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Abstract

The genetic basis of general plant vigor is of major interest to food producers, yet the trait is

recalcitrant to genetic mapping because of the number of loci involved, their small effects,

and linkage. Observations of heterosis in many crops suggests that recessive, malfunction-

ing versions of genes are a major cause of poor performance, yet we have little information

on the mutational spectrum underlying these disruptions. To address this question, we gen-

erated a long-read assembly of a tropical japonica rice (Oryza sativa) variety, Carolina Gold,

which allowed us to identify structural mutations (>50 bp) and orient them with respect to

their ancestral state using the outgroup, Oryza glaberrima. Supporting prior work, we find

substantial genome expansion in the sativa branch. While transposable elements (TEs)

account for the largest share of size variation, the majority of events are not directly TE-

mediated. Tandem duplications are the most common source of insertions and are highly

enriched among 50-200bp mutations. To explore the relative impact of various mutational

classes on crop fitness, we then track these structural events over the last century of US

rice improvement using 101 resequenced varieties. Within this material, a pattern of tempo-

rary hybridization between medium and long-grain varieties was followed by recent diver-

gence. During this long-term selection, structural mutations that impact gene exons have

been removed at a greater rate than intronic indels and single-nucleotide mutations. These

results support the use of ab initio estimates of mutational burden, based on structural data,

as an orthogonal predictor in genomic selection.
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Author summary

Some crop varieties have superior performance across years and environments. In

hybrids, harmful mutations in one parent are masked by the ancestral alleles in the other

parent, resulting in increased vigor. Unfortunately, these mutations are very difficult to

identify precisely because, individually, they only have a small effect. In this study, we use

long-read sequencing to characterize the entire mutational spectrum between two rice

varieties. We then track these mutations through the last century of rice breeding. We

show that large structural mutations in exons are selected against at a greater rate than

any other mutational class. These findings illuminate the nature of deleterious alleles and

will guide attempts to predict variety vigor based solely on genomic information.

Introduction

Though the details vary substantially, most major crops have undergone a dramatic reduction

in genetic diversity relative to their wild progenitors due to domestication and breeding [1]. In

the case of rice, this reduction is compounded by self-pollination. These early events have had

a substantial impact on the contemporary population’s mutational load or its “cost of domesti-

cation”. Strong selection on a few key domestication loci and long-term reductions in popula-

tion size resulted in the expansion and even fixation of many mildly deleterious alleles [2].

Rice was one of the earliest models used to examine and demonstrate this cost at the sequence

level [3].

A central task of modern breeding is to purge these deleterious alleles [4]. Historically, this

purging has been accomplished indirectly through extensive crossing and phenotypic selec-

tion. Genomic data offers a complementary (or perhaps wholly alternative) way of explicitly

identifying the alleles most likely to be deleterious [5]. In effect, with the knowledge of all dele-

terious mutations in hand, breeders could dramatically accelerate genetic gain through tar-

geted crosses and much larger populations afforded by marker-based breeding value

assessment of progeny [4].

While the theoretical basis for the cost of domestication is strong, few studies have investi-

gated how this cost is manifested in long-term, realistic agronomic settings. In addition, large

structural mutations (SVs) are likely to have the most dramatic phenotypic effects [6]. Indeed,

they account for a disproportionate number of discovered causal variants [1,4]. Gene dysregu-

lation is analogous to (and often driven by) presence/absence variation resulting from struc-

tural mutations; in maize, this dysregulation is correlated with allele frequency and is a

predicator of seed weight [7]. Yet, structural events have been recalcitrant to the short-read

sequencing deluge. Recent work in rice using 3,000 re-sequenced rice genomes shows a clear

depletion in coding-sequence indels, a hallmark of inbreeding and selection [8]. Though this

work used an extensive SV-calling pipeline, false-positive and false-negative rates were still in

excess of 10% and often much greater for tandem duplications and inversions [8,9]. More

importantly, it remains unclear if the segregating structural variants are present because they

are neutral or because deleterious alleles have not yet been fully purged.

The US rice industry traces its commercial production along the southeast coast to the

1700s. Since Oryza spp is not indigenous to the USA, rice varieties from around the world

were imported and evaluated for production potential through the 1920s. Currently, approxi-

mately 80% of the 1 M ha of rice grown in the USA are planted in the Mid-South region along

the Mississippi River and Gulf Coast and utilize tropical japonica germplasm (https://www.

nass.usda.gov/). Early breeding efforts in the USA focused on a relatively narrow genepool of
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tropical japonica germplasm that possessed the combination of agronomic and grain quality

traits desired by the domestic industry. An analysis of 24 cultivars developed over a 48 yr time

period in Texas revealed an average decrease in days to heading (> 0.2 cm yr-1), decreased

plant height (> 1.0 cm yr-1), and an increase in whole milling yield (0.06% yr-1) and grain

yield (24 to 42 kg yr-1) [10]. In the late 1950s, as the rice milling and processing industry devel-

oped, criteria for physicochemical, cooking, and processing quality traits were established to

guide breeders in the development of cultivars having superior quality [11]. Similarly, breeding

for resistance to disease has also been a major goal. For example, several Pi blast resistance

genes have been deployed over six decades in the USA [12].

From this US-bred material, we generated a long-read assembly of a foundational tropical

japonica variety, Carolina Gold Select (Pi 636345) (shortened to “CarGold”, in the following

text and figures). This assembly was used to generate a high-confidence set of SVs spanning

the genome. In addition, we resequenced 166 varieties representing USA rice breeding efforts

over the last century. Of these, we focused on 101 varieties that have been advanced in a consis-

tent environment and have had documented gene flow based on robust pedigree information.

Together this subset allowed us to characterize the full mutational spectrum across a well-

defined time course of breeding and selection in the USA.

Results and discussion

O. sativa genome size continued to increase after the temperate/tropical

split due to a small set of retrotransposons

Large structural mutations have resulted in genome expansion in the Oryza sativa lineage [13].

TE activity–a major driver–appears to have diminished although there is evidence for contin-

ued transpositional activity at low frequency in contemporary breeding material [14]. Given

the repetitive nature of TEs, their activity can be very difficult to assess using short-read

sequencing technology. Long-reads, which can span the critical ~12 kb threshold of full-length

retrotransposons, have proven central to characterizing TE events at sequence-level resolution.

In order to identify TE events and additional complex SVs, we employed PacBio long-read

technology to generate a de novo assembly of a foundational US rice variety, Carolina Gold

(“CarGold”). In addition to its significance to US rice breeding, CarGold is representative of

the major tropical branch of the O. sativa japonica subpopulation.

The CarGold long-read assembly resulted in 208 contigs with an N50 of 12.88 Mb (S1

Table). PacBio contigs were scaffolded into pseudomolecules using the Nipponbare temperate

japonica reference (IRGSP-1.0.59), 97.4% of which was covered by the CarGold assembly (S4

Fig). In addition to high coverage, the CarGold assembly shows excellent contiguity with Nip-

ponbare, even for centromeric content, and nearly identical core gene content (S2 Table). The

centromere of chromosome 6 is one exception: it appears to contain three major inversions,

although we did not pursue confirmation of these given that the internal content appears to be

contiguous and they represent gene poor regions outside the scope of the study. In both gen-

eral metrics and fine-scale accuracy relative to an Indica outgroup, this PacBio assembly

appears to be superior to a recently released assembly of the same variety that used a hybrid

Nanopore/Illumina approach [15] and offers an interesting comparison of the two methodolo-

gies (S12 Fig). Most notably, the Nanopore assembly appears to be prone to collapsing repeats

into false insertions. Interestingly, while collinearity with an Indica variety genome supports

internal structure of chromosome 6 inversion, the recent Carolina Gold Select Nanopore

assembly supports the large-scale Nipponbare configuration (see above and S12 Fig). Whether

or not this is a convergent scaffolding error remains to be determined but such an error is
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plausible given the inter-contiguous nature of the break in the otherwise accurate CarGold

PacBio assembly.

To characterize >50bp SVs, CarGold, Nipponbare, and O. glaberrima chromosomes were

aligned. Using the O. glaberrima outgroup [16], the ancestral state of an indel between japonica
subtypes could be inferred (Fig 1A and [13,17]). As expected, the majority of events were in

the outgroup relative to O. sativa. Because they cannot be inferred, such outgroup events were

removed in the following analyses. All inferred events were compared with SVs identified

using CarGold PacBio reads directly aligned to Nipponbare reference and called with pbsv

(https://github.com/PacificBiosciences/pbsv, v2.2), currently the best SV caller for long-read

data [18]. We expected far fewer events to be present in our set since we require stringent bor-

der alignments and outgroup alignment. Indeed, whereas pbsv calls 18,238 SVs, we called

5,571 SVs (S4 File). 82% of the SVs we inferred overlapped pbsv SVs. Of those that did not,

92% involved insertion of 5% or more of the total SV. Manual curation revealed that the inser-

tion was generally present in aligned reads but either the SV was in a hemizygous state or a

deletion occurring in conjunction with the insertion (see below) had apparently disrupted

pbsv’s ability to call the SV.

Most events we inferred were, as expected for a double-strand break repair process [19], a

mixture of inserted and deleted bases, although generally one of the two appear to dominate

an event and insertion-like events are much more frequent (Fig 1B). In addition to being more

frequent, the insertions involve more bases on average (Fig 1C). The length profiles are consis-

tent across the two varieties (Fig 1C). Summing across all events indicates a net gain of ~6 Mb

in both lineages. As our inference methodology was conservative, this value represents a lower

bound on the net gain.

The contribution of particular length-classes was not uniform (Fig 1D). While we observed

some very large events (>40 kb), these have very little impact on the cumulative length of inserted

sequence (~13 Mb). The most impactful length class was centered around 11 kb, wherein two

well-defined “step-changes” were observed (Fig 1D). Using a full-length TE database generated

specifically for this study (see Materials and Methods), we annotated the TEs within all insertions

and observed a clear enrichment of two Gypsy retrotransposon families within the step-changes

(Fig 1D). Together these two families account for ~1.5 Mb (or 11%) of inserted sequence (S3 File).

An additional set of Copia elements, ~ 6k bp in length, accounts for another 835kb (or 6%).

Most insertions are tandem duplications generated via patch-repair

While TEs, as a whole, account for 28% of the total length of added DNA, they only directly

account for 9% of the total events. Though limited by short-read methodologies, prior work in rice

identified that tandem duplications accounted for at least half of all new insertions>10 bp [17].

These events did not appear to result from replication slippage, but DNA repair of adjacent nick

sites as indicated in [17,20]. The CarGold assembly allowed us to extend prior results, which were

limited to primarily<100bp events, to those SVs described above that are 10 to 100-fold longer.

We calculated a d metric for CarGold vs Nipponbare indels (Fig 2), which is a numerical

description of the ambiguity in alignment between ancestral and derived states [21]. Direct

integration of ectopic DNA has a d = 0. Events such as replication slippage, which should

depend on small annealing sites, have a d greater than the length of the indel. In perfect tan-

dem duplication, d equals the exact length of the indel. Our results are complementary to prior

observations [17]. Importantly, deletions do not conform to the 1:1 relationship seen for inser-

tions, indicating that tandem duplication is much more common than tandem removal, the

latter likely occurring through unequal crossing over. This asymmetry also supports our ability

to accurately infer indel ancestral state using O. glaberrima as an outgroup.
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Because we examined much longer mutations, we were able to identify an upper limit to

the tandem duplication mechanism. As indicated in Fig 2, the relative proportion of tandem

duplications declines as events exceed 125 bp. This proportion starts at 70% of events and falls
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Fig 1. Insertions and deletions between temperate and tropical japonica references. A) Schematic illustrating the insertion/deletion orientation

method for indel characterization. Any mutation found only in O. glaberrima is ambiguous and ignored. B) Distribution of gap coverage values

across all events analyzed. As indicated, insertions and deletions are defined as mutations with a gap coverage of>95% or<5%, respectively. C)

Boxplot depicting the log-transformed size distribution of events broken out by type and the variety–CarGold (cg) or Nipponbare (nip)–in which

it was derived. D) Scatterplot showing each insertion, sorted by length, and its impact on cumulative length of all insertions. TEs contributing to

rapid changes in total inserted sequence are indicated by orange window.

https://doi.org/10.1371/journal.pgen.1009389.g001
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to 5% by 200 bp. Interestingly, the proportion of tandem duplications appears to remain at 5%

out to the longest values used in the analysis (15 kb). Indeed, we observed perfect tandem

duplications in excess of 1 kb, with the longest being 4.9 kb.

Across both varieties, we examined 5,571 >50bp mutations. As described in the Introduc-

tion, the presence of many of these events are expected to be a consequence of the domestica-

tion bottleneck. Given increased population size and improved measurement accuracy of yield

under modern breeding, a signature of selection pressure to purge these possibly deleterious

alleles should be detectable. To interrogate this relationship in an agricultural context, we

turned to the US rice germplasm collection, which has representative sampling of released

varieties spanning the last century of rice breeding in the US.

Admixed introductions are followed by targeted breeding efforts for long

and medium grain markets

One-hundred and sixty-six rice varieties developed or used in US rice breeding were

sequenced as Illumina 100–150 bp, paired-end reads (S1 File). For population analysis, single

nucleotide variations (SNPs) were called relative to the Nipponbare reference. This set of

~11.6M SNPs was cross-filtered with SNP data derived from ~3k other rice varieties [22],

resulting in ~3.9M intersecting SNPs.

For examining the population structure in the US sample, we further filtered full SNPs by

retaining those SNPs with low pairwise LD between one another [23]. Thirty randomly sam-

pled representatives from each rice subpopulation found in pre-existing data on ~3k rice varie-

ties [22] were used as training populations to infer the proportional origin of each US variety

(Fig 3A).

US rice varieties with substantial temperate japonica content are primarily derived from

California breeding programs. MidSouth varieties are generally tropical japonica, but a sub-

stantial fraction exhibit admixture between the two japonica types. Grain type appears to be

the underlying trait that differentiates admixed MidSouth varieties from purely tropical varie-

ties (Fig 3B). While >8% temperate admixture generally are associated with medium-grain

varieties, there are clearly exceptions: in some cases ~50% admixture can exhibit long-grain

type, whereas <2% can still have medium-grain type. Though varieties tend to be genetically

distinct by grain type, admixtures are clearly present (Fig 3B), indicating gene flow between

the subpopulations as a result of breeding efforts.

We examined population structure of varieties over the course of the last century by order-

ing each Midsouthern variety based on year of release (Fig 3B). Red dots indicate a variety’s

release date relative to its genetic relatedness to all other varieties. Generally, varieties are more

closely related to varieties released within the same time period, as expected for breeding popu-

lations. The pattern of relatedness also reflects general market history. Initially, admix popula-

tions derived from foreign sources were introduced in the early 1900s from within which

selections were made that were adapted to the southern USA. The majority of varieties that

exhibit unusual seed type given their population assignments appear during this time period.

Controlled crosses were implemented in 1929 with a focus on long grain development for the

next 25 years. With this market established, there was an emphasis to also develop a medium

grain market with several released in the 1950s. However, after 1960 over 70% of the new

releases were long grains. Thus, over time, the total population has diverged through breeding

and selection and resultant gene pools targeted to long and medium grain market classes.

only indels<125bp. Lower corner insets give two examples of how d is calculated; alignments between ancestral and

derived (indicated by red or green) sequence are depicted as simplified dotplots.

https://doi.org/10.1371/journal.pgen.1009389.g002
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Structural mutations are being purged from the germplasm

This historical collection of varieties allowed us to further examine the impact of different

mutational classes in a long-term breeding context. Indeed, selection against SVs is supported

by our initial observation of one SV per ~424kb of exonic space versus ~222kb of intronic

space (described below). Though biased TE distribution may be a factor, TE-mediated events

are the minority and this ~2-fold bias almost certainly reflects the historical purging of SVs in

exons. Comparable results were recently observed in O. sativa using short-read SV inference

[8]. Yet it remains unknown if the SVs that we do observe escaped negative selection because

they are neutral or if selection has been constrained by linkage and narrow genetic bottlenecks

related to domestication (see Introduction). To examine this question, we explored changes in

assorted mutational classes in the Midsouthern population.

Using release-date as a surrogate for agronomic fitness, we estimated the effects of the large

structural variants discovered above as well as a random subset of SNPs, for which we were

able to define an ancestral state using O. glaberrima as above. Alleles were called based on read

contiguity across these pre-ascertained sites (see Materials and Methods). Read coverage

across all varieties was not significantly correlated with reference allele calls (p-val = 0.08) and

a linear regression model indicates that, if there was a significant relationship, it would only

account for 1.7% of our variance in genome-wide genotyping (S10 Fig). We additionally used

207x CarGold short-read sequencing data to independently assess false-negative allele calls

among those SVs that were segregating in Midsouthern varieties. Assuming the SVs defined

above are all true, no CarGold allele should be called as the Nipponbare reference. We down-

sampled reads randomly to reflect the interquartile coverages across the US varieties: 22x, 31x,

and 40x, single copy coverage. A false-negative rate of 10% across all events (S10 Fig) is rivaled

only by the ability to call small deletions using short-read data in prior studies [8,9]. Indeed,

manual curation suggests “miscalls” were generally the result of heterozygous-appearing loci

(see above), potentially resulting from tandem duplication. Since our approach is referenced

biased, these SVs will inevitably get called as Nipponbare alleles. Thus, our effective false-nega-

tive rate is probably lower than 10%. The frequency of SVs across all Midsouthern varieties

was highly correlated with the additional diverse germplasm sequenced in this study (Figs 3

and S13, and S7 File), and, as expected for a foundational line, CarGold-derived alleles were

on average more common in Midsouthern material than Nipponbare-derived alleles.

All allele calls (SNPs and SVs) relative to the ancestral state were linearly regressed on

release-date to give the rate of change across all samples [24]. This methodology is comparable

to that used previously [25], although, because we are comparing groups of variants spread rel-

atively evenly through the genome (S6 Fig), population structure should not be a confounding

factor. Unfortunately, it is difficult to assess variants that have a major impact on gene struc-

ture from an ancestral perspective because the reference, Nipponbare, was used to determine

that gene structure. For example, ancestral deletions that remove a gene in Nipponbare will be

missed because the resultant affected region simply lacks the gene to be annotated [26]. To

that end, we focused only on mutations in which the Nipponbare reference matches the ances-

tral state and so by inference originated in the CarGold lineage. Within this set, we focused on

six major mutational classes: exonic, intronic, and intergenic SVs and SNPs that introduced

stop-codons, non-synonymous amino acids, or have no effect on protein coding (synony-

mous) (Fig 4).

general location/program from which material was derived. B). Heatmap of the centered-identity-by-state (IBS) between each variety in the analysis and all

other varieties, both along the column and row axis. Columns are clustered based on similarity. Rows are ordered explicitly by date of release. The red squares

connect a variety’s clustering position with its release-date position. Seed type is indicated along the top, clustering axis. “Short grain” shown as maroon.

https://doi.org/10.1371/journal.pgen.1009389.g003
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All median rates for each class are shifted to the left of synonymous SNPs. Given that these

are CarGold-derived variants, the negative shift for synonymous SNPs, indicated by dotted

line in Fig 4A, likely reflects a general selection against unadapted CarGold haplotypes.

Rate of frequency change for a variant across 20th century
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Fig 4. The rate of change in functional variant classes across a century of plant breeding. Rate estimates are reported only for

mutations that have occurred in CarGold, not Nipponbare (see Text). A) Cumulative frequency of rates for each variant class. The

farther a class is shifted to the left of 0, the more rapidly it has declined on average. B) Plot and linear fit of release date versus the

total count of alleles that disrupt an exon in each variety for each grain type. C) Relationship between change in haplotypes scored

by number of exonic indels and the variance in this score (see Fig 5). The y-axis represents, for each LD block, the regression

coefficient of a linear model between haplotype score and the release date of the variety containing that haplotype. The x-axis

represents the variance for those haplotype scores. In B and C, the shading around the regression line represents the 95%

confidence intervals in combined intercept and slope estimates.

https://doi.org/10.1371/journal.pgen.1009389.g004
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Though the signal is small in some cases, the median values for each class are roughly ordered

based on the expected impact on open reading frame disruption (Fig 4A). Least significant dif-

ference test (implemented in “agricolae” library in R with p.adj = “fdr”) supports the following

grouping of effect classes: Synonymous SNPs and intergenic SVs shared similar profile, particu-

larly with regard to the most negative rates. Intronic SVs and both non-synonymous and stop-

gain SNPs are effectively equivalent with median values shifted to the left of low effect mutations.

Exonic SVs are substantially more negatively shifted than any other group. Within this group,

we did not observe any bias with regard to length or deletion/insertion status (S5 Fig), support-

ing the expectation that any event>50 bp has an equivalent impact on gene disruption.

SVs had comparable density across chromosomes (S6 Fig), and results were essentially

unaffected when chromosomes with the most divergent patterns (Chr 6 or 11) were removed

from the analysis. If intergenic read mapping is less accurate than exonic mapping, a negative

relationship between a variety’s year-of-release and its genetic distance to the reference could

skew results: allele calls would be falsely biased toward the derived mutation in intergenic

regions of newer varieties. In fact, we observe the opposite: a marginal positive relationship

between year-of-release and distance to reference (S9 Fig), indicating that the signal of selec-

tion against gene disrupting SVs is, if anything, slightly diluted. There was also no discernable

relationship between a mutation type, its rate of change, and its false-negative genotyping rate

described above (S10 Fig). Lastly, in the case of true selection, rates based on linear regression

will be strongest for variants that have a minor allele frequency of 0.5 across the entire sample.

Derived allele frequencies were different between mutational classes, as expected for alleles

that have a different impact in general (S11 Fig). Exonic SVs exhibit relative enrichment

between 0.15 and 0.3. Again, this indicates that exonic rate estimate is biased toward weaker,

not stronger, values.

Many of the varieties sequenced in this study had available pedigree information. Twenty-

seven parent/progeny trios could be formed from this data. These trios segregated for an aver-

age of ~18% of SVs used in this study (S14 Fig). SV and SNP mis-calls were correlated for

most trios (S15 Fig), although exceptions appear to be enriched among the “Bonnet” lineages.

Extensive miscalling suggests that pedigree information is incorrect. We excluded Palmyra

and CI9701 trios given their high level of miscalls relative to segregating variants, leaving 25

trios for further analysis. Using SVs derived in the CarGold lineage (as above), we filtered any

SV that did not segregate in at least 10 trios and any SV for which one of its two alleles was

never inherited–suggesting common parent miscall. We then assessed inheritance bias relative

to the derived allele of all SVs. As above, classes are based on positioning relative to coding

regions. Though statistical power is much reduced using trios, the results support conclusions

based on the year-of-release regressions across the entire population (S16 Fig). Moreover, the

trio results further exclude population structure as a confounder of year-of-release analysis.

Based on these results, we expected to be able to partially predict a variety’s year-of-release

from the sum of exonic SVs that it contained. We observed that the relationship between

reduced exonic SVs and later release date holds for both grain-types (Fig 4B), in spite of the

fact that these events are all CarGold-derived due to reasons discussed above. In the long-grain

material, the relationship is heavily driven by the exonic SV content of the oldest varieties and

may not be useful in contemporary selection. That said, these events represent only a fraction

(20–30% by our rough estimate) of the exonic SVs segregating at>10% in this population.

Given the strength of signal we observe (R2 = 0.24, p-val = 1.63e-06), we predict that the addi-

tion of those data would substantially improve prediction accuracy (see Conclusions). These

predictions do not include the impact of other mutational classes as well.

Estimates of the effects of any variant will be complicated by linkage: a locus containing a

beneficial and deleterious allele in positive phase can be effectively invisible to selection,
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assuming these alleles are of equivalent effect. This relationship between linkage and selection

should be apparent from our data as well. To test this (and to facilitate locus-specific selection

analysis below), we defined LD blocks for the combined MidSouth population using a down-

sampled set of ~60k SNPs (Fig 5). (Increased coverage had only a minor impact on refining

LD blocks further, see Materials and Methods.) We counted the number of derived exonic

structural mutations present in each haplotype within a given LD block. We estimated a

regression coefficient between this score of each haplotype and the year-of-release of the vari-

ety in which it was present. Intronic SVs were used as a conservative “neutral” control, given

that they are positionally correlated and show some bias (Fig 4A). Our hypothesis was, for

exonic SVs, that the LD blocks with the largest variance in haplotype score would exhibit the

most negative regression coefficients. Exonic SVs do exhibit this relationship relative to intro-

nic SVs (Fig 4C). Due to ascertainment and probably selection, the majority of our data con-

tains only 1 exonic SV per LD block and thus we have few exonic data-points with substantial

variance. Still, the regression coefficient for exonic indels is statistically significant (p-

val< 0.01) as indicated by 95% confidence intervals (Fig 4C), supporting the idea that haplo-

type context has an impact on an individual allele’s ultimate trajectory [24,27].

The genes disrupted by structural mutations were slightly biased toward functioning in

biotic and abiotic stress response (S3 Table). Inclusion of genes harboring strongly declining

intronic mutations strengthened this signal (S4 Table). Still, the genes implicated in this analy-

sis only account for ~5% of disrupted genes, suggesting that the bulk of the effect is driven by a

general disruption of metabolic function [7]. There was a slight enrichment in overlap with

loci found to effect heterosis in rice [28], though the significance of the bias (18 observed ver-

sus 10 expected) is difficult to assess in this context.

3% of LD blocks exhibit sweep-like changes in frequency

The difference in rates of allele frequency change between functional classes of mutations indi-

cates that genetic drift in this rice population is not substantial enough to mask the signature

of selection of certain loci. While weakly deleterious alleles appear to have a cumulative effect

across the genome, highly adaptive mutations can occur against this backdrop and sweep

through a population. We can track haplotypes through time (see above) and identify those

with aberrant changes expected from such a sweep. Still, the identification of selective sweeps

in unreplicated populations is notoriously problematic [29]. Positive controls can be useful in

establishing a realistic threshold for selection [30,31]. Starting in the late 1960s, the semi-dwarf

phenotype was introduced into Asian and then US breeding programs, often increasing yields

in modern agronomic environments by 50% or more [32]. Though multiple alleles exist, the

major source in our population is the Taichung Native 1 allele derived from an indica source

[33].

1905 - 1961

1964 -1986

1990 - 2013

0 Mb 40302010

SD1
(semi-dwarf)

Fig 5. The select-ome of US rice breeding. Chromosome 1 is shown as representative. The chromosome is divided into LD blocks and haplotypes within those

blocks are colored based on red being the most frequent across the three time periods defined on far left. Semi-dwarf locus, a known target of selection, is labeled.

Sparse regions represent very small LD blocks. All chromosomes are plotted in S8 Fig. See https://gbru-ars.shinyapps.io/HaploStrata/ for fully interactive plots.

https://doi.org/10.1371/journal.pgen.1009389.g005
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For all haplotype blocks in our sample, we partitioned varieties into 3 time periods: early

(1905–1961), middle (1964–1986), and late (1990–2013). The sd1 block indicates a rapid

increase in two nearly identical haplogroups by 23% from middle to late eras (Fig 5). Using

this value as a threshold, 3% of LD blocks exhibit an equivalent or greater change in single hap-

lotypes from one era to another. We also overlaid known agronomic genes (n = 46, S6 File)

and examined the overlap with frequency change. Though numerous genes overlapped,

including the Pi-ta locus that determines resistance to a number of pathotypes of the rice blast

fungus (Magnaporthe oryzae) [34], this proportion did not deviate substantially from random

expectation. Thus, many putatively selected regions have no obvious target of selection (S5

File). To facilitate further exploration of these regions, an interactive tool complementary to

Fig 5 is available at https://gbru-ars.shinyapps.io/HaploStrata/

The LD block sizes in our population represent the diversity in the population, either gener-

ated by recombination or by introduction of novel haplotypes. Strong selection on rare or de
novo mutations can produce LD blocks in later time-periods that are much larger than those

of earlier generations [35]. Such a pattern would not be immediately evident in Fig 5. Barring

heightened selection for recombination, the rate of change in alleles and the ratio of LD block

lengths in early versus late generations should be highly correlated.

By evaluating pairwise identity across early and late generations (or “HScan Index”, see

Materials and Methods), we did note a general shift toward longer linkage blocks (S2 and S7

Figs), reflecting the population divergence observed above (Fig 3) and mild depletions in

diversity. The distribution also has a prominent tail, likely reflecting selected outlier loci. The

differences in block lengths are associated with selected loci, as defined at the Δ23% level

above, exhibiting 11% longer LD in the late versus early intervals (S3 Fig). Interestingly, the

sd1 locus exhibits reduction in the HScan index. This change is due to the loci originally being

homogenous in early types; as sd1 began to sweep into but not completely through the popula-

tion, it has actually increased diversity. Only one other locus (on chromosome 7, S7 Fig) had

such reduced diversity in the early era and it too shows substantial increase in diversity

through time.

Soft sweeps occur when an allele appears in multiple haplotypes prior to an increase in

selection efficiency [35]. These events can be very difficult to detect because the change in any

one of the containing haplotypes is quite small. Only one of the 367 selected LD blocks possess

multiple selected haplotypes. Though this percentage is almost certainly a low estimate of soft

sweeps given the sensitivity afforded by our sample size, the full scope of this research supports

a model in which advantageous mutations of the same locus will generally only exist in a small

number of haplotypes fit enough to rise in frequency.

Conclusions

Current methodologies for genomic selection use phenotypic and genotypic data from a train-

ing population to predict the yield of varieties that have little or no phenotypic information

[36]. The accuracy of the prediction is highly correlated with the relatedness between the train-

ing and test populations, and predictions can be made from a small number of markers [37].

Such findings fit well with an infinitesimal model of yield: selection models based on a single

training population lack generality because an unrelated test is comprised of very distinct sets

of linked alleles. The effect of these individual alleles on yield can never be realistically esti-

mated in a QTL-mapping context, but it may be possible to gauge their effect if evaluated as a

class of mutations. Variety performance could then be predicted as a sum of these effects or as

a composite model with phenotypic and genotypic data [5]. In this study, we have attempted

to define which mutational classes would be the most relevant to such an approach by looking
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at selection across a broad agronomic environment, namely, Midsouthern US varieties in the

20th century. Sequence conservation scores, such as GERP, have been used previously to gener-

ate de novo breeding values using SNPs [5]. Our results indicate that while SNPs are relevant,

predictive power could be substantially improved by considering SVs, particularly those that

disrupt exons. That said, we did not observe an obvious way to weigh different exonic SVs in

terms of phenotypic consequences: length was not a factor (S5 Fig), suggesting that an additive

GERP score would be inappropriate. Though not addressed here due to sample size, phyloge-

netic distribution of homologs may be a more useful correlate of effect size under the assump-

tion that disruptive mutations in broadly distributed orthologs will have greater effects. Still,

results using a simple 0/1 weighing scheme are encouraging (Fig 4B and 4C). Importantly,

they are based solely on one reference genome annotation and SVs derived from a single, alter-

native assembly. Critical to the advancement of such ab initio prediction will be 1) the avail-

ability of enough high-quality de novo assemblies to capture common SVs in breeding

germplasm and 2) the computational tools to annotate genes within this pan-genomic context.

Materials and methods

Carolina Gold PacBio sequencing and assembly

High molecular weight DNA was extracted from young leaves using prior protocol with minor

modifications [38]. Essentially, young leaves, that had been flash frozen, and kept frozen at

-80C, were ground to a fine powder in a frozen mortar with liquid N2 followed by very gentle

extraction in CTAB buffer (that included proteinase K, PVP-40 and beta-mercaptoethanol) for

1hr at 50C. After centrifugation, the supernatant was gently extracted twice with 24:1 chloro-

form:iso-amyl alcohol. The upper phase was adjusted to 1/10th volume with 3M KAc, gently

mixed, and DNA precipitated with iso-propanol. DNA was collected by centrifugation, washed

with 70% Etoh, air dried for 20 min and dissolved thoroughly in 1x Tris-EDTA at room tem-

perature. Size was validated by pulsed field electrophoresis.

Libraries were prepared using PacBio SMRTbell Template Prep Kit 1.0, PacBio SMRTbell

Damage Repair Kit, and prepared for sequencing using PacBio DNA/Polymerase Binding Kit

P6 V2. Sequencing was performed on the PacBio RSII using PacBio DNA Sequencing Reagent

4.0 v2 and PacBio SMRT Cell 8Pac V3. All protocols used were PacBio recommended

protocols.

Raw PacBio reads (n = 3,765,107; ~70x coverage) were assembled into 209 contigs, using

Canu (v1.5) [39], and polished with Quiver (smrtlink v5.0.1 suite, now at github.com/
PacificBiosciences/GenomicConsensus). PacBio raw reads were further polished with pilon
v1.22 [40] using "10X Genomics" linked-reads aligned by Longranger v2.1.6 (github.com/
10XGenomics/longranger). The original primary assembly consisted of 209 contigs. One contig

(tig74) was determined to be a false chimeric assembly and was split into tig74a and tig74b.

Repeat masking was performed as part of the MAKER-P pipeline [41] using custom repeat

libraries, PReDa_121015_short.fasta (DNA) and TE_protein_db_121015_short_header.fasta

(protein) [42,43].

Whole genome alignments

PacBio contigs of CarGold were assigned to Nipponbare, a temperate japonica variety, chro-

mosomes (Osativa_204_v7.0.softmasked.fa). Exclusive pairwise relationships were determined

based on the sum coverage of CarGold scaffold by collinear Nipponbare sequence. Any scaf-

fold with a sum coverage of<65% was removed. CarGold scaffolds and their respective Nip-

ponbare chromosomes were combined with the appropriate Oryza glaberrima chromosome

[16] and aligned in a chromosome-wise manner using progressiveMauve [44] (build-date-Feb-
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25-2015) with default parameters. Both Nipponbare and O. glaberrima genomes were gener-

ated using numerous methodologies–BAC Sanger, WGS Sanger, 454, among other—as dis-

tinct from PacBio long reads; this diversity of methodologies should reduce or eliminate the

possibility of convergent errors due to technical artifacts.

Insertion/deletion inference

Indels were identified from the whole genome alignments above and were polarized relative to

the outgroup, Oryza glaberrima, using a custom program (indelInference.pl). Columns in the

whole chromosome alignments that involved>50 consecutive gaps (in any sequence) were

extracted along with +/- 50 bp of flanking sequence. Gaps were analyzed further if the left and

right flanking regions aligned with>90% columns being identical. If Nipponbare and CarGold

shared 95% identity in the gapped region, the SV was not considered further. Alternatively, if

there was variation between Nipponbare and CarGold and one matched O. glaberrima with

>95% identity, then the event was inferred to have occurred in the non-matching sequence.

This approach captured the biological reality that mutation events creating long (>50bp) SVs

rarely involve only insertion or deletion of DNA but a combination of both. To that end, we

also characterized the degree to which with each mutation represents a net gain or loss of

DNA. The length of the entire gapped region was divided by the length of novel sequence

introduced in the gap such that values approaching 0 are, in effect, deletions and values

approaching 1 are insertions. (A small number of SVs with gap values between 0.49 and 0.51

were removed after manual curation indicated these “perfectly balanced” indels represent

unwarranted gap openings.)

Reference sets for TE content

An initial set of full-length TEs from the japonica subpopulation was retrieved from RiTE [43]

(3 March 2018). This set was searched against both the Nipponbare and CarGold assemblies

using nucmer (version 3.1) with–maxmatch. Alignments were filtered such that a full-length

TE had to align to 97% of its length at a 95% identity threshold. The matching genomic region

was extracted if it was not already assigned to another TE meeting the above criteria. The Nip-

ponbare and CarGold TE sequences were combined. This combined set was searched against

itself using nucmer with—maxmatch flag. Coordinate files were then filtered such that

sequences with a reciprocal overlap of 90% were paired. Mcl (version 14) was used to consoli-

date pairs into clusters. All sequences within a cluster were aligned with mafft (version 7.307).

A consensus sequence was generated using a custom program (majorityRuleConsensus.pl),

such that any alignment column with A, C, G, T, or–(gap) was called based on the most fre-

quent variant. If the gap is the most frequent, then the column is removed from the final con-

sensus. This pipeline resulted in 7,624 TE consensus sequences (i.e. families)(S2 File).

Characterizing insertion and deletion types using d metric

The d metric was calculated for insertions and deletions as described previously [17,21]. In

brief, ancestral and derived sequences including the inserted/deleted sequence and flanking

sequence (equal in length to the indel) were aligned using BLAST (v.2.6.0+) [45]: ‘blastn -gapo-

pen 2 -gapextend 4 -dust no’. The two major alignments were identified and the top-alignment

end position was subtracted from the bottom-alignment start position, relative to the longest

of the two aligned sequences (Fig 2)
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Short-read DNA sequencing of US germplasm samples

DNA was extracted using https://www.protocols.io/view/seed-sterilization-and-tissue-

disruption-for-optim-bpsemnbe. All sequencing libraries where generated using the Illumina

TruSeq PCR-free reaction. Accession libraries were sequenced on different instruments: 24

libraries on Illumina HiSeq2500 in paired-end mode with 101 cycles, 70 libraries on Illumina

HiSeqX in paired-end mode with 151 cycles, and 72 libraries on Illumina HiSeq3000 in

paired-end mode with 151 cycles. Raw Illumina reads and bbtools khist.sh (jgi.doe.gov/data-

and-tools/bbtools/) were used to assess the single-copy k-mer count for each accession, based

on the main peak in the resultant kmer spectrum (S1 Fig). Haploid genome size was also esti-

mated as part of this analysis (S1 File).

SNP-calling, merging, and pruning

Raw reads were trimmed using trimmomatic [46]. Reads were then aligned to Osati-
va_204_v7.0.softmasked.fa using bwa-mem, version 0.7.17 [47]. HaplotypeCaller from the

GATK suite, version 4.0.8.1, was used to call SNPs and small indels [48]. Each sample was used

to generate a GVCF file (-T HaplotypeCaller—genotyping_mode DISCOVERY—emitRefCon-

fidence GVCF). The combined set of GVCF files were used when genotyping the entire set

under joint calling mode (-T GenotypeGVCFs). Variant calls are available as a browser track

at https://ricebase.org/jbrowse_ricebase/current/. Variants were merged with those derived

from a previously sequenced set of ~3k rice varieties [22]; only intersecting variants were

retained. 300 varieties from the 3k set, representing the 9 major subpopulations, were ran-

domly down-sampled. This down-sampled set of 300 was combined with all US -developed

varieties in this study. All single-nucleotide polymorphisms (SNPs) with a minor allele fre-

quency less than .05 were removed. A reduced marker set was generated based on linkage dise-

quilibria reduction as implemented in plink (—indep-pairwise 50 10 0.1).

Population characterization

Population assignments and admixture estimation for US varieties was calculated using the 3k

subset as the training set in admixture’s supervised mode (version 1.3.0,) with expected popu-

lation number (K) equal to 9 [22]. To analyze changes through time, all US varieties (n = 166)

were filtered to include only USA MidSouth sources (Fig 3 and S1 File). Nira [PI305133] and

Rexmont [GSOR 305081] were removed because of extreme divergence and poor genotyping,

respectively, resulting in 101 accessions. Pruned-SNPs were further filtered from this set to

remove any sites with heterozygosity >10%, as all varieties are inbred, and<20 lines without

an allele call, resulting in 68,829 remaining sites. Tassel v5.5.50 [49] was used to create a kin-

ship matrix from this marker set using the Centered-IBS method with maximum of 2 alleles

[50].

Calling SV genotypes

The insertions and deletions identified above were assessed for segregation across our entire

resequenced population. Alignment files generated during SNP calling above were filtered to

remove split and soft-clipped reads. Importantly, reads aligning to multiple locations were left

in to preserve contiguity. SV-associated genomic intervals in the Nipponbare reference with

>98% bases covered by one or more reads were considered support for the Nipponbare allele.

If the Nipponbare interval was <20 bp (as in a CarGold insertion) then we required that at

least one read span the entire interval and 5 bp flanking both sides. bamtools/bedcov com-

mands used are provided (bedCovCommandForSegIndels.sh).
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Assessing allele frequency change through time

Both SV and SNP alleles were encoded as either 0 (ancestral) or 1 (derived) using information

generated using the methodologies described above. The relationship between allelic state (y-

values) and year-of-release (x-values) was fit to a linear model using the default lm function in

R. Only polymorphisms with a minor allele frequency> 0.1 in Midsouthern material were

used.

Pedigree analysis

Twenty-seven trios were available for analysis within our dataset. Two trios, Palmyra and

CI9701, were removed given the percentage of miscalls to segregating variants was>35% sug-

gesting that pedigree records for these lines were incorrect. All SVs were evaluated based on

the inheritance of each allele in the progeny. Only SVs segregating in 10 or more trios and, as

above, that were derived in CarGold were kept (n = 553). Any SV for which a single allele was

inherited in every progeny was removed, resulting in 548 total SVs. Though these SVs could

be a result of extreme selection, they are more likely to be a result of miscalls in a common par-

ent. Biased inheritance was evaluated as the number of derived alleles inherited divided by the

sum of total segregating trios for the specific SV.

Haplotype block analysis

For haplotype block assessment, the entire SNP set was filtered to MidSouth varieties (n = 101

described in “Population Characterization” method) and loci with MAF >10% and heterozy-

gote calls in more than 10 varieties were removed, resulting in 810,808 sites. In addition,

GSOR 305081 (Rexmont) was removed due to poor genotyping at these loci. Tassel v5.5.50

[49] was used to further downsample loci by restricting distance to neighboring SNP. Starting

at a distance of 20K bp, we progressively reduced distance and assessed the number of resul-

tant haplotype blocks as a proportion of total sites not in strong LD. This value plateaued at 3

kb (n = 59,575 SNPs). LD blocks were assessed using snpldb (v.1.2) [51], with MAF = 0.02 (at

the haplotype level) and max window of 800 kbp. This 3 kb set and h-scan software (version

1.0: messerlab.org/resources/) was used to gauge the average length of pairwise identity tracts

for each SNP position for each time period depicted in Fig 5.

Supporting information

S1 Fig. Sequencing coverage for single-copy regions plotted against time.

(PDF)

S2 Fig. Histogram of h-scan ratios for late versus early eras.

(PDF)

S3 Fig. Boxplot of h-scan ratios for putatively selected versus neutral loci.

(PDF)

S4 Fig. Dotplot of CarGold contigs (y-axis) relative to Nipponbare chromosomes (x-axis).

(PNG)

S5 Fig. Relationship between SV attributes and rate. Insertions are light blue; deletions are

black.

(PDF)
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S6 Fig. Feature density along chromosomes of different SV classes. All chromosomes,
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S7 Fig. Genomic profiles of HScan index in early versus late eras.
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S8 Fig. Haplotype plots for all chromosomes.

(PDF)

S9 Fig. Relationship between year-of-release and genetic distance (centered IBS) to Nip-

ponbare reference.

(PDF)

S10 Fig. Genotype recall and bias assessment. A) Relationship between coverage and

genome-wide genotyping as well as downsampled CarGold short-read sets, which are assumed

to have zero true Nipponbare alleles based on assemblies. B) Linear relationship between cov-

erage and false negative rate for each variant class.

(PDF)

S11 Fig. Cumulative frequency plots for derived SV alleles in Midsouthern sample with a

frequency between 0.1 and 0.9. Each line represents the location of the SV relative to a gene.

(PDF)

S12 Fig. Comparison of PacBio assembly of Carolina Gold (from this manuscript) with

previous published Nanopore assembly of the same variety. Chromosomes are shown in

order 1 through 12. PacBio contigs from this study are on y-axis, Nanopore Carolina Gold

Select [15] in first column and Oryza sativa var. indica in second column (ftp://ftp.gramene.

org/pub/gramene/release-58/fasta/oryza_indica/dna/Oryza_indica.ASM465v1.dna_sm.

toplevel.fa.gz).

(PNG)

S13 Fig. Comparison of derived allele frequencies for indels in Midsouthern (n = 101) ver-

sus all other (n = 63) material resequenced as part of this study. The reference containing

the derived allele is indicated by color; line was fit using loess smoothing.

(PDF)

S14 Fig. Trio call types for SVs in this study based on 27 available parent1-parent2-pro-

geny trios available among resequenced lines in this study. “ancInherit” and “derInherit”

described cases in which the ancestral or derived allele was inherited, respectively. “misCall”

describes cases in which the progeny allele is distinct from either parent allele.

(PDF)

S15 Fig. Comparison of trio call types between SVs in this study and a subset of SNPs.

Note, 9 trios were removed from this comparison because they involved non-Midsouthern

material and did not have complementary SNP data available. Axes represent the number of

“misCalls”, as defined in S14 Fig, as a percentage of segregating variants; SVs on y-axis, SNPs

on x-axis.

(PDF)

S16 Fig. Cumulative frequency distributions of inheritance patterns of derived alleles

among SVs based on their position relative to protein coding structure. Any SV that had

<10 trios segregating was removed. Among these, any SV for which either allele was never

inherited–suggesting false parent call—was also removed. Final counts for each class are
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