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MicroRNAs (miRNAs) are small 21-22nt RNAs that act to regulate the expression 
of mRNA target genes through direct binding to mRNA targets. While miRNAs typically 
dominate small RNA transcriptomes, many other classes are present including tRNAs, 
snoRNAs, snRNAs, Y-RNAs, piRNAs, and siRNAs. Interactions between processing 
machinery and targeting networks of these various small RNA classes remains unclear, 
largely because these small RNAs are typically analyzed separately. Here we present 
TEsmall, a tool that allows for the simultaneous processing and analysis of small RNAs 
from each annotated class in a single integrated workflow. The pipeline begins with raw 
fastq reads and proceeds all the way to producing count tables formatted for differential 
expression. Several interactive charts are also produced to look at overall distributions 
in length and annotation classes. We next applied the TEsmall pipeline to small RNA 
libraries generated from melanoma cells responding to targeted inhibitors of the MAPK 
pathway. Targeted oncogene inhibitors have emerged as way to tailor cancer therapies 
to the particular mutations present in a given tumor. While these targeted strategies are 
typically effective for short intervals, the emergence of resistance is extremely common, 
limiting the effectiveness of single-agent therapeutics and driving the need for a better 
understanding of resistance mechanisms. Using TEsmall, we identified several 
microRNAs and other small RNA classes that are enriched in inhibitor resistant 
melanoma cells in multiple melanoma cell lines and may be able to serve as markers of 
resistant populations more generally.      
 
Introduction 
 

microRNAs (miRNAs) are small 21-22 nucleotide RNA molecules which have 
been shown to play a critical role in metazoan development and gene regulation, and 
while canonically derived from short hairpin RNA precursors, have been shown to 
originate from a variety of sources including tRNAs and introns.1,2 In addition to 
governing development, sRNAs play a critical role in repressing transcripts derived from 
repetitive regions of the genome like transposons. In animals, siRNAs and piRNAS 
function to repress transposons in somatic cells, and the germline respectively3,4. 
Identification of miRNAs and siRNAs which originate from non-canonical regions of the 
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genome is more challenging with few programs designed to detect sRNAs from all 
classes in both unique and repetitive genomic loci. It is for this reason we present 
TEsmall, a package designed specifically for the simultaneous analysis of sRNAs 
derived from a variety of genomic features. In particular, this package facilitates the 
discovery of intriguing biological phenomena otherwise masked by insufficient 
annotation of repetitive genomic elements, such as siRNAs, and allows these elements 
to be easily incorporated into downstream differential analysis through packages like 
DESeq25. 

 
We have tested the ability of TEsmall to characterize the expression profiles of 

small RNAs from a variety of classes in the context of melanoma cell lines responding 
to targeted inhibitors of the BRAF oncogene. The genetic basis of melanoma 
development is fairly well understood, with activating mutations in the oncogene BRAF 
occurring in a majority of melanoma patient tumors6, which also harbor hundreds of 
secondary mutations of unknown impact. Specific inhibitors that target activated BRAF 
as well as the downstream MAPK/ERK signaling pathway have been developed, which 
dramatically reduce the growth of melanoma cells in patients. However, the effects of 
these drugs typically extend patient lifespan for six months or less, as the tumors rapidly 
develop resistance to these targeted therapies7. While some tumors resistant to BRAF 
inhibitors acquire additional genetic lesions that elevate MAPK or AKT signaling8, many 
therapy-resistant cell lines establish resistance without a clearly understood mechanism 
of resistance9. Changes to small RNA profiles in melanoma cells responding to targeted 
inhibitors is an especially poorly understood subset of the genomic and transcriptomic 
changes that occur.  To understand how small RNA alterations might contribute to the 
development of resistance to BRAF inhibitors in 451Lu melanoma cells that carry 
BRAFV600E mutations, we undertook a small RNA sequencing study of cells before 
and after the establishment of BRAF inhibitor resistance.  
 
Materials and Methods 
 
Melanoma cell culture 
 

In this dataset, 451 Lu patient derived melanoma cell lines were used to explore 
the sRNA profiles of cells that are either sensitive or resistant to small molecule 
inhibitors of the BRAF kinase. Specifically, the melanoma patient derived 451Lu-Par 
cells are grown in standard growth media (DMEM with 10% FBS), while the 451Lu-BR 
cells are grown in standard growth medium supplemented with a 1uM concentration of 
the BRAF inhibitor vemurafenib. Both cell lines are adherent cells grown in standard 2D 
cell culture. The derivation of BRAF inhibitor resistance in these cells lines is described 
by Villanueva et al.7 and the cell lines are available from Rockland for both 451Lu cells 
(cat: 451Lu-01-0001) and 451Lu-BR cells (cat: 451Lu BR-01-0001).  
 
Small RNA sequencing libraries 
 
 Total RNA was extracted using the Ambion PureLink RNA Mini Kit to extract up 
to 2 µg of total RNA from ~1x106 melanoma cells from either the 451Lu-Par or 451Lu-

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted June 29, 2018. ; https://doi.org/10.1101/359471doi: bioRxiv preprint 

https://doi.org/10.1101/359471
http://creativecommons.org/licenses/by/4.0/


BR lines. Following Bioanalyzer verification of RIN numbers at or above ~9, the RNA 
extracts were next used to create small RNA sequencing libraries.  The small RNA 
sequencing libraries were prepared with the Illumina TruSeq Small RNA Library 
Preparation Kits using an input of 1.2 µg total RNA and following the manufacturer’s 
protocols as described, using 15 PCR cycles to reduce the likelihood of PCR 
amplification artifacts.  The libraries were pooled and indexed with 6nt Illumina 
barcodes, such that 6 libraries could be sequenced per lane on an Illumina Genome 
Analyzer IIx. The reads were sequenced as single-end 50bp reads, to a depth of 
approximately 35 million reads per library. The dataset is available through GEO at the 
following accession number: GSE116134. A table of sequenced and mapped read 
counts for each library is presented in Supplemental File 1.  
 
qPCR Validation 
 
 Taqman qPCR assays were used to validate the analysis results of TEsmall for a 
subset of microRNAs.  Specifically, standard Taqman qPCR probes were obtained for 
the following microRNAs: miR-100, miR-184, and miR-211.  Control probes were 
obtained for RNU58 and the U6 small RNA. Custom Taqman probes were obtained for 
the predicted mature sequence of the novel candidate miRtron derived from the VIM 
intron 6 locus. The Taqman protocol was followed exactly as described, using 1 µg of 
total RNA as the input from two biological replicates of the 451Lu-Par and 451Lu-BR 
cell lines, and using 3 technical replicates per biological replicate.   The “Comparative 
Ct” analysis method described in the manufacturer’s protocol was used for calculating 
fold change, standard deviation, and t-test based P-values. Briefly, the three technical 
replicates for each probe were combined to create a mean Ct value per probe per 
sample.  The average of the Ct values from the two control probes in each sample was 
then subtracted from each microRNA Ct value to create a normalized “∆-Ct” value for 
each microRNA in each sample.  Following averaging of ∆-Ct values between the two 
biological replicates in each condition, the ∆-∆-Ct value was calculated as the difference 
in mean ∆-Ct values for the same microRNA across conditions.  Fold change represents 
2∆-∆-Ct, with errors on each Ct value combined quadratically. 
 
TEsmall module 
 

TEsmall functions by accepting raw input in FASTQ file format from next 
generation sequencing platforms in conjunction with genomic annotation sets via an 
online server. Adapters associated with siRNA library preparation are trimmed by 
TEsmall through the cutadapt package10. In order to remove degradation products from 
abundant ribosomal RNAs, rRNA derived reads are next filtered from the data before 
proceeding to analysis. This mapping step allows for up to 2 mismatches and filters a 
single alignment per read specified by the option: bowtie -v 2 -k 1 using bowtie 
(v1.2.1)11. Small RNA reads remaining after rRNA filtering are then aligned more 
stringently, disallowing mismatches, option: bowtie -v 0 -a -m 100. All alignments in this 
step which map to fewer than 100 genomic loci are reported allowing for the 
classification of multimapper reads common to sRNA data, in particular structural RNAs 
like tRNAs and transposable element targeting siRNAs. Following alignment to the 
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genome, each alignment annotated via a sequential decision tree, as follows.  The 
reads are aligned to each annotation category in order, then removed from the pool of 
alignments in order to facilitate priority annotation of, for example, intronic microRNA 
reads that should properly be annotated as microRNAs rather than intronic RNAs.  The 
default order is: structural RNAs, miRNAs and hairpins, exons, sense transposons, 
antisense transposons, introns, and ultimately piRNAs. This ordering, can be re-ordered 
by the user to suit the application and user preferences about annotation priority. An 
HTML output file is then created using python based Bokeh tools12 to visualize the 
abundance distributions, length distributions, and mapping logs of all small RNAs in the 
dataset (Fig. 1). In conjunction with this HTML output, TEsmall compiles multiple flat 
text output files, including a counts file that is structured to be directly compatible with 
DESeq25 for differential analysis. The abundance calculations for these counts files are 
1/n normalized, where n represents the number of alignments per read, to ensure no 
double-counting of multimappers.  

 
The TEsmall code is available open-source from GitHub at the following location: 

https://github.com/mhammell-laboratory/tesmall.  
 
Differential Analysis with DESeq2 
 

The counts file produced by TEsmall were subsequently imported into DESeq2 
(v1.18.1) to perform differential analysis between 451Lu-PAR and 451Lu-BR cell lines, 
as follows. The counts file was filtered to remove low abundance species (< 20 counts 
across all libraries) and increase the sensitivity of DESeq2. Normalization of the counts 
for differential analysis was performed using the default DESeq2 method during 
statistical analysis. For downstream visualization, the counts were normalized by the 
built-in variance stabilizing transformation (VST) method in DESeq2. Small RNAs with 
an adjusted P-value < 0.05 were considered statistically significant. The full DESeq2 
output file is given in Supplemental File 2. 
 
Visualization 
 

Figures were produced using the R packages ggplot213, gplots14 and 
GenomicRanges15 for scatterplots, heatmaps, and wiggleplots respectively. Python 
package matplotlib16 was used for all barplots. RNA secondary structures were 
rendered using the forna webtool17, secondary structure for the Arg-ACG-1-2 tRNA was 
pulled from the UCSC GtRNAdb tRNA covariance model, and structure of vimentin 
intron 6 was predicted using RNAfold’s minimum free energy model.18 
 
 
Results 
 
TEsmall Workflow 
 

TEsmall is a package specifically designed to identify sRNAs derived from a 
variety of genomic features simultaneously, such that users can evaluate the relative 
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abundances and profiles of many source of small RNAs on a common scale in a single 
pipeline.  This serves as a novel improvement to currently available software such as 
mirDeep219 and piPipes20, which are optimized for the analysis of miRNAs and piRNAs 
respectively, but are not equipped to evaluate both types of small RNAs together. 
TEsmall is also designed so that its output is optimally formatted for downstream 
differential analysis with statistical modeling software, such as DEseq221. A flowchart 
describing the entire TEsmall workflow is given in Figure 1A, with example output charts 
given in panels 1B-E. Specifically, in the first module of TEsmall, raw small RNA 
sequencing reads from Illumina NGS sequencing platforms serve as the input without 
the need to pre-process the data before beginning analysis. TEsmall first trims adapter 
contaminants from the reads and then filters the reads for appropriate size ranges, with 
a default of 16-36 nucleotides in length.  The next module of TEsmall removes 
contaminating ribosomal RNA fragments by mapping with bowtie11 to a library of rRNAs 
for the specified genome. Removal of rRNA reads is critical as rRNA degradation 
products are a major source of contamination for sRNA data. Remaining reads are 
mapped to the genome, with a default mapping strategy optimized for repetitive regions 
with up to 100 alignments per read, though this may be altered by the user.  The reads 
are next sequentially annotated to several small RNA classes and genomic features, 
with a decision tree implemented to prioritize annotation categories.  This has the goal 
of attributing reads mapping to intronic microRNAs as “microRNA” reads, for example, 
rather than annotating these reads as having an intronic source. Following annotation of 
each read, aggregate abundances are calculated for each sequencing library and 
output as a counts table suitable for downstream differential expression analysis. 
Importantly, any multimapper reads in these counts tables are weighted according to 
the number of genomic loci from which they derive (1/n where n is the number of 
alignments) to avoid any double-counting of multimapper reads in the counts tables. In 
addition to an output file including all raw count data per sample, RNA species ID, and 
type classification, TEsmall provides an aesthetic output HTML (Fig. 1B) summarizing 
distribution of read lengths (Fig. 1C), proportion of reads assigned to each sRNA type 
(Fig. 1D), and distribution of reads of a particular size to each of the sRNA categories 
(Fig. 1E). In addition to these summary plots, TEsmall presents a table with summary 
statistics of read proportion, raw input and trimmed read counts to quickly assess any 
potential biases in library preparation that may affect downstream normalization. 
 
Application of TEsmall to melanoma sRNA profiles 
 

As described, drug resistance is a known hurdle in the treatment of melanoma, 
driving the need for a better understanding of how cells develop resistance. We have 
chosen to investigate the alterations in sRNA profiles, as one marker of cellular state. 
To investigate the effect of BRAF kinase drug resistance on sRNA composition in 
patient derived melanoma cell lines, we performed differential expression analysis 
following classification by TEsmall. Resistant lines were derived through exposure of 
451Lu patient derived parental cell lines to increasing concentrations of vemurafenib up 
to 1uM. Resistant clones were selected and expanded before exposure to an increase 
in vemurafenib. Cells were otherwise treated as described in Villanueva et al.7 Raw 
count data was normalized as described in Materials and Methods by DESeq2. All VST 
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normalized counts were averaged between parental or resistant replicates and plotted 
against each other to visualize trends of expression across sRNA subtypes without 
filtering for significant or abundant transcripts, significantly differentially expressed 
transcripts are represented by solid coloring (Fig. 2). Overall, there appears to be a 
trend towards lower expression of many sRNA classes in the 451Lu BRAF resistant 
samples (Fig. 2 and Fig. 3B). Upon filtering for the most abundant (base mean across 
all replicates > 500) and significantly differentially expressed transcripts (multiple-
hypothesis testing adjusted p-value < .05), trends of lower sRNA expression in the 
BRAF resistant samples was still seen for many intronic, exonic, and transposon 
mapped sRNA species (Fig. 3). Interestingly, miRNAs show an even distribution of 
species with negative and positive log fold changes, and since miRNAs were the most 
abundantly sequenced small RNAs in the libraries, this rules out a normalization issue 
as the explanation for down-regulated small RNAs in the other classes. It may be of 
interest that, after filtering for significance and abundance, structural RNAs with a 
negative log fold change are exclusively tRNAs with the exception of vaultRNA 2-1, and 
those with a positive log fold change are almost exclusively snoRNAs.  Details of the 
particular sRNAs differentially expressed in each of these classes are given in 
Supplemental File 2.   
 
Type specific analysis of sRNA species and Validation with qPCR 
 

Several miRNAs which are significantly differentially expressed in our dataset 
have been previously described in the literature as playing critical roles in melanoma 
progression or epidermal differentiation. This includes the miRNAs miR-184, miR-211, 
and miR-100. In other contexts, miR-184 has been shown to arrest epidermal 
differentiation through derepression of Notch in normal human keratinocytes and murine 
epidermis22. While expression of Notch in keratinocytes is known to have a tumor 
suppressive phenotype, its expression has the opposite effect in melanocytes through 
upregulation of the PI3K/Akt and MAPK pathways23. Our data showed an approximate 
5-fold increase in miR-184 expression in BRAF inhibitor resistant cells in comparison to 
parental (Fig. 4A and Supplemental File 2), consistent with a model where MAPK 
pathway activation provides a mechanism for BRAF inhibitor resistance.7,24 It has also 
been shown that BRAF inhibitor resistance can be mediated by regulatory escape of the 
transcription factor MITF from the MAPK pathway, where MITF overexpression itself 
conferred resistance in several melanoma cell lines.25 Consistent with a high MITF 
state, our data shows a significant upregulation of miR-211, derived from the MITF 
activated gene melastatin, and a significant downregulation of miR-222, known to be 
inversely correlated with MITF expression.26 Finally, miR-100 was also shown to be 
significantly downregulated in our data; this was a miRNA of interest as it has been 
implicated in prostate cancer as a repressor of the oncogene mTOR.27   

 
To validate the expression profiles from our TEsmall based differential 

expression analysis, we performed qPCR on several miRNAs of interest including 
miRNAs miR-184, miR-211, and miR-100, all of which recapitulated the trend observed 
in our small RNA-seq dataset (Fig. 4A). Reassuringly, the expression alterations of miR-
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204 and miR-211 seen in our data were also seen in an alternative melanoma derived 
cell line A375 in Díaz-Martínez et al. following induction of BRAF inhibitor resistance.28   
 

Upon further investigation into individual RNA species from different subtypes for 
follow up, we encountered an interesting and novel 21 nucleotide sRNA associated with 
the sixth intron in the vimentin gene (VIM) (Fig. 4B). Intronic microRNAs that derive from 
short spliced introns with internal hairpin structures have been observed previously and 
dubbed miRtrons.29 MiRtrons are typically generated via the splicing machinery and 
subsequently processed by DICER in the cytoplasm, bypassing the canonical nuclear 
Drosha processing steps. As visible in the minimum free energy secondary structure 
prediction by RNAfold, the candidate miRtron of interest is located in a stem loop 
structure which appears conducive to processing by DICER (Fig. 4C). The length of this 
mature sRNA, its abundance as a single RNA species, and its secondary structure 
within VIM intron 6 are all consistent with miRtronic miRNAs. This is particularly 
interesting as VIM is a known marker for the epithelial to mesenchymal transition and is 
well expressed in many cell types, but has not previously been shown to harbor a 
miRtron, suggesting this VIM miRtron might represent a novel miRNA with particular 
abundance in melanoma cells.  

 
In addition to miRNAs, TEsmall recognizes several other types of sRNAs. It has 

been previously reported that tRNA derived small RNA molecules (tRFs) can silence 
LTR retrotransposable elements through occupation of the primer binding site (PBS) as 
an adaptation of the role of tRNAs as retroviral primers.2,30 Through TEsmall, one is 
able to detect reads associated with tRNAs and transposable elements in the same 
pipeline facilitating observation of phenomena such as these. In our analysis, several 
species of sRNAs mapping antisense to transposable elements were significantly 
depleted in BRAF resistant cell lines compared to parental (Fig. 2). Upon further 
investigation we were able to determine that a subset of these reads were tiRNAs 
derived from the Arg-CGY family of tRNAs (Fig. 5B). These candidate tiRNAs mapped 
to a subset of HERVs including HERV3, HERV30, MER51, and others (please see 
Supplemental File 3). This is consistent with previous literature showing HERV-R 
retrotransposons are primed by Arg tRNAs (Fig. 5A) and tRNA derived fragments (tRFs) 
can occupy retroviral primer binding sites to suppress transposon activity.2,30 It is 
important to note that the Arg-CGY sRNAs reported by TEsmall are consistent with the 
tRFs previously described in Schorn et al. as they are 18nt CCA-appended fragments 
originating from the 3’ T-arm of tRNAs.2 This is shown graphically in Fig. 5, where the 
pileup of reads at an example HERV PBS locus can be seen in Fig. 5B, and the pileup 
of these same reads at the originating tRNA locus can be seen Fig. 5C-5D.  In the tRNA 
profiles, other tRNA fragments can be seen outside of the tiRNA generating 3’ end, but 
these do not predominantly accumulate as a single abundant sRNA species. 

 
In addition to the miRNAs and tiRNAs highlighted above, several additional 

species of small RNAs were reported by TEsmall as differentially expressed in the 
451Lu BR cells including: siRNAs mapping to transposable element loci, exonic loci, 
and a variety of structural RNA classes.  The structural RNA group included snoRNAs, 
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snRNAs, tRNA fragments, and a vault RNA. The full list of differentially expressed small 
RNAs can be found in Supplemental File 2.  
 
Comparison of TEsmall with sRNA Analysis Software 
 

Several software packages exist to characterize small RNA data for expression 
profiling analysis. However, programs designed for this purpose such as miRDeep219 
and ShortStack31 typically focus on a particular category of sRNA, predominantly 
miRNAs. One package that considers multiple sRNA types is piPipes20, a software suite 
designed for both piRNA and siRNA analysis. While piPipes functions well to annotate 
and characterize piRNAs by read pileups associated with the ping-pong cycle of 
piRNAs, it is not particularly suited for annotation of sRNAs from other types of genomic 
loci, such as miRNAs, siRNAs, and tiRNAs. PiPipes will provide plots of read 
distribution across lists of transposable elements and piRNA clusters, however, one 
cannot access tables of these counts with associated TE annotation, suitable for 
differential expression analysis. While piRNAs are annotated with their respective 
piRNA clusters, siRNAs are assigned a chromosomal coordinate providing some 
difficulty in determining patterns in the sources or targets of these reads. It is also of 
import that intron derived miRNAs like the VIM miRtron were not captured, as there is 
no mechanism by which to assign siRNA reads beyond mapping the chromosomal 
coordinates associated to preloaded annotation sets associated with TEs and piRNA 
clusters. TEsmall, which does not perform piRNA-specific ping-pong analysis, provides 
a complementary package that is designed to be a general purpose small RNA analysis 
suite that can identify and analyze many types of sRNAs concurrently, presenting the 
output in a format intended for expression profiling analysis.  
 
Discussion 
 

TEsmall is a software package with novel functionality in that it allows the user to 
simultaneously map and annotate many types of sRNAs including structural RNAs, 
miRNAs, siRNAs, and piRNAs. This allows one to compare trends in expression 
between all sRNA types and investigate the cross-talk between distinct sRNA regulatory 
pathways. Other packages released to date focus on individual sRNA types like 
miRNAs19,31 or piRNAs20 and while optimized for these applications, are not adapted for 
comparison across sRNA categories. In addition to handling multiple classes of sRNAs, 
the output of TEsmall is formatted for direct integration into downstream analysis 
pipelines. TEsmall’s output files are compatible with statistical analysis software like 
DESeq2 and efficient heatmap generation. In addition to requiring little data 
preprocessing, TEsmall outputs an aesthetic HTML file of charts (Fig. 1B) which allows 
for fast and effortless assessment of library quality, sRNA composition, and size 
distribution. TEsmall can also be expanded to function for any novel sRNA species 
provided the appropriate annotation files are available, allowing it to serve as a powerful 
tool to study RNA biology in many organisms. 
 

We applied TEsmall to a novel dataset in which we compared the effects of 
BRAF inhibitor resistance on sRNA abundance in melanoma derived cell lines. In this 
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analysis we found several microRNAs whose expression was altered in BRAF inhibitor 
resistant cells in comparison to parental lines. A table of these hits can be found in 
Supplemental File 2. Among these candidates, we experimentally validated changes in 
expression of miRNAs miR-184, -211, and -100. Of particular interest is the novel 
Vimentin derived miRtron candidate, whose expression pattern was also experimentally 
validated. Close examination of the characteristic read pile up associated with the VIM 
miRtron, and secondary structure of intron 6 are all consistent with miRtron processing 
pathways. Further investigation will be required to determine if this is a true miRtron 
formed through an intermediate spliceosome derived lariat independent of the Drosha 
microprocessor subunit, or is instead a canonical Drosha-dependent miRNA.  

 
In addition to revealing miRNAs previously described in the literature, TEsmall 

detected several novel classes of small RNAs which would not have been found using 
packages designed for miRNA analysis. TEsmall allows the user to investigate tRNA 
derived fragments which have been shown to play a critical role in LTR retro-transposon 
suppression2.  In the melanoma dataset, we identified a novel candidate tiRNA that 
appears to derive from ARG-tRNAs and to potentially regulate several HERV-R type 
LTR elements through occupancy of the primer binding site. Other types of siRNAs that 
regulate transposon expression were also shown to be differentially expressed in these 
datasets, suggesting the possibility that transposon-derived transcripts are altered in 
these BRAF inhibitor resistant melanoma cells.  

 
It is well known small noncoding RNAs of different subtypes types work in 

conjunction to regulate cellular processes through complex networks, particularly in the 
realm of transposon silencing. piRNAs known to regulate transposon expression in the 
germline have been found to work in cooperation with siRNAs to perform this task.32 In 
plants, miRNAs have been shown to play a role in transposon silencing by  serving as 
an intermediate to form 21 nucleotide siRNAs via RNA dependent RNA polymerase and 
while the mechanism would be disparate from plants, hints of miRNAs facilitating 
transposon silencing have been seen in animals as endogenous and introduced 
retroviral elements with homologous regions to miRNAs have lower genomic 
activity.33,34 Current sRNA analysis packages are specific to one or two types of sRNAs 
making it easy to overlook biologically interesting patterns of interaction between sRNA 
classes. For this reason, we have created TEsmall, an easy to use package with 
aesthetic output designed for the concurrent expression analysis of multiple sRNA 
subtypes.  
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Figures Legends 
 
Figure 1. Flow chart and output HTML of TEsmall. (A) Flow chart of TEsmall’s 
treatment of input high-throughput sequencing data, input genome indices, and output. 
(B) Screenshot of HTML output file for one sample (C) Bar plot depicting size 
distribution of unique and multimapper reads. (D) Circle plot depicting distribution of 
reads to each subtype. (E) Bar plot depicting proportion of subtypes across read length.  
 
Figure 2. Scatterplots depicting BRAF resistant versus parental RNA VST normalized 
counts. (A) Overlay of all subtype scatterplots. (B) RNA subtype specific scatterplots. 
Transparent points represent RNA species with adjusted p-value < .05.  
 
Figure 3. Differential expression of highly abundant transcripts. (A) Heatmaps depicting 
all significantly differentially expressed genes per subtype, all heatmaps are normalized 
to between -1 and 1 by row. (B) Bar plot depicting number of abundant and significantly 
differentially expressed species with a negative or positive log fold change per subtype. 
Structural RNA species are collapsed on duplicate tRNAs. Abundance is determined by 
a base mean between samples of greater than 500 counts. P1, P2, R1, and R2 
represent parental replicates 1 and 2 and BRAF resistant replicates 1 and 2 
respectively.  
 
Figure 4. Detailed analysis miRNAs of interest. (A) qPCR representing log fold change 
of miRNAs 184, 211, and 100 in respect to parental expression levels across 3 
replicates. (B) qPCR representing log fold change with respect to parental cell line and 
BAM gene alignment tracks across samples of the VIM miRtron C) RNAfold predicted 
secondary structure of VIM intron 6 with miRtron highlighted in purple. 
 
Figure 5. tRNA and TE interaction through primer binding sites. (A) Diagram of primer 
binding by tRNA to facilitate retroviral reverse transcription. (B) Read alignment track of 
Arg-CGY family derived 18 nt CCA tailed fragment to HERV30 PBS. (C) Consensus 
histogram of reads distributed from Arg-CGY tRNAs, and derived tiRNAs D) Secondary 
structure of Arg-CGY family member Arg-ACG-1-2 with highlighted 15 nt CCA (-) 
fragment. 
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