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Networks have become instrumental in deciphering how information is
processed and transferred within systems in almost every scientific field
today. Nearly all network analyses, however, have relied on humans to
devise structural features of networks believed to be most discriminative
for an application. We present a framework for comparing and classify-
ing networks without human-crafted features using deep learning. After
training, autoencoders contain hidden units that encode a robust struc-
tural vocabulary for succinctly describing graphs. We use this feature vo-
cabulary to tackle several network mining problems and find improved
predictive performance versus many popular features used today. These
problems include uncovering growth mechanisms driving the evolution
of networks, predicting protein network fragility, and identifying envi-
ronmental niches for metabolic networks. Deep learning offers a princi-
pled approach for mining complex networks and tackling graph-theoretic
problems.

1 Introduction

The structural analysis of complex networks has become essential for nu-
merous problems in systems biology, including predicting protein inter-
actions and protein function (Sharan, Ulitsky, & Shamir, 2007), identifying
robust and fragile modules (Song & Singh, 2013; Navlakha, He, Faloutsos, &
Bar-Joseph, 2014), and understanding links between cellular perturbations
and disease outcomes (Barabasi, Gulbahce, & Loscalzo, 2011). The success of
these applications has hinged on human reasoning to craft network features
to compare and classify graphs. These human-designed features range from
local measures, including modularity (Newman, 2006), motifs (Milo et al.,
2002), and graphlets (Przulj, 2007), to global measures, such as path lengths,
degree distributions (Barabasi & Albert, 1999), and graph spectra (Patro &
Kingsford, 2012). While enormously useful, these features have collectively
required decades of empirical data analysis to identify and have demanded
the careful design of algorithms to extract each individual feature. Further-
more, network science continues to yield important advances, suggesting
that important features have yet to be discovered.
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There are several reasons to believe that deep learning (DL) can be used
as an unsupervised technique to automatically discover discriminative fea-
tures of a network. First, by viewing the adjacency matrix of a graph as
a two-dimensional image, DL can naturally process any raw input graph
without transformation. Second, robust feature detection in graphs requires
recognition of topological invariances, which parallels similar requirements
in image analysis, where images can be rotated, translated, or scaled in
different ways (Goodfellow, Lee, Le, Saxe, & Ng, 2009). Third, DL has re-
cently achieved tremendous success in discovering discriminative features
in imaging (Le et al., 2012), speech (Hinton et al., 2012), genomic (Alipanahi,
Delong, Weirauch, & Frey, 2015; Zhou & Troyanskaya, 2015), and gene ex-
pression data (Tan, Hammond, Hogan, & Greene, 2016; Tan, Ung, Cheng, &
Greene, 2015) that have improved on manually designed features (LeCun,
Bengio, & Hinton, 2015).

Here, we show how to build simple yet effective autoencoders trained
using thousands to millions of random graphs. We then use features de-
rived from hidden unit activity to compress, classify, and compare real-
world networks. To demonstrate the utility of this approach, we consider
four questions:

1. Can autoencoders more accurately compress and find features
in graphs compared to other popular dimensionality-reduction
methods?

2. Can DL features forecast the growth mechanisms driving the evolu-
tion of a network?

3. Can DL features better predict the effect of node deletion (knockout)
on the robustness of molecular interaction networks?

4. Can DL features better predict how challenges from different ecolo-
gies sculpt the topology of bacterial metabolic networks?

Our goal here is not to develop new deep learning methods but rather
to show how existing techniques can be adapted and applied for network
analysis. The improved performance of the deep learning feature vocab-
ulary versus many human-designed features commonly used today for
these problems suggests that our approach may be useful across many
domains.

1.1 Related Work. Many topological features have been developed to
analyze network structure (Chakrabarti & Faloutsos, 2006; Newman, 2010).
These features, however, have largely been developed by human curation
and visual data analysis, a process that we try to circumvent here. Prior
work on graph compression and summarization seeks to find a low-cost
representation for an input graph using information-theoretic or reference
encoding schemes (Adler & Mitzenmacher, 2001; Navlakha, Rastogi, & Shri-
vastava, 2008). These works compress nodes with similar neighborhoods
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into supernodes connected by superedges, yet these methods do not offer a
general technique to find features in graphs beyond approximate bi-cliques.
Genetic programming has been used to evolve generative models for graphs
but still require a target topological feature to evaluate fitness (Patro et al.,
2012), whereas DL is based on reconstructing the data. Graph transformer
networks take a segmentation graph as input and find a high-likelihood
Viterbi path through the segmentation graph using backpropagation (Bot-
tou, Bengio, & Le Cun, 1997). While successful for many image processing
tasks, this algorithm also was not designed to find general structural fea-
tures in graphs.

Recently, DL was used to cluster graphs by first computing a similarity
measure between nodes in the graph and then using deep autoencoders to
find a low-dimensional embedding of the similarity matrix (Tian, Gao, Cui,
Chen, & Liu, 2014); DL has also been used for learning social representations
of vertices (Perozzi, Al-Rfou, & Skiena, 2014) and to predict missing edges
in time-evolving graphs using conditional temporal restricted Boltzmann
machines (Li et al., 2014). Wavelets have been used to compress signals
coming from an underlying graphical structure by using the lifting scheme
to sparsely represent an entire class of signals (Rustamov & Guibas, 2013).
While the success of deep learning for these problems is impressive, these
works do not attempt to learn topological features for comparing and clas-
sifying graphs, which is our main focus.

2 A Deep Learning Framework for Analyzing Networks

First, we cast graph compression as an unsupervised learning problem
using autoencoders. The autoencoder should learn graph-theoretic features
that highlight dominant and discriminative topologies present in the input
training graphs. Formally:

Problem 1: Given a set of graphs G1, G2, . . . , Gr.

Find R∗ = argmin
R∈R

r∑

i=1

h(Gi, R(Gi)).

The representation R is an autoencoder with one or more hidden layers
and with features latent within the hidden units. The distance function h
computes the overlap between edges in the input graph Gi and edges in the
predicted output graph R(Gi) following encoding and decoding. The aim
is to find a representation, defined by the autoencoder weights, that can
accurately reconstruct the input graphs.

Our second goal is to classify graphs using features learned without
supervision. Given a function M that maps each input graph to one of j
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class labels, we want to learn a deep classifier Y with j output nodes that
can predict the class label of a given graph. Formally:

Problem 2: Given a set of graphs G1, G2, . . . , Gr.

Find Y∗ = argmax
Y∈Y

r∑

i=1

δ(M(Gi),Y(Gi)).

The δ function returns 1 if the true label of the graph M(Gi) and the predicted
label from the classifier Y(Gi) are the same and 0 otherwise.

For both problems, the r input graphs used for training are generated
using random graph models, as described in the next section.

3 Probabilistic Models for Generating Random Graphs

To generate a broad spectrum of input training graphs for learning robust
features, we use long-studied probabilistic random graph models
(Chakrabarti & Faloutsos, 2006). Building robust autoencoders and classi-
fiers requires large training sets, and unlike image processing applications
where millions of training examples are readily available (Le et al., 2012),
databases for real-world networks are much smaller. Random graph models
help overcome this limitation by providing an iterative growth procedure to
generate random graphs with topological features similar to those observed
in real-world networks. These features include power-law degree distribu-
tions, small diameter, and community structure, among others (Chakrabarti
& Faloutsos, 2006). These models have served as the foundation for many
downstream graph mining tasks, including anomaly detection, network
design and clustering, and growth forecasting (Chakrabarti & Faloutsos,
2006). While many generative models exist, the five we selected are well
studied, parsimonious (requiring two or fewer parameters), fast (generat-
ing graphs in linear time with respect to the number of edges), and realistic
(having topological properties of many real-world networks). Although
these models are designed by humans and may contain some biases in the
features they generate, by using many different models and model param-
eters, we can generate a large and diverse training set of graphs sampled
from the space of possible graphs (Goldenberg, Zheng, Fienberg, & Airoldi,
2010).

The five models we use are:

1. The duplication (DMC) model inspired by biology (Vazquez, Flam-
mini, & Maritan, Vespignani, 2003)

2. The forest fire model (FF) inspired by social networks (Leskovec,
Kleinberg, & Faloutsos, 2007)

3. The preferential attachment (PA) model inspired by the evolving
web (Barabasi & Albert, 1999)
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4. The small-world (SMW) model inspired by small-world phenom-
ena (Watts & Strogatz, 1998)

5. Erdős-Rényi (ER) random graphs

These models typically start with a small initial seed network and then ap-
ply an iterative procedure so the network grows over time. In each iteration,
a new node joins the network and connects to some existing nodes (existing
edges may also be deleted in this step). This growth process continues until
each network has exactly n nodes. The models differ in the mechanisms by
which the network evolves and the model parameters they use.

3.1 The Duplication-Mutation with Complementarity Model (DMC).
The DMC model is inspired by the duplication-divergence principle in biol-
ogy, in which a gene duplication event initially produces two topologically
equivalent genes, which is followed by some divergence of their shared
interactions (Vazquez et al., 2003). This model can reproduce many features
of real protein interaction networks (Middendorf, Ziv, & Wiggins, 2005;
Navlakha & Kingsford, 2011). The model begins with two nodes connected
by an edge and proceeds as follows in each iteration:

1. Node v joins the network by duplicating from a random existing
node u. Initially v is connected to each neighbor of u.

2. For each shared neighbor w of u and v, with probability qmod, delete
edge (v,w) or its complement (u, w) with equal probability. With
probability 1 − qmod, retain both edges.

3. Add edge (u, v) with probability qcon.

Large qmod and small qcon can lead to very sparse networks with little com-
munity structure and no power-law degree distribution. Small qmod and
large qcon can produce dense, highly connected graphs with topological
symmetry between duplicate nodes. In between, a wide spectrum of topolo-
gies can be generated.

3.2 The Forest Fire Model (FF). The FF model is inspired by the growth
of online social networks (Leskovec et al., 2007), in which an existing user
u invites a new user v to join the network; node v links to u, as well as some
of u’s friends, some of their friends, and so on, mimicking the probabilistic
spread of a fire. The model begins with two nodes connected by an edge
and in each iteration proceeds as follows:

1. Node v joins the network and links to a random existing node u.
2. Node v links to x random neighbors of u, where x is an integer chosen

from a geometric distribution with mean qfire/(1 − qfire). These nodes
are added to a queue of nodes to be visited. If u has fewer than x
neighbors, all neighbors are linked to.

3. Pop a new (previously unvisited) node u from the queue and recur-
sively apply step 2.
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4. Stop when the queue becomes empty.

This model produces strong community structure (modularity) with higher
density as qfire increases. It also produces heavy-tailed degree distributions
and small diameters (Leskovec et al., 2007).

3.3 The Preferential Attachment Model (PA). The PA model is inspired
by the growth of the web and uses a rich-get-richer principle: popular web
pages are more likely to be linked to by new web pages, leading to large
hubs (Barabasi & Albert, 1999). The model begins with one node connected
to qpa other nodes and in each iteration proceeds as follows:

1. Create a probability distribution where each node u is assigned prob-
ability du/(2m), where du is the current degree of node u and m is the
total number of edges in the current graph.

2. Choose qpa random nodes with probabilities according to the distri-
bution.

3. Node v joins the network and connects to the qpa nodes chosen in
step 2.

This model produces power-law degree distributions, albeit no community
structure. Different values for qpa can shift the degree distribution left and
right.

3.4 The Small-World Model (SMW). The SMW model is inspired by
the observation that most pairs of nodes in real-world networks are a short
distance apart despite most connections being local (Kleinberg, 2000; Watts
& Strogatz, 1998). The model begins with n isolated nodes arranged in a
ring topology.

1. Connect each node to its qring nearest neighbors in the ring.
2. For each edge (u, v), with probability qrewire, replace the end point (v)

of the edge with a randomly chosen node in the graph that u is not
already connected to.

This model produces community structure and short path lengths between
nodes, indicative of the small-world phenomenon. Different values of qring
can modulate the strength of the community structure, and different values
of qrewire can modulate the randomness of the graph.

3.5 The Erdős-Rényi Model (ER). Finally, in the ER random graph
model, each of the

(n
2

)
possible edges exists independently with probability

qer. This process produces a binomial degree distribution.
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Figure 1: Overview and analysis of graphs using deep learning. The adjacency
matrix of a graph is vectorized and input into the input layer of an autoencoder.
Each input unit represents a potential edge in the graph (filled circles denote
edge presence). The DL architecture consists of some number of hidden layers
(1–5 are used in this letter). Reconstruction accuracy compares the actual versus
predicted edges following encoding and decoding.

4 Neural Network Design and Optimization

Next, we describe how to use deep learning methods to process graphs.
The autoencoder takes r d-dimensional vectors as the input training data
set, X ∈ Z

r×d, where r is the number of training graphs and d = (n
2

)
with one

dimension for each possible undirected edge (n is the number of nodes; self-
loops are ignored). We assume unweighted graphs; therefore, the value of
each dimension is 0 or 1 indicating the presence or absence of an edge. Each
d-dimensional vector represents the upper triangle of the adjacency matrix
of the input graph. The rows (nodes) of the adjacency matrix are sorted
from highest to lowest degree (to solve the node identifiability problem
and make the input labeling independent). The matrix is then flattened into
a vector and input into the autoencoder (see Figure 1).

The autoencoder architecture consists of a single input layer with
(n

2

)

inputs, followed by some number of hidden layers and a single out-
put layer with

(n
2

)
outputs. The autoencoder uses tied weights, which

equates decoding weights to the transpose of the encoding weights in
corresponding layers. For example, for n = 100, the layer sizes could be
4950 → 150 → 25 → 150 → 4950. For all autoencoders, we used a rectilin-
ear activation function for the output units (g(z) = max(0, z)) and a normal-
ization activation function for the hidden units (g(z) = z − std(z)). These
were selected after performing a grid search across 15 activation functions
(hyperbolic tangent, linear, logistic, rectilinear, normalization, sigmoid—
and several of their variants).
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For the autoencoder, each output unit predicts the presence or absence of
an edge in the input graph and therefore should have the value 0 or 1. Such a
binary output can be forced by defining special output activation functions
(e.g., a threshold function that maps summed inputs above a threshold to 1,
and 0 otherwise). This approach, however, can lead to slower convergence
(more parameters to learn), and it does not guarantee that the output graph
has the same number of edges as the input graph. To circumvent these
problems, we allow real-valued outputs during training, but during testing,
we binarize outputs by setting the top m most active output nodes to 1
and the rest to 0 (m is the number of edges in the input graph, which is
known). This procedure guarantees that the reconstructed graph has the
same number of edges as the input graph. This procedure is akin to taking
the linear relaxation of an integer-linear program during training, followed
by a rounding procedure for each test example. In our case, the rounding
procedure ensures that exactly m output nodes have value 1, effectively
creating an m-winner-take-all network.

For classification, the same input structure and activation functions are
used as the autoencoder, with a softmax operator applied to the output. The
output layer contains exactly j nodes, where j is the number of class labels.

For both real-world biological networks (protein interaction network
and metabolic networks), we used the same architecture: two hidden layers
with 150 and 25 hidden units.

4.1 Training the Network. For the autoencoder, the objective loss func-
tion L computes the mean squared error between the input and output of
the autoencoder Rθ (with parameters θ ) following encoding and decoding,

L(X, θ ) = 1
r

r∑

i=1

∥∥Rθ (xi) − xi

∥∥2
2 + λ(θ ), (4.1)

where xi ∈ X is a d-dimensional vector corresponding to the input graph Gi
and λ is a regularizer.

For classification, the loss function is the cross-entropy between Yθ (xi) j
(the softmax output from the deep classifier for predicting label j for input
xi) and the true output M(xi) j (which equals 1 if xi has label j, and 0
otherwise), summed over all class labels:

L(X, M, θ ) = −1
r

r∑

i=1

∑

j

M(xi) j logYθ (xi) j + λ(θ ). (4.2)

For optimization, we use simple and well-established techniques of-
ten used in the deep learning community: stochastic gradient descent
(learning rate = 1e−5), Nesterov momentum (momentum = 0.99), dropout
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regularization (dropout = 0.25; Srivastava, Hinton, Krizhevsky, Sutskever,
& Salakhutdinov, 2014), and GPU-accelerated computation for efficiency.

4.2 Testing and Performance Evaluation. Generative model parame-
ters were selected such that all models produced graphs with a similar range
of edges to challenge the autoencoder to discover discriminative features
beyond those based on edge density. These parameters were selected uni-
formly within a range: for DMC, qmod ∈ [0.35 − 0.7], qcon ∈ [0.8, 0.9] (aver-
age of 371 edges); for FF, qfire ∈ [0.4, 0.5] (average of 375 edges); for PA, qpa ∈
[2, 7] (average of 432 edges); for SMW, qring ∈ [5, 11], qrewire ∈ [0.05, 0.25]
(average of 370 edges); and for ER, qer ∈ [0.035, 0.130] (average of 401 edges).
Selecting all parameters uniformly within the range [0, 1] improved recon-
struction accuracy (see the appendix), but we discuss the more difficult of
the two tests here. We generated 50,000 training and 50,000 test examples
(graphs) with n = 100 nodes unless otherwise noted.

For the autoencoder, reconstruction accuracy is the percentage overlap
in true versus predicted edges on the test examples. We compare four
methods:

• PCA + SVD: PCA using singular value decomposition (SVD) to keep
the most significant singular vectors. We use the same number of
components (k) as hidden units in the smallest hidden layer in the
autoencoder.

• ICA (Hyvarinen & Oja, 2000): We use the FastICA algorithm, with the
same number of mutually independent components (k) as hidden
units in the smallest hidden layer in the autoencoder.

• Nonnegative matrix factorization (NMF; Lin, 2007): We use the same
number of components (k) as hidden units in the smallest hidden
layer in the autoencoder.

• Dictionary learning (DictLearn; Mairal, Bach, Ponce, & Sapiro, 2009):
We find a dictionary (set of atoms) that can best represent the in-
put data using a sparse code. We use the same number of dictionary
elements (k) as hidden units in the smallest hidden layer in the au-
toencoder.

For classification, accuracy is the average number of test examples la-
beled correctly. We compare to a K-nearest-neighbors classifier (K = 5,
Minkowski distance), decision trees (Gini criterion), AdaBoost (with de-
cision tree base estimators), and SVMs (RBF kernels; Pedregosa et al., 2011).

4.2.1 Application to Real-World Networks. We applied the autoencoder to
real-world networks by iteratively processing 100-node local subnetworks
of the real-world network. Such subnetworking is done for two reasons.
First, it enhances scalability (the size of the adjacency matrix is O(n2), which
may otherwise be a prohibitively large size for the input layer when n is
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large). Second, it highlights features that are prevalent, independent of
network size. The downside is that some global-level features may not be
captured.

To create local subnetworks (of the real-world network) of size n = 100,
we performed a breadth-first walk starting from each node u, stopped
when exactly n nodes were visited, and then input the induced subgraph
of all n visited nodes into the autoenoder. For the prediction tasks (yeast
essentiality, metabolic niche breadth), we averaged the hidden unit activity
over all 100-node subnetworks, applied PCA to create a single feature value,
and then correlated this value with essentiality or niche breadth. For the
kernel subgraphs feature, we computed occurrence counts for each of the 11
four-node subgraph kernels in the graph and then similarly applied PCA to
create a single feature value for the network. For both, the single summary
feature accounted for 90% or more of the variance, indicating minimal loss
of information due to PCA. In all cases, we start with the largest connected
component of the network.

5 Results

First, we determine how well autoencoders can compress random net-
works. Second, we investigate the topological features learned in hidden
layers and compare them to human-crafted features. Third, we use these
features to predict growth mechanisms of evolving networks, network ro-
bustness of protein interaction networks, and environmental niches for
bacterial metabolic networks.

5.1 Accurate Reconstruction of Graphs Using Autoencoders. Can au-
toencoders compress graphs with high reconstruction accuracy using few
hidden units? To learn discriminative topological patterns, autoencoders
must encode features in hidden units that allow for accurate reconstruction
of the input graphs. We trained an autoencoder using 50,000 graphs (n = 50
nodes per graph) generated by the five random graph models (see section 3)
in equal proportions. The autoencoder achieved better compression than
other dimensionality-reduction methods, reducing the input size to 40% of
its original (from 1225 input units to 500 hidden units in a single hidden
layer) while still reconstructing 93.1% of the original edges (see Figure 2A).
With further reduction to 20% of the input dimension (250 hidden units), the
autoencoder achieved a 73.4% reconstruction accuracy, also outperforming
other methods, including PCA + SVD, ICA (Hyvarinen & Oja, 2000), non-
negative matrix factorization (Lin, 2007), and dictionary learning (Mairal
et al., 2009). Prior work has established a correspondence between PCA
and autoencoders with linear hidden units (Baldi & Lu, 2012). Our im-
provement over this baseline is thus largely attributed to the nonlinearity
of the autoencoder units.
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Figure 2: Reconstruction accuracy and learned features. (A) Reconstruction ac-
curacy of five dimensionality-reduction methods using graphs sampled from
all five random graph models in equal proportions. The five methods we com-
pare are deep learning, PCA with SVD, ICA, nonnegative matrix factorization
(NMF), and dictionary learning (DictLearn). The DL architecture consists of
only a single hidden layer with the shown number of hidden units. (B–E) Ex-
ample features learned by four autoencoders, each trained using graphs from a
different random graph model. For each model, we show two schematic input
graphs and an autoencoder with three hidden layers. The actual DL architecture
consists of an input layer with 4950 units (n = 100), followed by three hidden
layers with 1000, 250, and 50 units, respectively. Nodes in the third hidden layer
learn to recognize model-specific topological features. For example, for DMC,
one hidden unit learned to recognize the shown subgraph (correlation of 0.889
between the hidden unit’s activity and the number of instances of the shown
subgraph in the input graph). For FF, the activity of one hidden unit was highly
correlated (0.872) with the modularity of the input graph.

In the appendix, we discuss additional technical results, including re-
construction accuracy for each random graph model individually, model
parameter variation, network size variation, experiments with directed
graphs, and algorithm run time.

5.2 Graph Features Learned by the Autoencoder. What network fea-
tures were learned in hidden layers that enabled accurate reconstruction?
We trained one autoencoder using graphs from each random graph model
separately to validate whether the activity of hidden units strongly cor-
related with features known to be produced by the model (e.g., hidden
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units that preferentially fired for graphs with high modularity for FF). In-
deed, we found that hidden unit activity correlated with several popular
human-designed graph features (see Figures 2B–2E). The activity of units
in the first hidden layer for all autoencoders was highly correlated with
simple features related to the number of edges in the graph. For example,
in autoencoders trained using the FF/PA models, a 0.795/0.847 correlation
was observed between average graph degree and hidden unit activity of
several units. In the third hidden layer, model-specific features began to
emerge. For the DMC autoencoder, triangles and a four-node subgraph
with pairs of topologically redundant nodes were two top recognized fea-
tures (correlation of 0.773 and 0.829, respectively; see Figure 2B). Both of
these features are expected to emerge from the duplication process, where
two paralogous genes often share common interaction partners (Vazquez
et al., 2003). For the PA autoencoder, a four-node hub subgraph that exem-
plifies the preferential attachment mechanism emerged as a latent feature
(see Figure 2C). For FF, community structure (modularity; see Figure 2D)
was learned, which is also a feature that explicitly inspired the design of this
model (Leskovec et al., 2007). Interestingly, there were also hidden units in
each autoencoder whose activity did not correlate with any of the human
features tested. (See the appendix for a list of features tested and further
analysis of hidden unit correlations.)

While interpreting hidden units by correlating their activity to known
features provides some evidence of what hidden units may be encoding,
truly understanding what has been learned in hidden units remains a chal-
lenge when using deep learning approaches (see section 6). One alternative
approach is to present the autoencoder with many input graphs and record,
for each hidden unit, the graph that maximally activated the unit (Le et al.,
2012). This analysis, presented in the appendix, shows that there is indeed
a range of topologies that activate different units.

Overall, these results suggest that autoencoders can compress graphs
with higher accuracy than several popular dimensionality-reduction meth-
ods, that DL features can recapitulate some popular network features used
today (correlatively), and that some DL features may be novel and useful
for graph mining tasks, as we show next.

5.3 Inferring Parameters of Evolution Using Deep Classifiers. Given
a network generated using the DMC model, can we predict the exact DMC
model parameters (qmod and qcon) used in the growth process? Such an
inference can determine the relative importance of divergence between
paralogs in a species or how wiring has evolved differently across multiple
species (Makino, Suzuki, & Gojobori, 2006; Fraser, Hirsh, Steinmetz, Scharfe,
& Feldman, 2002).

To pose this as a classification problem, we grew 100-node random
DMC graphs using 25 combinations of qmod, qcon ∈ {0.1, 0.3, 0.5, 0.7, 0.9},
used for training. We tried to predict the exact parameters (one parameter



Learning the Structural Vocabulary of a Network 299

pair = one class) using a DL classifier with an architecture with two hidden
layers and 25 output units. We compared with two previous studies that
used a decision tree (DT) classifier and handcrafted features for a similar
graph classification problem (Middendorf et al., 2005; Navlakha, Faloutsos,
& Bar-Joseph, 2015). The first (DT3) is trained with three features: the largest
eigenvalue of the adjacency matrix, the number of connected components,
and the fraction of degree 1 nodes. The second (DT11) is trained using 11
features: occurrence counts for each of the 11 four-node subgraph kernels in
the graph (Wernicke & Rasche, 2006). We also compared versus SVMs and
AdaBoost (with decision tree base estimators) trained using the same 11
subgraph features and versus a K-nearest-neighbors (KNN) classifier using
the number of edges in the graph as the only feature.

The highest accuracy was achieved by the DL classifier (68.8%), improv-
ing over AdaBoost (66.0%), DT11 (62.6%), SVM11 (59.5%), DT3 (51.1%),
KNN1 (32.7%), and random guessing (1/25 = 4%). We also tested the per-
formance of the DL classifier when the input was the 11 subgraph occur-
rence counts, as opposed to the raw vectorized adjacency matrices. In other
words, the autoencoder contained 11 input units with two hidden layers and
25 output units. Here, the DL classifier performed slightly worse than when
provided the raw input (67.4% versus 68.8%) but still slightly better than
AdaBoost (66.0%), DT11 (62.6%), and SVM11 (59.5%). We also tested the
performance of the standard classifiers when provided the raw vectorized
adjacency matrices as the input. Here, the standard classifiers performed
much worse than the DL classifier: 11.6% for KNN, 17.8% for AdaBoost,
22.4% for the decision tree, and 53.7% for the SVM. Thus, if the standard
classifiers are trained on the raw data, they do much worse than DL, which
highlights the ability of deep learning to extract informative features from
raw data. On the other hand, if DL is trained using the 11 subgraph features,
it does marginally better than the human-crafted features and marginally
worse than the raw DL features.

While the improved performance of DL versus these machine learning
classifiers is consistent with previous observations (LeCun et al., 2015), the
novelty here is in demonstrating that this improvement also extends to
network analysis. Next, we show that these latent features are also useful
for analyzing real-world biological networks.

5.4 Predicting Fragility in Molecular Interaction Networks. Can DL
features improve prediction of cellular robustness compared to existing fea-
tures? Network topology can provide important clues about how protein-
protein interactions are perturbed due to node failures or environmental
noise (Kitano, 2004; Albert, Jeong, & Barabasi, 2000; Barabasi & Oltvai,
2004; Alon, 2003; Zotenko, Mestre, O’Leary, & Przytycka, 2008), and how
these perturbations can lead to disease (Barabasi et al., 2011). Prior work
has hypothesized several, often contradictory, topological structures that
the cell uses to enhance fault tolerance to noise and failures, including
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redundancy (Song & Singh, 2013), sparsity (Navlakha et al., 2014), and
specific motifs (Milo et al., 2002).

We focused on a protein network fragility task, where the goal is to de-
termine whether network topology can be used to predict whether the cell
survives a perturbation on the network. We collected 20 protein-protein
interaction networks, each containing a set of S. cerevisiae proteins involved
in a unique biological process, along with their induced interactions (Chatr-
Aryamontri et al., 2015; MacIsaac et al., 2006). These biological processes
include proteins involved in, for example, nuclear transport, DNA replica-
tion, and cytoskeleton organization, and each contains at least 100 nodes.
These biological processes are all required for cell survival and growth un-
der normal growth conditions (Ashburner et al., 2000). Summed over all
20 networks, there were 5796 proteins and 79,988 edges (physical interac-
tions between proteins). We associated each network with a fragility score
equal to the proportion of genes in the network that were experimentally
determined to be essential (i.e., individual knock-out of these genes results
in cell death; Giaever et al., 2002). Of the 5796 proteins, 1122 (19.4%) were
essential. Over the 20 networks, fragility scores ranged from 9.5% to 66.3%.
The goal was to determine if there were topological differences between
these networks that were predictive of their fragility.

Each network was input into the trained autoencoder and was associated
with a single feature value based on the vector of hidden unit activity in
the deepest hidden layer. The correlation between DL features and network
fragility was at least 30% greater than that of five popular human-designed
graph features previously used for this task: 0.612 for DL versus 0.472 for
average degree, 0.438 for largest eigenvalue of the adjacency matrix, 0.379
for modularity, 0.344 for average shortest-path length, and 0.313 for kernel
subgraph motifs (see Figure 3A).

By relating hidden unit activity to existing features, we found that more
highly connected networks (i.e. those with a higher average degree and
eigenvalue) were more fragile (less robust) than sparsely connected net-
works. This is somewhat unintuitive because many prior works have sug-
gested that higher connectivity enhances robustness, as measured by the
change in network feature (node or edge connectivity, the eigenvalue of
the adjacency matrix (Chan, Akoglu, & Tong, 2014), the diameter (Al-
bert et al., 2000), and the number of connected components (Schneider,
Moreira, Andrade, Havlin, & Herrmann, 2011)) following node removal.
Our finding, however, agrees with more recent observations that modules
within the cell adapt their topologies to the cellular environment in which it
lies (Song & Singh, 2013): for biological processes that occur external to the
cell (e.g., cell wall maintenance, endosomal transport), sparser topologies
are preferred to mitigate the spread and effect of cascading environmen-
tal noise. High connectivity is used in modules that occur internal to the
cell, where such environmental perturbations are less prevalent and in-
formation can be transmitted more efficiently. This hybrid strategy that
trades off efficiency and robustness is better captured by DL features than
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Figure 3: Predicting protein network fragility and bacterial environmental
niche from topology. (A) Twenty protein interaction networks for S. cerevisiae,
each corresponding to a unique biological process. The fragility of each network
is the percentage of essential genes (colored red) in the subnetwork. DL features
yielded the highest correlation with network fragility, outperforming features
based on kernel subgraph counts (motifs), the average shortest-path length,
network modularity, network eigenvalue, and average degree. (B) Metabolic
networks for 67 bacterial species were each annotated with a niche breadth
score ranging from 1 to 5. DL features again yielded the highest correlation
with niche breadth. We also projected all five human-crafted features into one
dimension and computed their correlation with fragility and niche breadth.
The correlations increased slightly compared to each individual feature but
were still outperformed by the DL features (fragility: 0.494 for the combina-
tion of features versus 0.612 for DL; niche breadth: 0.384 for the combination
of features versus 0.492 for DL). Error bars indicate standard deviation of the
correlation coefficient computed using leave-one-out cross-validation. In each
fold, we removed one data point (network) and computed the correlation coef-
ficient using the remaining networks. All comparisons of DL versus the other
features are significantly different (p < 0.01, two-sample t-test).

existing features and helps explain the range of topologies found in previ-
ous work.

5.5 Predicting Environmental Niches of Bacterial Metabolic Net-
works. Understanding how network topology is shaped by the envi-
ronment in which it operates is also an important problem in network
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design and evolution (Haldane & May, 2011; Buldyrev, Parshani, Paul,
Stanley, & Havlin, 2010; Moore, Shannon, Voelker, & Savage, 2003). In
bacteria, prior work has suggested that challenges from different ecolo-
gies play an important role in sculpting strategies for efficient and adap-
tive metabolism (Kreimer, Borenstein, Gophna, & Ruppin, 2008; Kim,
Zorraquino, & Tagkopoulos, 2015). To test this effect at the network level,
we collected bacterial metabolic networks for each of 67 unique species (Ma
& Zeng, 2003), each containing at least 100 nodes. Nodes in these networks
correspond to metabolites and an edge implies an enzymatic reaction trans-
forming one metabolite to another. Each network/species was associated
with a niche breadth score ranging from 1 to 5, indicating the diversity and
fluctuation of metabolites in the environment under which the organism
must function (1 = narrow and stable environment, 5 = highly complex
and dynamic environment; Morine, Gu, Myers, & Bielawski, 2009). The
goal was to determine if there were topological differences between these
networks that were predictive of their niche breadth.

As above, each network was input to the autoencoder and associated
with a single feature value. The correlation between DL features and niche
breadths was at least 37% greater than other standard features: 0.492 for DL
versus 0.360 for average shortest-path length, 0.358 for network eigenvalue,
0.338 for modularity, 0.319 for subgraph kernels, and 0.317 for average node
degree (see Figure 3B).

The results of these two sections demonstrate the potential promise of
DL features for linking network topology to fragility and environment com-
pared to common features used today. While domain-specific knowledge
may refine these results further, we emphasize that these improvements
use the same feature vocabulary for both problems.

6 Discussion

Networks pervade almost every scientific field today, yet most network
analyses to date have relied on human-designed features and custom graph-
theoretic algorithms for extracting such features. We developed a frame-
work for using unsupervised deep learning (DL) to analyze networks and
found that features latent within hidden units represent a structural feature
vocabulary capable of compressing and classifying graphs with improved
performance versus several population dimensionality-reduction methods
and classifiers. We also used this feature vocabulary to predict protein net-
work fragility and the effect of environmental pressures on the topology
of bacterial metabolic networks with better accuracy than many popular
hand-crafted network features. Our primary contribution is not in devel-
oping new deep learning methods but rather in showing how existing,
well-established algorithms used in the machine learning community can
be used in an important application area. As the field continues to mature,
we hope the results presented here can be further improved.
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Our results demonstrate initial promise for using deep learning for net-
work analysis; however, there are many avenues of future research. One
potential shortcoming of deep learning is the size limitation of the input
layer. In our representation, every potential edge was represented by an
input unit. Thus, for large graphs, the input layer could easily contain
millions of units, which makes training computationally very expensive
and limits the scale of features that can be learned. One potential solution
could be to represent input graphs using sparse matrix representations,
which have recently been successfully used in other applications without
significant loss in accuracy (Liu, Wang, Foroosh, Tappen, & Penksy, 2015).
Another option could be to use graph summarization methods to present a
compressed version of the network to the input layer (Boldi & Vigna, 2004;
Navlakha et al., 2008). This compressed version, consisting of supernodes
(sets of original nodes) and superedges (representing a collection of orig-
inal edges between two supernodes), can significantly reduce the size of
real-world graphs yet can still be inverted to recover most of the original
edges. A third option could be to analyze small subgraphs of the input
graph, which enables scability with some loss in the ability to detect global
features.

Future work also needs to better interpret the complex topological fea-
tures latent within hidden units and the hierarchical relationships of fea-
tures across multiple hidden layers (Yosinski, Clune, Nguyen, Fuchs, &
Lipson, 2015). Our work demonstrated that DL features correlated with
some existing human-designed features, while others appeared to be novel
features not yet discovered. For the real-world network tasks, we extracted
hidden unit features using PCA, which represents a linear approach to cod-
ify features, even though hidden unit activities are likely better related using
nonlinear transformations. Learning what has been learned is an important
challenge in many DL contexts, especially for network analysis compared
to image analysis, where the optimal image that activates a hidden unit
can be visualized (Zeiler & Fergus, 2014). Visual inspection of graph lay-
outs may provide some intuition of what is being learned by hidden units
(see Figure 4); however, more future work is needed to open up this black
box, especially when features are combinatorially coupled across multiple
hidden units, or hierarchically across multiple layers.

Future work can also leverage long short-term memory algorithms,
which, coupled with our framework, may identify spatiotemporal depen-
dencies that improve prediction of how networks change or develop over
time (Hochreiter & Schmidhuber, 1997; Greff, Srivastava, Koutnı́k, Steune-
brink, & Schmidhuber, 2015). Our work also opens the door to using DL to
study combinatorial optimization problems that can be encoded as graphs
(e.g., SAT or graph isomorphism; see Figure 5). Critical for training deep
networks are probabilistic random graph models that enable sampling of
a broad range of topologies for learning features. While using simulated
networks to analyze real-world networks has strong precedence, there are
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Figure 4: Maximally recognized graphs. For each random graph model, we
show two hidden units and the two random graphs that maximally activated
the unit. Graphs were displayed using a standard spring embedded layout
algorithm.

likely biases in the features that these human-designed models generate,
which can limit analyses of some real-world networks. Our work warrants
further development of these models (Patro et al., 2012) and presents a
novel application for their use.

Finally, in conjunction with deep learning, human experience-driven
analysis still plays two key roles in network analysis. First, humans are
still needed to interpret hidden unit features, including their relevance and
meaning for a particular application. For example, certain subgraphs, like
triangles, may be overrepresented in a network but these may be inevitable,
not discriminative, if the network is spatially embedded. Moreover, many
topological properties can be correlated with one another, though some
likely provide more mechanistic insight than others depending on the ap-
plication. Second, humans are still needed to derive and select appropriate
generative models for training.

Appendix

A.1 Additional Reconstruction Results, Parameter Variation, and Di-
rected Graphs. When training and testing one autoencoder per random
graph model individually, we found that graphs generated by the SMW
and FF models were the easiest to reconstruct (89.8% for SMW, 84.3% for
FF, 74.4% for PA, 72.8% for DMC using 1100 hidden units with n = 100).
ER graphs showed the least compressibility (63.7%), perhaps because of the
inherent randomness of edge presence, though some inference was possible
because the degree distribution is binomial.
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A.1.1 Parameter Variation and Directed Graphs. We achieved similar re-
sults when varying the size of the input graph. We varied the graph size
between n = 50, 100, 150. Autoencoders with a single hidden layer and 20%
the number of hidden units as input units had reconstruction accuracies of
0.766, 0.777, and 0.737, respectively (similar gains versus other methods,
including using 10% hidden units). We also varied FF, DMC, and ER model
parameters to lie in [0,1]. When 10%/20% hidden units (n = 100) were used,
reconstruction accuracy increased by 11%/5% compared to the parameter
range discussed in the main text. We also experimented with directed net-
works for each model and found similar ordering of performance for all
methods (omitted here for brevity).

A.1.2 Run Time. Training an autoencoder using 50,000 graphs (n = 100)
on a single machine took approximately 128 minutes.

A.2 Further Analysis of Graph Features Learned by the Autoencoders.
To complement the results discussed in the main text, we trained a deeper
autoencoder with five hidden layers (4950 → 1500 → 750 → 400 → 100
→ 25) using 1 million graphs from all five models collectively. We then
generated 5000 test graphs using all models and for each graph computed
several popular hand-curated features.1 We then inputted each graph to the
autoencoder and recorded the activation of each hidden layer unit. Our goal
was to determine if there were hidden units whose activity was strongly
correlated (Pearson > 0.6) with the feature value (e.g., nodes that mostly
fired for high-modularity graphs).

Table 1 shows the features recognized by units in the fourth and fifth hid-
den layers. Interestingly, in the fifth layer, several units learned to recognize
the normalized eigenvalue of the graph, but none of them recognized other
measures that often correlate with the eigenvalue, including the average
degree and density of the graph. Thus, while some features are themselves
correlated (which can lead to some redundancies), this suggests that higher-
order features are learned that are not simply related to the number of edges
in the graph. Overall, 19 of the 28 features tested were recognized by some
hidden layer 4 or 5 unit (see Table 1). There were also features that were
recognized by multiple hidden units, suggesting a representation that is
distributed over many units (Hinton, McClelland, & Rumelhart, 1986).

To provide intuition of what is encoded by individual hidden units
that does not rely on correlating activity with human-derived features,

1Features: average degree, first eigenvalue of the adjacency matrix, number of edges,
number of components, size of the maximal independent set, number of triangles, cluster-
ing coefficient, k-core size, number of articulation points, fraction of degree 1 nodes, cover
time of the graph, betweenness centrality, closeness centrality, network density, average
all-pairs shortest path length, modularity, number of modules, and counts for each of the
11 four-node nonisomorphic undirected kernel subgraphs.
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we performed the following test. We presented the autoencoder described
above with 5000 random graphs selected from four models (DMC, PA, FF,
SMW) in equal proportions. For each of the 100 hidden units in the fourth
hidden layer, we recorded the graph (and the model that generated it) that
maximally activated the unit. In other words, for each hidden unit j, we
found

G∗, j = argmax
Gi

|a( j, Gi)|, (A.1)

where i = 1 : 5000 corresponding to the input graphs, a( j, Gi) is the activa-
tion of unit j when presented input graph Gi, and G∗, j is the graph that
unit j maximally responds to. In Figure 4, we show eight hidden units,
along with a visualization of the graph (and the graph’s generating model)
that maximally activated the unit. We show two units per model; one unit
that responded to a relatively dense graph and one that responded to a rela-
tively sparse graph. For example, hidden unit 42 was maximally responsive
to an FF-generated graph that contained many hub-and-spoke subgraphs.
Unit 83 was maximally responsive to a DMC graph with many chain-like
structures. While it is still difficult to translate these visualizations to pre-
cise human understanding, it does provide some intuition of the range of
features that may be encoded across hidden units.

A.3 Graph Isomorphism: Detecting Invariances in Graphs. Detect-
ing invariances is a critical component of feature extraction across many
domains (Goodfellow et al., 2009), including graphs. To explicitly test
whether DL features are robust to topological invariances, we challenged
it to solve a notoriously difficult graph-theoretic problem: graph isomor-
phism. This problem is defined as follows: Given two graphs, G1 = (V1, E1)

and G2 = (V2, E2), are G1 and G2 isomorphic? That is, does there exist a
mapping f : V1 → V2 such that u, v ∈ E1 iff f (u), f (v) ∈ E2?

To cast this as a learning problem, we created a training data set of pairs
of isomorphic and nonisomorphic graphs as follows. First, we generated a
graph G1 using a random graph model. To create an isomorphism of G1,
we copy G1 to G2 and then randomly swap the labels of G2 (i.e., shuffle
its rows and columns). To create a nonisomorphism of G1, in addition to
copying and label swapping, we also select two existing edges in G2 and
swap their end points: (u1, v1) and (u2, v2) become (u1, v2) and (u2, v1),
ensuring that neither of the latter two edges already exists. Crucially, this
procedure leaves both graphs with the same degree of distribution. In both
cases, G1 remains fixed, and we varied the number of edge swaps as a
percentage of the number of edges in G2. Training and test sets were split
evenly between isomorphic and nonisomorphic pairs. The input to the DL
classifier is the concatenation of the flattened adjacency matrices of both
graphs.
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Figure 5: Graph isomorphism using deep learning. Classification accuracy of
a deep classifier for predicting whether two graphs are isomorphic. Results are
shown for each random graph model separately as a percentage of the number
of edge swaps in the isomorphism test.

We trained one DL classifier per random graph model using pairs of
50-node graphs from the model. The classifier had 2450 input units (rep-
resenting the two input graphs), one hidden layer with 500 units, and two
output nodes (isomorphic or not). With many edge swaps (50%), we could
predict whether two graphs are isomorphic with very high accuracy: 95.4%
for FF, 93.4% for PA, and 83.0% for DMC (see Figure 5). With fewer edge
swaps (20%), average accuracy across the three models was still high: 91.1%
for FF graphs, 85.9% for PA, and 73.9% for DMC. Accuracy for SMW was
nearly random, perhaps because of the strong symmetries imposed by this
model. This suggests that DL can detect some, but not all, invariances in
the topology and that DL features are independent of the number of nodes
and edges in the graph and the graph’s degree distribution.
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