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Abstract

Modern spatial transcriptomics methods can target thousands of different types of RNA

transcripts in a single slice of tissue. Many biological applications demand a high spatial

density of transcripts relative to the imaging resolution, leading to partial mixing of transcript

rolonies in many voxels; unfortunately, current analysis methods do not perform robustly in

this highly-mixed setting. Here we develop a new analysis approach, BARcode DEmixing

through Non-negative Spatial Regression (BarDensr): we start with a generative model of

the physical process that leads to the observed image data and then apply sparse convex

optimization methods to estimate the underlying (demixed) rolony densities. We apply Bar-

Densr to simulated and real data and find that it achieves state of the art signal recovery,

particularly in densely-labeled regions or data with low spatial resolution. Finally, BarDensr

is fast and parallelizable. We provide open-source code as well as an implementation for the

‘NeuroCAAS’ cloud platform.

Author summary

Spatial transcriptomics technologies allow us to simultaneously detect multiple molecular

targets in the context of intact tissues. These experiments yield images that answer two

questions: which kinds of molecules are present, and where are they located in the tissue?

In many experiments (e.g., mapping RNA expression in fine neuronal processes), it is

desirable to increase the signal density relative to the imaging resolution. This may lead to

mixing of signals from multiple RNA molecules into single imaging voxels; thus we need

to demix the signals from these images. Here we introduce BarDensr, a new computa-

tional method to perform this demixing. The method is based on a forward model of the

imaging process, followed by a convex optimization approach to approximately ‘invert’
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mixing induced during imaging. This new approach leads to significantly improved per-

formance in demixing imaging data with dense expression and/or low spatial resolution.

This is a PLOS Computational Biology Methods paper.

Introduction

Understanding the spatial context of gene expression in intact tissue can facilitate our under-

standing of cell identities and cellular interactions. How do neighboring cells’ gene expressions

relate to each other? How are different cell types with different activity patterns positioned in

relation to each other? Is the subcellular distribution of gene expression informative about cell

type or state? Multiplexed spatial transcriptomics methods, in particular in situ sequencing

and sequential fluorescence in situ hybridization (FISH) methods [1, 2], offer a promising path

to investigate these questions, allowing us to spatially resolve gene expression patterns at a sin-

gle cell resolution. These assays can measure thousands of different genes simultaneously by

looking at the same slice of tissue multiple times through multiple rounds of imaging. Using

small barcoded sequences (‘probes’) which bind to target transcripts and amplify (generating

easily detectable ‘rolonies’), we can get exponentially more information about the nature of the

tissue with each successive round of imaging.

However, fully exploiting this new data type can be challenging, for many reasons. Insuffi-

cient optical resolution can cause parts of multiple rolonies to appear in the same imaging

voxel, resulting in a ‘mixed’ signal [3, 4]. Tissue can deform or drift over multiple rounds of

imaging [5], and the signal from individual rolonies can vary slightly between imaging rounds

[6]. The chemical washes may fail to complete their work in a given round, such that the imag-

ing in the next round contains residual signal from the previous round (leading to a ‘ghosting’

effect). Some rolonies may entirely fail to bind to any probes in a given round [2, 3]. Most of

these problems are rare, but they combine to yield a complex relationship between the signal

of interest and the observed data.

Traditional techniques for extracting meaning from these images rely on good image pre-

processing and clever heuristics; there are two main approaches that we are aware of. Both

work well in ideal conditions. One school of thought (‘blobs-first’) begins by trying to iden-

tify regions in the tissue where a rolony may be present, and then tries to use the imaging

data to guess the barcode identity of each rolony [4, 5, 7–9]. Another school of thought (‘bar-

codes-first’) begins by looking at each voxel and trying to determine whether the fluores-

cence signal emitted in that voxel over all the rounds is consistent with one of the barcodes

[6, 10, 11]. These two approaches are implemented in e.g. the ‘starfish’ (https://github.com/

spacetx/starfish) package (under the names of ‘spot-based’ and ‘pixel-based’ approaches,

respectively).

Both of these general approaches face difficulties whenever several rolonies make contribu-

tions to the same voxel. This situation arises for two reasons. First, it is desirable to maximize

the signal density, to increase the number of transcripts detected per cell and therefore the

power of any downstream statistical analyses. Second, it is desirable to minimize imaging time

and file size by using lower imaging resolution. Both of these features—high density and insuf-

ficient optical resolution—lead to cases where different signals are mixed together into the

same voxel. In this situation, to correctly identify rolony positions and identities it is necessary

to perform some kind of ‘demixing.’ Because of this challenge, many current methods simply

discard any blobs in regions where strong mixing occurs [3, 8, 9].
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To overcome this challenge, we sought to address the multiplexing problem directly. BAR-
code DEmixing through Non-negative Spatial Regression (BarDensr) is a new approach for

detecting and demixing rolonies. This approach directly models the physical process which

gives rise to the observations (Fig 1), including background-noise components, color-mixing,

the point-spread function of the optics, and several other features. By directly modeling these

physical processes, we are able to accurately estimate overall transcript expression levels—even

when the transcript density is so high that it is very difficult to isolate and decode the identity

of individual rolonies.

BarDensr is designed to be incorporated in a full spatial transcriptomics imaging analysis

pipeline. Note that BarDensr should not be applied directly to raw data from a microscope;

registration and filtering appropriate to one’s specific experimental data should be applied

first. We give some examples in S1 Appendix (Section A) for appropriate preprocessing for the

data used in this paper. We provide a Python package for implementing the BarDensr algo-

rithm on either CPU or GPU architectures (https://github.com/jacksonloper/bardensr). The

method requires about two minutes of compute time on a p2.xlarge Amazon GPU

instance to process a seven-round, four-channel 1000 × 1000-voxel field of view from an

experiment targeting 79 different transcripts. We also provide an implementation for the Neu-

roCAAS web-service [12], which can be used in a drag-and-drop fashion, with no installation

required. We compared this method with three alternatives: the ‘spot-based’ and ‘pixel-based’

methods of starfish; a ‘blobs-first’ approach (Single Round Matching, or SRM, based on meth-

ods from [5, 8]); and a ‘barcodes-first’ approach (Correlation approach, or ‘corr,’ based on [6,

Fig 1. BarDensr uses non-negative regression to demix and deconvolve the observed image stack, yielding a sparse

intensity image for each barcode. The key task of spatial transcriptomics data analysis is to take a stack of images

(right) and use it to infer the locations of rolonies in the tissue. To solve this problem, BarDensr posits an ‘observation

model’: a description of the physical process by which rolonies in the tissue give rise to the brightnesses we observe at

each voxel. In particular, BarDensr assumes there is an unobserved ‘rolony density’ for each gene at each voxel (left),

and the observation model mathematically describes how this rolony density transforms into the image stack we can

see (right). Once this observation model is formulated, we can use sparse regression to solve the inverse problem:

starting from an image stack, the regression gives us the value of the (unobserved) rolony density.

https://doi.org/10.1371/journal.pcbi.1008256.g001
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10, 11]). Both in simulation and real data, BarDensr improves on the state of the art in demix-

ing accuracy, especially cases where denser and/or lower-resolution images are being analyzed.

Methods

Ethics statement

The Cold Spring Harbor Laboratory Animal Care and Use Committee approved all animal

procedures, which were carried out in accordance with the Institutional Animal Care and Use

Committee protocol 19-16-10-07-03-00-4 at Cold Spring Harbor Laboratory.

Data

All the experimental data were obtained either using an improved version of BARseq [13] tar-

geting 79 endogenous mRNAs in mouse visual cortex, or from a recent study [14] targeting 65

endogenous mRNAs in mouse motor cortex. Gene identities were read out using a seven-

nucleotide gene identification index (GII), which was designed with a minimal Hamming dis-

tance of three nucleotides between each pair of GIIs. Rolonies were prepared as described by

[14]. Imaging was performed on an Olympus IX81 inverted scope with a Crest Xlight2 spin-

ning disk confocal, a Photometrics BSI Prime camera, and an 89 North LDI 7-line laser source.

All images were acquired using an Olympus UPLFLN 40x 0.75 NA objective. The microscope

was controlled by micro-manager [15]. See S1 Appendix (Section A) for the preprocessing

steps for this data, and S1 Appendix (Section G) for the process of generating the simulation

data.

Notation and observation model

Formally speaking, what is the result of a spatial transcriptomics imaging experiment? For

each voxel (m) in the tissue, at each imaging round (r), in each color-channel (c), we record a

fluorescence intensity. We will use Xm,r,c to denote this fluorescence intensity. Our task is to

use X to uncover the presence and identity of rolonies in the tissue. (Throughout we assume

that X is preprocessed, including background removal and image registration, hence that there

are no systematic shifts of the image between imaging rounds. See S1 Appendix Section A for

more detail.) Below we describe the parameters used to model the physical process that yields

these intensities:

The rolonies, F. The transcripts in the tissue are amplified in place into a ‘rolony’ structure

which is easy for fluorophores to bind to [7]. Each voxel m may contain a different amount

of rolony material, and hence a varying level of fluorescence signal. We refer to the amount

of material in voxel m for rolonies associated with barcode j as the rolony density. We

denote this density by Fm,j. The variable F indicates where rolonies are and how bright we

should expect them to be. This density should always be non-negative. Note that F cannot

be observed directly—instead, we observe fluorescence signal in different rounds and chan-

nels, and must use these signal observations to estimate the rolony densities.

The codebook, B. In each imaging round r, the rolonies associated with gene j will bind to spe-

cific fluorescently labeled detection probes. We use the binary variable B to indicate which

imaging rounds and fluorescent probes each gene is associated with. Specifically, we let

Br,c,j = 1 whenever a rolony with barcode j should bind to a fluorescent probe associated

with specific color-channel c in imaging round r, and otherwise we let Br,c,j = 0. Here we

assume B is known. The vector of values of B for a particular gene j is known as the ‘bar-

code’ for that gene, and the collection B of all the barcodes is known as the ‘codebook.’
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The probe response functions, K, φ. If a probe centered at a particular voxel is illuminated

with a particular wavelength, the probe will emit a certain amount of signal which we can

record at the corresponding voxel. We may also observe dimmer responses at neighboring

voxels, due to the possible spreading of the single point object in the optical system. We use

a non-negative matrix K to denote the point-spread function, i.e., the typical fluorescence

signal-levels produced at each voxel in the neighborhood of a probe. We use the matrix φ to

represent the responsiveness of each type of fluorescent probe to each wavelength; each ele-

ment of this matrix lies in the range of [0, 1]. Here we assume that the number of types of

fluorescent probes is the same as the number of color-channels measured (though this

could be relaxed). We further assume that the voxel-resolution of the rolony density is the

same as the voxel-resolution of the original images.

Phasing, ρ. A washing process is applied after each round of imaging. However, in practice

this washing step may not completely remove all of the reagents from every voxel. This can

result in a ‘ghost’ of one round appearing in the next rounds. For each color-channel c, we

let ρc 2 [0, 1] indicate the fraction of activity which appears as a ‘ghost’ signal in the next

round.

Background, a. The images we obtain may also include background fluorescence from the tis-

sue. We assume that the background is constant across rounds. We model this effect using

a non-negative per-voxel value am for each voxel m.

Per-round per-wavelength gain, α, and baseline, b. The brightness observed from all rolonies

at a particular color-channel in a particular round may have an associated gain factor. We

model this gain factor with a non-negative per-round (r) per-channel (c) multiplier αr,c and

non-negative intercept br,c,.

Putting all these pieces together, we obtain an observation model. This model states that the

observed brightnesses Xm,r,c should be given by the formulae

Xm;r;c � am þ br;c þ ar;c

XJ;M;C

j;m0;c0
Km;m0Fm0 ;jφc;c0Zr;c0;j;

Zr;c;j ¼ rcZr� 1;c;j þ Br;c;j:

Here the variable Z is used to incorporate the round-phasing effects; i.e., Zr,c,j measures the

concentration of probes of type c which we would expect at round r, arising from a rolony

with barcode j. We will also find it convenient to define

Gr;c;j ¼ ar;c

X

c0
φc;c0Zr;c0 ;j:

This represents the total contribution of fluorescence signal expected to arise in round r and

channel c from a rolony of type j. A summary of notation can be found in Table 1.

Overall, the model introduced above could certainly be expanded to model the physical

imaging process more accurately, but we found that it was sufficient for our purposes: detect-

ing and demixing rolonies.

Inference

Our task is to uncover the positions and barcodes of rolonies in the tissue. According to the

model in the previous section, this information can be obtained from the rolony density vari-

able, F. However, F cannot be directly measured; thus our primary task is to estimate F from
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the original image data. To do this we must in a sense invert the observation model specified

above: the observation model tells us how rolony densities give rise to the fluorescence

signal, but we would like to use observations of the fluorescence signal to estimate the rolony

densities.

Using the observation model to estimate the rolony densities F. We use a sparse non-

negative regression framework to estimate the unknown parameters. In this estimation we are

guided by three ideas:

• We believe our observation model is approximately correct. We formalize this by saying that

we believe our squared ‘reconstruction loss’ can be made small. We define this loss by

Lreconstruction ¼
X

m;r;c

Xm;r;c � am þ br;c þ ar;c

XJ;M;C

j;m0;c0
Km;m0Fm0 ;jφc;c0Zr;c0 ;j

 ! !2

:

• We believe that all of our parameters are non-negative. For example, we do not believe it is

possible to have negative densities for rolonies at a particular voxel. Likewise, we expect the

per-round per-channel scaling factors (α) and probe-response terms (φ) to be non-negative.

• We believe that the rolony densities, F, are sparse: many voxels will not contain any rolony

at all. Ideally we would formalize this idea by putting a penalty on the number of voxels with

nonzero rolony amplification. However, this penalty is difficult to optimize in practice.

Instead, following a long history of work in sparse estimation theory [16], we enforce this

sparsity by placing a linear penalty on the total summed density. We define this penalty by

Lsparsity ¼
X

m;r;c;c0;j

ar;cFm;jφc;c0Zr;c0 ;j:

(Note that for a general sparse estimation problem, this penalty would be defined using a

summed absolute value term; however, in our case all parameters are already constrained to

be non-negative, so this is not necessary.)

Table 1. Notation.

Description Dimensions Support

M number of voxels scalar N
C number of types of probes/wavelengths scalar N
R number of rounds scalar N
J number of barcodes scalar N
X observed imaging intensities M × R × C Rþ

F rolony density M × J Rþ

B (known) binary codebook matrix R × C × J {0, 1}

ρ per-channel phasing factor C [0, 1]

Z phased barcodes R × C × J Rþ

α per-round per-channel scale factor R × C Rþ

G scaled color-mixed phased barcodes R × C × J Rþ

b per-round per-channel offset R × C Rþ

a per-voxel baseline intercept term M Rþ

K spatial point-spread function M ×M Rþ

φ probe wavelength-response matrix C × C [0, 1]

ω tolerated reconstruction error scalar Rþ

https://doi.org/10.1371/journal.pcbi.1008256.t001
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Together, these three ideas suggest constrained optimization as a natural way to estimate

our parameters. We will seek the non-negative parameters that give the smallest possible value

of Lsparsity, subject to the constraint that Lreconstruction falls below a noise threshold ω. We pro-

vide an automatic way to select this noise threshold (see S1 Appendix, Section L), as well as an

interactive process for the user to select this threshold so that the reconstruction loss appears

satisfactory.

Assuming that B, K are known, this constrained optimization problem can be written as:

min
F;r;a;b;a;φ�0

Lsparsity;

subject to Lreconstruction � o:

ð1Þ

To solve this optimization problem, we use a projected gradient descent approach. The qua-

dratic structure of the problem makes it possible to pick all learning rates automatically, yield-

ing fast convergence; for example, the resulting algorithm reaches convergence for a single

1000 × 1000 field of view (with a total of 28 images, with seven rounds and four color-chan-

nels) and 81 different barcodes (79 from the original experiment, and two additional unused

barcodes as described below) in about two minutes on a p2.xlarge Amazon GPU instance.

Details can be found in S1 Appendix, Section L.

Before concluding this section, we will address an issue of what is known as ‘identifiability.’

Let us say we have learned a model via our inference method, i.e. we have learned F, ρ, α, b, a,

φ. Now let us consider a new model, F0, ρ0, α0, b0, a0, φ0, such that

F0 ¼ 4F r0 ¼ r

a0 ¼ a=2 b0 ¼ b

a0 ¼ a φ0 ¼ φ=2:

Under this new model, the reconstruction loss is the same and the sparsity loss is the same. As

far as our inference method is concerned, the two models are identical. It follows that our

inference procedure simply cannot hope to learn overall scaling factors of this kind. Thus, any

learned parameters should be understood as being known up to overall scale factors. To

resolve this ambiguity we normalize α by dividing by its sum (recall that α is non-negative, so

this sum will be positive) and multiply F by the same factor. Similarly, we divide each row of φ
by its diagonal value and multiply the corresponding column of α by the same value.

Finding rolonies. Let us now assume we have used the non-negative regression frame-

work to estimate F (the collection of rolony density images, one for each barcode). These per-

barcode density images indicate the positions of rolonies that belong to a particular barcode;

see the left side of Fig 1 for a schematic. We can then apply a blob-finding algorithm to these

per-barcode images to find the rolonies for each barcode; in practice we simply find local max-

ima in the per-barcode images.

Finding rolonies, or ‘blobs,’ in the per-barcode images is easier than finding blobs in the

original images. See Fig 2A as an example. The per-barcode images include fewer blobs and

the blobs are smaller, so there are fewer problems with overlapping blobs. More specifically:

The rolony densities are demixed. There are fewer blobs in each rolony density than in the

original image stack. In the observed images, the intensity measured for each voxel for each

wavelength at each round is a sum of contributions from all nearby rolonies which emit sig-

nal at that wavelength in that round. By contrast, the intensity measured at a particular

voxel in the per-barcode images is only the sum of contributions from rolonies with that

one specific barcode.
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Fig 2. BarDensr accurately estimates sparse, per-gene rolony densities from the proposed observation model. (A)

Rolony densities make it easier to detect rolonies. The left plot shows the max-projection of the original

experimental image across all rounds and channels; detecting blob-like structures in this image can be challenging,

especially when two rolonies are in close proximity. By contrast, the rolony densities for particular genes are sparser, so

it is easier to identify the positions of individual rolonies in the tissue. The middle and right plots show examples of

these rolony densities. The orange marks represent rolonies detected by a hand-curated approach. Note that the rolony

densities appear to show several rolonies which were missed by the hand-curated approach (see S3 Fig for further

details). (B) BarDensr accurately recovers the ground truth in simulated data. The left plot shows the simulated data

in all rounds and channels. In the right plot, we applied BarDensr to this simulated data, and found that we were able

to largely recover the true rolonies in this simulation (shown on the first column). The final column of plots shows the

rolony densities learned by BarDensr, which shows that the algorithm accurately recovers most of the simulated

ground truth rolonies, with a few mistakes. The middle column of plots shows a blurred version of the rolony densities

and the spots discovered from these rolony densities.

https://doi.org/10.1371/journal.pcbi.1008256.g002
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The rolony densities are deconvolved. The blobs are smaller in the rolony density than in the

original image stack. In the observed images, the intensity at a voxel is a contribution from

all rolonies which are within the radius of the point-spread function K. Recall that this func-

tion smears signal from a single voxel across all nearby voxels. By contrast, the intensity of a

per-barcode image at a particular voxel represents the amplification level of rolonies in that

one voxel. In this sense, the inference process attempts to invert the point-spread function

(i.e., perform deconvolution). On its own, this inversion process would not be numerically

stable; however, the sparsity penalty and non-negativity constraint ensure it is numerically

well-behaved [16].

The rolony density F thus represents a demixed and deconvolved version of the raw data.

The original data is mixed, insofar as each raw intensity represents contributions from many

barcodes. It is also convolved, insofar as each raw intensity represents contributions from

many positions in space via the point-spread function. The non-negative sparse regression

allows us to simultaneously demix and deconvolve, yielding per-barcode images which are

cleaner and easier to understand.

Although it is easier to find blobs in the rolony densities, there is still one obstacle to be

overcome: the threshold. Any blob-finding algorithm must specify an intensity above which a

blob is considered real. How can this threshold be chosen? Here we make use of ‘unused bar-

codes.’ There could be as many as CR unique barcodes in a codebook for an experiment with R
rounds and C channels of measurement (assuming only one channel emits signal in each

round, which is the case in the experiments we studied). However, most of these barcodes are

not used in the actual experiment. These unused barcodes give us a way to pick a sensible

threshold. Along with the real codebook, we additionally include several unused barcodes; we

enumerated all possible barcodes such that each round contained exactly one active channel,

then selected uniformly at random from the set of barcodes such that each barcode differed

from every other barcode in at least three rounds. We then run BarDensr on this augmented

codebook. Blobs in the rolony densities associated with the unused barcodes must correspond

to noise, since the true data-generating process did not include any signal from such barcodes.

We therefore set the threshold to be the smallest value which guarantees that no blobs were

detected in the unused barcodes. (In practice, using just two unused barcodes sufficed to esti-

mate a stable and accurate threshold.)

Accelerating computation. The time required to apply BarDensr scales roughly linearly

with the number of voxels in the data. There are several approaches the BarDensr package uses

to relieve the computational burdens of working with large datasets:

1. Exploiting barcode sparsity. In any given patch of the data, many of the barcodes may not

appear at all. If we can use a cheap method to detect genes which are completely missing

from a given patch, we can then remove these genes from consideration in that patch, yield-

ing faster operations. We call this ‘sparsifying’ the barcodes.

2. Coarse-to-fine. As we will see below, BarDensr is effective even when the data has low reso-

lution. This suggests a simple way to accelerate computation: downsample the data, run

BarDensr on the downsampled data (which will have fewer voxels), and then use the result

to initialize the original fine-scale problem. If this initialization is good, fewer iterations of

the optimization will be necessary to complete the algorithm.

3. Parallelization. BarDensr can use multiple CPU cores or GPUs (when available) to speed

up parallel aspects of the optimization (e.g., processing data in spatial patches).
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Details on these methods (which can be used in combination with each other) can be found

in S1 Appendix, Section K.

Code availability

The BarDensr Python package is available from https://github.com/jacksonloper/bardensr.

The NeuroCAAS implementation of BarDensr can be found at http://www.neurocaas.com/

analysis/8. This NeuroCAAS implementation requires no software or hardware installation

by the user. As input, the user must upload a stack of images, a codebook, and a configura-

tion file specifying parameters such as the radius of the smallest rolonies of interest (see

S1 Appendix, Section C, as well as the NeuroCAAS link above for further details regarding

the data format.) We assume that the images have been registered and background-sub-

tracted before input into NeuroCAAS. There are three outputs from BarDensr NeuroCAAS

implementation:

1. The first output indicates candidate rolony locations. This output is represented in a

comma-separated-value file listing all entries in the rolony density F which have signal

greater than zero.

2. The second output is designed to help the user assess the quality of the results; it is an

HDF5 file which stores diagnostics about each detected rolony. See the next section for

details.

3. The third output is a plot designed to help the user assess the overall quality of the results.

For each detected rolony, we estimate the quality of evidence for that rolony by taking a key

correlation coefficient (see the next section for details). The plot shows the histogram of

these quality measures over all spots.

For further details on the AWS hardware used in the NeuroCAAS implementation, see S1

Appendix (Section D).

Results

The rolony densities estimated by BarDensr provide sparse, single images

to detect spots for individual barcodes

As described in the Methods Section, the sparse non-negative regression approach aims to

yield per-gene rolony density images which are easy to work with. The cartoon in Fig 1 may

help illustrate this idea. Our belief is that the true per-gene rolony densities will be sparse

images, so the learned rolony densities should also be sparse images.

To test this belief, we applied BarDensr to the experimental data described in the Methods

Section. Fig 2A compares the raw data with the learned rolony densities for Nrgn and Slc17a7
in a small region of the tissue. As hoped, the rolony densities are indeed quite sparse compared

to the raw data. This ensures that blob-detection is relatively easy. This figure also shows that

many of the bright spots in the rolony density images appear at rolony locations found by a

hand-curated method (see S1 Appendix, Section E for details). For visualization purposes, Fig

2A shows the blurred version of the rolony densities (i.e. KF); these make it easier to see the

bright spots.

To get a sense for what all the different genes look like, we also examined the rolony densi-

ties for all the barcodes (81 in total in this dataset, including two unused barcodes); see S1 and

S2 Figs. These sparse images enable us to identify the rolony location easily for each barcode.
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BarDensr provides improved demixing and detection accuracy compared

to existing approaches

To benchmark BarDensr against other methods, we generated simulated data with rolony den-

sity, gene expression levels, and noise levels matched to the experimental data, as shown in Fig

2B. Then, we examined how well we could recover the ‘true’ rolonies from the simulation data.

Qualitative results for several different genes are shown in S4 Fig. Quantitatively, we present a

Receiver Operating Characteristic curve (ROC curve) in Fig 3A, which summarizes the per-

centage of true detected rolonies (also known as ‘1-FNR’, the complement of the False Nega-

tive Rate (FNR)). Depending on the False Positive Rate (FPR) we are willing to tolerate,

different detection rates can be achieved; the ROC curve summarizes this relationship.

We compare BarDensr to several other approaches. Starfish is one package developed for

analyzing spatial transcriptomics data. This method has many hyperparameters. To give this

method its best chance, we first tried to find the best parameters manually, and additionally

used the BayesianOptimization package [17] to find the hyperparameters which allowed it to

perform as well as possible on the simulated data. Fig 3A shows that this performance falls

short of the detection rates achieved by BarDensr. We also investigated SRM (see S1 Appendix,

Section E) and a correlation-based method (‘corr’, see S1 Appendix, Section F) for

Fig 3. BarDensr outperforms the existing methods by discovering more rolonies. (A) Performance of BarDensr on simulated data. What

percentage of rolonies are correctly detected? We use the Receiver Operating Characteristic curve (ROC curve) to look at this percentage (the

complement of False Negative Rates, or 1-FNR) as a function of the tolerated False Positive Rate (FPR), for BarDensr (red), starfish (orange), Single

Round Matching (SRM, green), as well as the correlation-based method (‘corr’, gray); cf. S1 Appendix, Sections E and F for details on these other

methods. S4 Fig illustrates these simulation data. In drawing these curves, we consider two qualitatively different kinds of errors: errors because a rolony

isn’t detected at all (dotted lines), and errors because a rolony is detected but it is assigned the wrong barcode (solid lines). The left plots show these

curves for simulated data. The right plots show these curves for simulated data with ‘dropout’—a form of noise present in some spatial transcriptomic

methods (cf. S1 Appendix, Section G for details). For all four kinds of simulations, we found BarDensr is able to find significantly more spots. (B)

Performance of BarDensr on the hybrid simulation. Simulated data is always imperfect; to try to measure performance on a more realistic dataset, we

used a hybrid method a la [18]. We injected fake rolonies into real data, and quantified how well different methods could recover these fake spots. The

plots above show 1-FNR (y-axis) as the function of scale intensity of the fake rolonies (x-axis) and number of fake rolonies injected (S, colored lines),

without (top) and with (bottom) dropout, using BarDensr (left) and SRM (right). See S1 Appendix, Section G for details.

https://doi.org/10.1371/journal.pcbi.1008256.g003
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comparison. These two methods represent ‘blobs-first’ and ‘barcodes-first’ approaches. Bar-

Densr has better recovery prediction than either of these methods.

Our simulated data here do not capture the full biological content of the real observed

data. For example, in real data, the tissue often has some regions with dense rolony concen-

trations (e.g. nuclei) and other regions which are more sparse. In order to quantify perfor-

mance in more realistic biological contexts, we performed a ‘hybrid’ simulation, a la [18].

We started with the original experimental data and injected varying numbers of spots at ran-

dom locations in the image with varying peak intensities (cf. S1 Appendix, Section G). To

test if the model is able to recover these injected spots with the original image background,

we computed 1-FNR (FPR could not be computed here since we do not know the ground

truth in the original experimental data). We ran two variants on this simulation: one ordi-

nary simulation and one simulation with ‘dropout,’ in which some rolonies emit a strong

bright signal in most of the rounds but simply vanishes in one or more rounds (see S1

Appendix, Section G). The results of the dropout and non-dropout experiments are shown

in Fig 3B. As expected, the performance decreases when the intensity of the injected spots is

smaller. However, as long as the intensity of injected spots was at least half the maximum

intensity of the original image, and the number of injected spots is in a reasonable range,

BarDensr was able to find all the spots, even in the simulation with dropout; by contrast, the

SRM approach was unable to find all the injected spots in the hybrid experiment, especially

in the dropout variant.

Errors are mostly mis-identification on the barcodes, not missed detections

We used simulated data to investigate the failures represented by the FPR and FNR described

above: are they caused by failure in assigning the rolonies to the correct barcodes (‘barcode

mis-identification’), or failure in detecting rolonies? To find out, we computed how the failure

rates would change if mis-identified barcodes were not considered ‘errors.’ We denote this the

‘total hit rate’ analysis (cf. Fig 3A, dotted lines); both BarDensr and SRM have very high total

hit rates for the simulated data examined here, indicating that both of these methods detect

spots well, but sometimes mis-classify the spot identity. See S1 Appendix (Section H) for fur-

ther details.

BarDensr remains effective on data with low spatial resolution

High-resolution imaging can be expensive and time-consuming. BarDensr can also work on

low-resolution images. To show this, we spatially downsampled the experimental images for

each frame (each round and each channel). We then fit BarDensr to these lower-resolution

images. An example is shown in Fig 4 (additional examples with 5× and 10× lower resolutions

can be seen in S5 Fig). These figures suggest that BarDensr correctly detects the overall expres-

sion levels of each gene in low-resolution images—even when the downsampling is so extreme

that picking out individual rolonies is not feasible.

To more rigorously test if BarDensr can recover the correct gene expression level when

applied on the low-resolution data, we quantified the cell-level gene activity on a larger region

where 43 cells are detected using a seeded watershed algorithm (see S1 Appendix, Section I for

detail). Fig 4C suggests that with 5× downsampled data, the cell-level gene expression, as well

as the cell clusters, are preserved with high consistency compared to the results of applying the

method to the original fine scale.

Finally, we wanted to test if BarDensr can correctly identify individual rolonies on a low-

resolution version of the experimental data from a recent study [14]. There was no ground

truth available for this real data. We therefore manually inspected every location in a small
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region (200 × 200 voxels) to identify all of the rolonies and created a benchmark dataset. We

compared the performance of BarDensr, the correlation-based method, and starfish with

‘spot-based’ (the method that is recommended for this data based on starfish) and ‘pixel-based’

methods. The left plot in Fig 4D shows that all these four methods perform quite well at the

original resolution, with the correlation-based method and starfish performing faster com-

pared to BarDensr (0.59 seconds for the correlation-based method; 1.22 and 8.16 seconds for

starfish pixel-based and spot-based method, respectively; BarDensr used 21.77 seconds). When

the original images were 5 times blurred and downsampled to emulate denser data, as shown

on the right plot of Fig 4D, BarDensr recovered more correct rolonies compared to the other

Fig 4. BarDensr is the best choice for dense and/or low-resolution experimental data. (A) The 5× downsampled

image is compared to the original ‘fine scale’ image. All these plots show the max-projection across all rounds and

channels, with the right two showing the zoomed region indicated by the red rectangles in the left two. Note that it is

difficult to visually isolate single spots from the downsampled image. To test the performance of BarDensr on this low-

resolution data, we first run the model on the original data, obtain rolony densities, and then finally downsample the

rolony densities. Next, we run BarDensr on downsampled data, and examine the estimated rolony densities. (B) The

rolony densities for a selected gene (Slc17a7) estimated using the original fine scale (left), as well as these two

approaches. For a more complete example, see S5 Fig. (C) The cell-level gene expression quantification, for those genes

that have more than four spots in the fine scale in a 1000 × 1000 region. The color of the heatmap indicates the

proportion of gene counts (i.e., the total counts of each gene divided by the total counts of all genes detected in the

region). The x-axis represents the 24 genes that were chosen, ordered based on the counts in the fine scale. The y-axis

represents the cells, ordered based on the hierarchical clustering result from the fine scale, as shown in the dendrogram

on the left. A total of 43 cells are segmented from the original image using a seeded watershed algorithm (cf. S1

Appendix, Section I). The two different results yield nearly identical clusterings, indicating that BarDensr recovers

gene activity with accuracy sufficient to cluster cells even given low-resolution images. (D) In order to evaluate the

performance of BarDensr and compare it with the other state of the art methods, we took a 200 × 200 region of real

experimental data from a recent study [14] and created a benchmark dataset (cf. S1 Appendix, Section J). Above we

plot the ROC performance on this benchmark for four different methods (BarDensr, correlation-based method, as well

as starfish with ‘spot-based’ and ‘pixel-based’ approaches), using the original data and denser / relatively low-resolution

data. While all the methods performed quite well on the original images (left), BarDensr has a better performance than

the others when the lower-resolution images were used (right).

https://doi.org/10.1371/journal.pcbi.1008256.g004
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methods. For experiments with dense and/or low-resolution images, these results (and the

simulation results above) suggest that BarDensr is the best available analysis tool. More details

on how we generated the benchmark can be found in S1 Appendix (Section J).

BarDensr computations can be scaled up to large datasets via sparsifying

and coarsening accelerations

In the Methods Section, we described how the barcode sparsity could help us potentially apply

the method to a large dataset with more barcodes. To test if we can use a much larger dataset,

we considered a simulated example with more unique barcodes (53,000 unique barcodes and

17 sequencing rounds). With so many barcodes, naively running BarDensr is prohibitively

expensive (in both compute time and memory) on large datasets. However, we also expect

such datasets are extremely sparse in terms of barcodes—any given small region of the image

is quite unlikely to include rolonies from all 53,000 barcodes. This is particularly true for some

of the latest applications of multiplexed imaging technologies, in which each unique barcode

corresponds to dendrites from a unique cell, instead of each barcode corresponding to a gene

[13]. In these experiments, a small region of tissue may contain many different transcripts, but

it will only contain portions of a small number of different cells. Thus we should be able to

take advantage of this sparsity to speed up BarDensr. We simulated a 50 × 80 small region

where 40 rolonies were present in total. We then obtained a coarse, downsampled image, and

then ran BarDensr and learned the parameters for this low-resolution data. If the learned

parameters from the coarse scale indicated a particular barcode did not appear, then we

assumed that this barcode should be absent even if we used the data at the original resolution.

The result in S6 Fig shows nearly perfect prediction performance. This problem was quite

small, so we could also run the method without using any sparsity-based acceleration tech-

niques; we found that the unaccelerated version did not outperform the accelerated version,

suggesting that BarDensr can be used for datasets of this kind with a larger number of molecu-

lar or cellular barcodes (cf. [13, 19–21]).

When the number of barcodes is small, BarDensr can run without these acceleration tech-

niques—but these accelerations may still be worth applying, to help cut down on computation

times and reduce memory usage. As shown in Fig 5A, we found that these techniques reduced

runtime by a factor of four in simulated data involving 79 barcodes (see S1 Appendix, Section

K for details). Fig 5B further shows that these acceleration techniques do not significantly alter

the results, even on real data.

Making use of these acceleration approaches, we applied BarDensr to a large section of

mouse motor cortex from a recent study [14]. As shown in Fig 6, BarDensr was able to reveal

the striation of the cell type marker genes and identify cell types consistent with known mark-

ers. The entire region shown is composed of 35 fields of view (each field of view is of size

2048 × 2048 × 1 voxels), and 65 genes are targeted. The entire process with the usage of

acceleration approaches takes approximately 3 hours to compute on a GPU machine (a

p3.2xlarge machine on the AWS service).

BarDensr recovers interpretable parameters

BarDensr uses a data-driven approach to estimate all the relevant features of the physical

model: the per-channel phasing factor, the per-round per-channel scale factor, the per-round

per-channel offset, the per-voxel background, the per-wavelength response matrix, and the

rolony densities (the latter of which have already been described in detail above). In the data

analyzed here, we found that the per-channel phasing factor was relatively small, suggesting

very little ‘ghosting’ in this data. The wavelength-response matrix was almost diagonal,
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although we found some slight color-mixing from channel 2 to channel 1, consistent with

visual inspection (see the fifth round in S7(B) Fig as an example). This indicates that our

model is able to correctly recover the color-mixing effects. We also investigated whether all of

the features of our model were necessary for the purposes of finding rolonies. For each feature

of the model, we tried removing that aspect of the model and seeing whether the method still

performed well. For the data analyzed here, we found that the φ and ρ parameters were not

essential (though they did seem to improve the performance, at least qualitatively). By contrast,

all of the other parameters were essential; removing any of them yielded nonsensical results.

The BarDensr model correctly predicts the observed signal intensities

This algorithm is based upon a physical model of how this data is generated. Rolonies appear

at different positions in the tissue, they emit fluorescence signal in different conditions, the

fluorescence signal is smeared by a point-spread function, and finally we observe this signal,

together with certain background signal and noise. As long as this model captures all the

important features of the physical process, observed intensities should match the predicted

intensities at each voxel in each round and in each channel. To think about this more clearly,

let’s define these predicted intensities as the ‘reconstruction’:

reconstructionm;r;c ≜ am þ br;c þ ar;c

XJ;M;C

j;m0 ;c0
Km;m0Fm0 ;jφc;c0Zr;c0;j:

To test our model, we can visually compare the reconstruction to the observed data. If the

residual between the two includes significant highly-structured noise, then it is likely that we

are missing important aspects of the data. S7–S9 Figs show the results of these comparisons,

and the overall reconstruction error is approximately 7.64% (computed as the percentage

unexplained) in the 180 × 200 region shown in S7(A)–S9(A) Figs. (Also see the Supplementary

Fig 5. BarDensr can be scaled up with sparsifying and coarse-to-fine approaches. (A) Coarse-to-fine acceleration. The Area Under the ROC

(AUROC) summarizes the performance of a method by calculating the integral of the ROC curve (higher is better). The black curve plots the AUROC

performance on the simulated data, against the number of seconds the default iterative algorithm has been allowed to use, up to a maximum of 15

iterations. We can also use a coarse-to-fine strategy, where we first run the algorithm on downsampled data for 20 iterations, and use the results to

perform 10 additional iterations on the full high-resolution data; the red curve plots the performance for this strategy. (B) BarDensr can take

advantage of gene-sparsity. Here we used two different approaches to analyze a 1000 × 1000 region of the experimental data. The first approach uses

BarDensr naively, applying it directly to the image. The second approach, illustrated on the first two plots, accelerates the method using a ‘coarse-to-

fine’ method by taking advantage of ‘gene-sparsity.’ Specifically, we split this region into 4 × 4 patches (the borders of these patches are indicated as the

white lines on the left plot). After the relatively fast ‘coarse’ step, the barcodes that have very low maximum rolony densities were removed before the

following ‘fine’ step. This keeps only a relatively small number of barcodes to consider for each patch (ranging from 38 to 65 out of 81 barcodes, as

shown in the middle plot), therefore reducing the computation time and the memory usage for the ‘fine’ step later (cf. S1 Appendix, Section K for more

detail). We here show that both methods yield nearly the same result, as shown in the ROC curves on the right plot. In particular, we treated one

method as the ‘truth’ and constructed an ROC curve indicating the accuracy of the other method. We can then do the reverse, treating the other

method as ‘truth.’ The results suggest strong agreement.

https://doi.org/10.1371/journal.pcbi.1008256.g005
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video, described in S1 Appendix, Section B.) They appear fairly promising, but certain struc-

tured features do appear in the residual. Most strikingly, we have found that a minority of rolo-

nies ‘dropout’ for one or more rounds: a rolony may give a strong bright signal in most of the

rounds but simply vanish in one round. Our current physical model does not accommodate

this, and this limitation appears in the residual as bright and dark spots. However, as men-

tioned above and shown in the hybrid simulation data in Fig 3B, our method is robust to these

‘dropout’ effects; it is still able to capture the correct rolony positions when dropout occurs on

a small number of rounds.

Diagnostics based on ‘cleaned’ images are useful to check the accuracy of

BarDensr

The reconstruction is made up of many parts: it has the background component a, the per-

round per-channel offset and scale terms (α, b), and rolony contributions arising from F, φ, Z.

As shown above, it is straightforward to compare the total reconstruction to the observed data.

However, this does not isolate the contributions of individual estimated rolonies.

Therefore we adapted a partial subtraction approach from [22]. We pick one barcode, j�,
and focus only on the contributions to the reconstruction from this one barcode. In particular,

Fig 6. BarDensr reveals the laminar distribution of the cell type marker genes, as well as the identified cell types in

the motor cortex. The data was obtained from a recent study [14]. Top: each dot indicates a detected rolony; for each

cell-type, we use the same color for all rolonies associated with marker-genes for that cell-type. Bottom: each dot

indicates a cell. Dots are colored based on the cell-types; cell-types are estimated using the detected rolonies from the

top plot.

https://doi.org/10.1371/journal.pcbi.1008256.g006
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we assume that all other aspects of the model are exactly correct. We assume that a, α, b, φ and

Z are all exactly right. We further assume that Fj is exactly correct for every j 6¼ j�. Assuming

all these aspects of the model were perfect, we can look at what the data would have looked like
if it had only included one type of barcode, namely j�. We call this counterfactual simulation

the ‘cleaned image’:

Xðj
�Þ

m;r;c ¼ Xm;r;c � am � br;c �
X

j6¼j� ;m0
Km;m0Fm0 ;jGr;c;j: ð2Þ

This is the data with all aspects of the model subtracted away—except for the contributions

from barcode j� (see Fig 7A as an example). The cleaned image for the barcode j� has much in

common with the rolony density for j�. However, X(j�) differs from Fj� in one crucial way. For

each voxel m, Fj� gives exactly one value. However, for each voxel m, X(j�) gives R × C values—

one for each round and channel of the experiment. According to our model, however, it

should be possible to express all these values in terms of multiplication in the following form:

Xðj
�Þ

m;r;c � Fj� ;m � Gj� ;r;c:

In this formula (known as an ‘outer product’) we see that Xðj�Þm;r;c (which varies across voxels,

rounds, and channels) is the product of two objects: the rolony density (which varies across

voxels) and the transformed barcode G (which varies across rounds and channels) for j�. This

is actually a very strong assumption; most tensors would not exhibit this kind of structure. We

can empirically check for this ‘rank-one’ structure by computing the singular value decompo-

sition (SVD) of Xðj�Þm;r;c. If the SVD yields only one strong singular value, then Xðj�Þm;r;c can be well-

approximated by this rank-one outer product, and furthermore the SVD yields the correct val-

ues for Fj�,m and Gj�,r,c. We can compare the values for these quantities (as returned by the

SVD analysis) to the estimated values (as returned by BarDensr). We show some examples in

Fig 7B comparing the estimated value of Gj� with SVD results (a similar but more complete set

of the spots can be seen in S10 Fig). Note that the match isn’t quite perfect (the temporal singu-

lar vector of the corresponding cleaned images varies a bit from our estimate). In future work

we hope to investigate whether these differences could be accounted for by a more accurate

physical model. For now, we content ourselves that the method is accurate enough to provide

a useful diagnostic for the detected rolonies.

We can also use these cleaned images to help us compare BarDensr with other methods by

eye. S11 Fig investigates cleaned images for gene Arpp19, comparing the results of our method

to the hand-curated results. In cases where the results of the two approaches disagree, these

cleaned images suggest that our results are often reasonable.

Discussion

By directly modeling the physical process that gives rise to spatial transcriptomics imaging

data, we found that BarDensr can correctly detect transcriptomic activity—even when rolonies

are densely packed in tissue or optical resolution is limited.

BarDensr is computationally scalable, but so far we have only investigated real-world tran-

scriptomic experiments with less than a thousand barcodes. To scale to larger barcode libraries

we need to address the possibility that the barcode library may be unknown or corrupted. In

experiments with tens of thousands of barcodes, some barcodes present in the data may be

unknown to the experimentalist. If these barcodes are ignored, the performance of our method

may be negatively impacted. In the future we hope to adapt our method to learn these barcodes

directly, using the model outlined in this paper. Together with the computational acceleration
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Fig 7. Using cleaned images and SVD to examine model fit quality and variability. (A) SVD analysis example using one gene. Spots

are identified in Fj� for each barcode j� using local-max-peak-finding. For the gene barcode j� (Deptor) shown here (top left), three spots

with the highest accuracy are being analyzed. The right panel shows the zoomed-in R × C plots of the raw image X (top) and ‘cleaned’

image X(j�) (bottom) at these three spot locations for barcode j�. Note that ‘cleaned’ images are significantly sparser than the raw images,

as desired. We then applied SVD to the cleaned image X(j�) at these three spot locations. The first two columns on the bottom left show

the zoomed-in image of the original spot (KF)j� and the learned weighted barcode matrix (Gj�) corresponding to this gene barcode j�.
The top singular vectors are plotted in the last two columns (showing a good match with Gj� and the cropped (KF)j�). R2 is the squared

correlation coefficient between X(j�) and the outer product of these two singular vectors; the high R2 values seen here indicate that the

model accurately summarizes X(j�). (B) Results of SVD analysis of cleaned images for the top high-R2 spots. This plot summarizes the

results of the analysis illustrated in (A). The first column shows (KF)j� around the brightest spots; the second column shows the top

spatial singular vectors for the same region, and the last column shows the top temporal singular vectors for these spots (the top row

shows the scaled Gj� learned from the model, and the bottom row shows the corresponding top temporal singular vectors for these spots).

Only six barcodes that are most abundant in the selected region are shown here; S10 Fig provides a more complete illustration.

https://doi.org/10.1371/journal.pcbi.1008256.g007
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approaches used in this paper, this would extend BarDensr to larger-scale data with potentially

corrupted barcode libraries.

There are several general challenges that are not addressed in our method. For instance,

BarDensr assumes its inputs have been preprocessed appropriately, including background

removal and registration across imaging cycles and channels. In future work it would be useful

to incorporate these steps in a full self-contained processing pipeline.

Finally, we would also like to explore using amortized inference to accelerate BarDensr [23,

24]. The BarDensr algorithm must repeatedly solve the same kind of sparse non-negative

regression problem throughout the tissue. It may be possible to train a convolutional neural

network to directly solve these problems in a single step. If this proved feasible, it would also

open the door to using more sophisticated nonlinear models to represent the physical pro-

cesses that transform the unobserved rolony densities of interest into the noisy image stacks

we observe. This could further enhance performance in the presence of e.g. dropout or other

nonlinear artifacts.

Supporting information

S1 Appendix. Model development and analysis details.

(PDF)

S1 Fig. Rolony density (F)j of all 81 barcodes. These images are the supplement to Fig 2A in

the main text. The rolony densities represent a demixed view of the data. Each plot corresponds

to a single barcode, and indicates the rolony density at different spatial locations. Above we

show these rolony densities for one region in the experimental data. The title for the plots

above indicates the gene associated with the barcode as well as the maximum intensity of the

plot. The orange dots represent rolonies detected by a hand-curated approach.

(TIF)

S2 Fig. Rolony density (KF)j of all 81 barcodes, after applying the point-spread function.

As of S1 Fig, these images are the supplement to Fig 2A in the main text, except we display

(KF)j instead of (F)j for each barcode j. Recall that the point-spread function K has the effect of

smearing signal over a spatially localized area. It represents physical processes which blur the

signal of interest. Under the BarDensr model, the signal intensities observed at each voxel m
from a given barcode will arise directly from linear combinations of (KF)m,j over different bar-

codes j.
(TIF)

S3 Fig. Supplement to Fig 2A. (A) Nrgn. The top plot shows the same rolony density of Nrgn
as in Fig 2A. The orange crosses indicate the spots detected in the hand-curated results. The

three spots highlighted with red are further zoomed in the bottom. These spots were detected

to have large signal intensities by BarDensr, but were not detected in the hand-curated results.

The correct barcode frames for Nrgn are indicated with red crosses in the bottom plots, sug-

gesting that each of these spots appear to be well-modeled as Nrgn spots. (B) Slc17a7. The top

plot shows the same rolony density of Slc17a7 as in Fig 2A. The orange crosses indicate spots

detected by hand-curated method. The four spots highlighted with red or cyan are further

zoomed in the bottom. The first three spots (Spot 1—3, shown in red) were found by BarDensr

but were not detected by hand-curated results. The fourth spot (Spot 4, shown in cyan) is the

spot that is detected by hand-curated results, but no signal detected in BarDensr. The correct

barcode frames for Slc17a7 are indicated with red crosses in the bottom plots.

(TIF)
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S4 Fig. (A) Benchmarking results on the regular simulation. Comparing starfish, SRM,

‘corr’, and BarDensr results, to the ground truth. Showing the top three barcodes with highest

density (the gene density was generated randomly, see S1 Appendix, Section G). The left panel

is with no dropout, and it corresponds to the top left plot in Fig 3A in the main text. Without

dropout, BarDensr accurately detects the barcodes in the original data. The right panel is simi-

lar to the left, but with dropout for 50% of the simulated spots. This corresponds to the top

right plot in Fig 3A. (B) Benchmarking results using five times denser simulation. This is

similar except that the spots density is five times denser than (A). The left and right panels are

without and with dropout, as explained earlier, and they correspond to the bottom left and

bottom right in Fig 3A, respectively. With dropout for 50% of the densely simulated spots,

some missing spots (FN) can be observed from these methods (e.g., see the first row Atp1a2).

False discovery (FP) can also be seen in this plot for SRM (e.g., see the third row Rbfox3).

(TIF)

S5 Fig. Further demonstration of BarDensr applied to low-resolution data (supplementing

Fig 4). To test BarDensr’s performance on low-resolution data, we first run BarDensr on the

original data, obtain rolony densities, and then finally downsample the rolony densities (‘run-

then-downsample’). Next, we run BarDensr on downsampled data and look at the learned rol-

ony densities (‘downsample-then-run’). For highly-expressed genes, these two results are

nearly indistinguishable.

(TIF)

S6 Fig. BarDensr can be scaled up to a larger number of barcodes by using sparsified image.

To test if we can scale up BarDensr, we computed an ROC curve for the method using a simu-

lated dataset with 53,000 barcodes and 17 sequencing rounds. After running the model on a 5×
downsampled 50 × 80 voxels simulated image, barcodes that are set to zero at the coarse scale

were removed and the model was run at the original scale, with the parameters learned from

the downsampled image as the initial conditions. See also S1 Appendix (Section K).

(TIF)

S7 Fig. Original data (X) after normalization for each round and channel. In order to create

clearer visualizations, we noise-normalized the data as described in S1 Appendix (Section A),

so that images from all rounds and channels are on the same scale. (A) shows the zoomed-out

images in the selected region. (B) shows the zoomed-in images for one of the target spots (a

20 × 20 region). Also see the video visualization at https://tinyurl.com/y7zzyrd4.

(TIF)

S8 Fig. Data reconstructed from BarDensr. Under the BarDensr model, the fluorescence sig-

nal observed at each voxel in S7 Fig. should be approximately given by the equations from the

Methods Section. We here plot the results of those equations, visualized using the same color-

map-intensity scale as used in S7 Fig. At least by eye, we see excellent agreement between the

data and the model’s predictions. (A) and (B) are zoomed-out and zoomed-in images as

described in S7 Fig. Also see the video visualization at https://tinyurl.com/y7zzyrd4.

(TIF)

S9 Fig. Residuals. As mentioned in S8 Fig, the BarDensr model makes predictions about what

the observed data should look like. There is broad agreement, but there is some disagreement.

Here we highlight the the residual between the predictions and the data. Note the difference

in scale compared to the previous two figures. (A) and (B) are zoomed-out and zoomed-in

images as described earlier. Also see the video visualization at https://tinyurl.com/y7zzyrd4.

(TIF)
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S10 Fig. Further SVD analysis of cleaned images for the top high-R2 spots. The figure sup-

plements Fig 7 in the main text, and is structured in the same way, except that this plot shows

more examples (with more barcodes and spots). Each row shows two spots for a given barcode.

The first two columns show (KF)j� cropped around the two spots; the third and forth columns

show the top spatial singular vectors for the same crops. The final wide column shows the top

temporal singular vectors for these spots, with the first row (above the thin white line) showing

the scaled Gj� learned from the model, and the following two rows showing the corresponding

top temporal singular vectors for these spots. The two spots are ordered by R2, which is com-

puted as in Fig 7.

(TIF)

S11 Fig. Rolony density comparison against hand-curated results. On the top two plots, we

show the rolony density Fj (left) and the blurred rolony density (KF)j (right) for gene Arpp19,

derived from the experimental data. These rolony densities indicate the presence of Arpp19-

rolonies. However, they might be incorrect, indicating that these detected rolonies might not

be present in the real data. In this figure we investigate this question qualitatively. First, we

compare with the rolony positions detected by a hand-curated method (as represented by

orange circles on the left top plot) with the rolonies suggested by the rolony densities (as indi-

cated by red crosses on the left top plot). We see a broad agreement. Where there is a point of

disagreement, we can visualize the signal intensities in all the voxels near that point. The two

plots on the bottom-left show the original data from a spot that was detected by BarDensr, but

not detected in the hand-curated results (as indicated as False Positive (FP) in the top left plot);

the left columns show the original image and the right columns show the ‘cleaned’ image (sim-

ilar to Fig 7, see Eq 2 for details). The red cross in each round indicates the channels that are

activated by this barcode. These crosses line up well with the observed signal, suggesting Bar-

Densr has correctly identified a new rolony. It appears that the hand-curated method failed to

detect this rolony because of the presence of nearby rolonies, leading to a mixed signal; Bar-

Densr is specifically designed to handle these kinds of confusing situations. The two plots on

the bottom-right show a spot which is detected in the hand-curated result but not detected by

BarDensr (as indicated as False Negative (FN) in the top left plot). We show both the original

data and the cleaned data, as in the bottom left plots. In this case, the data do not appear to

support the presence of a rolony, suggesting BarDensr correctly rejected this region as a rolony

and the the hand-curated approach labeled it incorrectly. We conjecture that the hand-curated

approach misidentified this as a spot because of the signal arising from a nearby rolony in

round 7, channel 4; this again created a mixture of signals BarDensr was better equipped to

recognize.

(TIF)
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