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The tethering of chromatin to the nuclear envelope
supports nuclear mechanics
Sarah M. Schreiner1,*, Peter K. Koo2,*, Yao Zhao3, Simon G.J. Mochrie2,3 & Megan C. King1

The nuclear lamina is thought to be the primary mechanical defence of the nucleus.

However, the lamina is integrated within a network of lipids, proteins and chromatin; the

interdependence of this network poses a challenge to defining the individual mechanical

contributions of these components. Here, we isolate the role of chromatin in nuclear

mechanics by using a system lacking lamins. Using novel imaging analyses, we observe that

untethering chromatin from the inner nuclear membrane results in highly deformable nuclei

in vivo, particularly in response to cytoskeletal forces. Using optical tweezers, we find that

isolated nuclei lacking inner nuclear membrane tethers are less stiff than wild-type nuclei and

exhibit increased chromatin flow, particularly in frequency ranges that recapitulate the

kinetics of cytoskeletal dynamics. We suggest that modulating chromatin flow can define

both transient and long-lived changes in nuclear shape that are biologically important and

may be altered in disease.
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C
ells are subjected to mechanical stress, both from
extracellular sources (such as forces exerted on the skin
or sheer flow across the endothelia of the vasculature) and

internal sources (such as forces exerted by the cytoskeleton).
Thus, mechanisms to adapt to and dissipate mechanical stress are
necessary for cell survival. It is well established that extracellular
mechanical forces can be transmitted to the nucleus1,2. Further,
disruption of the mechanical properties of the nucleus during
normal cellular processes like migration compromises cell
survival3,4 and can sometimes lead to disease5. Defining the
factors that underlie the mechanical properties of the nucleus and
how these factors can be remodelled is an essential challenge in
the field.

The nuclear lamina is considered to be the primary mechanical
defense of the mammalian nucleus6,7. Strong evidence suggests
that A-type lamins provide a mechanical buffer to cellular
forces in differentiated cells8,9, particularly those that reside in
stiff tissues, whereas the B-type lamins are essential for
organogenesis10. Mutations in A-type lamins are associated
with numerous diseases, including Hutchinson–Gilford progeria
syndrome in which nuclei are stiff and fragile11,12 and Emery–
Dreifuss muscular dystrophy in which nuclei are unusually soft13.
Further, increasing the concentration of lamin A augments the
viscoelasticity and rigidity of the nucleus, which has been shown
to contribute to mechanical scaling between nuclei and the tissue
in which they reside14–16.

In addition to the ability of lamins to oligomerize into a
polymeric assembly that can directly contribute to the stiffness of
the nucleus6,7,17, the lamina is also associated with peripheral
heterochromatin18,19. Indeed, lamins associate with chromatin at
the nuclear envelope either through association with integral
inner nuclear membrane (INM) proteins such as LAP1 and
proteins of the LEM domain family (LAP2, emerin, Man1)
or a host of soluble nuclear factors20. Mutations in INM proteins,
such as emerin and LAP1, underlie a broader set of genetic
diseases termed ‘nuclear envelopathies’ that in some cases
phenocopy lamin mutations21. Likely, it is this integrated
network of proteins and polymers18,22 that define the ensemble
mechanical properties of the nucleus. This integrated network
creates a challenge for dissecting the relative contributions of
lamins, INM proteins and the associated chromatin to nuclear
mechanics, particularly because of the co-dependence of their
localization23,24.

Unlike lamins, LEM domain proteins were present in the last
eukaryotic common ancestor25, suggesting that the association of
chromatin with the INM is an ancient aspect of nuclear
organization. Interestingly, numerous organisms that are largely
protected from external forces by a cell wall lack genes
homologous to the lamins, suggesting a lamin-independent
mechanism capable of buffering internal forces, such as those
delivered by the cytoskeleton onto nuclei. Both Saccharomyces
cerevisiae and Schizosaccharomyces pombe express two LEM
domain proteins, Heh1 and Heh2 (refs 26–28). Heh1 and Heh2
are orthologues of the mammalian LEM domain proteins Man1,
LEMD2 and emerin26,28. S. pombe has an additional, conserved
INM protein, Ima1, which also associates with chromatin29

and is homologous to mammalian Net5/Samp1 (refs 29,30).
Importantly, loss of INM proteins leads to apparent defects in
nuclear structure in fission yeast28,29,31.

In this study, we investigate how association of chromatin with
the nuclear periphery influences the ability of the nucleus to
withstand mechanical forces in the model organism, S. pombe.
S. pombe lacks lamins25, allowing us to isolate the contribution of
chromatin to nuclear mechanics. In S. pombe, the spindle pole
body (SPB), the centrosome equivalent in yeast, is tethered to the
nuclear envelope (NE) through NE-spanning LINC (Linker of

Nucleoskeleton and Cytoskeleton) complexes32–34. Microtubules
(MTs) emanating from the SPB grow stochastically towards the
cell tips35; once the growing MT reaches the cell cortex,
continued MT polymerization applies a rear-ward force onto
the nucleus. This mechanism maintains the nucleus in the middle
of the cell to support symmetric cell division36. Interestingly,
S. pombe chromosomes are organized in the ‘Rabl’
conformation37, with the centromeres clustered at the SPB
interface38. Thus, centromeric heterochromatin is associated with
the region of the NE that is physically linked to dynamic MTs in
the cytoplasm.

Here, we use new quantitative approaches to investigate
S. pombe nuclear mechanics in vivo and in vitro. Our work
demonstrates that the association of chromatin with the INM
contributes substantially to nuclear stiffness. Further, increased
mobility of chromatin in the absence of INM tethers allows for
chromatin flow in response to MT-induced fluctuations, leading
to longer-lived defects in nuclear shape. This work suggests that
the rate of chromatin flow can be tuned by modulating chromatin
tethering to the nuclear periphery.

Results
Microtubules drive nuclear envelope fluctuations in vivo. To
assess the nuclear response to intracellular forces, we first sought
to develop an assay to measure NE fluctuations in vivo. To
visualize the NE, we used strains expressing Cut11-GFP (green
fluorescent protein) from its endogenous locus; Cut11 is an
integral membrane protein of the nuclear pore complex39.
Monitoring Cut11-GFP in living cells provided a means to
monitor nuclear shape, which responds to thermal forces as well
as MT forces in vivo29,36,39. We specifically analysed cells in the
G2 phase of the cell cycle, which were visually identified on the
basis of the criteria that they were single cells (that is, they
had completed cytokinesis) and did not have Cut11-GFP
associated with the spindle pole body (which occurs at mitotic
entry39). Three-dimensional (3D) structural information of
individual nuclei was encoded in two-dimensional (2D)
sequential microscope images collected at different focal depths
(10 z-slices each separated by 400 nm) collected every 2.5 s
for 5 min.

To quantitatively assess nuclear fluctuations at each time point,
we reconstructed a 3D contour of the NE with sub-pixel
resolution. We used a novel optimization scheme that seeks to
maximize the contour intensity at each image stack while
simultaneously minimizing the bending of the contour.
A representative reconstruction of a wild-type NE at various
time points is shown in Fig. 1a as both a 3D rendering and 2D
cross-sections at three z-slices about the centre of the nucleus (see
also Supplementary Movie 1). Using spherical coordinates
centred on the nucleus at each time point, each NE fluctuation
was defined as the difference between the radial coordinate of the
contour and its time-averaged radial value; this approach also
allows us to correct for changes in nuclear position over time. The
frequency and magnitude of fluctuations, sampled at equally
spaced spherical angles around the nucleus, were assessed by
computing the root mean square fluctuation (RMSF). The RMSF
thus provides a quantitative metric for changes in nuclear shape
over time.

We compared the RMSF of cells imaged with and without
carbendazim (MBC), which depolymerizes MTs. The distribution
of RMSF from a population of nuclei over time at each spherical
angle clearly shows that untreated nuclei have larger fluctuations
on average compared with MBC-treated nuclei (Fig. 1b). Thus,
our fluctuation analysis is sufficiently sensitive to capture the
impact of active MT dynamics on nuclear shape.
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To test whether the actin cytoskeleton also applies forces
that can drive fluctuations of the NE, we analysed nuclear
fluctuations in cells treated with latrunculin A (Lat A), which
depolymerizes actin. Actin depolymerization in S. pombe
causes a population of cells to arrest in G2 (ref. 40), increasing

the size of the cells and, therefore, the size of the nuclei41. After
applying a size filter to account for this effect (Supplementary
Fig. 1a), we found that actin depolymerization in cells caused
a minor shift towards larger RMSF values compared with
untreated cells (Supplementary Fig. 1b). Thus, MT forces
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Figure 1 | Microtubules drive large nuclear envelope fluctuations in vivo. (a) Contour surface of a representative wild-type nucleus. The 3D contour of

the nucleus was determined at each time point. The 3D contour is projected onto three z-slice images separated by 0.4 mm about the centre of the nucleus

over a 60-s time course (top). The fitted 3D contour at each time point is shown below. Scale bars, 1.6 mm (top) and 0.6mm (bottom). (b) Probability

distribution of the root mean square fluctuations (RMSF) for wild-type cells (red, n¼ 77) and cells treated for 10 min with MBC to depolymerize

microtubules (black, n¼ 79). Inset: cumulative (cum.) probability distribution of the RMSF. (c) The 2D projection map of the 3D NE fluctuations for a

representative wild-type nucleus at a given time point. Each pixel represents a fluctuation at each equally spaced angular position along the contour, p/4

latitudinal (polar) angles above and below the centre of the nucleus (y axis) and 2p longitudinal (azimuthal) angles around the contour (x axis). Fluctuation

height is displayed as a heat map, with larger fluctuations in red and smaller fluctuations in dark blue. (d) The angular distribution of RMSF averaged over

polar angles defined by the cell length in wild-type and wild-typeþMBC cells. The coordinate map shows that a zero angle is defined in the direction of the

cell length and 90� is in the direction of the cell width (right). (e) A kymograph was generated by concatenating the longitudinal pixel line at a fixed

latitudinal angle about the centre of a fluctuation at each time point from the 2D fluctuation projection map series (left). The magnitude of the tracked

fluctuation at each time point plotted over time (black) is fit with a single asymmetric triangle waveform to determine the rise and decay time (right).

(f) Quantification of the number of large fluctuations per nuclei per minute in wild-type and wild-typeþMBC nuclei. (g) Timescales of the rise and decay of

microtubule-dependent fluctuations (n¼ 31). Plots in d, f and g display mean±s.e.m. Data are from a minimum of three biological replicates.
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are the primary driver of large NE fluctuations in this
system.

To discriminate between fluctuations caused by MT dynamics
from thermal fluctuations, we generated a sequence of spatial
maps of NE fluctuations (Fig. 1c,e). The landscape of each 3D
nuclear contour was obtained by plotting fluctuation size
(represented as a heat map) at each latitudinal and longitudinal
angle (Fig. 1c). We assessed the angle at which these fluctuations
occur using a polar coordinate system based on the long axis of
the cell (Fig. 1d). While NE fluctuations in MBC-treated nuclei
are small and are uniformly distributed along the NE (Fig. 1d,
black line), untreated nuclei have a distinct pattern in which
larger NE fluctuations occur at 30 degrees and 150 degrees along
the polar axis (Fig. 1d, red line) with a minimum at 90 degrees
(orthogonal to the long axis of the cell). Given that MT
polymerization is aligned with the long axis of the cell, this
result confirms that large NE fluctuations are primarily due to
MT-derived forces.

The NE fluctuations maps were next interrogated to spatially
track the fluctuation over time, allowing us to monitor the
amplitude and duration of a fluctuation event. The one-
dimensional angular trajectory of a fluctuation event can be
represented with a kymograph (Fig. 1e). The resulting amplitude
of each NE fluctuation time series was fit with a single peak
asymmetric triangle waveform, allowing us to determine the rise
and decay times (Fig. 1e). Comparing untreated versus MBC-
treated cells, we established criteria to identify MT-induced
fluctuations. These criteria require that a fluctuation maintains a
minimum height of 50 nm for a duration longer than 25 s
(Supplementary Fig. 1c). This approach was validated by
comparing the frequency of fluctuations that meet these criteria
in untreated versus MBC-treated cells (Fig. 1f). The duration of
large NE fluctuations corresponds very well within the known
duration of MT forces on the nucleus (B90 s) in S. pombe36

(Fig. 1g). Interestingly, MT-dependent fluctuations decay faster
than they form; since MTs in S. pombe undergo a rapid
catastrophe, the rate at which the fluctuations resolve is likely
dependent on the innate physical properties of the nucleus.

Untethering chromatin alters NE fluctuations in vivo. Our
previous work suggests that association of heterochromatin with
the INM plays an important role in supporting nuclear
mechanics29. To quantitatively investigate this model, we focused
on three conserved integral INM proteins: Heh1 (also called
Lem2), Heh2 (also called Man1) and Ima1, which contribute to
chromatin tethering to the nuclear periphery28,42–44. On the basis
of proteomic studies, there are B1,000 copies of Heh1, 500 copies
of Heh2 and 200 copies of Ima1 per cell45. In S. pombe, a fraction
of Heh1-GFP and GFP-Ima1 co-localize with the S. pombe SUN
domain protein, Sad1-mCherry, which resides at the centromere–
spindle pole body interface of the NE29 (Fig. 2a). By contrast,
Heh2-GFP is dispersed throughout the NE where it is found in
faint foci (Fig. 2a). Importantly, Heh1, Heh2 and Ima1 target
independently to the NE and loss of these chromatin tethers does
not substantially alter the focal nature of heterochromatin within
the nucleus as assessed by visualization of heterochromatin-
binding proteins46,47 (Supplementary Fig. 2b–d). Further, while
there are subtle alterations in the total nuclear intensity of
heterochromatic foci in heh1D and heh2D cells, these differences
do not correlate with the observed effects on nuclear mechanics
(see below and Supplementary Fig. 2e).

Qualitatively, cells lacking INM proteins have apparent defects
in nuclear shape (Fig. 2b and Supplementary Movies 2–8). To
quantitatively assess these defects, we compared the RMSF
distribution in the absence of individual INM proteins as in Fig. 1.

While ima1D cells display a modest increase in RMSF, both
heh1D and heh2D cells exhibit a prominent shift towards larger
RMSF, with a substantial tail towards very large RMSF values that
are rarely observed in wild-type cells (Fig. 2b,c, solid lines).
The increased tail of the RMSF distributions seen in heh1D and
heh2D cells indicates a higher occurrence of very large NE
fluctuations.

We next investigated the different combinations of INM
protein knockouts. In general, increasing release of chromatin
from the INM shifts the distribution to larger RMSF values and
further increases the tail of the distribution (Fig. 2b,c, dashed
lines). The increase in unusually large NE fluctuations is more
clearly revealed when displayed as a semi-log plot (Fig. 2c, inset).
Here, it can be seen that all genetic backgrounds that lack Heh1
display a marked increase in very large fluctuations. Importantly,
depolymerization of MTs leads to a loss of all large fluctuations
for every genotype (Fig. 1b and Supplementary Fig. 3a).
Interestingly, the RSMF distributions correlate with the impact
of the alleles on growth, with enhancing effects of heh1 and ima1
and suppressive effects of heh2 (Supplementary Fig. 3b). Indeed,
heh1Dheh2D cells show improved growth and smaller RMSF
compared with heh1D cells (Supplementary Fig. 3a,b).

We next investigated whether decoupling chromatin from the
nuclear periphery impacted the timescale of NE fluctuations using
the same approach as in Fig. 1g. The mean rise time for the
deformations was not statistically different between wild-type and
cells lacking INM proteins (Fig. 2d), consistent with the
expectation that the MT polymerization rate dictates rise time.
Interestingly, the decay time of fluctuations was longer in all of
the mutant cells compared with wild type. This property appears
distinct from the impact on NE fluctuation size. Thus, not only
are NE fluctuations generally larger when tethering of chromatin
to the nuclear periphery is compromised, but these NE
fluctuations also persist longer. Together, these two defects likely
underlie the overall changes in nuclear shape that are seen in cells
lacking INM proteins (Fig. 2b).

We next compared the effect of releasing chromatin from the
NE due to loss of chromatin tethers with the effective ‘dilution’ of
chromatin tethers at the nuclear periphery by increasing nuclear
volume. To achieve this, we took advantage of the temperature-
sensitive cdc25-22 strain, which arrests in G2 due to insufficient
Cdc2 (Cdk1) activity48. During this G2 arrest, the cells continue
to grow, leading to a concomitant growth in the nuclear volume41

without changes in the amount of chromatin. The cdc25-22 nuclei
have on average an B50% increase in their nuclear volume
compared with wild-type nuclei (Fig. 3a). Consistent with a
model in which chromatin plays a mechanical role at the NE, we
find that cdc25-22 nuclei have both larger RMSF values (although
this effect is milder than all but the ima1D cells) and a slightly
longer decay time than wild-type nuclei (Fig. 3b–d and
Supplementary Movie 9). This suggests that effective ‘dilution’
of chromatin tethers impacts nuclear mechanics, although to a
lesser extent than decoupling chromatin from the NE through
loss of tethering factors.

Last, we evaluated whether the chromatin state impacts nuclear
fluctuation size by treating the cells with trichostatin A (TSA), a
histone deacetylase inhibitor. In this condition, we observed
abundant tubulation of the NE in both wild-type and INM
protein knockout backgrounds (Supplementary Fig. 3c). These
tubules disappeared once the cells were treated with MBC,
however, MBC-treated nuclei never fully recovered their spherical
shape (Supplementary Fig. 3c). While we are cautious to over-
interpret these findings given the pleiotropic nature of this
perturbation (which leads to extensive changes in gene transcrip-
tion), these effects suggest that changes in the chromatin state can
have a mechanical impact.
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Characterization of wild-type nuclear mechanics in vitro.
Although 3D contour fluctuation analysis allows for robust
characterization of the nuclear response to MT forces in vivo, a
full biophysical characterization of nuclear mechanics requires
that the nuclear response be measured with calibrated forces
across a wide range of timescales in vitro. To achieve this, we
isolated nuclei from the same strains that were characterized in
Fig. 2 by an adaptation of protocols for purification of intact
budding yeast nuclei49 (see Methods). These nuclei appear intact
by scanning electron microscopy (SEM, Fig. 4a) and are
impermeable to 70 kDa dextran (Supplementary Fig. 4a).
Importantly, these nuclei appear to have the same
heterochromatin organization as in intact cells by visualization
of GFP-Swi6, the HP1 orthologue (Supplementary Fig. 4b).
Nuclei prepared in this manner are sufficiently pure for further
experimentation given our ability to select individual nuclei for
study (see below).

We developed a novel force spectroscopy assay that allows us
to directly measure the stiffness of isolated nuclei under a variety
of experimental conditions (Fig. 4b,c). In a flow cell designed with
two input ports and one output port (Supplementary Fig. 4c), we
nonspecifically adhere large (5.2mm) poly-ornithine-coated silica
beads to the coverslip (Fig. 4b). S. pombe nuclei are flowed into
the flow cell and an individual nucleus is trapped using the optical
tweezers. We select individual nuclei that are between 1.5 and
3 mm, spherical in shape (as assessed by Cut11-GFP fluorescence)
and lack any residual tubules of endoplasmic reticulum (visible by
transmitted light microscopy, Fig. 4c). Once trapped, each
nucleus is associated with the side of one of the large, poly-
ornithine-coated silica beads, which elevates the nucleus off of the
coverslip and provides a hard wall against which forces can be
applied. After the desired nucleus is immobilized, the flow cell
design allows the remainder of the nuclear preparation to be
washed away by flowing buffer through one of the two input

Heh1-GFP

Heh2-GFP

GFP-Ima1

GFP
Sad

1-
m

Che
rry

M
er

ge
d

0
0.

01
0.

02
0.

03
0.

04
0.

05
0.

06
0.

07
0.

08
0.

09 0.
1

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

P
ro

ba
bi

lit
y

Wild type
heh1Δ
heh2Δ
ima1Δ
heh1Δheh2Δ
heh1Δima1Δ
heh2Δima1Δ
heh1Δheh2Δima1Δ

0
0.

01 0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09 0.

1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Root mean squared fluctuation (μm)
C

um
ul

at
iv

e 
pr

ob
ab

ili
ty

0
0.

01
0.

02
0.

03
0.

04
0.

05
0.

06
0.

07
0.

08
0.

09 0.
1

10−4

10−3

10−2

10−1

RMSF (μm)

heh1Δ heh2Δ ima1Δ
heh1Δ
heh2Δ

heh1Δ
ima1Δ

heh2Δ
ima1Δ

heh1Δ
heh2Δ
ima1Δ

z=4

z=5

z=6

3D

Root mean squared fluctuation (μm)

T
im

e 
(s

)

Rise Decay
0

20

40

60

80 Wild type

heh1Δ

heh2Δ

ima1Δ

heh1Δheh2Δ

heh1Δima1Δ

heh2Δima1Δ

heh1Δheh2Δima1Δ

*

***
***

** ** *
**

NS

P
ro

ba
bi

lit
y

Figure 2 | Untethering chromatin from the nuclear envelope affects the nuclear response in vivo. (a) Representative images of cells expressing

Sad1-mCherry and either Heh1-GFP, Heh2-GFP or GFP-Ima1. Scale bar, 0.64mm. (b) Representative 3D contours for each of the INM protein knockout

strains as in Fig. 1a. Scale bars, 1.6 mm (top) and 0.6mm (bottom). (c) Comparison of RMSF probability distribution (left) and cumulative probability

distribution (right) between wild-type (n¼ 77), heh1D (n¼61), heh2D (n¼ 58), ima1D (n¼ 80), heh1Dheh2D (n¼ 71), heh1Dima1D (n¼44), heh2Dima1D
(n¼ 53) and heh1Dheh2Dima1D (n¼ 34) nuclei. Wild-type and single mutants are plotted with solid lines and combinations of mutants are shown with

dashed lines. Inset—RMSF probability distributions plotted on a log scale to emphasize the tail behaviour of each distribution. (d) The average rise time and

decay time of microtubule-dependent fluctuations for all strains, measured as in Fig. 1g and plotted as the mean±s.e.m. Wild-type (n¼ 31), heh1D (n¼ 52),

heh2D (n¼ 28), ima1D (n¼ 25), heh1Dheh2D (n¼ 57), heh1Dima1D (n¼ 50), heh2Dima1D (n¼ 18) and heh1Dheh2Dima1D (n¼ 31). NS, not significant,

*Po0.05, **Po0.01, ***Po0.001 by Student’s t-test. Data are from a minimum of three biological replicates.
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ports. Subsequently, small (1.2mm) poly-ornithine-coated latex
beads are flowed into the flow cell through the second input port,
trapped and manoeuvred next to the nucleus. By gently placing
the small bead in contact with the nucleus, we are able to induce
nonspecific electrostatic interactions between the nucleus and the
poly-ornithine-coated surface. Movement of the coverslip (and
thereby the large bead and nucleus) while holding the small bead
in the optical trap allows us to apply rounds of tension and
compression at a set amplitude and frequency, as well as a means
to measure the mechanical response of the nucleus (Fig. 4b).

To assess nuclear mechanics over a broad range of timescales,
we begin by sinusoidally driving the stage with slow
oscillations (0.01–0.5 Hz) that recapitulate the timescale of MT

polymerization in vivo36 and then incrementally increase the
frequency of the oscillations on a single nucleus to timescales
much faster than MT polymerization rates (1–2 Hz). Importantly,
we expended great efforts to improve drift control methods that
allow us to obtain reliable data at these biologically relevant
timescales, which are often inaccessible by force spectroscopy50.
We first chose to test oscillation amplitudes that drive 50–60 nm
nuclear deformations, which approximately recapitulate the scale
of MT-dependent NE fluctuations in vivo (Supplementary
Fig. 1c). The mechanical response of wild-type nuclei appeared
elastic (that is, the force versus extension relationship was linear)
with B3–4 pN of force at maximal extension at all frequencies
(Fig. 4d). Given this linear behaviour, we fit the data to
F¼ knucleusDxnucleus where F is the force applied, knucleus is the
effective stiffness of the nucleus and Dxnucleus is the displacement
of the NE from equilibrium51. We then compared knucleus for each
individual oscillation (Fig. 4e). The nuclei appear to have a very
modest frequency-dependent stiffening behaviour, with a slightly
softer apparent stiffness between the slowest timescale (0.01 Hz)
and all faster timescales (0.025–2 Hz; Fig. 4e). These observations
are in line with several mechanical studies of wild-type
mammalian nuclei, which also demonstrate time-dependent
stiffening behaviour52–54. In addition, we tested whether
the presence of adenosine triphosphate (ATP) or an ATP
regeneration system impacts the mechanical response of the
nucleus in this experimental regime, but observed no substantial
difference when an individual nucleus was tested sequentially
under both conditions (Supplementary Fig. 4d). We chose to
carry out the rest of the described experiments in the presence of
2 mM ATP.

The hint of frequency dependence observed for small
amplitude oscillations between 0.01 and 0.025 Hz (Fig. 4e)
suggests the possibility that wild-type nuclei have a minor viscous
component that is not apparent in the individual force versus
extension plots (Fig. 4d). To better investigate whether there is
such a viscous component to the mechanical response of wild-
type nuclei, we applied large oscillatory deformations (B170 nm),
which represent the length scales of rare in vivo fluctuations,
followed by a series of small oscillatory deformations (B60 nm),
and then another series of large oscillations. At the large
oscillations, the force versus extension curves exhibit a repro-
ducible hysteresis, indicating that the nuclei have a minor viscous
component (Fig. 4f and Supplementary Fig. 4e). Interestingly,
when the compression force reaches B4–5 pN, the response of
the nucleus begins to plateau. During the intervening small
oscillations, we observe the same linear (elastic) response as
before (Fig. 4e). As a further test, we also performed force clamp
experiments in which we apply a sudden pull on a nucleus with a
constant force and monitor the nuclear extension over time
(Fig. 4g and Supplementary Fig. 4f). From these experiments, we
can access the characteristic timescale of this creep behaviour,
which we found is reproducibly in the range of B10 s.
Interestingly, the characteristic timescale of this viscous compo-
nent is similar to that described previously for mammalian
nuclei55. In these studies, it was suggested that the flow of
chromatin within the volume of the nucleus underlies a viscous
component of nuclear mechanics; such chromatin flow likely
explains the mild decrease in apparent stiffness at slow timescales
observed here for S. pombe nuclei.

Untethering chromatin alters nuclear mechanics in vitro. Next,
we isolated nuclei lacking individual INM proteins and assessed
their mechanical properties using the force spectroscopy assay.
Similar to wild-type nuclei, heh1D, heh2D and ima1D
nuclei display time-dependent stiffening behaviour at small
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Figure 4 | Wild-type nuclei are elastic with a minor viscous component. (a) SEM image of an isolated, wild-type nucleus. Scale bar, 2.0 mm.

(b) Diagram of the in vitro optical tweezers assay. An isolated nucleus is adhered to the side of a large (5.2mm), poly-ornithine-coated bead immobilized on

a coverslip. A small (1.2mm), poly-ornithine-coated bead trapped within a stationary optical trap is attached to the nucleus on the other side. Rounds of

tension and compression can be applied to the nucleus by moving the coverslip back and forth sinusoidally. The magnitude of the force applied to the

nucleus is measured by the displacement (red vertical dashed line) of the small bead from the centre of the optical trap (black vertical dashed line).

(c) Representative transmitted light image (left) and wide-field fluorescence image (right) of an isolated, wild-type nucleus expressing Cut11-GFP that is

electrostatically attached between a large (5.2 mm) and small (1.2 mm) poly-ornithine-coated bead. Scale bar, 1.1mm. (d) Representative force versus

extension relationships and linear fits from one set of 50 nm amplitude oscillation frequencies on a wild-type nucleus. (e) Nuclear stiffness of wild-type

nuclei from 50 nm (red, n¼ 13) amplitude oscillations for a range of frequencies. Two rounds of oscillatory forces were applied at each frequency of a

frequency series for each nucleus. Error bars represent s.d. (f) Force versus extension relationships for a single nucleus subjected to a set of 170 nm

amplitude oscillations (top), followed by 60 nm amplitude oscillations (middle) and another set of 170 nm amplitude oscillations (bottom).

(g) Representative creep response of a wild-type nucleus acquired via a force clamp, where the extension of the nucleus is constantly adjusted in a

feedback loop to maintain a constant 4 pN tensile force. The creep response was fit to Dx(1� exp (� t/t)). The best fit parameters for the trace shown are

Dx¼ 8.2±0.3 nm and t¼ 16±1.0 s, where the errors represent the square root of the inverse observed Fisher Information. See also Supplementary Fig. 4e.
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deformations, which is particularly prominent for heh2D nuclei
(Fig. 5a). This time-dependent effect manifests as an increase in
compliance at slow oscillation frequencies (0.01–0.1 Hz). Because
this timescale recapitulates the in vivo lifetime of NE fluctuations,
this suggests that nuclei lacking INM proteins are softest at the
frequency range that is most relevant for buffering MT forces
in vivo. Decreasing the chromatin to nuclear volume ratio also
led to a modest decrease in nuclear stiffness at all frequencies
compared with wild type (cdc25-22, Fig. 5a), consistent with the
in vivo measurements (Fig. 3).

By fitting the time-dependent stiffening behaviour to a simple
viscoelastic model (Supplementary Fig. 4g and Methods), we can
clearly see that each INM protein contributes to the observed
stiffness of the nucleus, as heh1D, ima1D and particularly heh2D
nuclei are all softer than wild type (Fig. 5a,b). Further, wild-type
nuclei exhibit higher viscosity than nuclei lacking INM proteins,
suggesting that tethering of chromatin to the NE attenuates
chromatin flow (Fig. 5a,c). The characteristic timescale t, at
which the stiffness plateaus for each type of nucleus, indicates the
timescale required for chromatin to respond to external forces.
Nuclei lacking INM proteins have shorter t values than wild-type
nuclei, further supporting a greater propensity for chromatin to
flow in the absence of NE tethers (Fig. 5a,d). By contrast, lowering
the chromatin to nuclear volume ratio led to only a slight
decrease in stiffness and intermediate value for viscosity and t,
despite the fact that cdc25-22 nuclei having 50% greater volume
than wild-type nuclei (Fig. 5c,d). As a control, we applied similar
oscillatory forces on vesicles that mimic nuclei in their size, lipid
composition and internal viscosity (see Methods); these vesicles
are highly deformable relative to all nuclei (Fig. 4a–d).

To further evaluate whether tethering of chromatin to the NE
underlies the observed viscous component of nuclear mechanics,
we took advantage of the fact that S. pombe undergo a closed
mitosis in which the NE remains intact but chromatin is globally
released from the INM to facilitate chromosome segregation56.
We allowed cells to accumulate in mitosis by culturing them in
the presence of the spindle poison, MBC, followed by isolation of
the nuclei. Consistent with our expectation, mitotic nuclei are

softer than any of the nuclei lacking individual INM proteins
(Fig. 5a,b). Interestingly, they also show clear time-dependent
stiffening behaviour (Fig. 5a). By fitting the data to the viscoelastic
model, we see that the mitotic nuclei are the most compliant
and exhibit the lowest viscosity and shortest characteristic time
(t; Fig. 5a–d). This supports a model in which untethering of
chromatin from the nuclear periphery decreases both nuclear
stiffness and viscosity.

Discussion
Taken together, these data support a model in which tethering of
chromatin to the nuclear periphery supports two critical
functions: it imparts stiffness to nuclei and attenuates the flow
of chromatin within the nucleus. When stress is delivered onto
isolated chromosomes, they respond elastically57,58. However,
within the confines of the nucleus, chromatin can respond to
force by either flowing with or bearing the applied stress. Nuclei
with a normal extent of chromatin tethers predominantly
respond elastically to external forces below 4 pN, suggesting
that tethering of chromatin to the NE largely restrains chromatin
flow and favours the bearing of stress by chromatin. In this way,
the nucleus takes on the mechanical properties of its contents—
the chromatin. Untethering of chromatin allows it to flow
unabated; this property leads to compromised nuclear stiffness
that is particularly weak when nuclei are deformed slowly. While
in wild-type nuclei, the characteristic timescale of chromatin flow
is sufficiently slow to largely prevent migration of chromatin
into MT-dependent deformations (Fig. 6a), the absence of NE
chromatin tethers allows chromatin to respond to a deformation
by flowing to a new (lower energy) configuration (Fig. 6b).
Consequently, residual memory of the deformation persists even
after the force is removed, as seen in the slower decay of
MT-dependent fluctuations in vivo (Fig. 2d). Thus, microtubule
bundles impart, on average, deformations smaller than those that
impart hysteretic behaviour (Fig. 4f and Supplementary Fig. 4d).
This work also provides new insights into how in vivo
measurements of NE fluctuation size and timescales relate to
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Figure 5 | Tethering of chromatin to the nuclear envelope defines nuclear stiffness and viscosity. (a) Average nuclear stiffness of wild-type

(red, n¼ 13), cdc25-22 (purple, n¼ 3), heh1D (orange, n¼8), heh2D (yellow, n¼ 7), ima1D (green, n¼ 5) and mitotic nuclei (blue, n¼4) or vesicles

(pink, n¼ 3) from 50 nm oscillations over the frequency series. (b) Stiffness of the nuclei derived from a viscoelastic fit of the frequency series in a.

(c) Viscosity of the nuclei derived from the viscoelastic fit. (d) t derived from the viscoelastic fit. Error bars in all panels represent s.d.
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nuclear mechanics, as nuclear stiffness correlates well with
fluctuation size whereas the viscosity correlates well with
fluctuation decay time. Further, delineating this relationship
may allow insights into nuclear mechanics to be drawn from live-
cell imaging rather than requiring complex experimental methods
such as force spectroscopy.

The model put forth here suggests that a balance between the
biological timescales of nuclear deformations and the rate of
chromatin flow defines whether the nucleus retains ‘memory’ of
previous force. While in wild-type fission yeast such ‘plastic’
change appears to be avoided, in other contexts, for example in
migrating mammalian cells, physical ‘memory’ could facilitate
maintaining an altered nuclear shape that supports efficient
migration. While it has been observed that A-type lamins impart
a viscoelastic property to nuclei in some14,15, but not all9, studies,
the association of A-type lamins with chromatin raises the
possibility that at least a component of this behaviour is due to
the ability of lamins to serve as chromatin tethers, particularly,
as we observe viscous behaviour in a system lacking nuclear
lamins with decay times on the same order of magnitude as
these previous studies53,54,59. Thus, in addition to the clear
contribution of the A-type lamin polymer to nuclear stiffness, the
ability of the lamina composition to modulate chromatin flow
could also play a critical role in establishing the lifetime of
changes in nuclear shape. Thus, changes in nuclear shape that are
observed in ‘nuclear envelopathies’ could arise not just from
changes in nuclear stiffness, but also from changes in the kinetics
of chromatin flow.

While tethering of chromatin to the NE through INM proteins
appears sufficient to support stable nuclear mechanics in response
to intracellular forces in S. pombe, we expect that these tethering
proteins and their associated chromatin are insufficient to provide
the stiffness needed for nuclei to remain intact in the face of large
forces exerted on tissues (such as the skin) and in those cells that
reside within stiff mechanical environments (like bone). However,
at different stages of development, the stiffness of mammalian
nuclei varies drastically. While stem cell nuclei are soft, increased

nuclear stiffness occurs as cells differentiate in conjunction with
increasing lamin levels55. Thus, tethering of chromatin to the NE
may contribute more substantially to the stiffness of stem cells or
other cell types that are under low levels of external mechanical
stress7,60. Further studies will be required to investigate how
lamins and INM proteins cooperate to define nuclear stiffness
and the kinetics of chromatin flow.

Taking into account the measured in vitro stiffness of wild-type
nuclei (B0.06 pN nm� 1) and the average-sized MT-dependent
fluctuation from the in vivo measurements (B50–60 nm,
Supplementary Fig. 1c), we expect that the microtubule bundle
delivers B3–4 pN of force on the nucleus, which is within the
range possible for MT polymerization from a small number of
individual MTs61. Interestingly, the yield point at which the
elastic response begins to manifest a viscous component,
irrespective of the timescales of the applied stress, is about 5 pN
(Fig. 4f), which likely exceeds physiological forces; thus, the
mechanics of wild-type nuclei support an elastic response in vivo.
Within this context, the organization of chromatin appears
critical. S. pombe clusters its centromeres precisely at the region of
the nucleus that is subjected to the most powerful MT forces.
Accordingly, our findings show that specifically untethering
chromatin from the SPB interface (as in heh1Dima1D cells) leads
to the most pronounced mechanical defects in vivo. By contrast,
loss of Heh2, which is broadly distributed throughout the NE,
appears to mildly suppress increased fluctuation size in this
context. Such a differential distribution of Heh1 and Heh2 tethers
could allow them to act antagonistically, with Heh1 more likely to
promote chromatin migration into MT-dependent deformations
and Heh2 more likely to restrain this chromatin flow. In our
current in vitro system, we do not deliver forces specifically onto
the centromeric heterochromatin via the SPB and therefore we
cannot directly assess this possibility; testing this model will
require further assay development.

Interestingly, yeasts are not the only organisms that cluster
large blocks of heterochromatin at MT interfaces. Plants, which
also do not encode orthologues of the lamin genes, organize
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centromeres inside the nucleus at sites of MT interaction62. In
mammalian cells, heterochromatin association with the lamina
may, likewise, serve a mechanical role. Such a model suggests new
avenues to consider how nuclear mechanics can be modulated
during development and in disease.

Methods
Cell culture and strain generation. The strains used in this study are listed in
Supplementary Table 1. S. pombe cells were grown and maintained in standard cell
culture conditions63. All the strains were grown at 30 �C. Gene replacements were
made by replacement of the open reading frames with the kanMX6 (ref. 64),
hphMX6 or natMX6 (ref. 65) cassettes. C-terminal GFP tagging was performed
with pFa6a-GFP-kanMX6 (ref. 64). The pFa6a-mCherry-kanMX6 cassette was
used as a template for C-terminal mCherry tagging66. N-terminal GFP tagging was
performed as established using pFa6a-kanMX6-nmt41-GFP64. All strains
generated by cassette integration were confirmed by PCR. Strains made through
genetic crosses were confirmed by the segregation of markers and/or by the
presence of the appropriate fluorescently tagged protein.

Growth curves. For growth assays, 5 ml cultures were grown in YE5S at 30 �C
overnight to saturation. Cultures were diluted to an OD600 B0.05 in 50 ml of YE5S
and recovered at 30 �C for 2–3 h. OD600 measurements were taken every hour for
8 h. Doubling time was found using T¼ log(2t2� t1)/log(y/x), where T¼
generation time, y¼ cells per ml at t2 and x¼ cells per ml at t1. Cells per ml were
calculated using the following equation: x¼ (2� 106)/(0.1�OD600).

Microscopy. S. pombe strains were grown in YE5S plus 250 mg l� 1 adenine to log
phase (OD600 0.5–0.8). Cells were mounted on agarose pads (1.4% agarose in
Edinburgh minimal media) and sealed with VALAP (1:1:1, vaseline:lanolin:par-
affin). Cells treated with MBC were incubated on agar pads with 50 mg ml� 1 MBC
for 10 min before imaging. Cells treated with TSA were grown in YE5S media plus
30mg ml� 1 TSA overnight at 30 �C and placed on agar pads with 30 mg ml� 1 TSA
for imaging. Cells treated with Lat A were grown to log phase and treated with
100mM Lat A 30 min before imaging and placed on agar pads with 100 mM Lat A
for imaging. Live-cell images were acquired on a Deltavision Widefield Deconvo-
lution Microscope (Applied Precision/GE Healthcare) with a CoolSnap HQ2 CCD
camera (Photometrics) or an Evolve 512 EMCCD camera (Photometrics). For
nuclear contour imaging, 10 z-slices with 400 nm spacing were taken every 2.5 s for
10 min with the EMCCD camera. For INM protein localization imaging, 10 z-slices
with 200 nm spacing were taken with the CCD camera. A representative z-slice
from the image stack was chosen for figures. For intensity measurements of
Chp1-GFP, we used a 3D Gaussian function to fit each focus. The values of the
number of foci and integrated intensity from each cell so-obtained are presented in
Supplementary Fig. 2e.

Contour fitting. We developed an optimization procedure that robustly
reconstructs the shape of the nucleus in three spatial dimensions with sub-pixel
resolution based on a stack of 10 z-plane 2D images of the NE separated by 400 nm.
Our algorithm seeks to find the contour that maximizes the sum of two terms,
namely a term corresponding to the total intensity of the NE across the z-stack,
I(r,y,j), and a term corresponding to the negative of the total curvature of the NE,
given according to:

max
X

i

I ri; yi;fið Þ�
X

i;j

1
2
k ri � rj
� �2

Jij

( )

where the sum is over equally spaced angular vertices, k is the computational
bending constant, and Jij is equal to 1 for nearest-neighbour vertices and 0
otherwise. The bending constant of the NE was set automatically via an algorithm
that uses the measured intensities to impose a smoothness constraint on the NE,
thus eliminating spurious fluctuations. Hence, bright pixels provide a better
definition of the contour while noise, caused by a low signal-to-noise ratio, is
properly interpolated in dim membrane regions. Although our procedure provides
a closed surface of the nuclear contour, the reconstructed cap regions of the nucleus
suffer from larger noise for several reasons: the distance between each z-stack
interval is larger than the image pixel size, the point spread function is wider in the
z axis, the aberration of the microscope becomes progressively worse for z-slices
away from the focus and the drift of images between z-slices. To minimize these
noise contributions, we chose to proceed with our fluctuation analysis by only
including a band around the centre of the nucleus defined by 45 degrees above and
below the centre stack.

To decouple the motions of the nucleus due to dynamic fluctuations from
overall motions of the nucleus, we apply a low-pass Butterworth filter on the
centroid position of the nucleus and set these positions as the origin of the
spherical coordinate system at each time point. The radius at equally spaced spatial
angles from the centre of the nucleus define the positions of the NE at time t
according to r(y,f,t). Code available upon request.

Contour analysis. To quantify the changes in contour shape, we use the RMSF
calculated according to:

RMSF y;jð Þ ¼ 1
T

XT

t¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r y;j; tð Þ� r y;j; tð Þh it
� �2

q
;

where T is the total number of frames, r(y,j,t) is the radial distance from the centre
of the contour at vertex angle (y,j) at frame t and hr(y,j,t)it is the time-averaged
radial distance at vertex angle (y,j).

Fluctuation time analysis. We identified all the large fluctuation events using a
2D single particle tracking technique. We first projected the fluctuations onto a 2D
spatial map, where the x axis corresponds to a different longitudinal angle (0, 2p)
and the y axis corresponds to a different longitudinal angle and the y axis
corresponds to a different latitudinal angle (�p/4, p/4). In this representation,
a fluctuation can be approximated as a 2D Gaussian profile. We identified large
fluctuations that have fitted amplitudes 450 nm in each fluctuation map over time.
We next applied a single particle tracking algorithm to connect the locations of the
large fluctuations across sequential frames67. We only analyse trajectories that last
longer than 10 frames (25 s) to filter out short-lived fluctuations, which we ascribe
to spontaneous, thermal fluctuations of the NE (validated by the analysis in
Supplementary Fig. 1c). The magnitude of each fluctuation trajectory is then fit to a
single asymmetric triangle waveform to determine the rise time, decay time and
peak height.

Nuclear isolation. Nuclei were isolated by modification of an established protocol
described for S. cerevisiae49. Strains were grown to log phase at 30 �C in YE5S and
diluted to an OD600 of 0.01 in 1 liter YE5S. After growth overnight, cells were
collected at an OD600 between 0.8 and 1.0. To prepare for spheroplasting, cells were
incubated in 100 mM Tris pH 9.4 and 10 mM DTT for 10 min at 33 �C. Cells were
spheroplasted in 0.4 mg ml� 1 zymolyase (MP Biomedicals), 0.6 mg ml� 1 lysing
enzymes (Sigma), 350 ml of beta-glucuronidase (MP Biomedicals) and 5 mM DTT
in 1.1 M sorbitol. Spheroplasting was allowed to proceed at 33 �C for 2–3 h.
Spheroplasts were isolated from intact cells by collection through a cushion of 7.5%
Ficoll in 1.1 M sorbitol spun in a SW28 rotor (Beckman) at 10,000g for 15 min at
4 �C. Cells were lysed by gentle homogenization in 0.25% Surfact-Amps X-100
(Thermo), 5 mM DTT, 200ml protease inhibitor cocktail (Sigma), 0.2 mg ml� 1

PMSF, 4 mg ml� 1 Pepstatin A (American Bio) in 8% polyvinylpyrrolidone (Sigma).
Three density-step sucrose gradients were prepared at the following concentrations:
1.875, 2.30 and 2.50 M. To purify nuclei, lysates were applied to the sucrose
gradient and spun in a SW28 rotor (Beckman) at 14,118g for 90 min at 4 �C.
Isolated nuclei sedimented at the interface between the 1.875 and 2.3 M sucrose
layers. 100ml aliquots were flash frozen in liquid N2 and stored at � 80 �C. For use,
isolated nuclei aliquots were dialysed in 20,000 MWCO Slide-A-Lyzer MINI
Dialysis Units (Thermo) overnight into 500 ml dialysis buffer (80 mM PIPES, 5%
DMSO, 2 mM MgCl2, 1 mM EGTA, 500 mM sucrose). Nuclear integrity was
confirmed by incubating the nuclei in 10 mg ml� 1 FITC 70 kD Dextran (Sigma)
and testing for nuclear exclusion.

SEM sample preparation and imaging. SEM samples were prepared on the basis
of previously published methods68. Silicon chips (5� 5 mm2) were prepared by
incubating in 1 mg ml� 1 poly-L-lysine at room temperature for 30 min. Silicon
chips were rinsed with Fixative-1 (4% paraformaldehyde, 20 mM potassium
phosphate pH 6.5, 0.5 mM MgCl2, 0.2 M sucrose) and placed into an inverted
microcentrifuge tube lid separated from the top of the tube. The lid with silicon
chip was then placed at the base of a microcentrifuge tube with its bottom cut off.
The chip was then overlayed with 20 ml of Fixative-1. Dialyzed, isolated nuclei (8 ml)
were placed on top of the fixative in the microcentrifuge chamber. To bind the
nuclei to the silicon chip, the microcentrifuge chamber was spun at 1,000g for
3 min at 4 �C. The silicon chips were then removed from the chamber and rinsed
with Fixative-1 without sucrose and incubated in Fixative-2 (2% glutaraldehyde,
0.2% tannic acid in 20 mM potassium phosphate, 0.5 MgCl2, pH 7.4) for 10 min at
room temperature. Silicon chips were rinsed with dH2O and fixed in 1% osmium
tetroxide for 10 min. Samples were dehydrated by incubating for 2 min in each
30%, 50%, 70%, 95% (twice) and 100% (three times) ethanol in series. After final
dehydration in 100% ethanol, the samples were dried using a Polaron critical point
dryer with liquid carbon dioxide as transitional fluid. The silicon chips were glued
to aluminium stubs and sputter coated with 15 nm gold (Electron Microscopy
Science). The samples were viewed and digital images acquired in an FEI ESEM
between 10 kV at a working distance of 10 mm.

Vesicle preparation. Vesicles were prepared on the basis of methods previously
described69 and all lipids were purchased from Avanti. A 20:10:70 ratio of lipids
DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine), DOPS (1,2-dioleoyl-
sn-glycero-3-phospho-L-serine) and DOPC (1,2-dioleoyl-sn-glycero-3-
phosphocholine), respectively were dissolved in chloroform and dried to a film
under nitrogen gas. The mixed lipids were resuspended in vesicle buffer (80 mM
PIPES pH 6.8, 1 mM MgCl2, 1 mM EGTA, 170 mM sucrose, 1 mg ml� 1 70 kD
FITC dextran) to 10–30 mM and subjected to seven freeze–thaw cycles.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8159

10 NATURE COMMUNICATIONS | 6:7159 | DOI: 10.1038/ncomms8159 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


Resuspended lipids were extruded through two polycarbonate membranes
(Whatman) with 3.0 mm pore size using the LipSoFast-Basic extruder (Avestin) at
room temperature and stored at � 80 �C. For use, vesicles were diluted in nuclei
dialysis buffer minus sucrose and spun at 10,000g in a TLA 100.3 (Beckman) rotor
for 30 min at 4 �C. Vesicles were resuspended in 500ml dialysis buffer with sucrose
for experiments.

Optical tweezers sample preparation. Flow cells were constructed by cutting
double-sided sticky tape to create a flow channel between a microscope coverslip
and a microscope slide that contains holes to allow for two inlet ports and one
outlet port. Dry, 5.20 mm silica-NH2 microspheres (Bangs Laboratories) were
resuspended in 100% EtOH. A concentrated slurry of microspheres was added to
170ml of 0.01% poly-L-ornithine (Sigma), loaded into the flow cell and incubated
for a minimum of 2 h. Flow cells were then rinsed with dialysis buffer. Aliphatic
amine latex beads (2% w/v 1.2 mm, Invitrogen) were pre-incubated for a minimum
of 2 h in poly-l-ornithine, then rinsed with dialysis buffer. Nuclei were loaded onto
flow cell immediately before experiments. Latex beads were diluted 1:300 into
dialysis bufferþ 2 mM ATP. The dialysis bufferþ 2 mM ATP and the latex bead
mixture were loaded into separate syringes and connected to the two inlet ports.

Optical tweezers setup. We use a single-beam gradient optical trap for both
trapping and back focal plane interferometry position detection. The trapping
beam, produced by a 3 W 1,064 nm ND:YAG laser (Laser Quantum, Ventus IR),
passes through an acousto-optic deflector (IntraAction) to control the position and
intensity of the laser beam and also acts as an optical isolator. The beam is then
expanded by a factor of 3 to slightly overfill the back aperture of the objective
(Nikon, CFI � 100, 1.2 NA). The focused laser is used to trap a bead inside of a
flow cell, which rests on a custom-built sample stage holder mounted on a Thorlabs
nanomax positioner, consisting of coarse stage motors with micron scale accuracy
and a piezo stage with nanometre resolution. The forward scattered light is
collected with a condenser and is directed onto an infrared-enhanced quadrant
photodiode (First Sensor) located in a conjugate plane to the back focal plane of the
condenser. To visualize the nucleus via fluorescence, an epi-fluorescence micro-
scope is coupled into the optical tweezers setup. The excitation source, produced by
a 470 nm blue light emitting diode (Luxeon Star), is reflected with a long pass
dichroic mirror (Semrock) to the back of the objective. The backscattered
fluorescent light is collected with the same objective and is transmitted through a
dichroic mirror and two bandpass filters (Semrock) placed in series to attenuate
non-fluorescence light, including backscattered light from the trapping laser. The
fluorescence signal then travels through a tube lens onto an Orca R2 CCD camera
(Hamamatsu). All instrument controls and data acquisition is accomplished with
custom-made virtual instruments programmed in Labview (National Instruments).

Optical tweezers oscillation assay. Isolated nuclei were flowed into the flow cell
and an individual nucleus was trapped using the optical tweezers and manipulated
onto the side of a surface-immobilized 5.20 mm silica-NH2 microsphere. The nuclei
associate with the microspheres via electrostatic interactions. Excess nuclei were
rinsed away by flowing in dialysis bufferþ 2 mM ATP. Poly-ornithine-coated latex
beads (1.20 mm) were loaded into the flow cell and a single bead was trapped with
the optical tweezers. The trapped bead was brought close to the nucleus opposite of
the large bead-nucleus interface (see diagram in Fig. 4). As the trapped bead was
brought into contact with the nucleus, we monitored its displacement within the
optical trap, which allowed us to determine the equilibrium position of the nucleus.
Upon contact, electrostatic interactions adhere the latex bead with the nucleus.
Excess beads were rinsed away with dialysis buffer þ 2 mM ATP. The stage was
driven sinusoidally with an amplitude of B60–70 nm or B150–170 nm to apply
rounds of compression and tension forces on the nucleus at different frequencies,
as indicated.

Drift control. To enable high-precision measurements for extended durations, we
have implemented a drift correction procedure50. Specifically, two template images
are acquired, both consisting of a window about an isolated surface-attached bead.
One image is in focus. The other image is out of focus, displaced from the in-focus
condition by a known distance along the beam direction (z). To correct for in-plane
(xy plane) drift, the x and y axes of the piezo stage are adjusted to maintain the
maximum cross-correlation between the in-focus template image and the
corresponding measured image at subsequent times. Thus, we are able to stabilize
the position within the xy plane to within 1 nm. To correct for drift along z,
we exploit the observation that the maximum cross-correlation between the
out-of-focus template image and the measured image varies linearly with their z
displacement in the relevant range. Therefore, we correct z-drift by holding fixed
the value of the maximum cross-correlation between the out-of-focus template
image and the measured image via a PID controller implemented in LabView. In
this way, we stabilize the z-position to within 2.5 nm. Key to the success of our
approach is the use of partially coherent illumination from an LED such that
fringes are a prominent feature of the bead images and depend sensitively on the
z-position.

Optical tweezers analysis. The effective stiffness of the nucleus, knucleus, is
determined by applying a linear fit to F¼ knucleusDxnucleus, where Dxnucleus is the
extension of the nucleus from equilibrium. By exploiting the fact that the force on
the nucleus is equal and opposite to the force on the trapped bead, the force on the
nucleus is determined by F¼ ktrapDxtrap, where Dxtrap is the displacement of the
bead from the centre of the trap, and ktrap is the optical trap stiffness. The stiffness
of the optical trap is found by fitting the power spectral density of a trapped 1.2 mm
latex bead to a Lorentzian function to determine the corner frequency70. The
stiffness is then determined as the ratio of the corner frequency to the bead’s
friction coefficient, corrected using Faxen’s Law to account for the proximity of the
glass coverslip. Dxtrap is determined by a quadrant photodiode, which is calibrated
by scanning the trapping laser over a surface-immobilized bead70. The extension of
the nucleus from equilibrium is determined as the difference between the
displacement of the piezo stage from equilibrium and the displacement of the bead
from the centre of the trap, according to Dxnucleus¼Dxpiezostage�Dxtrap.

Viscoelastic model. We fit the frequency dependence of the effective stiffness of
the nucleus with a Maxwell viscoelastic model in which a spring and dashpot in
series captures the elastic component, K, and viscous component, Z, respectively.
The corresponding fitting function for the effective stiffness is given according to:

k fð Þ ¼ 2pKZfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pZfð Þ2 þK2

q
and the characteristic time is given according to

t ¼ Z
K
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