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Abstract 

Single-cell RNA-Seq’s (scRNA-Seq) unprecedented cellular resolution at a 

genome wide scale enables us to address questions about cellular heterogeneity 

that are inaccessible using methods that average over bulk tissue extracts. 

However, scRNA-Seq datasets also present additional challenges such as high 

transcript dropout rates, stochastic transcription events, and complex population 

substructures.  Here, we present SAKE (Single-cell RNA-Seq Analysis and 

Klustering Evaluation): a robust method for scRNA-Seq analysis that provides 

quantitative statistical metrics at each step of the scRNA-Seq analysis pipeline 

including metrics for: the determination of the number of clusters present, the 

likelihood that each cell belongs to a given cluster, and the association of each 

gene marker in determining cluster membership. Comparing SAKE to multiple 

single-cell analysis methods shows that most methods perform similarly across a 

wide range cellular contexts, with SAKE outperforming these methods in the 
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case of large complex populations.  We next applied the SAKE algorithms to 

identify drug-resistant cellular populations as human melanoma cells respond to 

targeted BRAF inhibitors. Single-cell RNA-Seq data from both the Fluidigm C1 

and 10x Genomics platforms were analyzed with SAKE to dissect this problem at 

multiple scales. Data from both platforms indicate that BRAF inhibitor resistant 

cells can emerge from rare populations already present before drug application, 

with SAKE identifying both novel and known markers of resistance. In addition, 

we compare integrated genomic and transcriptomic markers to show that 

resistance can arise stochastically within multiple distinct clonal populations.  

 

Introduction 

Compared to bulk RNA-Seq, where expression profiles are the result of 

averaging over millions of cells that may vary widely, single-cell RNA-Seq 

(scRNA-Seq) can be used to investigate the subtle but crucial differences in 

transcriptomic landscape that differentiate cellular state. Populations of cells that 

possess very similar gross cellular phenotypes might have remarkably different 

transcriptome profiles at the single-cell level due to stochastic transcription 

events, unsynchronized cell cycle stages, or inherent biological heterogeneity 

(Grün and van Oudenaarden 2015). Therefore, the normalization methods, 

statistical design models, and clustering methods of standard expression profiling 

may not work well for cell populations that cover wide ranges of cell types or 

conditions. One major concern in the analysis of scRNA-Seq datasets is the 

increased levels of noise in the measured transcript abundances per cell.  
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Excessive transcript dropout rates and stochastic bursting events in scRNA-Seq 

data create abundant non-detections, high variability, and complex expression 

distributions in the data as compared to bulk RNA-Seq. Therefore, it is important 

to distinguish low-quality, high-noise samples that are poorly amplified or 

degraded during library preparation. Optimal transcript normalization methods 

also differ for scRNA-Seq datasets as compared to typical bulk analyses. The 

mRNA content and capture efficiency can vary over a wide range between 

individual cells, the effects of which can be mitigated through the use of spike-in 

control molecules that can be used to model technical noise and as a function of 

transcript abundance (Brennecke et al. 2013; Ding et al. 2015).  

 

Following normalization and quality control procedures, the next step in scRNA-

Seq analysis often involves clustering of the samples to identify a set of gene 

markers that can segregate cells into distinct groups. Most published scRNA-Seq 

studies have used gene filtering and feature selection methods developed for 

bulk RNA-Seq, such as calculating the most variable genes (Klein et al. 2015; 

Macosko et al. 2015) the most significantly differentially expressed genes 

between known cell types (Shalek et al. 2013), or genes that have high 

contribution to the first few principal components (Satija et al. 2015; Li et al. 

2016). This candidate set of marker genes is then used to identify sub-

populations of cells via standard clustering methods, such as hierarchical 

clustering, k-means clustering, or principal component analysis (PCA). 

Visualization of these datasets using principal component analysis (PCA) or t-
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distributed stochastic neighbor embedding (t-SNE) (Maaten and Hinton 2008) 

can provide qualitative information about the number of clusters present and 

relative levels of cluster heterogeneity, but does not give a quantitative estimate 

of how many clusters are present nor whether a given sample belongs with one 

cluster or another. Proper choice of a clustering algorithm might depend upon the 

biological context of the samples.  For example, most published single-cell 

clustering tools are optimized either for mixed populations of distinct cells 

(Kharchenko et al. 2014; Grün and van Oudenaarden 2015; Haghverdi et al. 

2015; Satija et al. 2015; Xu and Su 2015; Zeisel et al. 2015b) or for time-series 

datasets that assume a smooth distribution from one cell type to another (Bendall 

et al. 2014; Marco et al. 2014; Trapnell et al. 2014; Setty et al. 2016). In practice, 

datasets can often include a mixture of cells from distinct cell types as well as 

related sub-clusters with significant overlap.  Having a quantitative estimate of 

the relative similarity of each cell to each cluster centroid can be useful in these 

scenarios.  

 

Here we present an integrated analysis tool that aims to facilitate the analysis of 

single-cell RNA-Seq data, addressing the challenges outlined above. Our Single-

cell RNA-Seq Analysis and Klustering Evaluation (SAKE) method provides 

several modules that include: data pre-processing for quality control, sample 

clustering, t-SNE visualization of clusters, differential expression between 

clusters, and functional enrichment analysis. We applied SAKE to four recently 

published single-cell datasets with very different experimental designs (Deng et 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 24, 2017. ; https://doi.org/10.1101/239319doi: bioRxiv preprint 

https://doi.org/10.1101/239319
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 5	

al. 2014; Ting et al. 2014; Zeisel et al. 2015a; Goolam et al. 2016) and evaluate 

its performance by the ability to correctly identify clusters reported in these 

studies.  We also provide a comparison of SAKE performance on these datasets 

to multiple available scRNA-Seq analysis tools that have demonstrated rigorous 

performance in published studies: SINCERA, SEURAT, and SC3.  We show that 

most scRNA-Seq analysis tools perform similarly for a wide range of sample 

types, despite each being algorithmically independent.  In particular, SAKE 

performs similarly in most of these studies, and performs best for the Zeisel et al 

study that included a large, complex mixture of cells with extensive substructure.  

Importantly, SAKE also includes quantitative statistics to evaluate the clustering 

results, a feature missing from most other methods. 

 

After demonstrating the success of the SAKE analysis package, we applied this 

method to better understand the mechanisms by which human melanoma cells 

respond to targeted inhibitors of the BRAF oncogene.  Resistance to targeted 

BRAF inhibitors is widespread and presents a barrier to its efficacy as a 

therapeutic, since a large fraction of melanoma tumors initially respond to BRAF 

inhibition, but nearly all patients rapidly develop resistance (Müller et al. 2014; 

Shi et al. 2014; Sun et al. 2014; Perna et al. 2015). We used two single cell RNA-

Seq platforms, Fluidigm C1 and 10x Genomics, to follow thousands of individual 

melanoma cells that have developed resistance to targeted BRAF inhibitors.  

Several published studies have identified validated gene markers of resistance to 

BRAF inhibitors, predominantly from bulk cell extracts, with often conflicting 
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results that depend upon cellular context (Villanueva and Herlyn 2008; Villanueva 

et al. 2010; Konieczkowski et al. 2014; Sun et al. 2014; Ji et al. 2015; Verfaillie et 

al. 2015; Shaffer et al. 2017). We show that SAKE recapitulates several of these 

known markers as well as identifying novel markers of resistance that appear in 

rare populations of pre-resistant cells present in the population prior to drug 

application.  In addition to these markers of “intrinsically resistant” cells, SAKE 

also identifies several genes that appear to mark a transient state between cells 

that are fully sensitive to BRAF inhibitors and fully resistant, as recently 

suggested in a study using single molecule FISH to evaluate resistance markers 

in melanoma cell populations (Shaffer et al. 2017).  By integrating single-cell 

genomic and transcriptomic data, we show that this transiently resistant state can 

emerge from many clonal lineages present in the population prior to drug 

application. Together, these results suggest that many avenues of escape are 

available to melanoma cells responding to targeted inhibitors, and that the state 

of the cells prior to drug application can be an important determinant of which 

avenue is taken.  

 

Results 

 

Workflow for analyzing single-cell RNA-Seq data with SAKE 

Single-cell RNA-Seq datasets contain both rich information as well as inherent 

technical artifacts. The SAKE workflow is designed to robustly categorize gene 

expression profiles while avoiding unwanted noise (Fig. 1A). Following the 
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Figure 1 | Flowchart of SAKE package and example analysis results. A) Analysis workflow for analyzing single-cell RNA-
Seq data B) Schematic representation of the non-negative matrix factorization (NMF) method. A heat map of sample 
assignment and feature extraction from NMF runs, with dark red indicating high confidence in cluster assignments. C) A t-SNE 
plot to compare NMF assigned groups with t-SNE projections. D) A table of NMF identified features (genes defining each 
cluster) and a box plot of gene expression distributions across NMF assigned groups. E) Summary table for GO term 
enrichment analysis for each NMF assigned group.

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 24, 2017. ; https://doi.org/10.1101/239319doi: bioRxiv preprint 

https://doi.org/10.1101/239319
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 7	

generation of a table of estimated gene abundance counts across samples; the 

next step in data analysis involves quality control steps to identify poorly 

amplified and problematic libraries. The SAKE workflow begins with this step. 

Samples with relatively low total transcript counts and gene coverage rates often 

represent degraded or poorly amplified libraries. These can be identified visually 

and removed from the sample set before proceeding with downstream analyses. 

The next step involves trimming the list of input genes to remove low abundance 

transcripts that suffer most from stochastic drop out events and technical noise 

issues. Median Absolute Deviation (MAD) is used as the preferred metric, but 

custom-filtering criteria can be implemented to filter out uninformative transcripts 

and those with expression levels below the reliable detection limit.  SAKE 

provides a module to generate sample correlation heatmaps for use in evaluating 

the effects of filtering the gene list at a given MAD threshold or with additional 

criteria.  

 

The core of the SAKE clustering algorithm is a module to identify clusters via 

Non-negative Matrix Factorization (NMF) (Gao and Church 2005; Kim and Park 

2007). NMF has successfully been used to identify molecular subtypes in bulk 

RNA-Seq expression profiles in many contexts (Hoadley et al. 2014; Weinstein et 

al. 2014; Moffitt et al. 2015; The Cancer Genome Atlas Network 2015; Yang and 

Michailidis 2016). Attributes that make NMF particularly appropriate for clustering 

of single-cell expression datasets include the ability to quantitatively estimate the 

number of clusters present in each dataset, de novo, and the ability to 
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quantitatively estimate the likelihood that each sample belongs to a given cluster.  

Briefly, NMF attempts to factor a given gene expression matrix of N samples and 

M genes into two separate matrices: (1) a matrix of N samples belonging to k 

clusters and (2) a matrix containing the relative importance of each of the M 

genes in determining whether a sample belongs to each of the k clusters. This 

factorization can be attempted for a range of different values of k, with each 

iteration providing a quantitative measure of the robustness of cluster 

assignments upon randomization of the starting network. Information and update 

rules on how optimal matrix factorization is implemented is explained in extensive 

detail in the Supplemental Methods. To find the optimal value of k, one can 

minimize the residuals between the original full gene expression matrix (NxM) 

and the two factorized matrices (Nxk)(kxM) while simultaneously maximizing the 

cophenetic correlations between actual pairwise sample expression distances 

and the clustered dendrogram expression distances. SAKE provides a visual 

representation of matrix residuals and cophenetic correlation coefficients for a 

range of values of k to enable users select the optimal setting for the number of 

clusters, k, present in the dataset. Two quantitative metrics are given for 

choosing the optimal values of k: the silhouette index of the sample correlation 

matrix, and the cophenetic correlation coefficients.  

 

Once an optimal number of clusters, k, has been determined, SAKE next 

performs a larger number of iterations of the NMF algorithm with fixed k, in order 

to robustly estimate the likelihood that each sample belongs to a given cluster 
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and the relative importance of each marker gene in determining cluster 

membership.  An example heat map of the cluster membership likelihood 

calculations for a particular N by k factorization of a gene expression matrix is 

shown in Fig.1B (applied to the dataset of (Treutlein et al. 2016), described in 

detail in the supplemental section). In Fig. 1B, the full gene expression matrix is 

shown on the left, while the two factorized matrices as determined by SAKE are 

shown at the right. These results are presented as both a heatmap for easy 

visualization as well as formatted data table for quantitative comparisons. These 

quantitative estimates of cluster membership and gene marker importance are 

what give NMF an edge over more qualitative cluster evaluation metrics, such as 

t-SNE projection plots. Reassuringly, NMF identified clusters largely agree with t-

SNE similarity maps, and the two metrics (NMF and t-SNE) are algorithmically 

independent; Fig. 1C presents a t-SNE plot of expression distances, colored by 

SAKE identified clusters in the dataset of  (Treutlein et al. 2016). 

 

Following cluster identification, SAKE provides several visualization options 

including: heat maps of gene expression markers enriched in each NMF cluster, 

t-SNE plots colored by NMF assigned cluster, and PCA plots colored by NMF 

assigned cluster. However, users can check the enrichment for additional marker 

genes of interest in each NMF cluster by alternately choosing to color each 

sample dot on these projection maps by the gene expression value of any 

chosen marker (Fig. 1D).  Differential expression analysis between clusters can 

be evaluated using standard tools such as the DESeq2 algorithm (Love et al. 
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2014). Results are displayed for DE genes across NMF groups together with 

RefSeq annotation and Type-1 error corrected statistics (Fig. 1D). Moreover, GO 

Term enrichments and GSEA allow for the identification of functional categories 

enriched in each NMF cluster (Fig. 1E), which can serve as guidance for further 

investigation and follow up studies.  

 

A detailed tutorial for using the SAKE analysis package is provided in the Online 

Methods and supplementary material.  In addition to providing the code as an 

open source repository on Github, we present R markdown documents that allow 

for instructions, commands, and results to be presented together. 

 

Evaluation of SAKE on published data sets  

We measured the success of the SAKE pipeline by its ability to reproduce the 

major findings from recently published scRNA-Seq studies that used a variety of 

analysis methods for cluster identification (Fig. 2A). The sample clustering results 

from the published scRNA-Seq studies served as the reference, and adjusted 

Rand index (ARI) and normalized mutual information (NMI) were used to 

evaluate the performance of SAKE as compared to a number of existing tools 

with results displayed for several recently published algorithms with 

demonstrated performance for scRNA-Seq analysis: SINCERA, SEURAT, and 

SC3. Fig. 2A presents a table summarizing the results for each of the three 

published algorithms on each of the four published datasets, together with the 

results from SAKE.  Fig. 2B presents a table that explains the major differences 
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Figure 2 | Data and performance summaries for scRNA-Seq software tools/pipelines. A) The number of samples and 
reported clusters from three published clustering methods (SC3, SINCERA, and SEURAT) as compared to SAKE (blue). B) 
Key features and techniques used by each method to perform gene filtering and to define the number of clusters. C) 
Normalized mutual Information (NMI) was used to compare the performance of each method on four published datasets in 
terms of the ability to recapitulate cluster assignments as given by the initial publication. Error bars were measured by sub-
sampling 90% of the cells from each dataset and iterating 1000 times to ensure robust results.
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between each of these three algorithms in terms of the methods used for gene 

feature selection and clustering. For comparison, we also include the results for a 

“simple” analysis that includes identifying the number of clusters, k, via a t-SNE 

projection plot, and then running a k-means clustering algorithm to assign 

samples to each of those k clusters (Fig. 2B).  

 

To evaluate the robustness of these results, we randomly selected 90% of the 

samples for each of the published studies and performed 100 iterations of cluster 

identification for all of the compared clustering methods. In each iteration, we 

calculated the normalized mutual information (NMI) and adjusted rand index 

(ARI) using the cluster assignments in each of the published studies as the 

reference for accuracy.  Results from these 100 runs are presented as bar charts 

in Fig. 2C that display mean NMI for each analysis method with error bars 

representing standard error. Supplemental Fig. S1 shows the results for ARI, 

another frequently used metric for evaluating accuracy of clustering results, 

which shows largely similar results, but can inflate small differences between 

differently sized clusters. Together these results demonstrate that SAKE is both 

accurate and robust across a wide range of sample sizes and experimental 

designs. Overall, each of these algorithmically independent clustering methods 

gives roughly similar results, with SAKE performance coming out best for 

experimental designs involving large complex substructures and large numbers 

of representative samples.  While the ultimate assignments of each sample to a 

given cluster is largely similar for each of these algorithms, it is worth noting that 
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SAKE is unique in providing quantitative metrics for the estimated number of 

clusters present, for the assignment of each sample to a given cluster, and for 

the relative ability of each gene to act as a marker for cluster membership.  

 
 
Application of SAKE to human Melanoma cell lines 

Having demonstrated the success of the SAKE algorithm on published datasets, 

we next applied the SAKE method to questions that can best be answered by 

single cell analysis experiments: how cancer cells individually respond to 

targeted therapeutic agents. We first started with cells from a human melanoma 

cell line, 451Lu, that carries an activating mutation in the BRAF oncogene. These 

cells have previously been demonstrated to be initially responsive to targeted 

BRAF inhibitor treatments (BRAFi), but to rapidly acquire resistance to these 

small molecule inhibitors (Villanueva et al. 2010).  We defined cells in the naïve 

state before BRAFi treatment the “parental” population, 451Lu-Par. By gradually 

increasing the dosage of BRAFi from 0.05um to 1μm on 451Lu-Par and selecting 

for cells that survived after each round of treatment, we could derive a distinct 

population of BRAFi-resistant cells, 451Lu-BR, that grew stably in a 1μm 

concentration of BRAFi (Fig. 3A). Differential response to BRAFi between the 

451Lu-Par and 451Lu-BR cells was demonstrated through an MTT assay that 

measures metabolically active cells 72 hours following BRAFi treatment (Fig. 

3B). Bulk RNA samples from these two conditions were collected and sent out for 

sequencing, and standard differential expression (DE) analysis was performed 

on these data. A handful of genes in the MAPK pathways were upregulated in 
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Figure 3 | Bulk and single-cell RNA-Seq were used to study differential drug responses to BRAF inhibitor treatment. A) 
Naïve melanoma cells were treated with increased dosage of the BRAF inhibitor, vemurafenib, and cells that survived after 
each drug treatment were selected to gradually derive stably resistant BRAFi cell populations. B) Drug sensitivity was 
measured through the use of MTT assays to assess metabolically active cells 48 hours following BRAFi application. C) 
Melanoma signature gene sets were used to cluster bulk RNA-Seq data from melanoma cell lines. Samples first clustered by 
their cell types instead of the presence/absence of the drug treatment. D) A t-SNE map was used to displayed the expression 
profiles from ~400 parental and BRAFi resistant melanoma cells isolated using the Fluidigm C1 platform. The first t-SNE 
component separates the two cell lines, while the second component distinguishes between parental and resistant cells. E) 
Highly expressed and variable genes were used to classify Fluidigm C1 scRNA-Seq data. Higher levels of heterogeneity can be 
observed among 451Lu cells as compared to A375 cells. F) Distributions of silhouette index were used to assess cluster 
distances for each cell type. Lower silhouette index indicates a higher level of heterogeneity in cluster gene expression profiles, 
with 451Lu cell lines showing a lower average silhouette index in line with the heatmap shown in panel (f) G) To determine 
whether 451Lu cells have more intrinsic heterogeneity or more subclusters, 6545 scRNA-seq transcriptomes were obtained 
using the 10x Chromium platform. A t-SNE map of this 451Lu 10X data highlights two major groups of cells, corresponding to 
the parental and BRAFi resistant populations. H) In order to compare the 10x and C1 data on the same scale, a scoring system 
was implemented to score the distance of each cell from the population centroids of the parental (PAR) and BRAFi resistant 
(BR) populations.  Spearman rank correlations  to the centroid were then used classify each cellular transcriptome from both 
the C1 and 10X samples. All 451Lu cells from both the C1 and 10x datasets cluster together by cell type (Par/BR) with 10x 
cells showing slightly lower average scores due to sparse coverage.
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451Lu-BR cells (Supplemental Fig. S2A), as well as 1000s of other genes of 

unknown functional relevance.  

 

To test whether these markers enriched in resistant populations can be 

generalized to other contexts, another human melanoma cell line with the same 

V600E mutation, A375, was selected and sent out for sequencing after deriving 

resistant populations following the same experimental procedure (Supplemental 

Fig. S2B, Supplemental Table S1). After combining data from 451Lu and A375, 

melanoma signature gene sets (Hoek et al. 2008; Widmer et al. 2012; Verfaillie 

et al. 2015) were used as input for sample clustering (Fig. 3C). In general, the 

samples clustered first by their cell line instead of their treatment conditions. 

Differential gene expression analysis also showed that there was minimal overlap 

between the two cell lines in terms of shared genes that marked BRAFi resistant 

cells (Supplemental Fig. 2C), suggesting that these two cell lines that shared the 

same driver mutation might be using different pathways to enable growth in the 

presence of BRAF inhibitor molecules. One possible explanation is that these 

two cell lines possess unique expression profiles despite sharing the same 

genomic V600E BRAF driver mutation, and that these expression states 

contribute more to the overall transcriptome landscape than do the genes that 

drive resistance to BRAFi. To test that hypothesis, we would need to determine if 

our melanoma samples are derived from two distinct melanoma molecular 

subtypes, marked by their expression profiles, that generalize to additional 

samples. 
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Recent results from the Cancer Genome Atlas Consortium have described 

multiple transcriptome subtypes in melanoma patient tumors (The Cancer 

Genome Atlas Network 2015), similar to the “subtypes” that have previously been 

described for breast cancer and others (Hoadley et al. 2014). Indeed, like breast 

cancer subtypes, the melanoma cancer subtypes, dubbed “proliferative,” 

“invasive,” and “immune-infiltrated,” also correlate with overall patient survival 

rates.  Moreover, these subtypes appear to be independent of driver mutations, 

since no enrichment was seen between the most common melanoma driver 

mutations (in BRAF, NRAS, and others) and transcriptome subtypes (The 

Cancer Genome Atlas Network 2015). We first used the SAKE algorithms, which 

work both for bulk and single-cell RNA-seq data, to determine whether we can 

reproduce these transcriptome subtype results on the TCGA datasets. Results 

from our SAKE analysis of TCGA data showed three groups with distinct 

biological functions and survival outcome that largely overlapped with the 

previously published findings. Supplemental Fig. S3 displays the SAKE clustering 

results with the original TCGA results in Supplemental Fig. S3A and the 

correlations with patient outcome in Supplemental Fig. S3B.  

 

We next set out to determine whether these TCGA-derived melanoma subtype 

markers would also be present in cell culture samples, like the A375 and 451Lu 

cell lines described above. The markers of infiltrating immune cells were not 

expected in cell culture models, which was confirmed by very low expression of 
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immune cell markers in the CCLE cell line data.  Accordingly, the markers 

identified by SAKE in proliferative and invasive subtypes were used to classify a 

panel of Melanoma samples from the Cancer Cell Line Encyclopedia (CCLE). 

Indeed, 451Lu and A375 expression profiles were classified into the 

“proliferative” and “invasive” subtypes, respectively (Supplemental Fig. S3C).  

Each of the remaining CCLE cell lines also fell cleanly into one of these two 

groups.  Moreover, BRAFi resistant cells from each of the 451Lu and A375 

subtypes also remained within the same subtype as their respective parental cell 

lines, suggesting that subtype switching was not a dominant feature of BRAFi 

resistant cells (Supplemental Fig. S3C). Having confirmed that these melanoma 

transcriptome subtypes are present in both TCGA patient samples as well as the 

cultured cell lines described above, we next sought to determine whether these 

expression profiles would be faithfully represented by each individual cell in the 

population.  Conversely, “subtype” might represent an averaging over many 

distinct cellular states that was not wholly present in any one cell.  To answer this 

question, we would need to characterize the expression profiles of hundreds to 

thousands of melanoma cells from each subtype.  

 

SAKE Identifies Four Major groups in Fluidigm/Smart-Seq Datasets   

Single-cell RNA-Seq data was prepared from both the A375 and 451Lu cell lines 

using the Fluidigm C1 system to isolate cells, convert mRNA to cDNA, amplify 

cDNA and single-cell libraries were generated using the Illumina Nextera XT kit. 

We isolated around 100 cells from each of the four conditions (A375-Par, A375-
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BR, 451Lu-Par, and 451Lu-BR). On average, more than 10,000 transcripts were 

detected per library (Supplemental Table S2). These C1 scRNA-Seq datasets 

were first mixed with the bulk data to evaluate the quality of the sequencing 

results in terms of transcript coverage. Signature gene sets that mark 

proliferative and invasive subtypes were used for clustering (Hoek et al. 2008). 

Most single cells recapitulated a similar expression pattern as that seen in the 

bulk RNA-Seq data and did not display a single-cell platform-specific profile 

(Supplemental Fig. S4A). Moreover, the similarity of the single-cell and bulk 

expression patterns suggest that the melanoma subtype profiles seen in bulk 

datasets are also representative of the dominant expression patterns of individual 

single cells. Additionally, the BRAFi resistant cells from both the A375 and 451Lu 

populations appear to remain within their molecular subtypes regardless of 

sensitivity to BRAFi treatment, as was seen for the bulk transcriptome profiles.  

Thus, response to BRAFi treatment may be constrained by molecular subtype, 

but the subtype markers cannot be used to explore BRAFi driven expression 

changes.  

 

To explore the gene expression alterations associated with resistance to BRAFi, 

we next applied the SAKE algorithm to all ~400 cells from each of the A375 and 

451Lu parental and resistance populations.  A t-SNE projection of these results 

can be seen in Fig. 3D. The first component of the t-SNE projection separated 

out the two cell lines by their parental cell type (A375 vs. 451Lu), while the 

second component essentially separated the cells by their sensitivity to the 
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BRAFi treatment, regardless of starting cell line. SAKE identified four different 

major clusters among the ~400 cells in the scRNA-Seq data (Supplemental Fig. 

4B). The SAKE identified groups largely overlapped with the populations from 

which these cells derived (Fig. 3D), with little statistical evidence for isolated sub-

clusters within each of the four populations. We did not observe a direct 

correlation between these four SAKE identified groups and cell cycle stages 

(Supplemental Fig. 4C). However, there were some deviations from these 

general trends.  First, a small fraction of the cells in the parental cell lines 

appeared to exhibit markers of the resistant populations and, conversely, a small 

fraction of the cells isolated from the resistant populations appeared to still 

express parental markers as can be seen on the t-SNE plot of Fig. 3D and the 

heatmap of Fig. 3E. In addition, the t-SNE plot shows some sub-clustering within 

the A375-BR population, but these differences were not robust enough to 

represent a statistically robust independent population.  

 

We next turned to ask whether any of the cell populations showed more or less 

heterogeneity in expression markers either before or after selection for resistance 

to BRAF inhibitors. Qualitatively, the heatmap of Fig. 3E shows that the parental 

and resistant A375 cells separate cleanly by features identified using the SAKE 

algorithm. However, the parental and resistant 451Lu cells appear to show more 

mixing in the cluster dendrogram, and more overlap in the expression of SAKE 

identified markers that distinguish parental and resistant cells.   A quantitative 

analysis of the levels of expression heterogeneity in each population is displayed 
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in Fig. 3F, where the SAKE confidence cluster assignment is plotted as a 

histogram for all cells in each of the four populations.  While the A375 cells were 

robustly placed in clusters with their cohorts, the 451Lu cells show a larger range 

of confidence values, indicating a greater variance in the expression of cluster 

marker genes for these cells.  One possible explanation is that the ~100 cells 

sequenced from each only sparsely sample each of several sub-clusters present 

in these cell groups. Another possible explanation is that 451Lu cells are more 

intrinsically heterogeneous than the other groups sampled.  Sampling a larger 

number of cells from these populations would enable the distinction between 

these possibilities.    

 

High throughput sparse 10x libraries for rare cell identification 

To show that the results from the Fluidigm/Smart-Seq libraries were not single-

cell RNA-Sequencing method-specific, we chose to sequence the same cell line 

using a different method. We selected the 451Lu parental and resistant 

populations for higher throughput profiling on the Chromium Single Cell 3’ 

Solution from 10x Genomics, which provided information for many more cells 

with shallower coverage (Supplemental Table S2). Transcripts from ~6500 single 

cells from the 451Lu parental and resistant populations were uniquely barcoded 

and sequenced, and PCR duplicates were removed using unique molecular 

identifiers (UMI). UMI counts for each cellular barcode were quantified and used 

to estimate the number of cells successfully captured and sequenced. On 

average, we obtained ~90,000 reads per cell and more than 5000 expressed 
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genes in each cell (Supplemental Table S2). The Cell Ranger Single-Cell 

Software suite was used for demultiplexing, barcode processing, alignment, and 

initial clustering of the raw scRNA-Seq profiles. We first used t-SNE projection 

maps to get a general overview of the sequencing results, as displayed in Fig. 

3G. In the 451Lu parental cells, the majority of the cells fell into a single extended 

cluster, while two outlier groups formed unique subpopulations that were isolated 

and distinct from the rest of the parental population. These small isolated groups 

represented cells with extremely low or high transcript coverage rates, according 

to their UMIs, and were removed from further analysis. Cells from the 451Lu 

resistant population formed a single group and did not have a clear separation 

into isolated sub-populations or distinct mixing with the parental population (Fig. 

3G).  

 

The sequencing depth and the number of expressed transcripts detected from 

the 10x data showed more variance as well as lower overall transcript coverage 

than the Fluidigm/Smart-Seq data (Supplemental Table S2), as expected from 

the lower total read counts sequenced per cell. To assess whether we could 

combine and compare these two types of data, we used the Nearest Shrunken 

Centroids method (Tibshirani et al. 2002) to calculate centroids from each 

population separately for parental and resistant cells, using only 10x-specific DE 

genes, assuming that genes detected in this shallow survey would be present in 

both Fluidigm C1 and 10x Genomics data (Fig. 3H). Briefly, the centroid of the 

expression patterns for each of the parental and resistant populations was 
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calculated to obtain a median expression pattern for that population across all 

genes present in the 10x dataset. Spearman rank correlations were then used to 

score the distance of all cells in the sample from these centroids and this 

distance was the score for how “BR-like” or “Parental-like” each cell appeared 

(additional details are given in Supplemental Materials).  Results from both the 

C1 and 10x data could then be displayed together (Fig 3H), and indicated that 

the cells largely separated according to their cell-type specific scores, and that 

most cells from each platform fell cleanly into one category or another. Moreover, 

the fraction of cells that showed equivalent scores for both parental and resistant 

profiles was similar across both the C1 and 10x platforms (Supplemental 

Methods). In addition, we compared the differentially expressed genes between 

the BRAFi resistant and parental cells for both C1 and 10x data and identified a 

largely similar set of commonly altered genes  (Supplemental Fig. S5A-E), 

indicating that the two platforms give largely comparable results. As a result, the 

high degree of concordance between these two data sets shows that the findings 

correspond well to each other, with little platform-dependent effects beyond 

sequencing depth and the ability to identify rare cells in larger populations. 

 

DCT marks cells with intrinsic resistance in 451Lu melanoma cells 

In the t-SNE project map of the C1 dataset (Fig. 3D), a small number of 451Lu-

Par cells can be seen located near the 451Lu-BR population and distinct from the 

rest of the 451Lu-Par populations (Fig. 3D-E). We wanted to test whether these 

rare parental cells that are exhibiting similar transcriptomic profiles to BRAFi 
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resistant cells would also display less sensitivity to the BRAFi drug treatment. 

This would be consistent with an intrinsically resistant population already present 

in the parental cells.  

 

We first used a standard differential expression analysis method, DESeq2, to 

determine the list of statistically enriched genes between the parental and 

resistant 451Lu for C1 data, requiring two-fold mean expression changes and a 

p-value less than 0.05 (Fig. 4A). In addition, we used the default method that was 

implemented in the 10x Cell Ranger suite to identify differentially expressed 

genes in the 10x data. Checking through the list of genes that were identified as 

significantly differentially expressed by both DESeq2 and Cell Ranger, we saw 

highly variable levels of gene expression among these genes across resistant 

samples (Supplemental Fig. S5B-C). Therefore, we used SAKE to help identify 

genes more stably expressed in resistant populations from both Fluidigm C1 and 

10x data sets. These SAKE markers have distinct expression distributions across 

parental and resistant populations, but highly stable expression within each 

population (Supplemental Figure S6A-B). Moreover, genes identified by both 

SAKE and DESeq2/Cell Ranger methods formed a high confidence candidate list 

for follow up validation studies (Supplemental Table S3).  

 

We then searched through these genes for cell surface markers that could be 

used to isolate cells. DCT was one of the highest confidence candidates that 

showed a distinct but consistent expression pattern between parental and 
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assays measure metabolically active cells 48 hours after application of BRAFi to the media. DCT positive cells show significantly 
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resistant single-cells. H-J) Previously published markers of BRAFi resistance show undistinguished distributions in expression 
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resistant cells in both Fluidigm C1 and 10X datasets (Fig. 4B-C and 

Supplemental Fig. S5B-C). In addition, DCT is a membrane bound enzyme which 

makes it an ideal candidate for isolation by fluorescent based sorting methods. 

Parental cells with high DCT protein expression were isolated by FACS and 

tested for differential drug response following BRAF inhibitor challenge. These 

DCT-high parental cells showed a significantly reduced response to BRAF 

inhibitors, as measured by MTT assays for metabolically active cells 72 hours 

after plating the cells in media containing 1uM BRAFi compounds (Fig. 4F).  This 

is consistent with DCT protein expression marking parental cells with reduced 

sensitivity to BRAF inhibitor treatment. To further confirm this, we stained 451Lu-

Par cells with DCT antibody and checked for the proportion of cells that survived 

after BRAF inhibitor treatment. If DCT-high parental cells show better tolerance 

to BRAF inhibition, there should be higher percentage of DCT positive cells 

remaining following application of BRAF inhibitor treatments to the naive parental 

population.  Consistent with this, few DCT positive cells can be seen in the 

parental population prior to addition of BRAFi compounds to the media (Fig. 4D, 

left panels).  Following treatment, the remaining cells can be seen to largely be 

DCT positive (Fig. 4D, right panels).  As a positive control, most cells from the 

derived resistant 451Lu population express high levels of DCT. These results are 

quantified and summarized in Fig. 4E.   

 

We additionally checked a list of previously published genes that have been 

identified as associated with resistance to BRAF inhibitors.  Surprisingly, most of 
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these genes did not show a binary pattern similar to DCT, with dominant 

expression in one of the two populations (Fig. 4G-H). Instead, most of these 

published resistance marker genes showed a curious pattern of expression that 

was most differential at the interface between the two populations (Supplemental 

Fig. S7). One possible explanation for this expression pattern would present a 

model where expression of some genes is required to initiate the process of 

developing drug resistance, but this expression is not required for maintenance 

of the drug-resistant state.  The level of support for this model is explored next.  

 

Support for a transient transcriptional state allowing for acquired drug 

resistance 

A recently published study reported the use of bulk RNA-Seq and high 

throughput single-cell FISH techniques to identify a panel of signature genes 

associated with BRAF inhibitor resistance in human melanoma cells (Shaffer et 

al. 2017). This study proposed that selected genes identified previously in the 

literature, such as WNT5A, AXL, EGFR, PDGFRB, and JUN could mark a 

transitional stage in which cells are better able to develop resistance to BRAFi 

treatment, a state they dubbed “pre-resistant.” More interesting, after removal of 

BRAF inhibitors, these intermediate cells were more likely to revert to their naïve 

parental state and become drug sensitive again. Intrigued by this finding, we 

checked the expression distributions for a subset of these transient markers in 

the 10x Genomics data (Supplemental Fig. S7). While we did not see enrichment 

for these markers in any isolated outlier groups, these markers were enriched at 
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the tip of the parental population that was proximal to the resistant populations as 

well as at the tip of the resistant population that was proximal to the parental 

cluster. These results would be consistent with a transient population between 

the two fully drug sensitive and fully resistant states.   

 

We then ran SAKE on these 10x data to determine whether SAKE would also 

identify the presence of this unique “cluster” of candidate transient cells based 

solely on their transcriptional profile without any prior knowledge from the marker 

lists (Supplemental Fig. S7). SAKE reported 3 major clusters from the entire 10x 

dataset, which were the parental cells, resistant cells, and a new population of 

cells that sat at the interface between these two major clusters on the t-SNE 

projection maps (Fig. 5A and Supplemental Fig S8A). These (yellow) 

intermediate cells could represent parental cells existing in a “pre-resistant” state 

as well as cells in the drug-resistant population that are exiting this transient 

state, consistent with the scenario proposed in Shaffer et al., (2017). We next 

used the SAKE identified markers of this intermediate population to determine 

whether the genes that marked this population showed overlap with previously 

identified resistance-associated gene sets.  

 

Consistent with the previously reported melanoma BRAFi resistance associated 

genes, the intermediate populations were marked by high levels of EGFR, AXL, 

JUN, WNT5A, FGFR1 and NRG1 (Supplemental Fig. S8C-D).  These cells also 

expressed the lowest levels of differentiated melanocyte lineage genes such as 
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Figure 5 | CNV and transcriptomic profiles identified an intermediate state between parental and resistant cells. A) t-
SNE map was used to display the single-cell RNA-Seq data from melanoma single cells. Each circle represents a cell and is 
colored by SAKE identified groups. One group of cells (yellow) marked the potential transitional state during the acquisition of 
BRAF drug resistance. B) Inferred CNV profiles (scRNA-Seq) were used as a proxy to assess the clonal states among parental 
and resistant cells. C) t-SNE map was used to display the clonality among single-cells. Each circle represents a cell and is 
colored by inferred CNV groups. No clear enrichment for particular clonal population can be found for cells in the transitional 
state. D) Copy number profiles from bulk DNA samples were used to validate the patterns observed from inferred CNV profiles 
(scRNA-Seq). 
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MITF (Supplemental Fig. S8B) and SOX10. These findings are consistent with 

the expression patterns displayed by the transient population previously identified 

by Shaffer et al., (2017); this supports the hypothesis that some melanoma cells 

acquire resistance by transiting through a transient “pre-resistant” state marked 

by high levels of MAPK pathway genes such as EGFR and AXL, but that the 

expression of these genes is not required for the maintenance of a stably 

resistant population.  In addition, SAKE identified several additional genes that 

mark this candidate “transitional” population, which are given in Supplemental 

Table S4. While these cells do not occupy an isolated sub-cluster on the t-SNE 

projection map, the SAKE algorithm did identify this population as a robust sub-

cluster, highlighting the success of SAKE at finding small sub-populations in high 

dimensional data. 

 

To garner additional support for the hypothesis that these cells represent a 

transient transcriptional state that can seed the resistant population, we also 

generated genomic copy number data to compare to the transcriptome data.  

Integrating both RNA expression data and genomic CNV data would allow us to 

determine whether particular subsets of the population with similar expression 

patterns were also more likely to share CNV mutational patterns, as might be 

expected through simple selection for genetic mutations. Conversely, if many 

cells with highly divergent CNV mutational patterns nonetheless shared very 

similar transcriptional patterns, one would expect that the “transitional” 

expression state might be due to additional factors that could reflect epigenetic or 
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gene regulatory modifications. This is conceptually similar to the Luria-Delbrück 

fluctuation analysis that was performed in the Shaffer et al., (2017) study to 

demonstrate that resistance to BRAFi treatment in their cells could be due to 

non-heritable effects arising stochastically among cells from several clonal 

populations (Shaffer et al. 2017). If random genetic mutations were giving rise to 

resistant cells in this scenario, one would expect that a small number of cells 

would spontaneously develop resistance, and that these cells may display 

distinct genomic mutations patterns while potentially displaying shared 

transcriptomic patterns. 

 

To check whether this phenomenon holds true in our 451Lu melanoma data, we 

first performed copy number variation (CNV) analysis from the scRNA-Seq data, 

as has been described previously (Patel et al. 2014; Tirosh et al. 2016). Briefly, 

genes were binned into sliding windows containing 100 consecutive genes, to 

ensure that the alterations due to differential expression patterns would be 

averaged out over a large enough region such that very large CNVs could be 

detected independent of expression differences. In addition, 100 karyotypically 

normal Human 293T cells with scRNA-Seq profiles of approximately the same 

depth were used to derive the baseline reference for calibrating relative CNV 

calls and to validate that this method would not incorrectly call CNV patterns in 

karyotypically normal data (Fig. 5B). To ensure that the CNV profiles we inferred 

using this method match what would have been found as directly measured from 

the DNA, we additionally isolated DNA from bulk cell populations from each of 
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the parental and resistant populations and generated DNA libraries directly 

(Supplemental Table S4). We found a high degree of concordance between the 

CNV profiles derived from the scRNA-Seq data and the bulk DNA-Seq data (Fig. 

5B,D). This suggested that the thousands of cells sequenced using the scRNA-

Seq protocol could also be used as proxy to infer clonal CNV relationships.  

 

The inferred CNV patterns showed two major clones that corresponded to the 

parental and resistant cell populations. Depletions on chr9p and amplifications on 

chr1p, chr7p, chr11q, chr20q, and chr22q were signatures for the resistant cells, 

and these large regions of genomic alterations match what has been reported in 

other CNV profiles using bulk melanoma samples (Beroukhim et al. 2010). 

Beyond the two dominant clones, these cells were further classified into 8 

subgroups, or “clonal lineages.” However, none of these 8 subgroups of cells 

showed an enrichment for the cells that are identified as having the “transitional” 

transcriptome patterns (yellow bars in Fig. 5B), which could be found in several 

of the 8 subgroups. This suggested that these cells were derived from several 

unrelated clonal lineages, and were likely not derived from a single strictly 

heritable lineage.  This is consistent with the hypothesis that non-genetic effects 

contribute to the acquisition of resistance to BRAF inhibitors in melanoma cells, 

and is consistent with previous reports (Shaffer et al. 2017; Sharma et al. 2017). 

 
 
Discussion 

Methods developed for bulk RNA-Seq data analysis (Anders and Huber 2010; 
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Robinson et al. 2010; Dillies et al. 2013; Love et al. 2014) can be adapted for 

application to scRNA-Seq data, but need to be tailored to address the specific 

issues inherent in working with noisy, low-coverage, heterogeneous sample sets. 

We present a processing and analysis pipeline for single cell RNA-Seq datasets, 

SAKE, that is designed to look for quality control issues specific to scRNA-Seq 

data, identify sub-clusters present in the cell populations, and evaluate the gene 

and functional group enrichments in each cluster. Importantly, SAKE provides 

quantitative estimates of cluster membership alongside qualitative evaluations of 

cluster relationships via PCA plots and t-SNE projection maps. We show that 

SAKE can provide very similar single-cell cluster results to those derived from a 

variety of sample sources and evaluated with very different algorithms. We also 

show that SAKE provides accurate and robust results for a wide range of 

experimental designs. Moreover, SAKE operates as a simple, intuitive pipeline 

where the parameters are set by quantitative evaluation criteria provided by 

SAKE during run time, and quantitative metrics for the clustering results are 

presented as output.  

 

Having verified the success of SAKE on several published scRNA-Seq datasets, 

we next applied this method to uncover the transcriptional alterations that occur 

as melanoma cells develop resistance to targeted inhibitors of the BRAF 

oncogene. Single cell transcriptomes were obtained from both a low-throughput 

high-depth method (Fluidigm C1, ~100 cells per group) as well as a high-

throughput shallow sequencing technology (10x genomics, ~3500 cells per 
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group). The expression profiles and typical melanoma specific marker levels 

were very similar between these two datasets. Overall, these two sequencing 

technologies provided highly concordant results, suggesting that platform-specific 

effects did not dominate the results.  

 

Identification of rare “intrinsically resistant cells”  

The datasets from the Fluidigm C1 and 10x platforms were combined to identify 

statistically differentially expressed genes between the 451Lu parental and 

resistant populations.  Those genes that were highly abundant in the 451Lu 

resistant cells, with much lower overall expression in the 451Lu parental 

population, formed a candidate list of resistance marker genes. We next sought 

to determine whether rare cells in the parental population might be expressing 

these candidate resistance markers.  We validated one novel resistance marker 

gene, DCT, with high expression in the majority of the BRAFi resistant cells and 

low expression in 99% of the parental population.  Using a fluorescent antibody 

for DCT, these rare DCT positive cells were sorted from the parental population 

and challenged to determine sensitivity to BRAFi treatment. Consistent with DCT 

marking cells that are more likely to be resistant to BRAFi treatment, the DCT 

positive population showed reduced sensitivity to BRAFi challenge.  While one 

report identified DCT as a potential marker for general resistance to radiotherapy 

(Pak et al. 2004), DCT has not previously been evaluated for its role in resistance 

to targeted inhibitors or specifically BRAF inhibitors. 
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Cell type specific markers for conferring resistance  

Surprisingly, most of the genes that have been identified in previous studies to 

confer resistance to BRAFi treatment in melanoma did not show a similar 

expression pattern to DCT.  That is, most of these genes did not show an overall 

binary distribution with high levels in most resistant cells and low expression in 

most parental cells or vice versa.  Instead, a large fraction of these genes 

showed differential expression just at the boundary between the parental and 

resistant populations.  This expression pattern could be consistent with 

previously proposed models that suggest a transitional cellular state dubbed 

“pre-resistance” in which cells transiently express these markers as they develop 

resistance to BRAF inhibitors (Shaffer et al. 2017; Sharma et al. 2017), but do 

not necessarily continue marker expression once resistance is stably 

established. In this model, one might expect cells with shared transcriptomic 

patterns, marking the transitional state, to not necessarily share genomic 

mutational patterns. While previous studies have used Luria-Delbruck analysis to 

infer the presence of multiple clones with non-heritable resistance patterns 

(Shaffer et al. 2017), having direct evidence for distinct mutational patterns 

among cells with shared transcriptomes would extend support for this model.  

 

Integrating genomic and transcriptomic data to infer lineage  

Integrating genomic mutational information allows for an explanation of the clonal 

relationship of the cells that were selected for resistance to BRAF inhibitors. If 

most cells in the resistant population appear to be more genetically similar than 
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the cells in the parental population, this would imply a bottleneck scenario where 

a small number of clones were selected. On the other hand, if resistance arises 

stochastically in many genetically distinct clones, this would imply that non-

genetic mechanisms could be contributing to the development of drug resistance.  

Our data seem to support a contribution from both mechanisms.  Specifically, the 

intrinsically resistant DCT positive cells likely mark a small number of clonally 

related cells that were innately resistant to BRAFi treatment prior to drug 

application, and which were simply selected from the population.  However, most 

of the previously published melanoma markers appear to be expressed in a small 

number of cells from both the parental and resistant populations, and these cells 

seem to cluster in a similar expression space on the t-SNE projection maps.  This 

particular pattern could be consistent with a model in which clonally unrelated 

cells stochastically develop expression patterns that allow them to survive in the 

presence of inhibitors.   This model would imply a non-heritable mechanism for 

acquired resistance that would derive from multiple clonal lineages rather than a 

small number of selected clones. Integrating genomic CNV and RNA-Seq 

information showed that the candidate “transitional” cells appear to derive from 

many distinct clonal lineages, and showed no enrichment for any particular clonal 

lineage. Moreover, cells with very distinct expression patterns were also present 

within the same clonal lineage, suggesting that the transitional expression pattern 

was not clonally inherited. These results highlight the complexity of melanoma 

cell populations and the multiple mechanisms available to respond to targeted 

inhibitor therapies.   
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Materials and Methods 

Cell Culture 

Parental cell lines A375 and 451Lu were cultured in DMEM media supplemented 

with 10% FBS and 1% Pencillin-Streptavadin. Resistant cell lines A375-Br15 and 

451Lu-Br3 were cultured in DMEM media supplemented with 10% FBS, 1% 

Pencillin-Streptavadin and 1uM of BRAF inhibitor, PLX4720. PLX4720 was 

obtained from Selleckchem (Catalog No.S1152). 

 

RNA-Seq library preparation for bulk melanoma cell samples 
Total RNA was extracted from approximately 10^6 freshly collected melanoma 

cells following standard Trizol RNA extraction protocols.  RNA-seq libraries were 

prepared from 500ng of total RNA using the Illumina Tru-seq Stranded Total 

RNA kit. Libraries were barcoded and pooled in order to obtain a minimum of ~40 

million reads per library on the Illumina HiSeq 5000 platform.   

 

RNA-Seq library preparation using the Fluidigm/Smart-Seq platform  
RNA-Seq library preparation Cultured cells (70-80% confluency) were trypsinized 

and resuspended into a single cell suspension in media. Cells were then diluted 

to 175-300 cells/ul and loaded onto a medium (10-17 uM) Fluidigm C1 IFC. 

Single cell capture was done on the IFC and the number of cells captured at 

each site was noted using a phase contrast microscope. Only single cells were 

used for analysis. cDNA was amplified on the chip using the SMART-Seq v4 

Ultra Low Input RNA Kit for Sequencing (Clontech) and quantified using 

picogreen assay. ERCC (External RNA Controls Consortium) RNA spike-in Mix 

(Ambion, Life Technologies) was also added to the reaction. Libraries for 

sequencing were prepared in 96 well plates using the Illumina Nextera XT DNA 

Sample Preparation kit according to the protocol supplied by Fluidigm. Final 

quantification by bioanalyzer using Agilent's High Sensitivity DNA Analysis Kit as 

well as qPCR. Libraries were then sequenced 76bp single end on Illumina 

NextSeq platform to a depth of 5-15 million reads per cell.  

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 24, 2017. ; https://doi.org/10.1101/239319doi: bioRxiv preprint 

https://doi.org/10.1101/239319
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 34	

 

RNA-Seq library preparation using the 10x Genomics platform 

Samples were submitted to Genome Technology Center at NYU Langone Health 

for processing on 10x Genomics Chromium and sequencing. A Chromium Single 

Cell 3' Library and Gel Bead Kit V2 (PN-120237), Chromium Single Cell 3' Chip 

Kit V2 (PN-120236) and Chromium i7 Multiplex Kit (PN-120262) were used with 

a 10x Genomics Chromium for Single-Cell Library Preparation Instrument, per 

the manufacturer's specifications and manuals and then sequenced paired-end 

150 bp on HiSeq 4000 to a depth of 90000 UMI per cell. 

 

Bulk DNA-Seq library preparation  
Cultured cells at 70-80% confluency were trypsinized and counted. DNA was 

extracted from 3-4 million cells using Qiagen DNeasy Blood and Tissue kit 

following the manufacturer's instructions. DNA output was measured using a 

nanaodrop. 2ug DNA was fragmented using a Covaris sonicator. Following this,  

libraries for sequencing were prepared by subjecting the resulting DNA 

fragments to end-repair, 3′ adenylation and ligation of TruSeq barcoded 

adapters. After ligation, DNA fragments were size selected using Ampure XP 

beads. A 0.75 ratio of beads to sample was used to select fragments larger than 

200bp and avoid adapter dimers. These fragments were further amplified by 

PCR, cleaned using Qiaquick PCR Purification Kit and then once again size 

selected using Ampure XP beads with a 0.75 ratio of beads to sample. The final 

libraries were then quantified on Nanodrop and Bioanalyzer using Agilent's High 

Sensitivity DNA Analysis Kit. 10nM of each sample was then pooled together and 

the resulting pool was then sequenced single read 76bp length on the Illumina 

NextSeq to a depth of 6-7 million reads per sample.   

  
MTT Assays for measuring cell response to BRAF inhibitors 
Parental (A375, 451Lu) and Resistant (A375-BR, 451Lu-Br3) cells were plated in 

96 well plates at a concentration of 7500-10000 cells/well and allowed to culture 

overnight. Once the cells were at 70-75% confluency, cells were treated in 
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triplicates with different concentrations (0.1uM - 1.0uM) of PLX-4270 in 200µl of 

media for 72 hours. After the treatment, the media with drugs was removed and 

replaced with 100ul fresh phenol red free media without the drug. MTT Assay 

was then carried using Vybrant® MTT Cell Proliferation Assay Kit from Thermo 

Fisher Scientific.  

 

FACS sorting to isolate populations expressing identified markers 
Cells were trypsinized and resuspended in FACS buffer (PBS with 0.1% BSA 

and 0.05% Sodium Azide) and stained with Anti-DCT antibody conjugated to 

Alexa Fluor 488 (TRP2 Antibody (C-9): sc-74439 from Santa Cruz 

Biotechnology). Stained cells were then run on Becton Dickinson FACS Aria 

(SORP) Cell Sorter and cells expressing High DCT were bulk sorted into DMEM 

media supplemented with 10% FBS and 1% Pencillin-Streptavadin. The sorted 

cells were then immediately plated on 96-well plates at a concentration of 5000 

cells/well. Cells were allowed to grow to 70-75% confluency before PLX-4720 

treatment. PLX-4720 treatment (0.5uM and 1.0uM) was done for 72 hours and 

then MTT assay was performed using Vybrant® MTT Cell Proliferation Assay Kit 

from Thermo Fisher Scientific.  

 
Imaging 

Cells were plated on glass coverslips coated with Poly L-Lysine solution (0.1% 

w/v from Sigma Aldrich) and allowed to grow for 24 hours before drug treatment. 

Cells were treated with either 0.5µM or 1.0µM concentration of PLX-4720 for 2 

hours, 24 hours, 48 hours and 72 hours. Cells after treatment were washed with 

PBS and fixed using ice-cold Methanol. Fixed cells were blocked with 5% FBS in 

PBS overnight at 4°C and stained with a 1:50 concentration of Anti-DCT antibody 

conjugated to Alexa Fluor 488, diluted in 5% FBS in PBS overnight at 4°C. This 

was followed by NucBlue® Fixed Cell ReadyProbes® Reagent (Cat No R37606, 

Thermo Fisher) counterstaining of nuclei according to the manufacturer's manual 

and mounted on a slide using ProLong™ Diamond Antifade Mountant. The 

imaging was done on a confocal microscope 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 24, 2017. ; https://doi.org/10.1101/239319doi: bioRxiv preprint 

https://doi.org/10.1101/239319
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 36	

 

RNA-Seq data processing  
STAR 2.5.2b (Dobin et al, 2012) was used to align sequencing data to the 

Human hg19 reference genome with gene transfer format (GTF) file downloaded 

from UCSC (on date 2016-05-25). For bulk and Fluidigm C1 single-cell RNA-Seq 

libraries, samples with less than 80% uniquely mapped reads were filtered out 

before downstream analyses. Kallisto 0.42.5 was then used for abundance 

estimation using the same GTF file to get the gene expression matrix, M. Log-

transformation is then applied on this gene expression matrix, as M′ = log2(M + 

1). DESeq2 was used to identify differential expressed genes between 

conditions.  

 	

SAKE clustering 	
SAKE works on gene expression matrix, M, as input. Columns correspond to 

cells/samples and rows correspond to genes/transcripts. Each element of M 
corresponds to the expression of a gene/transcript in a given cell. By default, 

SAKE does not perform any normalizations or corrections for cell cycle or batch 

effects. The users should perform gene/transcript abundance estimation before 

feeding the gene expression matrix into SAKE for clustering, feature extraction, 

and other downstream analysis. 

  

Normalized mutual information 	
For the published datasets we chose to evaluate the performance of clustering 

tools, the normalized mutual information (NMI) is calculated to compare the 

similarity between the SAKE (and other tools) clustering results and the 

published cell-labels. To calculate NMI, we first construct confusion matrix and 

derive accuracy and precision from it. By counting the number of overlapping 

points for each pair of clusters between C(r) and C(g), we can construct a 

summary table. The mutual information can be calculated via: 	
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where p(x,y) is the joint probability distribution function of X and Y, and p(x) and 

p(y) are the marginal probability distribution functions of X and Y respectively. 

The normalized mutual information can then be calculated by accounting for the 

entropy in each of X and Y. First, entropy of a cluster w 	

	
where: c is a classification in the set C of all classifications. is probability of a 

data point being classified as c in cluster w. Then, normalized mutual information 

(NMI):	

	
 
Benchmark comparison  

For all the published datasets we tested, we used the original processed gene 

expression matrix provided by the authors (Figure. 2a). For data that contained 

raw read counts, we divided each column by the ”total library size” scaling factor 

to account for differences in sequencing depth, which provide us with reads per 

million (RPM) value. Log transformations were then applied to the gene count 

table with a pseudo count of 1.  

 

For each method, we varied the clustering parameters to obtain the optimal 

clustering results obtainable by each method, as described by the authors in the 

initial publication and as measured by concordance with the validated results 

presented in each publication. For t-SNE + k-means, gene filters using median 

absolute deviation (MAD) or custom filtering criteria were applied. Rtsne (version 

0.13) package was used with the default parameters. We used the k reported by 

the original authors as the input for k-means clustering to identify the specific 

number of clusters. For SC3 (version 1.5.2), we followed the instructions in the 

package for gene filtering and clustering. For SINCERA, we used the z-score 

I(X;Y ) =
∑

y∈Y

∑

x∈X

p(x, y)log(
p(x, y)

p(x)p(y)
)

H(w) = −
∑

c∈C

P (wc)log2P (wc)

NMI(X,Y ) =
I(X;Y )

[H(X) +H(Y )]/2
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normalization and automatic cluster identification as described in the original 

publication. For SEURAT (version 1.4.0.12), we performed t-SNE embedding 

with the default parameters once and then clustered the data using the DBSCAN 

algorithm several times, for which we varied the density parameter G in the range 

of 0.6-3 to find a maximal NMI and reported that number in the summary table.  

 

Data availability  
All melanoma data generated in this study have been deposited in the Gene 

Expression Omnibus (GEO) database under accession code GEO108397 and 

SRP127299. All published datasets (Figure 2a) were downloaded from the 

accession numbers provided in the original publications. These include E-MTAB-

3321 (ref Goolam), GSE51372 (ref Ting), GSE45719 (ref Deng), and GSE60361	
(ref Zeisel). All analyses were performed using a custom R-based software 

package available for download at https://github.com/naikai/sake. 
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