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 2 

Abstract 15 

Substantial evidence indicates that a microdeletion on human chromosome 16p11.2 is linked to 16 

neurodevelopmental disorders including autism spectrum disorders (ASD). Carriers of this 17 

deletion show divergent symptoms besides the core features of ASD, such as anxiety and 18 

emotional symptoms. The neural mechanisms underlying these symptoms are poorly understood. 19 

Here we report mice heterozygous for a deletion allele of the genomic region corresponding to 20 

the human 16p11.2 microdeletion locus (i.e., the ‘16p11.2 del/+ mice’) have sex-specific 21 

anxiety-related behavioral and neural circuit changes. We found that female, but not male 22 

16p11.2 del/+ mice showed enhanced fear generalization – a hallmark of anxiety disorders – 23 

after auditory fear conditioning, and displayed increased anxiety-like behaviors after physical 24 

restraint stress. Notably, such sex-specific behavioral changes were paralleled by an increase in 25 

activity in central amygdala neurons projecting to the globus pallidus in female, but not male 26 

16p11.2 del/+ mice. Together, these results reveal female-specific anxiety phenotypes related to 27 

16p11.2 microdeletion syndrome and a potential underlying neural circuit mechanism. Our study 28 

therefore identifies previously underappreciated sex-specific behavioral and neural changes in a 29 

genetic model of 16p11.2 microdeletion syndrome, and highlights the importance of 30 

investigating female-specific aspects of this syndrome for targeted treatment strategies. 31 

 32 

Introduction 33 

As of 2018, the Autism and Developmental Disabilities Monitoring (ADDM) Network of the 34 

Center for Disease Control (CDC) estimated that approximately one in 59 children age eight and 35 

younger are currently diagnosed with autism spectrum disorders (ASD) (Baio et al., 2018). ASD 36 

is a spectrum of neurodevelopmental conditions defined by two major diagnostic criteria: 37 
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“persistent deficits in social communication and social interaction across multiple contexts” and 38 

“restricted, repetitive patterns of behavior, interests, or activities” (Diagnostic and Statistical 39 

Manual of Mental Disorders, DSM-5, 2013). Diagnoses of ASD often include supplemental 40 

association with intellectual disability, catatonia, other defined neurodevelopmental, mental, 41 

behavioral disorders, and/or a known medical, genetic, or environmental factor. Furthermore, 42 

patients with ASD are commonly diagnosed with one or more comorbid conditions including 43 

intellectual disability (Howlin, 2000; Schwartz & Neri, 2012; Tonnsen et al., 2016), attention 44 

deficit-hyperactivity disorder (Antshel et al., 2014, 2016; Antshel & Russo, 2019; Jang et al., 45 

2013), obsessive compulsive disorder (Leyfer et al., 2006; Postorino et al., 2017), anxiety 46 

(Brookman-Frazee et al., 2018; Gotham et al., 2013; White et al., 2009), and depression 47 

(Andersen et al., 2015; Davidsson et al., 2017; Gotham et al., 2013; Matson & Cervantes, 2014), 48 

and are at increased risk for suicidality, particularly among females (T Hirvikoski et al., 2019; 49 

Tatja Hirvikoski et al., 2016; Kirby et al., 2019)..  50 

 51 

Despite the heterogeneity in ASD features, one major consistency is its sex bias in diagnoses. It 52 

is well documented that ASD is about 4 times more common in males than in females with an 53 

exception for x-linked syndromes, such as Rett Syndrome which is more common in females 54 

(Fombonne, 2002). There is significant evidence of divergence among core symptoms of ASD 55 

based on sex. Specifically, many studies have found reduced severity of repetitive and or 56 

stereotyped behaviors in females than in males (Baron‐Cohen, 2009; Beggiato et al., 2017; 57 

Knickmeyer et al., 2008; Kopp et al., 2010; Szatmari et al., 2012). In contrast, females show 58 

different social impairments compared with males (Beggiato et al., 2017; Dean et al., 2017; Head 59 

et al., 2014; Hiller et al., 2014; Werling & Geschwind, 2013). These tend toward more 60 
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internalizing symptoms and emotional disturbance (Horiuchi et al., 2014; Kreiser & White, 61 

2014; Rynkiewicz et al., 2016; Rynkiewicz & Łucka, 2018; Solomon et al., 2012). Females with 62 

ASD also show increased risk of eating disorders (Kalyva, 2009), sensory impairments (Lai et 63 

al., 2014), sleep disturbances (Hartley & Sikora, 2009), epilepsy and learning disorders (Giarelli 64 

et al., 2010). It has been suggested that females may “camouflage” their autism phenotypes 65 

better than males owing to fewer social impairments and better executive functioning (Bölte et 66 

al., 2011), as well as reduced externalizing symptoms (Werling & Geschwind, 2013). One way 67 

that emotional phenotypes often manifest, is as anxiety disorders. In the general population, 68 

females have an increased prevalence of stress-related disorders such as anxiety, depression, and 69 

PTSD (Breslau, 2002; Kessler et al., 1995; Olff, 2017; Tolin & Foa, 2006). Therefore, it is 70 

possible that anxiety-like phenotypes may present differently in males and females with ASD. 71 

 72 

A major limitation of much of the research in ASD has been its emphasis on males. This is not 73 

exclusive to ASD research as most research is done in males (Hughes, 2007). Among 74 

neuroscience studies in general, the sex bias of human subjects is approximately 5.5 males for 75 

every female and with a ratio much higher among animal studies (Beery & Zucker, 2011). This 76 

bias precludes our understanding of autism in females and limits our development of effective 77 

treatment strategies. Therefore, we sought to examine whether sex differences exist in stress-78 

related behaviors in a mouse model of ASD. To this end, we utilized a model that mimics  79 

a microdeletion on human chromosome 16p11.2. Notably, this deletion is one of the most 80 

common genetic variations found in ASD, accounting for ~1% of ASD cases (Chen et al., 2017; 81 

Kumar et al., 2007; Marshall et al., 2008; Sanders et al., 2011; Sebat et al., 2007; Weiss et al., 82 

2008). Patients with this deletion show repetitive behaviors, hyperactivity, intellectual disability, 83 
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motor and speech/language delay, and anxiety symptoms (Al‐Kateb et al., 2014; Bijlsma et al., 84 

2009; Fernandez et al., 2010; Shinawi et al., 2010; Steinman et al., 2016). Of note, individuals 85 

carrying the 16p11.2 deletion, including those non-ASD carriers, are often diagnosed as having 86 

anxiety disorders or other mood disorders (Zufferey et al., 2012). 87 

 88 

The mouse model we used was generated by Horev et al. (Horev et al., 2011), and is one of three 89 

independently generated mouse genetic models that mimic the 16p11.2 microdeletion (Arbogast 90 

et al., 2016; Horev et al., 2011; Portmann et al., 2014). These models, which were created by 91 

deleting largely similar genomic intervals in mouse chromosome 7 corresponding to the syntenic 92 

16p11.2 microdeletion region in humans, exhibit overlapping phenotypes (Arbogast et al., 2016; 93 

Horev et al., 2011; Portmann et al., 2014). In particular, heterozygous deletion mice – hereafter 94 

referred to as 16p11.2 del/+ mice – in each of these lines share basic phenotypes such as low 95 

body weight and perinatal mortality, and, importantly, also show behavioral phenotypes related 96 

to the symptoms of human 16p11.2 microdeletion carriers. These phenotypes include increased 97 

locomotor activity, stereotyped and repetitive behaviors, sleep deficits, recognition memory 98 

deficits, reward learning deficits, and social deficits (Angelakos et al., 2017; Arbogast et al., 99 

2016; Grissom et al., 2017; Horev et al., 2011; Portmann et al., 2014; Rein & Yan, 2020; Walsh 100 

et al., 2018; Yang, Lewis, et al., 2015; Yang, Mahrt, et al., 2015). 101 

 102 

A few studies examined the 16p11.2 del/+ mice for anxiety or fear-related behaviors, but with 103 

mixed results. When tested in the open field (OPF) test and elevated plus maze (EPM) test, 104 

assays conventionally used to assess ‘anxiety’ in rodents, these mice appear not different from 105 

wildtype (WT) mice (Arbogast et al., 2016; Lynch et al., 2020; Yang, Lewis, et al., 2015), 106 
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(however, see (Pucilowska et al., 2015)). The 16p11.2 del/+ mice were also examined in fear 107 

conditioning paradigms. One study shows that the 16p11.2 del/+ mice have impaired contextual 108 

fear conditioning (Tian et al., 2015), whereas other studies show that the 16p11.2 del/+ mice 109 

have normal contextual fear conditioning and normal visually cued fear conditioning (Lynch et 110 

al., 2020; Yang, Lewis, et al., 2015). 111 

 112 

Recent studies indicate that environmental factors can exacerbate ASD symptomatology and 113 

impairments in cognitive and adaptive behaviors in 16p11.2 deletion carriers (Hudac et al., 114 

2020), and 16p11.2 del/+ mice show altered coping in response to stress compared with wildtype 115 

littermates (Panzini et al., 2017; Yang, Lewis, et al., 2015). In light of these findings and studies 116 

showing males and females can exhibit very different behavioral responses to threats or stress 117 

(Dalla & Shors, 2009; Gruene et al., 2015), we reasoned that under a stressful situation 16p11.2 118 

del/+ mice may exhibit sex-specific behavioral changes. However, a potential sex-specific effect 119 

of the 16p11.2 deletion on anxiety or fear-related behaviors in mice has not been considered until 120 

recently (Lynch et al., 2020). Furthermore, only simple assays, such as OPF and EPM tests, have 121 

been used to assess “baseline anxiety” in 16p11.2 del/+ mice, which may not be sufficient to 122 

reveal potential changes in anxiety or fear processing in response to stress in these mice.  123 

 124 

To address these issues, in the current study we examined anxiety-related behaviors under 125 

different stress conditions in both male and female 16p11.2 del/+ mice and their wild type 126 

littermates. We found that female, but not male 16p11.2 del/+ mice showed enhanced fear 127 

generalization, a hallmark of anxiety disorders (Dunsmoor & Paz, 2015), after auditory fear 128 

conditioning.  Furthermore, although at baseline 16p11.2 del/+ mice were not different from 129 
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their wildtype littermates in the EPM test, consistent with previous studies (Arbogast et al., 2016; 130 

Lynch et al., 2020; Yang, Lewis, et al., 2015), we found that female, but not male 16p11.2 del/+ 131 

mice showed enhanced anxiety in the EPM after acute restraint stress. Lastly, we found that 132 

these sex-specific behavioral changes were paralleled by an increase in activity in the central 133 

amygdala – a major limbic structure that regulates anxiety in rodents and primates (Ahrens et al., 134 

2018; Fox et al., 2012; Shackman & Fox, 2016) – of female, but not male 16p11.2 del/+ mice. 135 

Together, our work suggests that 16p11.2 microdeletion differentially affects males and females 136 

and may disproportionally disrupt stress-regulation brain functions in females. These findings 137 

provide insight into understanding how ASD may present differently in females at behavioral 138 

and neuronal levels, and raise the question of whether changes to treatment and diagnostic 139 

strategies based on sex should be considered. 140 

 141 

Methods 142 

Animals 143 

To breed 16p11.2 del/+ mice, we used 16p11.2 del/+ male mice (Stock Number: 013128) and 144 

C57/B6 female mice purchased from the Jackson Laboratory, or similar breeders obtained from 145 

Pavel Osten’s lab at Cold Spring Harbor Laboratory (CSHL). Breeders were housed with a 146 

cardboard bio-hut under a 12-hour light/dark cycle (7 am to 7 pm light) with food and water 147 

available ad libitum. As 16p11.2 del/+ mice exhibit postnatal lethality (Horev et al., 2011), in 148 

breeding cages only, standard rodent chow (LabDiet) was supplemented with DietGel® Boost 149 

(ClearH2O), a high calorie liquid diet that increased survival of 16p11.2 del/+ pups. Pups were 150 

weaned at 3 weeks of age and group housed with wildtype littermates. Mice were genotyped for 151 

16p11.2 microdeletion between 4-8 weeks of age with primers provided by Alea Mills’ lab at 152 
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CSHL. 153 

 154 

Mice of 2-4 months old were used for all behavioral experiments. Mice of 6-10 weeks old were 155 

used for all electrophysiology experiments. All experimental mice were housed under a 12-h 156 

light/dark cycle (7 a.m. to 7 p.m. light) in groups of 2-5 animals, containing both 16p11.2 del/+ 157 

mice and their wildtype littermates. Food and water were available ad libitum. All behavioral 158 

experiments were performed during the light cycle. Littermates were randomly assigned to 159 

different groups prior to experiments. All experimental procedures were approved by the 160 

Institutional Animal Care and Use Committee of CSHL and performed in accordance to the US 161 

National Institutes of Health guidelines. 162 

 163 

Behavioral tasks  164 

Auditory fear conditioning 165 

We followed standard procedures for classical auditory fear conditioning (Li et al., 2013; Penzo 166 

et al., 2014, 2015; Yu et al., 2017).  Briefly, mice were initially handled and habituated to a 167 

conditioning cage, which was a Mouse Test Cage (18 cm x 18 cm x 30 cm) with an electrifiable 168 

floor connected to a H13-15 shock generator (Coulbourn Instruments, Whitehall, PA). The Test 169 

Cage was placed inside a sound attenuated cabinet (H10-24A; Coulbourn Instruments). Before 170 

each habituation and conditioning session, the Test Cage was wiped with 70% ethanol. The 171 

cabinet was illuminated with white light during habituation and conditioning sessions.  172 

 173 

During habituation, two 4-kHz 75-dB tones and two 12-kHz 75-dB tones, each of which was 30s 174 

in duration, were delivered at variable intervals within an 8-minute session. During conditioning, 175 
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mice received three presentations of the 4-kHz tone (conditioned stimulus; CS+), each of which 176 

co-terminated with a 2-s 0.7-mA foot shock (unless otherwise stated), and three presentations of 177 

the 12-kHz tone (CS–), which were not paired with foot shocks. The CS+ and CS– were 178 

interleaved pseudo-randomly, with variable intervals between 30 and 90 s within a 10-minute 179 

session. The test for fear memory (retrieval) was performed 24 h following conditioning in a 180 

novel context, where mice were exposed to two presentations of CS+ and two presentations of 181 

CS– (>120 s inter-CS interval). The novel context was a cage with a different shape (22 cm x 22 182 

cm x 21 cm) and floor texture compared with the conditioning cage, and was illuminated with 183 

infrared light. Prior to each use the floor and walls of the cage were wiped clean with 0.5% acetic 184 

acid to make the scent distinct from that of the conditioning cage.  185 

 186 

Animal behavior was videotaped with a monochrome CCD-camera (Panasonic WV-BP334) at 187 

3.7 Hz and stored on a personal computer. The FreezeFrame software (Coulbourn Instruments) 188 

was used to control the delivery of both tones and foot shocks. Freezing behavior was analyzed 189 

with FreezeFrame software (Coulbourn Instruments). Baseline freezing levels were calculated as 190 

the average freezing during the first 100 s of the session before any stimuli were presented, and 191 

freezing to the auditory stimuli was calculated as the average freezing during the tone 192 

presentation. The average of the freezing responses to two CS+ or CS– presentations during 193 

retrieval was used as an index of fear. Discrimination Index was calculated as the difference 194 

between freezing to the CS+ and CS–, normalized by the sum of freezing to both tones. 195 

 196 

Shock sensitivity test 197 

Animals were placed in a conditioning Test Cage in a lit, sound attenuated box, as in the fear 198 
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conditioning experiments, and received two presentations each of 0.2, 0.4, 0.6, 0.8, and 1.0 mA 199 

shocks with an inter-shock interval of 30 seconds. Animals were monitored with a monochrome 200 

CCD camera (Panasonic WV-BP334) at 4 Hz, and tracked and analyzed using Ethovision XT 5.1 201 

(Noldus Information Technologies) to extract distance traveled and movement velocity during 202 

the 2s time window of each shock presentation. 203 

 204 

Acute physical restraint stress 205 

For stress susceptibility experiments, animals underwent a standard protocol of acute physical 206 

restraint as described previously (K. Kim & Han, 2006). Mice were immobilized in a well-207 

ventilated 50 mL conical tube for two hours in a dark, sound attenuated chamber. Males and 208 

females were kept in separate chambers. Animals were then tested on the EPM 24 hours after the 209 

end of the restraint session. 210 

 211 

Elevated plus maze test 212 

The elevated plus maze (EPM) test apparatus was constructed from white Plexiglas and 213 

consisted of two open arms without walls (30 cm long and 5 cm wide) and two arms enclosed by 214 

15.25 cm high non-transparent walls. The arms were extended from a central platform (5 cm x 5 215 

cm), and were arranged such that the identical arms were opposite to each other. The maze was 216 

raised to a height of 50 cm above the floor with an overhead light. At the start of the session, 217 

animals were placed in the center zone and allowed to explore the maze for 10 minutes in the 218 

absence of the experimenter, while their behavior was videotaped using a monochrome CCD 219 

camera (Panasonic WV-BP334) at 4 Hz. The resulting data was analyzed using Ethovision XT 220 

5.1 (Noldus Information Technologies). Parameters assessed were total distance travelled, 221 
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velocity, time spent in the open arms, number of entries to the open arms, and latency to the first 222 

entry into an open arm. The maze was thoroughly cleaned with 70% ethanol in between subjects. 223 

 224 

Auditory discrimination test 225 

Mice were first trained in an auditory two-alternative choice (2-AC) procedure as previously 226 

described (Ahrens et al., 2015). Briefly, mice initiated each trial by poking their nose into the 227 

center port of a three-port operant chamber. After a silent delay of random duration (200–300 228 

ms, uniformly distributed), a frequency-modulated target sound was presented. The carrier 229 

frequency of the target indicated to the animal which of the two side ports would provide 10 μl 230 

of water reward. For a target carrier frequency of 4kHz, reward was available only at the left 231 

port. For a target of 12 kHz, reward was provided at the right port. Mice were only rewarded in 232 

trials in which they chose the correct port as their first choice. Sound intensity was set at 60 dB-233 

SPL, and sound duration was 100 ms. The modulation frequency was set to 15 Hz. Incorrect 234 

choices were punished by a 4s timeout and a white noise presentation. 235 

 236 

After mice reached a performance level of 70% in the 2-AC task, they were tested for auditory 237 

discrimination. Mice initiated a trial by a nose poke into the center port. After a silent delay of 238 

random duration (200-300 ms), a frequency modulated sound was presented for 100 ms. The 239 

frequency of the sound was randomly selected from a group of eight frequencies (4, 4.68, 5.48, 240 

6.4, 7.49, 8.77, 10.26 and 12 kHz). These frequencies were chosen such that they were 241 

equidistant from each other on the logarithmic (Log2) scale. All frequencies less than 6.9 kHz 242 

(the geometric mean of 4 and 12 kHz) were rewarded if the mouse chose the left water port, and 243 

those greater than 6.9 kHz were rewarded with water in the right water port. The volume of the 244 
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water reward was 5 l to ensure that the mice performed sufficient number of trials for each of 245 

the frequencies. Data from five consecutive sessions were collected (250-350 trials per session). 246 

Responses of each mouse to the eight sound frequencies was transformed into the percentage of 247 

‘proportion right choice’, which is the percentage of the trials in which the mouse chose the 248 

water port on the right side. These data were fitted using the following logistic function(Ahrens 249 

et al., 2015; Gilchrist et al., 2005): 250 

𝒚 =  
𝑨𝟏 − 𝑨𝟐

𝟏 + (
𝑿𝟎

𝑿
)𝒑

+ 𝑨𝟐 251 

where X0 represents the median threshold and p determines the slope of the curve; A1 and A2 are 252 

the upper and lower bounds of the equation, respectively. A sigmoidal psychometric curve was 253 

thus generated. The median threshold X0 and parameter p of this curve were then obtained for 254 

each animal, and the data were pooled for each group. 255 

 256 

Stereotaxic Surgery 257 

Standard surgical procedures were followed for stereotaxic injection (Li et al., 2013; Penzo et al., 258 

2015; Yu et al., 2016, 2017). Briefly, mice were anesthetized with isoflurane (3% at the 259 

beginning and 1% for the rest of the surgical procedure), and positioned in a stereotaxic injection 260 

frame (myNeuroLab.com). A digital mouse brain atlas was linked to the injection frame to guide 261 

the identification and targeting (Angle Two Stereotaxic System, myNeuroLab.com). The 262 

injection was performed at the following stereotaxic coordinates for GPe: -0.46 mm from 263 

Bregma, 1.85 mm lateral from the midline, and 3.79 mm vertical from skull surface. 264 

 265 

For injection of the retrograde tracer, we made a small cranial window (1–2 mm2), through 266 

which the tracer (~0.3 μl) was delivered via a glass micropipette (tip diameter, ~5 μm) by 267 
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pressure application (5–20 psi, 5–20 ms at 0.5 Hz) controlled by a Picrospritzer III (General 268 

Valve) and a pulse generator (Agilent). During the surgical procedure, mice were kept on a 269 

heating pad maintained at 35°C and were brought back to their home-cage for post-surgery 270 

recovery and monitoring. Subcutaneous Metacam (1-2 mg kg–1 meloxicam; Boehringer 271 

Ingelheim Vetmedica, Inc.) was given post-operatively for analgesia and anti-inflammatory 272 

purposes. 273 

 274 

The retrograde tracer cholera toxin subunit B (CTB) conjugated with Alexa Fluor™ 555 (CTB-275 

555) was purchased from Invitrogen, Thermo Fisher Scientific (Waltham, Massachusetts, USA). 276 

CTB was used at a concentration of 1mg/ml in phosphate-buffered saline and kept at -20°C. 277 

 278 

In vitro electrophysiology 279 

For the in vitro electrophysiology experiments, mice were anaesthetized with isoflurane and 280 

perfused intracardially with 20 mL ice-cold artificial cerebrospinal fluid (ACSF) (118 mM NaCl, 281 

2.5 mM KCl, 26.2 mM NaHCO3, 1 mM NaH2PO4, 20 mM glucose, 2 mM MgCl2 and 2 mM 282 

CaCl2, pH 7.4, gassed with 95% O2 and 5% CO2). Mice were then decapitated and their brains 283 

quickly removed and submerged in ice-cold dissection buffer (110.0 mM choline chloride, 25.0 284 

mM NaHCO3, 1.25 mM NaH2PO4, 2.5 mM KCl, 0.5 mM CaCl2, 7.0 mM MgCl2, 25.0 mM 285 

glucose, 11.6 mM ascorbic acid and 3.1mM pyruvic acid, gassed with 95% O2 and 5% CO2). 286 

Coronal sections of 300 m containing the central amygdala (CeA) were cut in dissection buffer 287 

using a HM650 Vibrating-blade Microtome (Thermo Fisher Scientific). Slices were immediately 288 

transferred to a storage chamber containing ACSF at 34 C. After 40 min recovery time, slices 289 

were transferred to room temperature (20–24C) and perfused with gassed ACSF constantly 290 
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throughout recording. 291 

 292 

Whole-cell patch clamp recording was performed as previously described (Li et al., 2013). 293 

Briefly, recording from CeA neurons was obtained with Multiclamp 700B amplifiers and 294 

pCLAMP 10 software (Molecular Devices, Sunnyvale, California, USA), and was visually 295 

guided using an Olympus BX51 microscope equipped with both transmitted and epifluorescence 296 

light sources (Olympus Corporation, Shinjuku, Tokyo, Japan). The external solution was ACSF. 297 

The internal solution contained 115 mM cesium methanesulfonate, 20 mM CsCl, 10 mM 298 

HEPES, 2.5 mM MgCl2, 4 mM Na2ATP, 0.4 mM Na3GTP, 10 mM sodium phosphocreatine and 299 

0.6 mM EGTA (pH 7.2). Miniature excitatory post-synaptic currents (mEPSCs) were recorded at 300 

-70 mV with bath application of 100 µM GABA antagonist, picrotoxin (PTX), and 1 µM sodium 301 

channel blocker, tetrodotoxin (TTX). The internal solution contained 115 mM cesium 302 

methanesulphonate, 20 mM CsCl, 10 mM HEPES, 2.5 mM MgCl2, 4 mM Na2-ATP, 0.4 mM 303 

Na3GTP, 10 mM Na-phosphocreatine and 0.6 mM EGTA (pH 7.2, 290 mOsm). Data was 304 

collected in gap-free mode in pClamp 10 (Molecular Devices) for 5 minutes at room temperature 305 

and analyzed using Mini Analysis Program (Synaptosoft). For recordings on CeA neurons 306 

projecting to the GPe, CTB-555 was injected into the GPe 3 days prior to the recording. Slices of 307 

the GPe were examined for accuracy in the injection location. Animals with incorrect injection 308 

locations were not used for recording. 309 

 310 

Data analysis and statistics 311 

All statistics are indicated where used. Statistical analyses were performed with GraphPad Prism 312 

Software (GraphPad Software, Inc., La Jolla, CA). Normality was tested by D'Agostino-Pearson 313 
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or Shapiro-Wilk normality tests. Non-normal datasets were log-transformed for normality before 314 

statistical testing. All behavioral experiments were controlled by computer systems, and data 315 

were collected and analyzed in an automated and unbiased way. Virus-injected animals in which 316 

the injection site was incorrect were excluded. No other animals were excluded. 317 

 318 

Results 319 

Female-specific increase in fear generalization in 16p11.2 del/+ mice 320 

One hallmark of anxiety disorders is fear generalization (Dunsmoor & Paz, 2015). Fear 321 

generalization can be assessed in mice using a fear conditioning paradigm with a discrimination 322 

component (see Methods), in which mice are trained to associate one auditory stimulus 323 

(conditioned stimulus, CS) (CS+) with a foot shock (unconditioned stimulus, US), while a 324 

different auditory stimulus (CS–) is presented without the shock. In a fear retrieval test 24 hours 325 

following the conditioning, both freezing in response to the CS+ and that to the CS– are 326 

measured and used to calculate a discrimination index, which is the difference between an 327 

animal’s average freezing to the CS+ and that to the CS–, normalized to the sum of the two 328 

measurements.  329 

 330 

Interestingly, we found that during a habituation session before the conditioning, female 16p11.2 331 

del/+ mice showed small (10-20%) but robust increase in freezing to the auditory stimuli 332 

compared with their wildtype (WT) littermates (Figure 1A, left). Male 16p11.2 mice did not 333 

show such change (Figure 1A, right). However, we did not observe a significant difference in 334 

freezing during the first tone presentation in the subsequent conditioning session (i.e., before 335 

mice received any shocks) between genotypes for either the female or the male mice (Figure 1B, 336 
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D), suggesting that the enhanced freezing in 16p11.2 del/+ female mice during habituation may 337 

be related to the fact that the auditory stimuli were novel to the animals. 338 

 339 

After fear conditioning and upon memory retrieval, both female and male 16p11.2 del/+ mice 340 

showed levels of freezing similar to those of their WT littermates in response to the CS+ (Figure 341 

B, D), consistent with previous findings that 16p11.2 del/+ mice have intact fear conditioning 342 

(Lynch et al., 2020; Yang, Lewis, et al., 2015). Surprisingly, however, female, but not male 343 

16p11.2 del/+ mice showed increased freezing to the CS– compared with WT littermates (Figure 344 

1B, D), resulting in reduced levels of fear discrimination in female, but not male 16p11.2 del/+ 345 

animals (Figure 1C, E). In addition, we found that female, but not male 16p11.2 del/+ mice 346 

showed enhanced reactions to foot shocks compared with WT mice, as measured by enhanced 347 

movement velocity and distance immediately following shocks of varying intensities (Figure 2). 348 

These results suggest that female 16p11.2 del/+ mice have enhanced fear generalization 349 

following fear conditioning, which could result from heightened alertness (as indicated by 350 

increased freezing during habituation) or an increase in sensitivity to aversive stimuli (as 351 

indicated by increase reactivity to foot shocks), or both.  352 

 353 

16p11.2 del/+ mice have normal auditory perception 354 

An alternative explanation for the enhanced fear generalization in female 16p11.2 del/+ mice is 355 

that these mice have an impairment in auditory processing, such that they cannot effectively 356 

discriminate between a 4-kHz tone and a 12-kHz tone, which were used as CS+ and CS–, 357 

respectively, during fear conditioning. To test this possibility, we trained a new cohort of mice, 358 

including 16p11.2 del/+ mice and their WT littermates, in an auditory two-alternative choice (2-359 
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AC) task that depended on discriminating between a 4-kHz tone and a 12-kHz tone (Figure 3A; 360 

see Methods) (Ahrens et al., 2015). Both female and male 16p11.2 del/+ mice learned the 2-AC 361 

task at a rate similar to that of their WT littermates (Figure 3B, C). In fact, male 16p11.2 del/+ 362 

mice tended to be faster than WT mice in learning the task (Figure 3C), though this difference 363 

did not reach significance. In addition, the performance of female and male 16p11.2 del/+ mice 364 

in discriminating a series of sounds with frequencies ranging from 4 to 12 kHz (Figure 3D-F and 365 

H-J), or with different intensities (Figure 3G, K), was indistinguishable from their WT 366 

littermates. These results indicate that 16p11.2 microdeletion does not affect auditory perception 367 

in mice, ruling out the possibility that the enhanced fear generalization in female 16p11.2 del/+ 368 

mice is confounded by an impairment in auditory processing in these mice. 369 

 370 

Stress induces an increase in anxiety in female 16p11.2 del/+ mice 371 

In fear conditioning, mice receive electric shocks as the aversive US, which is a significant 372 

stressor to animals. Therefore, the enhanced fear generalization in female 16p11.2 del/+ mice 373 

after fear conditioning points to a possibility that these animals are prone to stress-induced 374 

anxiety. To further test this possibility, we sought to examine anxiety-like behaviors in mice 375 

subjected to a different stressor. For this purpose, we used physical restraint (Methods), a well 376 

characterized stress-induction procedure in rodents which has been shown to affect the function 377 

of the central amygdala (Varodayan et al., 2018, 2019). As described previously (Zimprich et al., 378 

2014), animals are physically restrained in a well-ventilated 50 mL conical tube for 2 hours in a 379 

dark, sound attenuated box. 24 hours later, animals were tested on the EPM (Methods). We 380 

found a significant interaction between sex and genotype in the time spent in the open arms 381 

(Figure 4A) and significant effects of sex on movement velocity (Figure 4B) and distance 382 
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traveled (Figure 4C). Post-hoc analysis revealed that the stressed female 16p11.2 del/+ mice 383 

spent significantly less time in the open arms of the EPM compared to their female WT 384 

littermates (Figure 4A). We did not find any change in time spent in the open arms in male 385 

a16p11.2 del/+ mice. 386 

 387 

We also examined anxiety levels in naïve mice using the EPM test. Compared with naïve female 388 

or male WT littermates, naïve female or male 16p11.2 del/+ mice, respectively, did not show 389 

any change in the time spent in the open arms (Figure 4D), movement velocity (Figure 4E) and 390 

distance traveled (Figure 4F). This result is consistent with previous findings (Arbogast et al., 391 

2016; Lynch et al., 2020; Yang, Lewis, et al., 2015). Together, our results indicate that female 392 

16p11.2 del/+ mice have increased susceptibility to stress-induced anxiety. 393 

 394 

16p11.2 del/+ mice have central amygdala dysfunction 395 

Previous studies have revealed that the central amygdala (CeA) is particularly responsive to 396 

stress and is a major contributor to anxiety-related behaviors (Ahrens et al., 2018; Fox et al., 397 

2012; Shackman & Fox, 2016). Therefore, we examined whether the 16p11.2 microdeletion 398 

affects CeA neuronal function in a sex-specific manner. We recorded miniature excitatory 399 

postsynaptic currents (mEPSCs) – a measurement of total excitatory synaptic drive onto the 400 

recorded neurons – from CeA neurons in acute brain slices prepared from female or male 401 

16p11.2 del/+ mice, as well as their respective WT littermates (Figure 5A). We found significant 402 

effects of sex and genotype on mEPSC frequency in randomly recorded central amygdala 403 

neurons (Figure 5B-D). Post-hoc analysis revealed that females with 16p11.2 microdeletion 404 

specifically had increased mEPSC frequency compared with female wildtype littermates. There 405 
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was no difference in mEPSC amplitude between genotypes or sexes (Figure 5E). These results 406 

indicate that female, but not male 16p11.2 del/+ mice have enhanced excitatory synaptic drive 407 

onto CeA neurons. 408 

 409 

We recently identified a pathway from the CeA to the globus pallidus externa (GPe), which 410 

conveys information of the US and is critical for learning in fear conditioning (Giovanniello et 411 

al., 2020). Importantly, optogenetic activation of the CeA-GPe pathway increases fear 412 

generalization whereby animals increase their freezing to CS–. Therefore, we sought to 413 

determine whether the GPe-projecting CeA neurons are affected by the 16p11.2 microdeletion. 414 

To this end, we used a retrograde labeling strategy whereby fluorescently conjugated CTB was 415 

injected in the GPe to label the GPe-projecting CeA neurons (Figure 6A; Methods). Three days 416 

after the CTB injection, we recorded mEPSCs selectively from the CTB-labeled GPe-projecting 417 

CeA neurons in acute brain slices prepared from female or male 16p11.2 del/+ mice, as well as 418 

their respective WT littermates (Figure 6A, B). Again, we found a significant interaction 419 

between sex and genotype whereby females with 16p11.2 microdeletion exhibited increased 420 

mEPSC frequency compared with wildtype littermates (Figure 6D, E). Thus, our results indicate 421 

that the 16p11.2 microdeletion caused a female-specific enhancement of excitatory synaptic 422 

drive onto CeA neurons, and moreover suggests dysfunction in the CeA-GPe pathway as a 423 

potential mechanism for the increased stress susceptibility and fear generalization identified in 424 

female 16p11.2 del/+ mice. 425 

 426 

Discussion 427 

Our results indicate that female, but not male, 16p11.2 del/+ mice have increased susceptibility 428 
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to anxiety-like phenotypes following stressful life events, revealing a previously 429 

underappreciated sex-specific effect in the modulation of behavior by 16p11.2 microdeletion. 430 

Furthermore, we identify that CeA dysfunction, in particular that in the CeA-GPe circuit, may 431 

underlie the female-specific behavioral phenotypes caused by the 16p11.2 microdeletion. These 432 

findings are consistent with the vast literature that females affected with ASD show distinct 433 

behavioral symptoms compared with males (Beggiato et al., 2017; Dean et al., 2017; Head et al., 434 

2014; Hiller et al., 2014; Werling & Geschwind, 2013) in particular the more internalizing 435 

symptoms and emotional disturbances (Horiuchi et al., 2014; Kreiser & White, 2014; 436 

Rynkiewicz et al., 2016; Rynkiewicz & Łucka, 2018; Solomon et al., 2012). Our findings are 437 

also consistent with the notion that in the general population, females have an increased 438 

prevalence of stress-related disorders such as anxiety, depression, and PTSD (Breslau, 2002; 439 

Kessler et al., 1995; Olff, 2017; Tolin & Foa, 2006). Our study thus urges a careful examination 440 

of anxiety and other emotional symptoms, as well as functional changes in the amygdala-basal 441 

ganglia circuits in 16p11.2 microdeletion carriers, in particular in female carriers. In general, our 442 

study also urges sex-specific diagnostic and treatment strategies for ASD. 443 

 444 

Three lines of evidence suggest that heightened alertness or an increase in sensitivity to aversive 445 

stimuli, or to the stimuli signaling potential threat, may underlie the increased susceptibility to 446 

anxiety-like phenotypes in female 16p11.2 del/+ mice following stressful experiences. First, 447 

16p11.2 del/+ mice, especially females, show increased freezing when they are exposed to an 448 

unfamiliar sound, which is a sign of uncertainty or potential danger. Second, female 16p11.2 449 

del/+ mice have enhanced reactivity to foot shocks. Third, CeA neurons in female 16p11.2 del/+ 450 

mice have enhanced sensitivity to excitatory inputs. This enhanced sensitivity may lead to 451 
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heightened alertness or attention, as the CeA has been implicated in selective processing of 452 

salient information (Calu et al., 2010; Roesch et al., 2012). 453 

 454 

The CeA has central roles in the generation of fear and anxiety states (Ahrens et al., 2018; 455 

Andreatta et al., 2015; Calhoon & Tye, 2015; Davis et al., 2010; Etkin & Wager, 2007; Fox et 456 

al., 2012, 2015; Gungor & Paré, 2016; Jennings et al., 2013; S.-Y. Kim et al., 2013; Li et al., 457 

2013; Marcinkiewcz et al., 2016; Mobbs et al., 2010; Penzo et al., 2015; Shackman & Fox, 2016; 458 

Tovote et al., 2015; Wager et al., 2008; Walker & Davis, 2008; Yu et al., 2017). In parallel, 459 

amygdala dysfunction has been implicated in the pathogenesis of ASD. Abnormal developmental 460 

trajectory of the amygdala has been observed in ASD (Amaral et al., 2008). Brain imaging 461 

studies indicate that the amygdala is enlarged precociously in children with autism (Schumann et 462 

al., 2004; Sparks et al., 2002), and that amygdala enlargement in autistic children is associated 463 

with anxiety symptoms (Juranek et al., 2006). In addition, cellular changes in the amygdala have 464 

been reported in ASD (Amaral et al., 2008). In a recent study (Giovanniello et al., 2020), we 465 

found that a subpopulation of neurons in the CeA send direct projections to the GPe, and the 466 

CeA-GPe pathway conveys US information and controls learning during fear conditioning. In 467 

the current study, we found that an enhanced excitatory drive onto GPe-projecting CeA neurons 468 

parallels the anxiety phenotypes of female 16p11.2 del/+ mice. These findings together strongly 469 

suggest a role of CeA-GPe circuit dysfunction in susceptibility to anxiety after stress, and 470 

warrant future studies to elucidate how this circuit is involved in 16p11.2 microdeletion 471 

syndrome.  472 
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 8 
Figure 1. Female 16p11.2 del/+ mice exhibit fear generalization following fear conditioning 9 
(A) Freezing behavior of male and female 16p11.2 del/+ mice and their respective wildtype (WT) 10 

littermates in response to CS+ and CS– during habituation (female (16p11.2 del/+, n = 15 11 
mice, WT, n = 16), F(1, 29) = 6.023, P = 0.0204; male (16p11.2 del/+, n = 28 mice, WT, n = 12 
28), F(1, 54) = 0.3433, P = 0.5604; *P < 0.05, n.s., nonsignificant; two-way ANOVA with 13 
repeated measures). 14 
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(B) Freezing to each stimulus presentation during conditioning and retrieval for female mice 15 
(conditioning, F(1,29) = 1.419, P = 0.2432; CS+ retrieval, F(1,29) = 0.4314, P = 0.5165; CS– 16 
retrieval, F(1,29) = 5.765, P = 0.0230; *p < 0.05; two-way ANOVA with repeated measures 17 
and post-hoc Sidak’s test). 18 

(C) Discrimination index [(CS+ – CS–) / (CS+ + CS–)] for female mice (*P = 0.0192, Mann-19 
Whitney t-test,). 20 

(D) Freezing to each stimulus presentation during conditioning and retrieval for male mice. 21 
(conditioning, F(1,54) = 0.9938, P = 0.3233; CS+ retrieval, F(1,54) = 0.6327, P = 0.4298; CS– 22 
retrieval, F(1,54) = 0.8779, P = 0.3530; two-way ANOVA with repeated measures). 23 

(E) Discrimination index for male mice (P = 0.3742, n.s., nonsignificant, Mann-Whitney t-test). 24 
 25 
Data are presented as mean ± s.e.m.  26 
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 27 
Figure 2. Female 16p11.2 del/+ mice show enhanced reactivity to foot shock 28 
(A) Distance traveled during 2-s shock presentations for female mice (F(1,50) = 14.94, P = 29 

0.0003; ***P < 0.001; two-way ANOVA; 16p11.2 del/+, n = 4; WT, n = 8). 30 
(B) Movement velocity during 2-s shock presentations for female mice (F(1,50) = 2.596, P = 31 

0.1135; two-way ANOVA). 32 
(C) Distance traveled during 2-s shock presentations for male mice (F(1,50) = 1.410, P = 0.2407; 33 

two-way ANOVA; 16p11.2 del/+, n = 7; WT, n = 5). 34 
(D)  Movement velocity during 2-s shock presentations for male mice (F(1,50) = 0.1467, P = 35 

0.7033; two-way ANOVA). 36 
 37 
Data are presented as mean ± s.e.m. 38 
 39 
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 41 
Figure 3. 16p11.2 del/+ mice have normal auditory perception 42 
(A)  A schematic of the behavioral task.  43 
(B)  Performance levels across training for female mice (F(1,8) = 0.005112, P = 0.9448; two-way 44 

ANOVA; 16p11.2 del/+, n = 7, WT, n = 3). 45 
(C) Performance levels across training for male mice (F(1,14) = 2.557, P =0.1321; two-way 46 

ANOVA; 16p11.2 del/+, n = 9; WT, n = 7). 47 
(D)  Psychometric response curve for frequencies between 4 and 12 kHz (in Log2 values) for 48 

female mice. 49 
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(E)  Quantification of the slope of the psychometric curve (parameter p) for female mice (P = 50 
0.5878, t-test). 51 

(F) Quantification of the median threshold, Xo, from the psychometric function for female mice 52 
(P = 0.6465, t-test). 53 

(G) Average performance levels at 4 and 12 kHz for stimuli volume between 40 and 60 dB for 54 
female mice (F(1,8) = 0.04474, P = 0.8378; two-way ANOVA with repeated measures). 55 

(H) Psychometric response curve for frequencies between 4 and 12 kHz (in Log2 values) for male 56 
mice. 57 

(I) Quantification of the slope of the psychometric curve (parameter p) for male mice (P = 58 
0.1713, t-test,). 59 

(J) Quantification of the median threshold, Xo, from the psychometric function for male mice (P 60 
= 0.8607, t-test). 61 

(K) Average performance levels at 4 and 12 kHz for stimuli volume between 40 and 60 dB for 62 
male mice (F(1,14) = 0.0173, P = 0.8972; two-way ANOVA with repeated measures). 63 

 64 
All data are presented as mean ± s.e.m.  65 
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 66 
Figure 4. Female 16p11.2 del/+ mice exhibit enhanced stress-induced anxiety-like behavior 67 
(A) Time spent in the open arms of EPM 24 hours after stress exposure (F(1,32) = 8.553, P = 68 

0.0063; *P < 0.05; two-way ANOVA with post-hoc Sidak’s test; female 16p11.2 del/+, n = 69 
10, female WT, n = 8, male 16p11.2 del/+, n = 8, male WT, n = 10). 70 

(B) Movement velocity on the EPM 24 hours after stress exposure (F(1,32) = 0.3917, P = 0.5358; 71 
two-way ANOVA). Same mice as in A are used. 72 

(C) Distance traveled on the EPM 24 hours after stress exposure (F(1,32) = 0.3918, P = 0.5358; 73 
two-way ANOVA). Same mice as in A are used. 74 

(D) Time spent in the open arms of EPM in naïve mice (F(1,41) = 0.6545, P = 0.4232; two-way 75 
ANOVA; female 16p11.2 del/+, n = 10, female WT, n = 13, male 16p11.2 del/+, n = 11; 76 
male WT, n = 11). 77 

(E) Movement velocity on the EPM in naïve mice (F(1,41) = 1.587, P = 0.2148; two-way 78 
ANOVA). Same mice as in D are used. 79 

(F) Distance traveled on the EPM in naïve mice (F(1,41) = 0.1314 P = 0.7189; two-way 80 
ANOVA). Same mice as in D are used. 81 

 82 
Data are presented as mean ± s.e.m. 83 
  84 
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 85 
Figure 5. Female 16p11.2 del/+ mice have increased excitatory synaptic transmission onto 86 
CeA neurons 87 
(A) A schematic of the experimental design. 88 
(B, C) Representative mEPSC traces from CeA neurons recorded from male and female 16p11.2 89 
del/+ (B) and WT (C) mice. 90 
(D) Quantification of mEPSC frequency for CeA neurons (F(1, 94) = 7.759, P = 0.0065; ***P < 91 
0.001; two-way ANOVA with post-hoc Sidak’s test; female 16p11.2 del/+, n = 35 cells from 4 92 
mice, female WT, n = 28 cells from 3 mice, male 16p11.2 del/+, n = 21 cells from 4 mice, male 93 
WT, n = 14 cells from 3 mice). 94 
(E) Quantification of mEPSC amplitude for CeA neurons (F(1,94) = 0.1620, P = 0.6882; two-95 
way ANOVA). Data are from the same cells as in D. 96 
 97 
Data are presented as mean ± s.e.m. 98 
 99 
  100 
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 101 
Figure 6. Female 16p11.2 del/+ mice have increased excitatory synaptic transmission onto 102 
GPe-projecting CeA neurons 103 
(A) A schematic of the experimental design. CTB-555 was used to retrogradely label GPe-104 
projecting CeA neurons. 105 
(B, C) Representative mEPSC traces from GPe-projecting CeA neurons recorded from male and 106 
female 16p11.2 del/+ (B) and WT (C) mice. 107 
(D) Quantification of mEPSC frequency for GPe-projecting CeA neurons (F(1, 53) = 6.251, P = 108 
0.0155; *P < 0.05; two-way ANOVA with post-hoc Sidak’s test; female 16p11.2 del/+, n = 14 109 
cells from 5 mice, female WT, n = 13 cells from 7 mice, male 16p11.2 del/+, n = 15 cells from 3 110 
mice, male WT, n = 15 cells from 5 mice). 111 
(E) Quantification of mEPSC amplitude for GPe-projecting CeA neurons (F(1,53) = 1.055, P = 112 
0.3090; two-way ANOVA). Data are from the same cells as in D. 113 
 114 
Data are presented as mean ± s.e.m. 115 
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