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Generative rules of Drosophila 
locomotor behavior as a candidate 
homology across phyla
Alex Gomez-Marin1,†, Efrat Oron2, Anna Gakamsky2,   Dan Valente3, Yoav Benjamini4 & 
Ilan Golani2

The discovery of shared behavioral processes across phyla is a significant step in the establishment of a 
comparative study of behavior. We use immobility as an origin and reference for the measurement of fly 
locomotor behavior; speed, walking direction and trunk orientation as the degrees of freedom shaping 
this behavior; and cocaine as the parameter inducing progressive transitions in and out of immobility. 
We characterize and quantify the generative rules that shape Drosophila locomotor behavior, bringing 
about a gradual buildup of kinematic degrees of freedom during the transition from immobility to 
normal behavior, and the opposite narrowing down into immobility. Transitions into immobility 
unfold via sequential enhancement and then elimination of translation, curvature and finally rotation. 
Transitions out of immobility unfold by progressive addition of these degrees of freedom in the opposite 
order. The same generative rules have been found in vertebrate locomotor behavior in several contexts 
(pharmacological manipulations, ontogeny, social interactions) involving transitions in-and-out of 
immobility. Recent claims for deep homology between arthropod central complex and vertebrate basal 
ganglia provide an opportunity to examine whether the rules we report also share common descent. 
Our approach prompts the discovery of behavioral homologies, contributing to the elusive problem of 
behavioral evolution.

The establishment of homologies is an indispensable goal in evolutionary biology. In pre-Darwinian comparative 
anatomy, a homologue has been defined as “the same organ in different animals under every variety of form and 
function”1. Based on this definition, anatomists have compared skeletons using validated distinctions such as the 
forelimb, humerus, and radius, and compared brains using validated structures such as the thalamus, cortex, and 
striatum. These structures acquired their identity and validity as homologues by demonstrating the same rela-
tive position, connectivity, and morphogenetic history across a wide array of taxonomic groups2. The validity of 
these structures has been indispensable for establishing a rigorous science of anatomy. Similarly, the comparative 
study of behavior requires the identification of distinct elementary behavioral processes which, much like skeletal 
segments and neural circuits, could be established across a wide variety of taxonomic groups on the basis of their 
connectivity and moment-to-moment generative history3. The foundations for a comparative study can then 
be laid by selecting behavioral situations and measures that have a potential for generalizability across as wide a 
taxonomic group as possible. Such potential seemed to be available with cocaine induced locomotor behavior in 
Drosophila melanogaster.

The accumulation of detailed descriptions of arthropod4,5 and vertebrate movement6 makes the issue of shared 
principles of organization in the behavior of these taxonomic groups increasingly accessible for comparison. An 
opportunity for such comparison is offered by the report that, when treated with the dopamine reuptake inhibitor 
cocaine, Drosophila melanogaster performs a sequence of stereotyped behavior patterns, including locomotion 
and circling, that lead in and out of immobility, apparently similar to the sequence observed in cocaine induced 
locomotor behavior in rodents7,8. This remarkable similarity in the response to cocaine in flies and mice has led 
researchers to suggest that cocaine induced behavior was homologous in the two phyla. That same behavior has, at 
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the same time, been portrayed as aberrant, unusual, and uncontrolled9, highlighting impairment in the function-
ality of the behavior. Note that while pointing out the striking similarity of the behavior induced by the drug in 
the two phyla was important, demonstrating a homology requires showing a relation of correspondence between 
parts of parts of larger wholes2,10. Therefore, in the general context of trying to find shared behavioral rules that 
would qualify as behavioral homologies, we revisited fly cocaine-induced behavior by collecting high-resolution 
kinematic data and examining them using the approach of comparative anatomy to the demonstration of homol-
ogy. Our analysis leads us to suggest that the rules that shape fly cocaine-induced locomotor behavior are not only 
shared with rodent cocaine-induced locomotor behavior but also with intact locomotor behavior in vertebrates.

The idea that pathology, be it induced by drugs, lesions or genetics, can enhance and highlight fundamental 
structures otherwise hidden or incipient in the intact organism is as old as comparative anatomy. As early as 1830, 
to demonstrate the concept of unity of structure across the vertebrates, Goethe, being challenged by the absence 
of the pre-maxillary bone in man, demonstrated its presence in an infant with a hydrocephalus11,12. Recovery 
from brain damage and normal development of behavior have been compared to highlight features that would 
have stayed unnoticed in development: the voluntary use of the hand in people13–16, eating and drinking17, sexual 
behavior18, and locomotor behavior19. In flies, the active coordination between walking and trunk orientation has 
been highlighted by changing the coordination between these two directions with alcohol, and in a different way 
with cocaine20. Also here the drug-induced preparations enhanced and highlighted features of intact behavior 
that might have stayed unnoticed otherwise. We thus use cocaine administration as a convenient parameter or 
“knob” to “electrophorese” a behavioral process into its constituent parts, in order to test the behavioral homology 
hypothesis.

The seed for obtaining a phylogenetic perspective (or for missing it) is sown in the initial measurement phase, 
during the selection of measures made by the observer. This is perhaps why behavioral homologies have hardly 
been documented so far across distantly related species. Since selection of measures is inescapable, it might as well 
be made deliberately and explicitly, supported by a systematic justification, and on the basis of one’s particular 
aims. In our aim to establish bona fide behavioral homologies, we need to describe the set of generative rules that 
provide a formal definition for the coordinated interplay between the key kinematic measures that shape the ani-
mal’s locomotor behavior. We made a selection based on the dynamics of three main degrees of freedom: centroid 
speed, path curvature and body rotation (change of trunk orientation in the horizontal plane). Such a low-level 
description reflects our aim by holding for both arthropods and vertebrates; other aims may justify other selec-
tions. These three measures have been demonstrated to be actively managed by the fly20, therefore implying con-
trol of perceptual quantities. While any selection of variables might be informative, kinematic quantities that are 
actively managed by the animal have a potential for defining cross-phyletic generative rules.

In this study we analyze the structure of fly locomotor behavior in its own right, while at the same time using 
a methodology and measures enabling a cross-phyletic comparison. By concentrating on the morphogenesis of 
cocaine-induced behavior, we seek to reveal the generative rules21,22 that shape a substantial component of the 
locomotor behavior of both flies (see results) and vertebrates (see discussion and references therein). The gener-
ative rules provide a formal definition for the coordinated interplay between three key kinematic degrees of free-
dom that shape the animal’s locomotor trajectory. We test the hypothesis that the rules that shape cocaine-induced 
locomotor behavior are shared between flies and rodents. We first show that such generative rules in fruit flies 
consist of a narrowing down of the animal’s locomotor repertoire in a prescribed order during the transition into 
immobility, and a buildup of the repertoire in exactly the opposite order in the transition to full-blown intact 
behavior. We then discuss, based on previous work, that the same rules of narrowing down and buildup apply to 
dopamine-induced locomotor behavior in rodents and, most important, also represent a behavioral homology in 
intact locomotor behavior in vertebrates.

Recent claims for a deep homology between the arthropod central complex and the vertebrate basal ganglia23 
provide an opportunity to examine whether the shared rules we propose can be supplemented with a historical 
perspective of common descent. Both narrowing down and buildup of the repertoire are action selection func-
tions, both are exhibited upon cocaine administration (which is a dopamine re-uptake inhibitor), and both the 
central complex24–30 and basal ganglia31–33 mediate dopamine-induced behaviors. The shared generative rules can 
provide a specification of the demand34,35 on the neural activity and network connectivity within and between sub-
structures of the central complex and the basal ganglia. For example, the buildup of a vertebrate’s locomotor rep-
ertoire, which has been recently attributed to dopaminergic feedforward loops operating in the basal ganglia36,37,  
can guide a study of the relations between the central complex and the buildup of locomotor behavior in arthro-
pods during the transition out of immobility. One must, however, be cautious in drawing connections between 
putative homologies at different levels of organization from neural structures to behaviors. As Katz and cowork-
ers have compellingly demonstrated38–41, although the coupling between most behaviors and the neural circuits 
that mediate them is highly conserved, natural selection can act separately and differently on these two levels of 
biological organization.

Results
Narrowing down of the path spatial spread into immobility and its buildup to normal behavior.  
Figure 1 presents the path traced by a single fly walking in the arena throughout a 90 min session. Upon cocaine 
administration, a complex dynamics of movement leads to immobility, followed by full recovery of movement 
(Fig. 1). The path leading to immobility is colored in blue, and the path leading out of it is colored in green. The 
path traced in space (Fig. 1A) unfolds in time (Fig. 1B) highlighting immobility as the origin to which movement 
converges and from which it unfolds. The fly first traces relatively straight paths, which become increasingly 
more curved culminating in immobility (Fig. 1C). Transition out of immobility starts with highly curved paths 
involving many tiny circles, followed by increasingly straighter paths (Fig. 1D). The progressive narrowing down 
of the path into immobility (Fig. 1E) and its progressive buildup back to normal (Fig. 1F) is quantified for all flies.
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Narrowing down of the fly’s locomotor repertoire and its buildup to a normal repertoire. The 
three degrees of freedom of locomotor behavior studied are speed, direction of walking, and body orientation 
(Fig. S1 and Methods). Using extended immobility as a reference, we trace the behavior that preceded it (Fig. 2), 
starting just before the inflow of cocaine into the arena, and ending with full recovery of the fly (see Methods), 
as marked by the disappearance of high rotation in place (extensive changes in body orientation at low trans-
lational speed) and the performance of straight paths (high speed at low curvature). The entire dynamics in 
terms of speed (Fig. 2A), curvature (Fig. 2B), and rotation (Fig. 2C) are illustrated for a single fly. Transition into 
immobility started with normal locomotion marked by high speed, low curvature, and absence of extensive body 
rotations. Next, we observed bursts of high velocity followed by medium and then high path curvature, which 
concurred with the setting in of several full body rotations at very low translation speed, culminating in immo-
bility. Immobile for 10 minutes (gray shaded area), recovery from immobility started with very fast whole-body 
rotations in place. Each diagonal line in magenta stands for a full 360 degree rotation. The fly performed approx-
imately 50 full rotations in 10 minutes with almost zero translational velocity at extremely high path curvature. 
The high frequency of rotations gradually decreased, as did the path curvature (Fig. S2). Then the animal resumed 
normal forward progression involving relatively straight paths and high velocity bouts.

We can summarize the moment-to-moment dynamics observed as the following sequence: predominance 
of translation, then high curvature, and finally extensive exclusive rotation in place, ending in immobility, from 
which the same sequence is performed in reverse. Forward translation is thus eliminated from the fly’s repertoire 
first, and rotation last, in the transition into immobility (movie S1); while rotation is added to the repertoire first, 
and forward translation last, in the transition out of immobility (movie S2). Animations in time of the progressive 
narrowing down of degrees of freedom (movie S3) and of progressive buildup (movie S4) clearly represent the 
dynamics of the phenomenon under study.

Coordination dynamics of fly walking direction and trunk orientation. Flies can walk in different 
directions while keeping their body orientation fixed, or else reorient their trunk in any other direction while 
proceeding in a specific direction. In intact flies, during walking, the direction of progression changes first, and 
trunk orientation then converges to the new direction set by progression, with trunk orientation lagging behind 
by a small angular interval that is quickly closed. Under cocaine administration, trunk orientation lags on aver-
age behind by a larger angular interval, whose closing takes a longer time20. During the stage of transition out of 

Figure 1. The locomotor path of cocaine treated flies progressively narrows down into immobility and 
builds up to spread out normal locomotor behavior. (A) A fly’s path for the entire 90 min session in a circular 
arena. Red dot indicates location of immobility. Blue path depicts transition into immobility, and green 
transition out of it. The rest of the trace throughout the experiment is represented in black. (B) Same path as 
in (A) unfolded in time. Transition into and out of immobility is clearly visible, and it is used as the point of 
reference to study the phenomenon. (C) The transition into immobility (corresponding to the blue path in A) 
is marked by the performance of straight paths, and then by increasingly more curved paths, narrowing down 
the spatial spread of the animal’s path. (D) The transition out of immobility (corresponding to the green path 
in A) is marked by the performance of curved, then increasingly straighter paths, building up the spatial spread 
of the animal’s path. (E) Distance of each fly to its corresponding immobility spot as a function of rescaled 
time. The average trend of activity (black line presents the mean for all flies, grey area depicts SEM) reveals a 
consistent narrowing down of the path during transition into immobility (alignment marked by the vertical 
red bars), and (F) a buildup of the path for all flies during transition out of immobility. In (E,F) blue and green 
traces correspond to the example from A-D. Despite the fact that single fly variability is high further away from 
immobility, the closer to immobility (both before and after) the more progressive and slow the spatial spread 
dynamics become.
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immobility (Fig. 3A), as flies rotate along highly curved paths, the directions of progression and of trunk orien-
tation tend to converge to the same value (Fig. 3B,C). The further away from immobility, the coupling between 
these two degrees of freedom becomes progressively less tight (Fig. 3C,D). As the fly regains its freedom of move-
ment away from immobility, trunk orientation leads and direction of progression follows (Fig. 3E). In other 
words, the angular interval between the direction of progression and body orientation is modulated dynamically 
with respect to immobility and actively managed in two opposite ways.

Generative rules of rotational-translational locomotor behavior in and out of immobility.  
Having discussed the relationship between curvature and rotation, we concentrate on the relationship between 
translation (T) and rotation (R) with respect to immobility (I). Since the timescale we examine comprises the 
entire session dynamics (which can last for more than an hour), we next calculate cumulative translation by 
integrating speed in time and cumulative rotation by unwrapping the body angle (Fig. 4A). After smoothing 
the cumulative measures (see Methods) we calculate their derivative, and thereby obtain the global changes in 
rotation and translation for the entire session (Fig. 4B). In order to quantify the sequence in which they unfold, 
we again use immobility as a reference and measure the global peaks of activity before and after immobility, 
along each of the two degrees of freedom. This procedure reveals that before immobility the maximal peak of 
translation (T*) is exhibited before the maximal peak of rotation (R* ). After immobility, it is the maximal peak of 
rotation that is exhibited before the maximal peak of translation. To quantify the relative order of global peaks, we 
calculate the difference between the time of maximal peak of translation and rotation, namely, t(T* )-t(R* ). This 
procedure shows (Fig. 4C) that translation precedes rotation before immobility (average t(T* )-t(R* ) is − 4.0 min-
utes) and that rotation precedes translation after immobility (average t(T* )-t(R* ) is + 16.8 minutes). While there 
is high variability in the time intervals across animals, all flies follow the same sequential order of global peaks.

Next, in order to quantify the relative strength of the reciprocal relationship between global peaks, we calculate 
the value of translation at its peak, T(T* ), and compare it with translation when rotation is at its peak T(R* ). Thus 
we measure the amount of reduction in translation by the time that rotation is globally maximal. The smaller the 
ratio T(R* )/T(T* ), the stronger the phenomenon of reciprocity between translation and rotation (Fig. 4D). Note 
that this relationship is by no means reciprocal at all times: in the presented graph there are cases in which both 
rotation and translation increase, and also in which both decrease together. In other words, rotation and transla-
tion are globally, not locally, reciprocal. Characterizing the relative strength of rotation and translation peaks by 
means of the above ratio is invariant to time rescaling and to absolute values of rotation and translation. This is 
necessary for capturing the invariance in the sequence and strength across individual animals, and particularly 
useful given the large variability in the timescales of unfolding of the phenomenon (some flies take minutes, oth-
ers take hours) and in the rotation values (some flies perform ten full body rotations, others perform hundreds; 
and they do so at different rates).

On the whole, flies follow the same sequence of transition into immobility, involving, for each dimension sepa-
rately, an enhancement, a reduction, and then elimination of that degree of freedom, thus progressively narrowing 

Figure 2. Representative moment-to-moment dynamics of the three kinematic degrees of freedom of a 
single fly before and after immobility. The shaded area marks the period of immobility, which is used as a 
reference for the events that precede and follow it. (A) The session starts with bursts of speed that progressively 
decrease towards zero. Following a 10 minute period of complete immobility, very low speed is then followed 
by normal speed. The green shaded area highlights small but non-zero velocity components at high-curvature 
during rotation in place (shown in detail in Fig. S2). (B) Straight path is followed by bursts of high curvature 
until immobility, from which the fly resumes its movement with very high curvature (of the order of a 360 
degree turn in a millimeter) monotonically decreasing to straight paths again. (C) Extensive body rotations 
precede and follow immobility, proceeding from low to high frequency, and from high to low frequency. Red 
shaded areas represent time segments when the fly touches the walls of the arena and body orientation is not 
tracked. Each diagonal line represents a 360 degree body rotation. Overall, the session starts with extensive 
translation, then increasing curvature accompanied by frequent body rotations, leading into immobility. 
Following immobility, extensive rotation in place concurring with very high path curvature, is followed by 
forward progression along straight paths.
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down the fly’s locomotor repertoire; and the same but opposite sequence of transition out of immobility, involv-
ing, for each dimension separately, an enhancement, and then subsiding to normal of that degree of freedom, 
thus progressively building up the fly’s locomotor repertoire. Such invariance can be summarized by the acronym 
TRIRT (generative rule consisting on the sequence: Translation, Rotation, Immobility, Rotation, and Translation).

Rotational switching rate changes in and out of immobility. One predominant effect of cocaine 
administration is the high rate of repetition of full body rotations and their rotational speed. During rotation the 
animal may switch between clockwise (CW) and counterclockwise (CCW) rotation directions. It is now possible 
to examine the dynamics of switching in reference to immobility, in the context of the animal’s freedom of move-
ment. To do so, we focus on how frequently the fly changes the direction of rotation and how biased successive 
rotations are. Globally, there are long-term predominant biases to rotate in a particular direction (Fig. 5A). In par-
ticular, transitions out of immobility start by very long rotations in the same overall direction (we found no sig-
nificant biases in handedness). However, flies do not rotate monotonically in one direction but, rather, alternate 
between large amplitude rotations in one preferred direction and low amplitude rotations in the other direction 
(Fig. 5B,C). Locally, the fly alternates between CW and CCW rotations. We find that the switching rate decreases 
when transitioning into immobility and increases when transitioning out of it (Fig. 5D–F). As found for the syn-
chronic relationship between translation and rotation (TRIRT), this diachronic pattern for rotational switching 
also exhibits a mirror symmetry between the process leading into immobility and out of it (Fig. 5E–F), and can be 
summarized by the acronym SsIsS (sequence of high Switching, reduced switching, Immobility, and the reverse).

Discussion
We characterized the generative rules that shape cocaine-induced behavior in Drosophila during transitions into 
and out of immobility. Using immobility as a reference for the measurement of behavior and cocaine as the 
parameter inducing a behavioral gradient, we found that flies exhibit a progressive buildup of their locomotor 
repertoire when starting from immobility, and a progressive narrowing down of the repertoire towards immo-
bility. During buildup, for each key variable separately, the fly exhibits first enhancement and then reduction 
to normal values of movement along that variable: first, of body rotation in the horizontal plane, then of path 

Figure 3. Active management of walking direction and trunk orientation. (A) Time course of centroid 
speed during transition out of immobility. (B) Walking direction and trunk orientation during intense rotation 
in place and high-curvature dynamics. A two-minute segment of the top plot is amplified in the middle plot; 
and a one-minute segment of the middle plot is amplified in the bottom plot, where the tight, but not perfect, 
coordination between both angles (trunk orientation and walking direction) can be appreciated. (C) Phase-plot 
of trunk orientation and walking direction value combinations across an entire session (black), and selected 
segment (red) showing that close to immobility the coordination is tight. (D) Cosine of the difference between 
trunk and walking angles, progressively decreasing from 1 (zero difference), to 0.7 (45 degree difference), and 
reaching below 0 (more than 90 degree difference), quantifying the transition from tighter to looser coupling of 
rotational and curvature degrees of freedom as the fly transitions out of immobility. (E) Signed angle difference 
between walking direction and trunk orientation to reveal the degree of freedom that leads and the one that 
follows: trunk orientation leads when close to immobility, with walking direction lagging behind a few degrees, 
and eventually leading at later stages in the buildup of locomotor behavior.
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curvature, and then of speed of translation. The extents of movement across the key variables show reciprocal 
relations: when rotation is at its peak translation is low, and when translation is at its peak rotation is low, while 
path curvature is partly coupled to rotation. Transition into immobility from rich normal locomotor behavior 
unfolds through narrowing down of the repertoire in the opposite sequential order, also showing reciprocal rela-
tions between the extents of the same variables. Quantification of the generative rules of this behavior, based on 
the temporal sequence of global peaks of extent (TRIRT, Fig. 4) provides a summary of the bauplan of this arthro-
pod behavior, allowing a comparison with the rules reported in previous studies for movement into and out of 
immobility in vertebrates, in which the behavior has been termed “The Mobility Gradient”34.

Vertebrates and fruit flies share the same generative rules. Buildup: In infant mice transition out of 
novelty-induced immobility consists of side-to-side head movements that increase in amplitude, gradually 
recruiting the forequarters and then the hindquarters, to extensive rotation in place around the hindquar-
ters. Only after exhausting the horizontal plane by rotating around the hindquarters, does forward stretching 
and subsequently forward translation appear, first along curved and then along straight paths (movie S5). The 
same sequence is exhibited in amphibians42, fish43, insectivores (movie S6), and carnivores44. Head-raising, 
forequarter-raising and, finally, rearing on the hind legs, are exhibited next45,46. The same sequence is exhibited 
both during moment-to-moment behavior and in ontogeny, during recovery from lateral hypothalamic damage47. 
Later on in development, during, for example, play and ritualized fighting interactions, the inferior animal exhib-
its the less mobile portion of the sequence, culminating in rearing and rotating around the hindquarters, whereas 
the superior may rear and rotate both around the hind-legs and around the forelegs, exhibiting an expanded free-
dom of movement in both the horizontal and vertical dimensions44,48 (movie S7); for a review see19,34. Narrowing 
down: The opposite sequence, proceeding from rich normal behavior to enhanced, then reduced, then immobil-
ity, first of rearing, then of translation along straight, and then along curved paths, then of rotation, culminat-
ing in relative immobility, is exhibited in rats following the administration of several dopamine agonists7,8,49–53 
(movie S8). This mobility gradient34,54, which is composed of buildup (warmup) and narrowing down (shutdown) 
sequences45,46 shares with the mobility gradient demonstrated in fruit flies the same origin (immobility), param-
eter (dopaminergic stimulation; but in vertebrates also novelty and proximity to a rival), and generative rules.

As there are no “fossil skeletons” of behavior we suspend judgement regarding common descent. From the 
vantage point of comparative anatomy, generative rules define the core (or skeleton) that has resisted adaptation 

Figure 4. Synchronic and diachronic dynamics of translation and rotation. (A) Cumulative body rotation 
(magenta) and translation (cyan) reveal the global sequence of changes in the rotational and translational 
degrees of freedom. The shaded area marks the period of immobility, which is used as a reference for measuring 
the events that precede and follow it. (B) Global changes in speed of progression and body orientation 
are obtained from the absolute time derivative of the curves in (A). As shown, a global peak in translation 
followed by a global peak in rotation precede immobility, and a global peak in rotation followed by a global 
peak in translation follow immobility (TRIRT sequence). (C) Difference between the time of maximal peak of 
translation and the time of maximal peak of rotation, t(T* )-t(R* ), is negative for transitions into immobility 
(p =  0.004, Sign test) and positive for transitions out of immobility (p =  0.004, Sign test). Absolute time 
differences are greater for transitions out of immobility than for transitions into immobility (p =  0.0352, 
Sign test). Each line connecting dots represents the same animal. Mean and standard deviation in blue. (D) 
Quantification of the strength of reciprocity in the value of global peaks of rotation and translation during 
transitions in and out of immobility shows hardly any difference. Dots represent the score for individual flies 
and lines connect the results for the same individual (mean and standard deviation colored in blue).



www.nature.com/scientificreports/

7Scientific RepoRts | 6:27555 | DOI: 10.1038/srep27555

and around which there is a variable adaptive component. As shown by ethology, this core/adaptive distinction 
also applies to behavior55,56. The shared generative rules of the mobility gradient that we expose constitute a 
dynamical version of the “principle of connections” of St. Hillaire (“equivalence under transformation”2,21,22,57) 
whereby homology must be defined, not by its form or function, but by correspondence of relative positions, spa-
tial structure, and, one might add, temporal relations between the elements of the behavioral process.

The “serial homology” concept can be applied when same structure serves different functions in the same spe-
cies. Using our generative rules as a search image, not only can we predict essential sameness in the brain/behavior 
interface of both flies and rodents, but we can also anticipate that the same rules might underlie apparently dif-
ferent functional behaviors in the same species. This is similar to identifying serial homology in anatomy, where, 
e.g., hand and foot are considered homologous because they share the same set of developmental constraints, 
caused by locally acting self-regulatory mechanisms of differentiation58. Reviewing the fruit fly larval behavior 
literature with a search image for low and high mobility, attention is immediately drawn to the abnormally high 
extent of turning behavior exhibited by larvae with mutations in the gene scribbler (sbb) in the absence of food59. 
These appear to be respective manifestations of the high and low ends of the mobility gradient. The four key 
features characterizing low mobility in the cocaine-treated fly (low speed of translation, highly curved path, high 
body rotation, and immobility) exhibit a full correspondence to the features of the “abnormal crawling pattern” 
exhibited by scribbler larvae: low speed, curved paths, high turning rate, and long pauses60. The parameter pre-
cipitating this behavior could be, as Sokolowski and co-workers suggest, the absence of food, or else, given our 
search image, the stress brought about by the absence of food, or even its presence in hungry flies61,62. Equivalent 
differences in mobility, expressed by pivoting and/or rearing on hind legs and forelegs, reported to be exhibited 
by vertebrate partners engaged in interactions44,48,54, might also be looked for in fruit fly courtship and agonistic 
interactions.

Figure 5. Switching between clockwise and counterclockwise rotation decreases into immobility and 
increases out of immobility. (A) Cumulative body orientation as a function of time for a single fly across 
the session. The gray shaded area marks the period of immobility. The blue shaded area marks a zoomed-in 
time interval presented in (B,C). As shown, the general tendency of this fly is to rotate clockwise both before 
and after immobility. Note that during transition into immobility the fly performs in the order of 50 full body 
rotations in 5 minutes, and during transition out of immobility, as many as 100 full body rotations in 5 minutes. 
(B) Zoomed in time segment in (A) of cumulative body rotation. As illustrated, while the fly globally rotates 
in one particular direction, locally it keeps switching between clockwise and counterclockwise rotations. Each 
transition is marked by a small black dot on the curve and a corresponding vertical bar on the transitions raster 
plot below. (C) Time derivative of the fly’s momentary body orientation. Zero crossings in the rotational speed 
mark switching, corresponding to the vertical bars in (B). As shown, there is an overall drift in one direction, 
concurrent with a decrease in the number of transitions as a function of time. (D) Global changes in body 
orientation obtained from the absolute time derivative of the curve in (A). To examine the change in switching 
across the session, the period leading to immobility is partitioned into the segments preceding and following 
maximal rotation (same for the period leading out of immobility). (E) Switching rate, calculated as the number 
of transitions per second, decreases in the interval preceding immobility (left panel, p <  0.039, Sign test) and 
tends to increase in the interval following immobility (right panel, not significant). Dots represent the score for 
individual flies and lines connect the results for the same individual. (F) Overall the difference of the switching 
differences after immobility and before it is always positive (p <  0.00195, sign test) and has a median of .37 
switches per second. Dots represent the switching rate change for every fly.
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Note that in this study we start with wild type behavior and end up with wild type behavior. By focusing on 
the behavior near immobility we thus highlight what intact flies do when away from immobility, namely before 
narrowing down, and after buildup, when they exhibit a full blown repertoire of locomotor behavior: alternat-
ing unpredictably between progression along straight paths, curved paths, wide and narrow circling, pivoting 
in place, and arrests, all within the constraints imposed by the specific environment which they occupy20. In 
addition, the mobility gradient model predicts that during agonistic and/or courtship interactions one fly would 
exercise freedom of movement in the vertical plane (rearing on its hind legs) and freedom to rotate (pivot) both 
around its hind legs and around its forelegs, while its partner would not rear, and pivot only around its hind legs.

When searching for equivalent neurochemical substrates that mediate the buildup and narrowing down, it has 
recently been claimed that the vertebrate basal ganglia and the arthropod central complex are deeply homologous. 
In both, comparable systems of dopaminergic neurons, their projections, and dopaminergic receptor activities are 
involved in the modulation and maintenance of behavior23. Dopamine systems are also key players in generating 
and regulating the mobility gradient36,37,49–53, and dopaminergic stimulation of specific substructures of the basal 
ganglia and central complex induce specific components of the mobility gradient respectively in rodents63–67 and 
in flies68. While studies of basal ganglia function typically focus on the adaptive component of behavior (habit 
formation), the narrowing down and buildup of the locomotor repertoire pertains to action selection within the 
hard core component, of which homologies are made: that which resisted change across evolution, all the more so 
that which does not change across ontogeny and across moment-to-moment behavior. The neurochemical pro-
cesses mediating the buildup of the vertebrate locomotor repertoire have been recently attributed by Cools and 
co-workers to dopaminergic feedforward loops operating in the basal ganglia36,37. The correspondence between 
the mobility gradient core phenomena and the feedforward loops exposed in the basal ganglia can be used as 
a search image or working hypothesis for studying the relations between the arthropod mobility gradient and 
the central complex. It might be useful to examine whether feedforward loops also mediate the buildup of loco-
motor behavior functions in the central complex. It might be cautioned, however, that the validity of the shared 
generative rules does not depend on the establishment of deep homology at the neural level, since the nature of 
behavior does not necessarily dictate the neural mechanism mediating it and the presence of homologous neural 
components does not determine unequivocally the behavior38–41.

Many of the complexities of coordinated motor behavior in complex systems with many degrees of freedom 
can be derived from relatively simple biomechanical and non-linear mathematical laws69. Such laws, however, 
could not fully account for the bauplan that governs trans-phyletic locomotor behavior. The morphogenesis of 
behavior is not expected to be different from the morphogenesis of an anatomical limb bud, where the knowl-
edge of how genes influence morphogenesis is not sufficient to construct a morphogenetic field model. For this 
we need to understand such principles as the physical laws describing viscoelastic media, stresses and strains, 
osmotic principles and how they act in the extracellular medium, and many other aspects of the macroscopic field 
of the limb bud that together provide a working model22. Be that as it may, the reservation suggesting concur-
rently distinct evolutionary processes at the neural and behavioral levels41, and the caution that simple physical 
laws are involved, along with genes and neurons, in shaping behavior69, only emphasize the requirement for a 
separate systematic study of connectedness2 at the level of behavior.

Given the foundational role of behavior in neuroscience70, it is perhaps time to start relating the various levels 
of the biological hierarchy to the behavioral bauplan they support. Here, practicing the methodology of compar-
ative anatomy to the study of behavior, we have established a shared behavioral architecture across distant phyla 
based on the principle of connections. Demonstrating that such behavioral processes are respectively mediated 
by homologous neuro-genetic structures would endow the Mobility Gradient with the status of a Darwinian 
homology.

Materials and Methods
Fly stocks. Drosophila cultures were maintained at 24 °C on a standard cornmeal-molasses medium in 
12 hour light/dark cycle at 60% humidity. The experiments were performed on three-day-old flies of the wild-
type laboratory strain Canton-S. Nine male flies were tested in a low-throughput high-content data approach.

Behavioral arena. The experimental setup for observing and tracking the flies was a 15 cm diameter circular 
arena with 0.7 cm height wall and transparent plastic ceiling. The arena was illuminated from a height of 70 cm 
above the arena level by flicker free incandescent light 40 W bulb (Osram). Throughout experiments we used a 
maximum-minimum thermometer (Brannan), which allowed us to ascertain that the temperature near the arena 
was maintained at 25 °C plus/minus 1 °C. A silent digital color camera (Sony Effio E Surveillance) placed at 70 cm 
above the arena recorded the fly’s behavior.

Drug administration system. During the experiment there was a continuous airflow through the arena 
through two small wall openings allowing also the introduction of the volatilized cocaine from the evaporation 
chamber into the arena20. Continuous airflow, adjustable by a knob, supplied a mild stream of air into the arena 
at an intensity that maintained the cocaine white smoke inside the arena for one minute (increasing the airflow 
would immediately attract the fly to the pipe opening through which the air came in). The airflow was streamed 
into the arena continuously before and after the volatile cocaine administration, across the whole experiment. The 
drug volatilizing apparatus was connected to the arena by a short pipe. Cocaine was volatilized in a transparent, 
perspex chamber consisting of four volatilizing units. Each unit consisted of a nichrome wire connected to copper 
leads that were passed through a neoprene stopper and connected to a low voltage/high current regulated power 
supply7. Cocaine (150 ug) was volatilized from the nichrome filaments as follows. Free base cocaine dissolved in 
ethanol was applied to the filament and ethanol was allowed to evaporate. Evaporation of the cocaine was done 
using a low voltage/high current regulated power supply by applying a voltage sufficient to heat the filament to 
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200 °C within 5 seconds. A constant airflow through the arena removed the white cocaine smoke from the arena 
within one minute from start of administration. Cocaine was streamed into the arena, as ascertained by the white 
smoke filling the arena, until all the solid cocaine evaporated from the heated nichrome wires. Cocaine smoke 
does not condensate so that no residuals of cocaine were left in the arena following the experiment. The arena was 
washed with water and wiped with 70% alcohol after each experiment.

Animal preparation. Neither food nor water was supplied to the fly during the entire experiment. All exper-
iments were performed during the 12 hours light period, and on one fly at a time. Since different populations of 
flies differed in their reactivity to environmental stimuli but not in spontaneous activity71,72, we performed the 
experiment over an extended period of time so that drug treatment was given without disturbing the fly with the 
presence of other flies or with a novel environment, yielding spontaneous, rather than reactive, behavior71–73. 
Therefore, each fly was transferred to the arena and allowed to habituate there for one hour. Behavior was then 
videotaped for one more hour. Following exposure to cocaine, the fly behavior was videotaped for two more 
hours, in order to ascertain full recovery (regaining normal locomotor behavior).

Behavioral tracking. The fly’s locomotor behavior was recorded at 25 frames per second at a resolution of 
720 ×  560 pixels (Sony Effio E Surveillance camera). Following video acquisition, the centroid position of the fly 
and its body axis direction were tracked with FTrack74, a custom-made software written in Matlab (MathWorks). 
The behavior of drug-treated flies was tracked and analyzed before the moment the drug started to be streamed 
into the arena chamber through the period of complete fly sedation (the longest arrest interval across the session), 
including the behavior following sedation until the fly proceeded along straight paths indicating full recovery of 
full blown intact locomotor behavior. Raw trajectory data were corrected for tilt and rotation of the camera. Data 
segments during which it was not possible to assess the fly’s orientation (fly located on the wall or jumping) were 
excluded from analysis.

Behavioral analysis. Quantitative analysis of the animal’s behavior was based on the dynamics of three main 
degrees of freedom: centroid speed, path curvature and body rotation. Measuring the speed, the direction of pro-
gression and trunk orientation provided the three measured quantities20,75,76. In the Eshkol Wachman Movement 
Notation these variables amount to speed and direction of shift of weight, and direction of front77. Changes in the 
direction of progression are calculated per unit of progression and as a function of time in order to have a geomet-
ric curvature78,79 expressed in kinematic terms80,81. Switching between clockwise and counterclockwise body rota-
tion was assessed via the zero-crossings of the instantaneous time derivative of the body angle, removing artifacts 
during arrests by pruning out rotations smaller than 12 degrees. Since we studied the same phenomenon across 
a wide range of timescales from small oscillations during rotation in place (seconds) to sedation recovery (min-
utes and hours) we obtained reliable estimates of local and global variables in time by using the variable-window 
smoothing LOWESS method82. Given the temporal resolution of the tracking, a simple sub-second filtering 
smoothed minute possible effects from pixel noise and putative illumination fluctuations. This allowed to detect 
immobility as absolutely no displacement at the same time that fast rotations in place and slower trends could 
be quantitatively captured with precision. Immobility was defined as the longest time interval of complete arrest 
across the whole session. Immobility duration, being variable across flies, was still much larger than the timescales 
typically observed for pauses between stop and go behavior in flies. The procedure of transforming chronological 
time into activity is key in revealing dynamical invariants despite animal-to-animal behavioral variability.
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