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ABSTRACT 

What makes a mouse a mouse, and not a hamster? The answer lies in the genome, and 

more specifically, in differences in gene regulation between the two organisms: where 

and when each gene is expressed. To quantify differences, a typical study will either 

compare functional genomics data from homologous tissues, limiting the approach to 

closely related species; or compare gene repertoires, limiting the resolution of the 

analysis to gross correlations between phenotypes and gene family size. As an 

alternative, gene coexpression networks provide a basis for studying the evolution of 

gene regulation without these constraints. By incorporating data from hundreds of 

independent experiments, meta-analytic coexpression networks reflect the convergent 

output of species-specific transcriptional regulation. 

 

In this work, we develop a measure of regulatory evolution based on gene coexpression. 

Comparing data from 14 species, we quantify the conservation of coexpression patterns 

1) as a function of evolutionary time, 2) across orthology prediction algorithms, and 3) 

with reference to cell- and tissue-specificity. Strikingly, we uncover deeply conserved 

patterns of gradient-like expression across cell types from both the animal and plant 

kingdoms. These results suggest that ancient genes contribute to transcriptional cell 

identity through mechanisms that are independent of duplication and divergence.  
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INTRODUCTION 

Understanding how the genome changes as species diverge is a central question in 

evolution. With access to sequence data, comparative genomics research initially focused 

on the association between gene family conservation and the phenotypes that emerge in 

particular lineages1-4. While this approach continues to shed light on genome evolution5, 

it provides at best an incomplete picture, omitting phenotypic differences that can be 

driven by changes in gene regulation6,7. There has been growing interest in using 

functional genomics data to find regulatory differences by comparing homologous 

samples, often focusing on gene expression as the output of changing regulatory 

architecture between species8-12. Yet because of its dependence on anatomical 

homology, this approach is necessarily limited to more closely related species. How then, 

can we compare regulatory conservation across the tree of life? The answer is 

coexpression. 

 

In a coexpression network, genes are nodes and the edges represent expression 

similarity between genes, often a correlation coefficient. Functionally related genes are 

often adjacent in the network as their expression is coordinated across biological 

conditions, allowing for the inference of gene regulatory modules through clustering. As 

early as 2003, comparative coexpression approaches were used to demonstrate similarity 

in gene regulation between species as distant as plants and mammals13-18. However, 

these studies were limited by both the data and methods available, often relying on a 

small number of microarray datasets from a handful of model organisms, and ortholog 

predictions from BLAST19,20.  
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We breathe new life into this area by taking advantage of high-powered coexpression 

networks from animals, plants and yeast RNA-sequencing (RNA-seq) data21, as well as 

modern orthology prediction algorithms22-24, and measuring the conservation of 

coexpression relationships. As expected, we find that coexpression conservation tracks 

with evolutionary distances25, and is significantly higher for genes expressed in all cell 

types. However, by linking these results to single-cell expression data26-30, we find a 

fascinating possible role for “ubiquitous” genes in transcriptional cell identity. In both 

mouse and Arabidopsis, we find constitutively expressed genes with gradient-like 

expression distributions across cell types. In combination with their high degree of co-

expression conservation, this suggests that these genes have tightly maintained functions 

that contribute to continuous aspects of cell identity. Coexpression conservation provides 

a data-driven estimate of gene functional divergence across species, and we have made 

all of our data, methods and results available to facilitate its use. 

 

RESULTS 

Establishing meta-analytic coexpression networks as a tool for comparative 

genomics 

Reliable estimates of species-specific gene coexpression patterns are a necessary 

backbone for comparative analysis of regulatory divergence. We recently published a set 

of networks with our coexpression webserver, CoCoCoNet21, which contain RNA-seq 

data from 14 species across 895 datasets, and more than thirty-nine thousand individual 

samples (Figure 1A). Here, we establish the power and robustness of these networks by 
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measuring the connectivity of genes with the same Gene Ontology (GO) annotations31, 

and by evaluating the stability of results after bootstrapping the network building process. 

 

As a first validation, we find that species-specific networks built from multiple datasets 

(“aggregate” networks) have strong connections between genes from the same GO 

group, and that these connections are significantly stronger than those found in networks 

from individual datasets (Figure 1B, neighbor voting mean Area Under the Receiver-

Operating characteristic Curve (AUROC) individual networks=0.63, mean AUROC 

aggregates=0.76, Wilcoxon p<10-8, n=14 species). To evaluate the robustness of the 

aggregate networks, we bootstrapped the aggregation procedure 10 times, then used the 

ranked edges in the bootstrapped networks to predict the top 1% of edges in the reference 

aggregate networks (Figure 1C). Performance at this task was close to perfect (mean 

AUROC = 0.996 +/- 0.002), while variability between bootstrapped and reference 

aggregate networks declined as a function of the number of experiments and samples as 

expected (Spearman correlation coefficient=-0.83 for experiments, -0.86 for samples). 

These results indicate that aggregate networks are statistically robust and biologically 

meaningful, with strong connections between functionally related genes.  
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Figure 1 – Aggregate coexpression networks are a powerful tool for comparative genomics 

A – CoCoCoNet contains data from 14 species in three kingdoms: plants, animals and fungi. The 

dendrogram shows phylogenetic relationships between these species, and the barplots indicate 

the number of datasets used to build aggregate coexpression networks. B – Circles show the 

mean GO prediction performance for individual networks (+/- standard deviation) while triangles 

indicate aggregate network performance. C – Aggregate robustness is high across all species, 

with variation dependent on n.  
 

Similarity of coexpression neighborhoods quantifies ortholog conservation 

Having established the robustness of our networks, we next explore the degree to which 

they can be used for cross-species comparisons.  Our analysis focuses on characterizing 

the degree to which pairs of orthologs have retained similar coexpression patterns, or 

“neighborhoods” in the networks.  

 

To measure the similarity of ortholog neighborhoods between two species, we first subset 

networks to include only one-to-one orthologs between that species pair (e.g., pig and 

yeast as shown in the schematic, Figure 2A). Next, each gene’s neighborhood is defined 
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by ranking all edges associated with it, and then the ranks of the gene’s top coexpressed 

gene pairs are compared across species (see Methods for details). This is expressed as 

an AUROC and so it ranges from 0-1, with 1 meaning perfect coexpression conservation, 

0.5 consistent with random re-ordering of neighborhoods, and 0 meaning that 

coexpression partners have inverted from being the top ranked to bottom ranked across 

species. 

 

As a first validation of our approach, we find that coexpression conservation is strongly 

negatively associated with phylogenetic distances between species, demonstrated in 

Figure 2B with respect to distance from human (Spearman correlation coefficient= -0.95). 

We also find that coexpression conservation is sensitive to the amount of underlying data 

as expected, with strong performance achieved with the inclusion of twenty datasets and 

scores plateauing beyond this point (Figure 2C, mean individual networks=0.55+/-0.04, 

mean 20-dataset aggregate=0.68+/-0.08, Wilcoxon p<0.002, n=7 species).  

 

One-to-one orthologs are frequently used for comparative genomics analyses32, however, 

as species grow more distant to one another, there are fewer one-to-one orthologs for 

comparison, particularly in the plant kingdom, where genome duplication events are 

common33. To explore more distant and complex relationships, we generalized our 

method to be able to compare groups of orthologs, i.e., all genes descended from a single 

gene in a common ancestor, including lineage-specific duplicates (see Supplementary 

Figure 1 for a schematic). As validation, we assessed the conservation of groups of 

orthologs descended from the last common ancestor of all eukaryotes. We find that 
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coexpression conservation scores for many-to-many (aka N-to-M) orthologs are strongly 

associated with phylogenetic distances between species (Figure 2D). We next evaluated 

all N-to-M orthologs defined in the last common ancestor between each pair of species, 

finding that one-to-one orthologs have higher conservation than N-to-M orthologs on 

average (Figure 2E, mean 1-to-1 = 0.79 +/- 0.14, mean N-to-M = 0.59 +/- 0.14, Wilcoxon 

p<10-16). Notably, we also find cases where N-to-M orthologs are strongly differentially 

conserved, with ~7% of all N-to-M groups containing orthologs with scores >0.7 and <0.5. 

An example of this is shown in Figure 2F. Here, we see that mouse Eif4e shares a large 

fraction of its coexpression neighborhood with human EIF4E, but that it is quite distinct 

from human EIF4E1B. 

 

These results indicate that coexpression neighborhoods can be usefully compared across 

species to provide a measure of ortholog conservation. Distinguishing orthologs by 

differential coexpression conservation may provide a route forward for discovering genes 

with “the same” function across species (a.k.a. “functional analogs”). 
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Figure 2 – Coexpression divergence correlates with phylogeny and orthogroup size 

A -  Method schematic. Circles represent genes and line thickness indicates strength of 

coexpression between one target gene (red) and all others. For each target gene in pig, we 

identify the set of pig genes that are maximally coexpressed with it, shown in blue. We evaluate 

how conserved this coexpression pattern is in yeast, then repeat the task in the other direction. 

Genes with high coexpression to the target in both species are highlighted in the gray ovals. 

Coexpression conservation is reported as the average AUROC in both directions (i.e., pig-yeast 

and yeast-pig). B - Points show mean coexpression conservation for 1-to-1 orthologs between 

human and each other species. Coexpression conservation is negatively correlated with 

phylogenetic distance (rho=-0.95, p<10-6). C - Mean coexpression conservation for 1-to-1 

orthologs between human and each of the listed species are plotted against the number of 

networks included in the aggregate network. Performance increases with additional data. D -  
Boxplots show coexpression conservation scores for 492 orthologous groups defined at the last 

common ancestor of all eukaryotes, plotted with respect to species divergence times. As in panel 

B, coexpression is more conserved among more recently diverged species. E – Boxplots show 

coexpression conservation scores. 1-to-1 orthologs are more conserved than N-to-M orthologs 

(Wilcoxon p<10-16). F – Coexpression profiles for a 1-to-2 mouse-human ortholog group. The 

mouse gene Eif4e has a strongly conserved coexpression profile with human EIF4E (left, 

coexpression conservation AUROC=0.94) but not with human EIF4E1B (right, AUROC=0.41). 
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Genes expressed in all cell types have conserved coexpression relationships and 

contribute to cell identity 

In the previous section we established that coexpression conservation tracks with 

phylogeny as expected, and that one-to-one orthologs are more likely to have similar 

coexpression than those that have duplicated. We also find evidence of strong divergence 

within orthogroups, which has long been postulated to be an evolutionary mechanism for 

morphological innovation34. Earlier work to probe this hypothesis showed that older genes 

tend to be more ubiquitously expressed across cell types and tissues, and have greater 

conservation across species9,12, and this has typically been interpreted to mean that 

younger genes are required for phenotypic novelty. 

 

By leveraging coexpression relationships we can 1) extend these observations to any 

species pair of interest without requiring knowledge of homologous tissues or cell types, 

and 2) identify conserved relationships between genes, reflecting conserved regulation 

and function. Importantly, we can investigate the role of conserved coexpression in cell 

phenotypes by taking advantage of single-cell RNA-seq data. We use comprehensive 

single-cell RNA-seq data from the Tabula Muris project for mouse26, and four single-cell 

RNA-seq datasets from A. thaliana root27-30 as references for cell-type specific expression 

(Figure 3A, see Methods for details), and we use data from the Genotype-Tissue 

Expression Project (GTEx)35 as a reference for human tissue-specific expression.  
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Consistent with previous research, we find that genes expressed ubiquitously across 

tissues have higher coexpression conservation than those with tissue-specific expression 

(Supplementary Figure 2, Spearman correlation coefficient = -0.41 +/- 0.06). Expanding 

this analysis to cell types, we again see the same pattern, with cell-type specificity 

associated with decreased coexpression conservation in both A. thaliana and mouse 

(Figure 3B, mouse Spearman correlation coefficient = -0.50 +/- 0.04, Arabidopsis = -0.26 

+/- 0.07). We note that this trend holds across all species pairs used to calculate 

coexpression conservation. We also confirm that cell type-specific expression and 

coexpression conservation are associated with estimates of gene age in both kingdoms 

(Supplementary Figure 2, mouse cell-type specificity vs. gene age36 Spearman 

correlation coefficient = 0.47, coexpression conservation vs. gene age = -0.15 +/- 0.1 

across 13 species pairs, Arabidopsis cell-type specificity vs. gene age37-40 Spearman 

correlation = 0.27 +/- 0.1, coexpression conservation vs. gene age = -0.23 +/- 0.05, 

averaged across 6 gene age estimates and 13 species pairs) and that coexpression 

conservation is significantly higher for orthologs of genes known to be essential in 

human41 (Supplementary Figure 2, essential = 0.83 +/- 0.1, non-essential = 0.69 +/- 

0.08, Wilcoxon p<0.01, n=13 species compared to human). In summary, gene duplication 

events are associated with divergence in cell phenotype in both kingdoms, and this is 

reflected in the divergence of gene-gene relationships among younger and more cell type-

specific genes.  

 

But what drives variability in coexpression conservation in species without cell types? Our 

compendium of networks includes one single-celled organism, the budding yeast 
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Saccaromyces cerevisiae. To explore how these results might generalize, we performed 

a meta-analysis of yeast microarray expression data42, using bulk expression variance as 

an analog for expression in all cell types since they are strongly correlated 

(Supplementary Figure 2). Consistent with our findings in plants and animals, we find 

that expression variability in yeast is predictive of coexpression conservation (Figure 3C, 

mean AUROC = 0.77 +/- 0.04 SD).  

 

Because variability occurs in the absence of cell type variation in yeast (it may reflect 

temporal or state variation), we wondered whether we could find a similar effect in 

multicellular organisms when holding cell type constant. Our expectation is that cells of 

the same type may vary by cell cycle phase, nascency, or activation state, for example. 

Strikingly, after calculating expression variation within each cell type in Tabula Muris, we 

find that the most variable genes have the most strongly conserved coexpression patterns 

(Figure 3C). In other words, while their coexpression partners remain consistent, their 

expression levels vary dramatically within and across cells. These properties suggest that 

these genes could contribute to continuous aspects of cell identity that require tightly 

coordinated signaling, like differences in size or metabolic activity. Cells of different types 

would likely have broad but distinct expression distributions, forming a gradient of 

expression when viewed across types. Such “continuous axes” of variation would be more 

likely to generalize across kingdoms than poorly conserved marker genes (Figure 3D). 

 

One example of a gene that might contribute to continuous aspects of cell identity is 

Rpl12, a component of the large ribosomal subunit 60S in mouse. This gene is among 
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the most variably expressed genes within and across cell types (mean standardized rank 

within = 0.83, across = 0.97) but its expression distribution across cell types is continuous 

(Figure 3E). Given Rpl12’s molecular function, we speculate that protein synthesis rate 

could be a continuous axis of variation from which all cells sample. Notably, we find a 

similar pattern of continuous expression when we look at an Arabidopsis ortholog of Rpl12 

(Figure 3E). This pattern is in stark contrast to more typical marker genes, which tend to 

have high variance across cell types, and lower variance within cell types because they 

are “switch-like” in their expression patterns. Two examples are shown in Figure 3E: 

Cd19, which is exclusively expressed by mouse B-cells and is conserved only among 

mammals (mean standarized rank within = 0.55, across = 0.97); and EXPA7, which is 

exclusive to Arabidopsis root trichoblasts and is conserved only among eudicots (mean 

standardized rank within = 0.77, across = 0.99).  

 

In summary, our combined analysis of single-cell RNA-seq and yeast expression 

variation shows that while cell type- or tissue-specific marker genes are generally not 

well conserved, genes with high expression variability are deeply conserved, and may 

contribute to continuous aspects of cell transcriptional identity, in both single-celled and 

multicellular organisms. 
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Figure 3 – Coexpression conservation suggests ancient, continuous axes of cell identity 

A – Plots of mouse and Arabidopsis scRNA-seq data, with examples of constitutive (left) vs. cell-

type specific expression (right), color indicates expression level. B – Coexpression conservation is 

plotted with respect to cell type specificity for mouse (top) and Arabidopsis (bottom). Lines are loess 

fits on mean values for each species, +/- SD. Cell type specificity is negatively associated with 

coexpression conservation. C – Expression variance is associated with coexpression conservation. 

(Top) Expression variance across >200 yeast datasets predicts coexpression conservation. TPR = 

true positive rate, FPR = false positive rate. ROC curves for all species were binned along x-axis, 

mean +/- SD is plotted. (Bottom) Coexpression conservation is plotted with respect to within-cell 

type variance in mouse, with loess fits on mean values for each species. D – Across vs. within-cell 

type variance in mouse is plotted. Colors indicate local point density. The space can be broken into 

three regions: genes with high-within and high-across variance are typically more ancient, those 

that are low/low are more recent, and markers have high-across and low-within cell type variance. 
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Due to their high coexpression conservation, high/high genes may have conserved functions vis-à-

vis cell identity. E - Examples of continuous (top) vs. marker-like (bottom) expression in mouse (left) 

and Arabidopsis (right). MSC = mesenchymal stem cell, QC = quiescent center. The conserved 

gene with high within- and across-cell type variance is more continuous across cell types, whereas 

the markers (high/low) are either on or off. 

Coexpression conservation is associated with ortholog confidence and can predict 

functional analogs 

Our coexpression conservation analysis is made possible by the use of OrthoDB to define 

orthologous genes. However, orthology prediction is an active area of research in 

genomics23,43, and relying on a single algorithm has known limitations44-46. How would our 

results hold up if we had used a different reference? In the following, we take advantage 

of orthology information from the Alliance of Genome Resources24 which has predictions 

from 12 independent sources47-58 for humans and 6 common model organisms. We 

assess coexpression conservation across algorithms, and we explore how coexpression 

conservation can be applied to predict functional analogs.   

 

The majority of algorithms within the Alliance of Genome Resources database (9/12) have 

high concordance across their orthology predictions (Figure 4A, mean Jaccard=0.7), with 

exceptions attributable to differences in species coverage. In keeping with their overall 

similarity, we find that average scores for these 9 algorithms are close to tied (mean = 

0.74 +/- 0.009, Supplementary Table 1) and although OrthoDB is fairly distinct in its 

predictions (mean Jaccard index=0.18), it performs very close to this average (0.73 +/- 

0.13). Remarkably, even though the algorithms are tied on average, we find that where 

they agree, coexpression conservation is preferentially high: for almost all pairs of 
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species, coexpression conservation is correlated with the number of algorithms that 

predict the relationship (human-worm shown as an example in Figure 4B, all correlations 

in Figure 4C). The only exceptions to this rule are among the three mammals, where 

coexpression conservation is almost uniformly high.  

 

A primary application of orthology prediction is to infer shared function across species, 

but benchmarks recurrently find a precision-recall trade-off across algorithms46,59, with 

little evidence that any one approach outperforms another43. By incorporating functional 

information directly, coexpression conservation scores may improve sequence-based 

inference. For example, recent work has found that human genes with similar 

coexpression patterns can compensate for the loss of their yeast orthologs in 

complementation screens60,61. Here we find that coexpression conservation scores from 

our independent data and analysis are predictive of this effect (Figure 4D). However, we 

also find that certain pairs of complementing orthologs have very low coexpression 

conservation scores, with the two lowest scoring pairs excluded from the Alliance of 

Genome Resources database (Supplementary Table 2).  

 

Altogether, these results highlight that confidence in sequence-based orthology is 

reflected by similarity in gene coexpression relationships, and suggest that a wisdom-of-

the-crowds approach may be beneficial for ortholog prediction. Since our earlier results 

rely only on OrthoDB, they likely represent a lower limit for coexpression conservation 

which would only improve with the use of meta-orthology methods62. Moreover, our 

approach makes it possible to compare data from any species with sufficient RNA-seq 
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data, not just popular model systems like yeast which have been the focus of many 

studies due to the greater availability of experimental resources. 

 

 

Figure 4 – Coexpression conservation is associated with ortholog concordance across 
algorithms and can predict human-yeast functional analogs  
A – Heatmap of algorithm concordance. The majority of algorithms (9/12) make similar 

predictions, with outliers arising from selection biases (i.e., inclusion of only a subset of 

species). B -  Mean coexpression conservation for human-worm orthologs is plotted against 

the number of algorithms predicting the relationship. Coexpression conservation correlates with 

ortholog confidence. C – Bars show the correlation between the number of algorithms and 

coexpression conservation for each gene pair, binned into three divergence times. 

Coexpression conservation correlates with ortholog confidence for pairs of species that 

diverged >100MYA but not for more recently diverged species. D – Cumulative success of 
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human-yeast complementation is plotted as a function of coexpression conservation. Ortholog 

pairs with high coexpression conservation are likely to compensate. 

DISCUSSION 
 

By combining sequence-based orthology predictions with robust estimates of gene 

coexpression neighborhoods, we have developed a measure of gene conservation that 

can be calculated between any pair of species. To our knowledge our study is the largest 

of its kind to date, making use of data from hundreds of individual studies, and measuring 

coexpression conservation across very long diverged species. We find that coexpression 

conservation is associated with phylogenetic distances, expectations of conservation 

based on gene family size, and can even predict concordance across orthology prediction 

algorithms. Moreover, taking advantage of the recent explosion in single-cell data, we 

identify commonalities between the forces that drive conservation in both single-celled 

and multi-cellular organisms. The genes that vary most – both within cells of the same 

type and across cells of different types or states – show deeply conserved patterns of 

coexpression, suggesting their fundamental role in eukaryotic cell function and identity.  

 

Previous research to investigate the changing gene expression landscape across species 

focused on the relative lack of conservation among tissue and cell type-specific genes9,12, 

which has been interpreted as evidence for Ohno’s theory that gene duplication and 

divergence is critical for phenotypic evolution34, such as the creation of novel cell types. 

With our method, we confirm these previous findings, but also extend them, presenting a 

challenge to Ohno’s theory. Genes with cell type specific expression have more poorly 
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conserved coexpression patterns than those that are expressed in cells of all types, as 

previously described. Yet genes expressed in all cell types not only have strongly 

conserved coexpression patterns, but they also have gradient-like expression across cell 

types. Variation in activity across cell types is likely what drives their strong coexpression 

within networks.  

 

What does this mean for cellular evolution and multicellularity? We hypothesize that these 

genes work in tightly coordinated modules to tune non-negotiable aspects of cellular 

identity, like cell size, or metabolic rate, generating diversity that allows cells to respond 

to varying environments. With these diverse populations established, evolution could then 

use novel genomic variation to mark cell types and refine their organismal roles. Further 

work to explore this hypothesis is necessary, including additional analyses of single-cell 

data from long diverged species. However, we note that this will require targeted 

investigation, as typical single-cell analyses are designed to identify genes that are 

strongly variable across cell types (i.e., markers) rather than subtler continuous signals. 

Cell identity is known to be broadly distributed across the transcriptome, and this allows 

low-depth single-cell RNA-seq to find expected cell clusters even when individual marker 

genes are not sampled63-65. Determining the relative contributions of switch-like versus 

continuous expression to cell identity will be informative for updating empirical and 

mechanistic models cell type. 

 

This work is at the intersection of transcriptomics and orthology prediction, and 

improvements in both will allow for increasing precision of coexpression conservation. 
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Based on our current estimates of available data, we can readily extend our analyses to 

an additional thirty-eight species. The ability to move beyond that will require efforts to 

profile the transcriptomes of a greater diversity of organisms, similar to the goals of the 

Genome10K project for genome sequences66. However, a necessary consequence of 

using bulk RNA-seq data from heterogenous samples is that networks are better powered 

for genes that are expressed in all cells, and our results make it clear that tissue-specific 

networks67 cannot overcome this as genes expressed in all cell types will continue to 

dominate. Instead, future work to develop cell-type specific coexpression networks68, 

including methods to map cell identities across distantly related species69, and/or to 

selectively sample the transcriptome for genes with lower expression70, could be routes 

forward. Regarding orthology, one of our most important results is that our conservation 

measure is correlated with the number of algorithms that predict the orthology 

relationship. Orthology algorithms are notoriously difficult to benchmark given the lack of 

gold-standard data (i.e., we lack genomes for the last common ancestors of extant 

species). Our results suggest that a wisdom-of-the-crowds approach, and incorporation 

of functional genomics data, could improve on baseline predictions71. 

 

Defining the regulatory mechanisms that allow for evolutionary divergence is a central 

goal in biology. Our method and data now provide a clear route forward for investigating 

these mechanisms with both breadth and depth.  
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METHODS 

 
Analysis of public gene expression data 

All analyses were performed in R. Results are reported as means +/- standard deviations 

unless otherwise specified. 

 

Aggregate coexpression networks were downloaded from CoCoCoNet21. Networks for 

individual datasets are stored internally and are available on request. In brief, networks 

for each dataset are built by calculating the Spearman correlation between all pairs of 

genes, then ranking the correlation coefficients for all gene-gene pairs, with NAs assigned 

the median rank. Aggregate networks are generated by averaging rank standardized 

networks from individual datasets. To assess the connectivity of GO groups we used the 

run_neighbor_voting function from the EGAD R package72, subsetting GO to terms with 

10-1000 genes. For human tissue specificity analyses, processed expression data73 from 

the GTEx project35 (mean expression per tissue) was downloaded from 

github.com/sarbal/EffectSize. All -1 values were assigned NA, then tissue specificity was 

calculated as published74. 

 

The Tabula Muris Smart-seq2 expression matrix and sample metadata were downloaded 

from FigShare and converted to SingleCellExperiment objects for further processing. For 

each tissue, counts were normalized using the logNormCounts function from the scater 

package75. Cell type specificity was calculated as published for each tissue74, then cell 

type specificity scores were averaged across tissues, excluding NAs. To visualize cells, 

we used the t-SNE coordinates provided by the authors. Within-cell type variance was 
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calculated for each cell type in each tissue separately, then averaged for each tissue, and 

averaged across tissues. Across-cell type variance was calculated for each tissue 

separately using the mean log expression for each cell type, then values were averaged 

across tissues. For Figure 3D, within and across-cell type variance were ranked and 

standardized between 0-1 such that the highest variance genes would have a score of 1. 

The limma package76 was used to find marker genes with a log fold-change threshold >4 

between each cell type and any other within its tissue.  

Arabidopsis thaliana root single-cell RNA-seq expression matrices and sample metadata 

were downloaded from the Gene Expression Omnibus77 or provided by the authors. Cell 

type specificity was calculated for each dataset separately, then averaged, excluding 

NAs. Within-cell type variance was calculated for each cell type in each dataset 

separately, then averaged across datasets. Across-cell type variance was calculated for 

each dataset using the mean log expression in each cell type, then averaged across 

datasets. To visualize cells from all studies, we first used MetaNeighbor63 to find 

replicable clusters, and subset individual datasets to clusters replicating in at least one 

other study using an AUROC cut-off of 0.7. We used the multiBatchNorm function from 

the batchelor package for initial batch correction78. Then, we selected variable genes 

using the get_variable_genes function from MetaNeighbor and used fMNN in batchelor 

on batch corrected data, subset to variable genes. This provided principle components 

which were used for the UMAP projection of all cells79 (20 components were used).  

Yeast microarray data were downloaded from the Saccharomyces Genome Database42. 

We included studies with >10 samples. After rank normalizing expression for each 

sample, we calculated the variance of expression for each gene that was measured in at 
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least 80% of the datasets. Variance was calculated for each dataset separately, then 

averaged. For the analysis in Figure 3C, we considered all gene pairs with coexpression 

conservation >0.9 to be true positives and used the ranked average variance to predict 

these for each species with the auroc_analytic function in EGAD72.  

Gene annotations and orthology 

Gene function annotations were sourced from the Gene Ontology31. GO terms and gene 

associations were obtained by merging data from the NCBI 

(ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2go.gz) and biomaRt80. Associations were 

propagated based on “is_a” relationships between terms.  In addition, essential gene 

annotations were obtained from the Macarthur lab’s GitHub repository 

(https://github.com/macarthur-lab/gene_lists), originally sourced from Hart et al41. Yeast-

human complementation data was downloaded from the supplement of Kachroo et al60. 

Mouse gene age estimates36 were downloaded from the Marcotte lab’s GitHub repository 

(https://github.com/marcottelab/Gene-Ages) and A. thaliana gene age estimates were 

collected from multiple sources37-40. 

 

OrthoDB22 was used for orthology mapping. For each pair of species, we search for the 

most recent phylogenetic split, then obtain inferred orthology groups for all genes 

descended from the common ancestor. These were either filtered to include only one-to-

one relationships, or to include all N-to-M orthologous pairs. We also downloaded 

orthology information from the Alliance of Genome Resources24 for assessment with our 

N-to-M coexpression conservation method, detailed below. We de-duplicated the 

information so that each gene pair appeared only once, rather than having a direction 
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from a source-target species. Pairs from all algorithms were considered the “universe” of 

possible orthologs. Species divergence times were sourced from TimeTree25.  

Coexpression conservation 

For each pair of species to be compared, we filter aggregate coexpression networks to 

include known orthologous genes, then we compare each gene’s top coexpression 

partners across species to quantify gene similarity. We treat this as a supervised learning 

task, using the ranks of the coexpression strengths from one species to predict the top 

coexpression partners from the second species, and then repeating this task in the 

opposite direction, finally averaging the scores. We refer to this as a measure of 

“coexpression conservation” and note that it is formally equivalent to the average area 

under the receiver operator characteristic curve (AUROC).  

 

To generalize this to the case of N-to-M orthologs, we describe the analysis in greater 

detail: Consider a gene A1 in species 1 that has two orthologs in species 2 – genes B1 

and B2. First, the top ten genes exhibiting the highest coexpression with A1 are chosen. 

All possible orthologs in species 2 for the set of top 10s of A1 are shortlisted as the 

“translated top 10s”. Note that since each gene in species 1 can now have one or more 

orthologs in species 2, the translated top 10s can vary in length. Additionally, some of the 

top ten coexpressed genes in species 1 may map to the same orthologs in species 2, but 

we only consider a unique list of orthologs in the translated top 10s for each gene in 

species 1. This task is repeated in the opposite direction, where the ranks of coexpression 

strengths of genes in species 2 are used to predict the top coexpression partners of genes 
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from species 1. Scores from both directions are averaged, thereby providing a measure 

of overall coexpression conservation. 

 

DATA AVAILABILITY 

Data and code to reproduce the coexpression conservation analysis are available through 

CoCoCoNet (https://milton.cshl.edu/CoCoCoNet/).  
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