

(90 s). Uranyl acetate and lead citrate were removed with distilled

water, and sections were left to dry completely before use in the elec-

tron microscope. All sections were labeled blinded on a grid support

plate at room temperature.

Electron micrographs were acquired using a transmission electron

microscope (Tecnai G2 Spirit, FEI Company) operating at high tension

(80 kV) with a 43,000× magnification.

2.8 | Electron microscopy and quantification

Electron micrographs were obtained at random from the middle layer

of the stratum radiatum of the dorsal CA1 region of the hippocampus.

Immunolabeling was quantified as number of gold particles/μm of

membrane length in asymmetric synapses and as number of gold par-

ticles/μm2 for regions of interest in the intracellular compartment.

Asymmetric synapses in this location are well-defined glutamatergic

synapses, where the presynaptic element is the nerve ending of the

Schaffer collateral neurons they originate from. Specific plasma mem-

brane and cytoplasmic compartments were defined and used for

quantification. These included the postsynaptic density (PSD), the

active zone (AZ), the presynaptic cytoplasm (PreCy) and the postsyn-

aptic cytoplasm (PostCy) (Figure 1). Synaptic profiles from each region

of interest were acquired for quantitative analysis. The following total

numbers of synaptic profiles were analyzed across animals: NMDAR

subunit GluN2B (AZ: LH = 180, NLH = 178, WT = 180; PSD:

LH = 180, NLH = 178, WT = 180; presynaptic cytoplasm: LH = 180,

NLH = 180, WT = 180; postsynaptic cytoplasm: LH = 174,

NLH = 175, WT = 174), Arc (AZ: LH = 178, NLH = 178, WT = 178;

PSD: LH = 177, NLH = 176, WT = 172; presynaptic cytoplasm:

LH = 178, NLH = 179, WT = 179; postsynaptic cytoplasm: LH = 178,

NLH = 178, WT = 178), Syntaxin-1 (AZ: LH = 119, NLH = 93, WT

123; PSD: LH = 121, NLH = 82, WT = 125; presynaptic cytoplasm:

LH = 180, NLH = 177, WT = 180; postsynaptic cytoplasm: LH = 167,

NLH = 156, WT = 163). Schaffer collateral synapses in CA1 that did

not show any labeling for GluN2B, Arc or syntaxin-1 were omitted

from the analysis.

Excitatory synapses were identified by the presence of two

closely aligned membranes with a synaptic cleft, a prominent PSD and

circular synaptic membrane-orientated vesicles at the presynaptic

side. The length of the AZ was defined as equal to the length of the

PSD of the same synapse. Only synaptic profiles with clearly visible

synaptic membranes and a PSD were selected for quantitative analy-

sis. The images were quantified with a commercially available image

analysis program (analySIS; Soft Imaging Systems, Münster, Germany).

Curves were drawn interactively and gold particles were detected

semiautomatically.

An in-house extension to analySIS connected with SPSS (SPSS

Inc., Chicago, IL) was used to evaluate the gold particle labeling of the

specific plasma membrane and cytoplasmic compartments. The soft-

ware calculated area particle density (number per unit area) over cyto-

plasmic compartments and linear particle density (number per unit

length of curve) over membrane domains. In the latter case, it mea-

sured the distance from each particle-center to the membrane and

included only those particles which were within an operator-defined

distance from the curve segment. For general plasma membranes, the

inclusion distance was symmetric between −21 nm and +21 nm (neg-

ative value signifying an intracellular location). The inclusion distance

was defined as the distance between the epitope and the center of

the gold particle, corresponding to the radius of the particle (5 nm)

and the length of the interposed primary antibody (8 nm) and length

of the secondary antibody (8 nm). Data for particles were collected in

ASCII files as flat tables and exported to SPSS for further statistical

and graphical analysis.

2.9 | Data analysis and statistics

Quantitative data from electron microscopy were analyzed using SPSS

and MATLAB software (MathWorks, 2017). A linear mixed effects

model for continuous outcome data with bootstrap method was used

to fit three measurements of training, stratified by protein type and

synaptic location level. In the linear mixed effects model, the animal

ID was specified as a random variable and a compound symmetry

covariance structure was used. The bootstrapped estimates with 95%

confidence interval (CI) and p-values were based on 500 bootstraps/

replications. All tests were Bonferroni adjusted for multiple

comparisons.

3 | RESULTS

In order to identify proteins that may be involved in changes of synap-

tic function during depression, we first performed an initial pilot

F IGURE 1 Schematic illustration of synaptic regions used for
quantitative analysis. AZ, active zone; PoCy, postsynaptic cytoplasm;
PreCy, presynaptic cytoplasm; PSD, postsynaptic density
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screening of whole brain synaptosomes from LH (n = 4) and NLH

(n = 3) animals using western blot experiments and semiquantitative

analyses of selected synaptic proteins (Figure 2).

3.1 | Pilot screening of whole brain synaptosomes
with western blotting and selected synaptic protein
antibodies

Eight synaptic protein were selected for this screening, based on

their role in structural or molecular regulation of synaptic function,

as well as the availability of antibodies suitable also for post-

embedding immunogold electron microscopy. The proteins were:

synaptophysin, GluN2A/GluN2B, β-tubulin, GluA1, GluA2,

syntaxin-1, PSD-95 and Arc. Out of these, only three showed signifi-

cant concentration differences between the LH and NLH groups:

GluN2A/GluN2B was 22.9% lower in the LH when compared to the

NLH group (p = .03). Second, the concentration of Arc was 22%
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intensity after quantification of band intensities. Asterisks denote statistically significant differences (*p < .05, **p < .01). Error bars show SEM

TABLE 1 The table shows quantitative western blot data of
synaptosomes from whole brain of LH and NLH rats

Protein LH (mean ± SEM) NLH (mean ± SEM) p-Value

Synaptophysin 28.0 ± 1.2 29.2 ± 1.2 .43

β-Tubulin (class III) 51.6 ± 1.2 48.5 ± 1.9 .25

PSD-95 57.9 ± 4.4 60.6 ± 1.9 .61

GluA1 53.7 ± 2.1 51.9 ± 2.7 .61

GluA2 49.2 ± 2.2 55.4 ± 2.2 .1

GluN2A/GluN2B 37.1 ± 1.5 48.1 ± 2.5 .03*

Arc 70.3 ± 1.1 54.7 ± 2.2 .009**

Syntaxin-1 89.5 ± 4.0 72.6 ± 4.0 .029*

Notes: Antibodies against eight different synaptic proteins were used.

Data are presented as mean ± SEM. Asterisks denote statistically

significant differences (*p < .05).

BIELER ET AL. 3199



higher in the LH when compared to the NLH group (p < .01). Finally,

the concentration of syntaxin-1 was 19% higher in the LH when

compared to the NLH group (p = .03). The results are summarized in

Table 1 and Figure 2.

3.2 | Synaptic expression of NMDAR subunit
GluN2B, Arc and syntaxin-1 are altered in
hippocampal CA1 Schaffer collateral synapses

On the basis of the quantitative western blot screening, we investi-

gated the relative concentrations of GluN2B, Arc and syntaxin-1 in

hippocampal CA1 Schaffer collateral synapses at the ultrastructural

level in LH (n = 4), NLH (n = 4) and WT (n = 2) animals. The concentra-

tions of the proteins in the LH and NLH group were compared to WT

animals. Figure 1 shows a schematic drawing of synaptic regions used

for quantitative analyses. See Table 2 for the descriptive statistics.

The values below are presented as mean ± SEM.

Immunogold labeling of GluN2B was mostly, but not exclusively,

observed in the postsynaptic spines. The protein was mainly localized

to the part of the plasma membrane localized along the PSD

(Figure 3a). Quantitation of the immunogold labeling showed that the

protein was significantly increased in the PSD of the LH rats

(Figure 3c) (p = .04, gold particles/μm, LH: 11.7 ± 0.9; WT: 8.7 ± 1.0).

GluN2B concentration was also significantly increased in the postsyn-

aptic cytoplasm of both LH and NLH animals when compared to WT

rats (Figure 3e) (p = .04, p < .001, gold particles/μm2, LH: 27.3 ± 1.9;

NLH: 31.5 ± 2.1; WT: 21.0 ± 1.7). Closer examination of the images

showed that almost all NMDAR labeling in the postsynaptic spine

cytoplasm interior to the plasma membrane was in fact located very

close to the PSD or even over the innermost aspects of the PSD, but

still technically being classified as “cytoplasmic” labeling.
The protein Arc was localized to the part of the postsynaptic

plasma membrane localized along the PSD as well as in small clusters

in the postsynaptic cytoplasm (Figure 4a). We also found somewhat

lower levels of Arc immunoreactivity in the presynaptic cytoplasm.

Quantitative analysis of immunogold labeling showed that Arc immu-

noreactivity was significantly higher in the PSD of the LH group

(Figure 4c) (p = .04, gold particles/μm, LH: 7.1 ± 0.6; WT: 5.1 ± 0.5).

Arc immunoreactivity was also significantly higher in the presynaptic

cytoplasm of the NLH group (Figure 4d) (p = .04, gold particles/μm2,

NLH: 16.82 ± 1.35; WT: 13.08 ± 0.95). Note that Arc concentration

was lowest in the WT animals in all four regions of interest, though

this difference only reached significance in the presynaptic cytoplasm

and the PSD (Figure 4c,d).

Immunogold labeling of syntaxin-1 in hippocampal synapses showed

expression of syntaxin-1 in both pre- and postsynaptic compartments

(Figure 5a). Syntaxin-1 was significantly increased in both the presynap-

tic cytoplasm (p = .024, gold particles/μm2, LH: 75.3 ± 3.2; WT: 64.7

± 2.9) and the postsynaptic cytoplasm (p = .024, gold particles/μm2, LH:

44.6 ± 2.9; WT: 36.1 ± 2.3) in the LH rats when compared to WT ani-

mals (Figure 5d,e). Except for the postsynaptic cytoplasm, the NLH rats

TABLE 2 The table shows descriptive statistics of immunogold
labeling: (a) Statistics of GluN2B immunogold labeling; (b) Statistics of
Arc immunogold labeling; (c) Statistics of syntaxin-1 immunogold
labeling.

(a)

Region—Group n Mean Median SD SEM

AZ—LH 180 5.74 0.00 9.23 0.69

AZ—NLH 178 4.84 0.00 8.47 0.64

AZ—WT 180 5.08 0.00 8.31 0.62

PSD—LH 180 11.67 8.08 12.16 0.91

PSD—NLH 178 10.55 8.05 11.32 0.85

PSD—WT 180 8.66 0.00 12.91 0.96

Pre—LH 180 9.72 6.11 12.96 0.97

Pre—NLH 180 8.41 4.61 11.65 0.87

Pre—WT 180 7.37 5.03 8.40 0.63

Post—LH 174 27.33 20.14 25.04 1.9

Post—NLH 175 31.46 22.76 28.19 2.13

Post—WT 174 20.95 15.23 22.49 1.70

(b)

Region—Group n Mean Median SD SEM

AZ—LH 178 4.58 0.00 6.41 0.48

AZ—NLH 178 4.26 0.00 6.31 0.47

AZ—WT 178 3.31 0.00 5.47 0.41

PSD—LH 177 7.06 5.34 7.99 0.6

PSD—NLH 176 6.07 2.60 7.93 0..6

PSD—WT 172 5.14 3.54 6.78 0.52

Pre—LH 178 15.47 12.07 13.75 1.03

Pre—NLH 179 16.82 11.87 18.01 1.35

Pre—WT 179 13.08 10.68 12.70 0.95

Post—LH 178 24.47 21.01 19.58 1.47

Post—NLH 178 24.72 19.37 24.13 1.81

Post—WT 178 20.76 16.28 19.48 1.46

(c)

Region—Group n Mean Median SD SEM

AZ—LH 119 10.73 8.54 7.57 0.69

AZ—NLH 93 9.49 7.34 7.03 0.73

AZ—WT 123 12.16 9.12 8.61 0.78

PSD—LH 121 11.12 8.50 7.68 0.7

PSD—NLH 82 9.56 6.67 7.31 0.81

PSD—WT 125 12.23 9.26 8.72 0.78

Pre—LH 180 75.28 66.84 43.21 3.22

Pre—NLH 177 53.54 43.24 37.77 2.84

Pre—WT 180 64.69 56.82 38.85 2.9

Post—LH 167 44.61 36.82 36.79 2.85

Post—NLH 156 31.45 24.50 24.55 1.97

Post—WT 163 36.08 29.02 29.54 2.31

Notes: See legend of Figure 1.
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showed significantly lower syntaxin-1 immunogold labeling in all the syn-

aptic compartments (Figure 5b–e). The relative concentration of

syntaxin-1 at the AZ (p = .04, gold particles/μm, NLH: 9.5 ± 0.7; WT:

12.2 ± 0.8), the PSD (p = .03, gold particles/μm, NLH: 9.6 ± 0.8; WT:

12.2 ± 0.8) and in the presynaptic cytoplasm (p = .02, gold particles/μm2,

NLH: 53.5 ± 2.8; WT: 64.7 ± 2.9) was significantly lower in the NLH ani-

mals compared to the WT group (Figure 5b–d).

In summary, at the ultrastructural level asymmetric synapses of

dorsal CA1 of animals subjected to the learned helplessness paradigm

display region-specific alterations in the concentrations of the GluN2B

subunit, Arc and syntaxin-1. The NMDAR subunit GluN2B and Arc

tend to be lower in concentration in the unstressed WT animals com-

pared to the stressed LH and the NLH groups. On the other hand,

syntaxin-1 concentrations tend to be lower in the NLH animals and

higher in the LH rats when compared to the WT group.

4 | DISCUSSION

It has been hypothesized that changes in the relative concentration of

proteins regulating synaptic efficacy are associated with neuropsychi-

atric disease such as major depressive disorder (Duman &

Aghajanian, 2012; Kang et al., 2012). However, how long-term or

uncontrollable stress leading to depression is linked to changes in the

concentration and localization of synaptic proteins is still poorly

understood. To address this, we combined an initial, whole brain

screen of quantitative western blotting of synaptosomes with subse-

quent immunogold electron microscopy of hippocampal synapses

from LH and NLH animals. In the whole brain western blotting screen-

ing, the relative concentration of the synaptic proteins NMDAR sub-

units GluN2A/2B, Arc and syntaxin-1 were significantly different

between LH and NLH rats. These were then selected for further
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analysis in Schaffer collateral synapses in the CA1 region of the hippo-

campus. In the immunogold electron microscopy material, we found

that GluN2B was increased in postsynaptic spines from both the

stressed types of animals (LH and NLH), compared to the unstressed

WT animals. Arc was increased in postsynaptic plasma membrane

localized along the PSD in LH animals as well as in presynaptic cyto-

plasm when compared to unstressed WT controls, and syntaxin-1 was

higher in presynaptic terminals and postsynaptic spines in LH than in

WT controls.

We chose not to investigate changes in the corresponding gene

expression per se, because we were interested in changes in synaptic

protein concentrations, which will be directly related to changes in

synaptic function and plasticity.

We chose the Schaffer collateral synapse in CA1 of the dorsal

hippocampus using postembedding immunogold electron microscopy

for our ultrastructural analysis. This synapse plays significant roles in

learning and memory and is subject to structural and functional

changes in stress and depression (Cameron & Schoenfeld, 2018). This

analysis was extended to also encompass unstressed WT Sprague–

Dawley animals.

We found higher concentrations of the GluN2B subunit in both

the PSD and the postsynaptic cytoplasm of the LH and the NLH

animals, compared to the WT group. However, most of the postsyn-

aptic gold particles classified as cytoplasmic were closely associated

with the PSD and may in fact be integrated in the postsynaptic mem-

brane, suggesting that virtually all postsynaptic NMDARs may be

expressed in the postsynaptic plasma membrane. Accordingly, the

accumulated differences between the WT animals and the LH or the

NLH animals in PSD-associated NMDAR concentrations are probably

somewhat larger than what appears from our numbers.

We chose to use an anti-GluN2B antibody here because it was

the NMDAR subunit antibody that gave the best labeling at the elec-

tron microscopical level, and GluN2B has been shown to be present in

a large majority of adult hippocampal CA3-to-CA1 synapses as an

integral part of GluN1/GluN2A/GluN2B receptors (Rauner &

Kohr, 2011). We cannot exclude the possibility, however, that the

observed increase in GluN2B synaptic concentrations may be accom-

panied by a simultaneous decrease in GluN2B-lacking NMDARs, leav-

ing the absolute concentration of NMDARs unchanged.

Previous work shows that NMDAR levels are altered in different

brain regions of depressed patients (Feyissa et al., 2009; Karolewicz

et al., 2009). The direction of change, that is, up or down, depends on

the anatomical localization. In our study, we found increased synaptic

levels in a hippocampal synapse, corresponding to what has been
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reported in the amygdala in a postmortem human study (Karolewicz

et al., 2009). Both amygdala and hippocampus are implicated in stress

and depression.

Our findings provide an anatomical basis for the potential of

NMDAR antagonists such as ketamine as antidepressants (Duman

et al., 2016; Zarate et al., 2006). Recent evidence suggests that (R)-

ketamine has antidepressant effects in a rat learned helplessness

model (Shirayama & Hashimoto, 2018). In our study, ketamine was

used as an anesthetic immediately before perfusion of the animals.

However, all animals received the same ketamine treatment, so any

differences between the groups should not be due to this NMDAR

antagonist.

The PSD concentration of Arc was significantly increased in the

LH group compared to the WT group. This observation corresponds

well with a study using another stress paradigm, where Arc was

increased after social defeat (Coppens et al., 2011). It has been shown

that Arc is predominantly localized in postsynaptic sites of recently

activated synapses (Moga et al., 2004), in line with our electron

microscopy observations.

We found a significant increase in syntaxin-1 concentrations in

the presynaptic cytoplasm in the LH compared to WT group. Though

syntaxin-1 is primarily localized in the plasma membrane of the AZ,

we and others have previously shown that the protein is present also

on presynaptic vesicles (Hussain et al., 2016; Koh et al., 1993). An

increased concentration of syntaxin-1 on presynaptic vesicles may

indicate an increased vesicular turnover, resulting from increased

presynaptic glutamate release. One study found that antidepressant

treatment disrupts the participation of syntaxin-1 in the SNARE

complex presynaptically, leading to a lowered release of glutamate

into the synaptic cleft (Bonanno et al., 2005). Taken together, our

previous and current results, together with other studies in the field,

point to a role of presynaptic syntaxin-1 in increasing vesicle turn-

over and glutamate release in stress and depression. The increased

concentration of syntaxin-1 in the postsynaptic cytoplasm of the LH

group may indicate increased postsynaptic capacity for exocytosis in

the depressed animals. We have previously revealed that SNARE

proteins are expressed also in postsynaptic spines, where they may

be involved with vesicular trafficking of glutamate receptors
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(Hussain et al., 2016; Hussain et al., 2017; Hussain et al., 2019;

Hussain & Davanger, 2015). In particular, we have shown that

syntaxin-1 is colocalized with NMDA receptor subunit GluN2B

(Hussain et al., 2016). In the present study, we demonstrated higher

postsynaptic concentrations of GluN2B in the LH compared to the WT

animals. Elevated concentrations of both syntaxin-1 and GluN2B may

suggest increased syntaxin-1 dependent trafficking of NMDA receptors

in the postsynaptic spines.

In summary, we find an upregulation of three synaptic proteins in

Schaffer collateral synapses in the dorsal hippocampus of a rat model

of depression: NMDAR subunit GluN2B, Arc and syntaxin-1, each

pointing to increased synaptic plasticity. Future research will be

required to test the effect of antidepressant treatment with ketamine

on the synaptic changes observed in the current study of learned

helplessness to determine whether these changes are detrimental,

contributing to the cognitive symptoms that are part of depression, or

whether they are adaptive, a means of contributing to behavioral

change, away from the symptoms.
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