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Spatial patterns of gene expression in the vertebrate brain are not
independent, as pairs of genes can exhibit complex patterns of
coexpression. Two genes may be similarly expressed in one region,
but differentially expressed in other regions. These correlations
have been studied quantitatively, particularly for the Allen Atlas
of the adult mouse brain, but their biological meaning remains
obscure. We propose a simple model of the coexpression patterns
in terms of spatial distributions of underlying cell types and es-
tablish its plausibility using independently measured cell-type–
specific transcriptomes. The model allows us to predict the spatial
distribution of cell types in the mouse brain.
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Brain-wide and genome-wide maps of gene expression are now
available (1, 2), due to the development of high-throughput

neuroanatomical methods (3–6). This has enabled analysis of the
spatial correlation structure of gene expression (7–12). In the
Allen Brain Atlas (ABA) of the adult mouse, the brain is divided
up into cubic voxels of size 200 μm. The expression energies of up
to 20,000 genes in the adult C57BL/6J mouse are given by auto-
matic processing of in situ hybridized (ISH) brain sections, cor-
egistered to the Allen Reference Atlas (ARA) (13). Coexpression
of two genes in a voxel may arise from two sources: ðiÞ both genes
are expressed within the same cell type or ðiiÞ the two genes are
expressed in two different cell types, both present in the voxel.
These two possibilities cannot be disentangled solely on the basis
of the ABA. Ideally, gene expression profiles should be experi-
mentally obtained for each cell type in the brain, and indeed such
transcriptome profiles are now available (14–21). This cell-based
approach to the study of gene expression is complementary to the
gene-based approach of the ABA. In ref. 22, the data of ref. 19
were used to extract neuron-specific genes, astrocyte-specific
genes, and oligodendrocyte-specific genes, which resulted in three
combinations of brain-wide maps from the ABA, whose clustering
showed anatomical signatures of major brain subdivisions (see also
ref. 23 for estimates of neuron-specific and oligodendrocyte-spe-
cific expression patterns, both in the mouse and in the human
brain). The present paper goes beyond the broad classification of
cell types into three classes and attempts to estimate density
profiles of every cell type known by its transcriptome profile. To
study the genes collectively we use a voxel-by-gene data matrix E,
corresponding to V = 49;742 cubic voxels, and 3,041 genes, as in
refs. 24–26. The entry Eðv; gÞ is the expression energy of the gene
labeled g in the voxel labeled v [a measure representing the level
of mRNA in situ hybridization (1, 10)]. We combine the ABA with
cell-type–specific transcriptome profiles, to gain biological un-
derstanding of the coexpression patterns of the genes. Our model
is based on G= 2;131 genes found in all these datasets and in the
coronal ABA. The model proposed to estimate the brain-wide
density profiles of cell types can be compared with the deconvo-
lution techniques (27) in the context of microarray data and cel-
lular types in the blood, but the brain-wide nature of the ABA

allows us to interpret the results in terms of the region specificity
of cell types.

Results
Brain-Wide Correlation Profiles Between the ABA and Cell-Type–
Specific Transcriptomes Reveal Neuroanatomical Patterns. The sin-
gular-value decomposition (SVD) of the matrix E shows that 271
principal components (PCs) are required to explain 90% of the
variance of the ABA, illustrating the large number of degrees of
freedom present in the data (Fig. 1A). A projection onto the
subspace of gene space spanned by the first three PCs shows that
the voxels fall into large clusters corresponding to major brain
regions, such as cerebellum and striatum (Fig. 1B). The first
three spatial PCs also highlight these regions (Fig. 1 C1–C3).
Brain regions can be approximately recovered by spatial clus-
tering of the ABA (26, 28, 29–32), but estimating the density
profile of cell types characterized by their transcription profile
can provide a data-driven definition of some brain regions, on
which there is no universal agreement (26, 28, 29).
The differences in gene expression underlying the phenotypic

diversity of cell types (33, 34) have been investigated, leading
to cell-type–specific microarray data. However, the region speci-
ficity of the transcriptome of cell types remains an open problem.
We considered the transcriptome profiles of T = 64 cell types,
collectively analyzed in ref. 35 and corresponding to data sets
gathered in refs. 14–21. For each of these cell types, we com-
puted the Pearson correlation coefficient of its transcriptome
vector Ct with the gene expression data of the ABA at each voxel
(Methods, Eq. 3). In many cases, some of which are illustrated in
Fig. 2, the correlation pattern is related to the brain region from
which the cell type was extracted. Cerebellar granule cells (20) are
found to be most correlated to the ABA in the cerebellum;
medium spiny neurons (20) in the striatum; cortical pyramidal
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neurons (14) in the cerebral cortex; amygdalar pyramidal neurons
(14) in the cerebral cortex, with a “hot spot” in the amygdala;
and hippocampal pyramidal neurons in the hippocampal region.
However, correlation profiles are not identical to the density
profiles of cell types, as the vectors Ct are not mutually orthogo-
nal. Hence there is a need for a model to estimate the spatial
distributions of cell types. (For presentation of results for all cell
types in this study, see ref. 36.)

Region Specificity of Cell Types Can Be Estimated from a Linear Model.
We propose a linear model for the voxelized ABA in terms of the
transcriptome profiles of cell types and their spatial densities,

Eðv; gÞ=
XT
t=1

CtðgÞρtðvÞ+Residualðv; gÞ; [1]

where the index t labels the tth cell type, with gene expression
profile Ct and spatial density ρtðvÞ at the voxel labeled v (see Fig.
1D for a diagrammatic illustration). The residual term reflects
other cell types (uncharacterized by their transcriptome) as well
as measurement noise and nonlinearities. If the same cell type is
present in two voxels, then genes highly expressed in this cell type
will be highly coexpressed in the voxels. In this model, the row
space of the matrix E is spanned by the vectors Ct corresponding
to distinct cell types. However, cell types contributing a small
amount of variance to the matrix E cannot be detected by
SVD analysis. Fitting the model (Eq. 1) amounts to solving a qua-
dratic programming problem at each voxel with positivity contra-
ints (Methods, Eq. 4). The estimated densities ρt are shown (Fig. 3)
for the same set of cell types as in Fig. 2 (more examples in Fig.
S1). These densities are in agreement with prior biological knowl-
edge. Importantly, the densities in Fig. 3 are significantly sparser
in space than the correlation profiles in Fig. 2. This confirms that
the fitting of the model (i.e., quadratic optimization with positivity
constraint) yields results that cannot be reached by simple projec-
tions on the vectors Ct in gene space.
The cell-type–specific data do not sample all of the brain

regions in the coarsest annotation of the ARA, which consists of
13 regions (Fig. S2). The cerebral cortex and the cerebellum are
represented by more cell types than expected from their volume.
Both correlation and density profiles allow us to distinguish layer-
specific pyramidal neurons (Figs. 2C and 3C) from amygdalar

pyramidal neurons (Figs. 2D and 3D). For each cell type, we
ranked the brain regions in the ARA according to their contri-
bution to the correlation and density profile (SI Methods). For
instance, this procedure showed the striatum as the top region for
correlation and density of medium spiny neurons; hence the sec-
tions through striatum shown in Figs. 2B and 3B. This ranking is
based on the coarsest annotation of the ARA, which covers the left
hemisphere only. However, the results for most cell types present
a large degree of left–right symmetry. This symmetry was also
observed in the expression of neuron-specific and glia-specific
genes in ref. 22. We find that the predicted densities of four cer-
ebellar cell types (Purkinje cells, granule cells, stellate basket cells,
and cerebellar mature oligodendrocytes) exhibit distinct spatially
nonhomogeneous patterns (Fig. 4 B1–B4). These patterns are
consistent with neuroanatomical expectations: In particular, they
define a data-driven granular layer in the cerebellum, even though
granule cells are known to be much smaller than the voxel size.
Some of the predicted density profiles could be tested by

further experimentation. For instance, a class of pyramidal
neurons studied in ref. 14 was extracted from the prelimbic and
infralimbic areas of the cerebral cortex. Our prediction for the
spatial density of these pyramidal neurons is highly concentrated in
the cerebral cortex, but the infralimbic and prelimbic areas rank
sixth and seventh of 40 cortical regions by their contribution to the
density (Fig. 4 A1 and A2). The regions contributing higher frac-
tions include the primary and secondary motor areas, which are
close to the prelimbic areas, but also the ectorhinal area and tem-
poral association areas, which are much more caudal. As the clas-
sification of cell types is a hierarchical problem, refitting the model
to a dataset including the transcriptome profile of pyramidal neu-
rons extracted from the ectorhinal area and temporal association
areas would lead to a splitting of the density between these regions.

Similarity Between Groups of Cell Types Is Reflected in Additive
Properties of the Estimated Densities. The transcriptome profiles
Ct are not mutually orthogonal in gene space. If some of them are

Fig. 1. The ABA in gene space. (A) Sorted logarithm of singular values of
the ABA data (in red) and fraction of the variance explained (in blue). The
271 largest values explain 90% of the variance. (B) Projection of the voxels of
the left hemisphere on the space spanned by the first three PCs in gene
space. Some brain regions visibly fall into clusters. (C1–C3) Maximum-
intensity projections of the first three PCs in voxel space. The second vector
highlights the cerebellum and the third the striatum and the cerebellum. (D)
A sketch of the distribution of cell types in two voxels.

Fig. 2. Brain-wide correlation profiles between the ABA and cell-type
transcriptome profiles. The color map represents all negative correlations in
black. The first three columns are heat maps of maximal-intensity projections
of correlation profiles, and the fifth column consists of sections through the
region in the ARA with largest average correlation profile. The plane of
section is depicted in the fourth column. (A) Granule cells [extracted from
the cerebellar cortex (20)]. (B) Medium spiny neurons [extracted from the
striatum (20)]. (C) Pyramidal neurons [extracted from layers 5–6 of cingulate
cortex (14)]. (D) Pyramidal neurons [extracted from the amygdala (14)]. (E)
Pyramidal neurons [extracted from the hippocampus (14)].
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almost colinear, the densities estimated in our linear model can be
expected to be negatively correlated. We tested this idea in the

absence of new microarray data by refitting the model to new
panels of microarray data consisting of fewer cell types than C. We
conducted two analyses corresponding to two choices of panels.

i) Of the 64 cell types in this study, 18 are pyramidal neurons.
We combined these 18 transcriptome profiles into their aver-
age and refitted the model to a panel consisting of this com-
posite pyramidal neuron and all of the nonpyramidal cell
types (SI Methods). The density of the composite pyramidal
neuron has a 88:75% correlation with the sum of predicted
densities of pyramidal neurons in the original model (Fig. S3
shows that the density of the composite pyramidal neuron is
highly localized in the cortex and differs from the sum mostly
in the hippocampus and in the amygdala, presumably because
of the lack of the particular cell types in Fig. 3 D and E).

ii) We computationally identified pairs of highly similar cell
types in the dataset (such as the two medium spiny neurons
and a pair of dopaminergic neurons). We refitted the model
twice, keeping only one of the two cell types in a panel of
T − 1 cell types. Each refitted density of the remaining me-
dium spiny neuron is highly correlated (more than 99:9%) to
the sum of the two original densities (Fig. S4). The other
density profiles are quite stable. This confirms that highly
similar cell types have negatively correlated densities (the op-
timum of the model in the case of the two medium spiny
neurons appears to be close to degenerate); hence the densi-
ties of these cell types should be interpreted together. How-
ever, the densities behave as expected when refitting
the model.

Purity Issues and Missing Cell Types. The cell-type–specific tran-
scriptomes were collated from different sources, so we examined
the robustness of the densities by excluding some of the cell types
judged to be possibly contaminated in ref. 28 (restricting the

Fig. 3. Brain-wide density profiles of cell types estimated by fitting the
model. The first three columns are heat maps of maximal-intensity projec-
tions of density profiles, and the fifth column consists of sections through
the region in the ARA with largest contribution to the density profile. The
plane of section is depicted in the fourth column. (A) Granule cells [extracted
from the cerebellar cortex (20)]. (B) Medium spiny neurons [extracted from
the striatum (20)]. (C) Pyramidal neurons [extracted from layers 5–6 of cin-
gulate cortex (14)]. (D) Pyramidal neurons [extracted from the amygdala
(14)]. (E) Pyramidal neurons [extracted from the hippocampus (14)].

Fig. 4. (A1) Maximum-intensity projections of the pyramidal neurons extracted from prelimbic and infralimbic areas (14). These pyramidal neurons are
indeed predicted to be found in these regions, but also in five other cortical regions contributing more to the density profile. (A2) Maximal-intensity pro-
jections of the top seven cortical regions contributing to the density profile. (B) Coronal sections through the cerebellum of the predicted density profiles of
(B1) granule cells, (B2) Purkinje cells, (B3) stellate basket cells, and (B4) mature oligodendrocytes. Even though the cerebellar cortex consists of only one
compartment in the digitized version of the ARA, we can define a data-driven granular layer of the cerebellum from B1, without having to interpolate
between the hardcopy of the ARA and the grid of cubic voxels.
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fitting panel to a set of 43 cell types). We found that the pre-
dicted densities are largely robust, with the exception of a cere-
bellar Purkinje cell type (labeled t= 52). For this case, it was
found that using the full panel of 64 cell types produced para-
doxical results (the thalamus shows a larger predicted spatial
density than the cerebellum, Fig. S1E). The predicted spatial
density based on the restricted panel yields densities confined to
the cerebellum for the cerebellar Purkinje cells. The other
density profiles, shown in Fig. 3, did not show such sensitivity to
inclusion of the contaminated cell types in the fitting panel.

Modeling Cross-Hybridization and Estimating the Errors in Densities.
Microarray data are subject to cross-hybridization. No gene in
this study has zero signal in any of the cell types, but every gene
has zero ISH signal in at least 0.38% of the voxels (and in more
than 4% of the voxels on average). Hence the data in C have
a larger background value than in E. To offset the background
intensity of microarray data, we assumed a uniform value across
genes and cell types. [See SI Methods and Fig. S5 for a motivation
of this calculation. Because the offset in the entries of the matrix C
is uniform, the results of the correlation analysis (Fig. 2) are un-
changed.] We subtracted from C its minimum entry (bringing the
minimum value to 0) and refitted the model, to obtain a new es-
timate ρoffsett of the density of cell types. The results can be com-
pared visually to those of the original model. For the cell types
illustrated in Fig. 3, there is no dramatic difference, and the
contrast of the “hot spot” is improved in the case of amygdalar
pyramidal neurons (Fig. S6). All profiles have a positive correla-
tion (75.3% on average) between the original and refitted models.
The values of the residual term go down in all of the main regions
in the ARA (Fig. S7), which indicates a better fit.
This improvement raises the issue of quantitative estimates of

errors [upper bounds on differences between such regression
results and solutions corresponding to Gaussian residuals are the
object of active statistical research (37), but we take a more
empirical approach]. To examine errors induced by missing cell
types, we simulated an additional thalamic cell type by letting it
deviate from the average transcriptome profile for 200 genes (cho-
sen for their large expression at thalamic voxels), proportionally to
the values ofC52 at these genes. (The number was chosen because
it represents about 10% of the number of genes in our dataset,
which is also the fraction of the genome covered by our dataset
with G genes. This number was chosen for subsampling for the
same reason.) Increasing the proportionality coefficient allows us
to transfer the thalamic signal from t= 52 to the simulated type (SI
Methods, section 10a and Fig. S8). This suggests that some of the
errors induced by missing cell types can be compensated by
enriching the dataset and that modifying data on 200 genes can be
sufficient in some cases to drive the results to a new optimum.
To examine errors induced by missing genes, we used a sub-

sampling method. We repeatedly drew random sets of 200 genes,
refitted the model, and computed the fraction of the new density
profile ρðsÞt (in subsample labeled s) supported in the original
density profile:

Iðs; tÞ := 1P
vρ

ðsÞ
t ðvÞ

X
v

1
�
ρoffsett ðvÞ> 0

�
ρðsÞt ðvÞ: [2]

The more the distribution of overlaps Ið:; tÞ is concentrated at
values close to 1, the more stable the prediction ρoffsett is. The
average value over samples of the overlap induces a ranking of
cell types. The cell types illustrated in Fig. 3 A–E rank 11th, 2nd,
10th, 19th, and 9th, respectively [see Fig. S9 A and B for a heat
map of the cumulative distribution functions (CDFs) of overlaps
and SI Methods, section 10b for their interpretation in terms of
confidence thresholds for each cell type]. For example, the pro-
files of medium spiny neurons ðt= 16Þ have at least 90% of their
signal supported by ρoffsett with probability 84% (this probabili-
ty falls at 23% for amygdalar pyramidal neurons, t= 48). The
lowest-ranking cell types tend to have sparser and less striking

patterns (the last 32 cell types are supported on 0.98% of the
voxels on average, compared with 13.98% for the first 32). The
top 15 cell types include the cortical pyramidal neurons and
cholinergic interneurons from the spinal cord shown in Fig. S1
C and D. Similar values of overlaps were obtained by fitting the
model to a matrix C containing all genes but corrupted by noise
(with the columns mixed according to Gaussian matrices in a suit-
able regime of noise; SI Methods, section 10d).
These simulations, although showing that missing genes still

allow some of the most striking predictions to survive sub-
sampling (with a probability depending on the cell type), do not
take into account the voxel-wise variation of errors that can
come from missing cell types as well as from missing genes, as the
measure of Eq. 2 is uniform over the brain and takes only the
support of the original profile into account, rather than the full
set of values. To estimate voxel-dependent confidence intervals
for a fixed cell type, we used a more symmetric subsampling
procedure: We repeatedly split the entire set of G genes into two
random sets of equal size (up to one gene as G is odd), refitted
the model to the two sets, and computed at each voxel the
probability of detecting each cell type from one fitting condi-
tional on detecting it from the other (SI Methods, section 10c).
These conditional probabilities turn out to be strongly cor-
related to the intensity of ρoffsett (on average for the cell types
illustrated in Fig. 3 and Fig. S1). Thresholding the profile of
amygdalar pyramidal neurons at 99% of conditional probability,
for instance, yields a set of voxels consisting of the amygdalar hot
spot, with all hippocampal voxels set to zero, which is also clearly
discernable in the average subsampled profile, but is penalized in
the measure of overlaps by voxels with weaker signal that are
less stable under subsampling (Fig. S9 D1 and D2). This random-
splitting simulation shows that neuroanatomically striking features
of the results can hold with high probability, most likely at voxels
with the highest predicted value of the density. (See section 7 of
ref. 38 for detailed presentations of the CDFs of the overlaps and
section 8 of ref. 38 for a presentation of conditional probabilities
of detection for all cell types, with heat maps of profiles thresh-
olded at 99% and 75% thresholds on conditional probability.)

Some of the Anatomical Patterns Emerge from Biclustering of Sets
of Localized Genes. We focused on the set of genes with highly
localized expression to investigate links between expression pat-
terns and neuroanatomy. Using the Kullback–Leibler divergence,
we identified the 153 most localized genes. However, their spatial
expressions are not entirely nonoverlapping. We therefore ap-
plied a biclustering procedure (see SI Methods and ref. 39 for
a description of the algorithm and ref. 40 for an application to
data mining of adverse drug-related events) to divide the most
localized genes (and the voxel supporting their expression) into
spatially least-overlapping sets. These biclusters could be associ-
ated with nonoverlapping sets of cell types. Indeed the four
biclusters illustrated in Fig. 5 A1–A4 resemble the neuroana-
tomical patterns that were observed in Fig. 2 A, B, and E and
Fig. S1A. It is natural to ask, for example, whether the bicluster
illustrated in Fig. 5A1 corresponds to medium spiny neurons and
whether the bicluster in Fig. 5A2 corresponds to cell types in the
cerebellum. It can indeed be seen that there is a correspondence
between the two: The cerebellar and striatal biclusters respectively
contain genes that are differentially expressed in cell types detected
in the cerebellum and the striatum (Fig. 5B). This is consistent
with the emergence of striatum and cerebellum in gene space
observed in Fig. 1B, C2, and C3. However, the restriction to the
most localized genes excludes genes whose expression is spread
over the cerebral cortex, as the cerebral cortex is a large region,
and such expression profiles are therefore too close to a uniform
expression to be highly ranked by our localization criterion.

Coexpression Goes Up with Biochemical Interaction. A natural ques-
tion is whether the coexpression of genes can be associated with
other measures of interaction between the genes. According to our
model, gene coexpression can occur if genes are expressed in the
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same cell type. In that case, there is a possibility that they participate
in a shared biochemical reaction. We found 921 genes in the in-
tersection of our dataset with the Reactome database (41). We
defined the coexpression of two genes as the cosine similarity be-
tween their brain-wide expression energies (SI Methods and refs. 24
and 25). We calculated the numbers of pairs of genes interacting in
at least k reactions, for all values of k (these values are found on the
horizontal axis of Fig. 6). We estimated the density of coexpression
at constant values of the number of shared reactions, both for the
real data encoding the participation of genes in reactions and for
100,000 matrices obtained by randomly permuting the genes and
reactions. The density of coexpression is larger than expected by
chance when the number of shared reactions is sufficiently large.
However, high coexpression is only weakly predictive of in-
volvement in the same biological pathway (Fig. S10).

Discussion
Our analysis shows that the ABA complements cell-based data to
make neuroanatomical predictions, even though gene expression
varies according to developmental stage and brain state, whereas
the expression energies in the ABA represent a single state of
one adult brain (42). It would be interesting to compare the
developmental ABA (developingmouse.brain-map.org) to tran-
scriptomes of cell types at the same developmental stages. Major
neuroanatomical divisions, between cortex, striatum, and cere-
bellum, can be seen on low-dimensional projections of SVD of
the ABA in gene space. Indeed these separations are recovered
on correlation and density profiles of cell types extracted from
these brain regions. However, some cell types are estimated by
our model to have much finer region-specific properties, based
on their transcriptomes, which can be far from orthogonal in
gene space, unlike the principal components returned by SVD of
the ABA.
Our model relies on optimization over the full gene space at

each voxel, without choice of a stopping criterion. This is in
contrast to the approach of ref. 22, where three sets of genes
were selected on the basis of a 10-fold enrichment in each cell
type in ref. 19 and declared to be respectively neuron specific
(170 genes), astrocyte specific (50 genes), and oligodendrocyte
specific (44 genes). The corresponding three sets of genes from
the ABA were then clustered using the k-means algorithm, which
yielded clusters corresponding to neuroanatomical regions, espe-
cially in the case of the neuron-specific genes (the analysis in ref. 22
was based on ISH image series rather than gene-expression ener-
gies). Our approach is less dependent on the solidarity between

voxels than the clustering approach, because the optimization
problem is solved one voxel at a time, and we integrated more cell-
type–specific samples into the analysis. Our results associate sev-
eral major brain regions to specific cell types rather than classes of
cell types, thus sharpening the complementary relationship be-
tween the gene-based and the cell-based approaches to gene ex-
pression in the brain. Pairs of genes belonging to several shared
cellular biochemical pathways tend to be more strongly coex-
pressed (other attempts to leverage the ABA data and function-
al data include the Gene Ontology-based analysis of ref. 22).
The emergence of brain regions from density profiles, despite the
heterogeneity of the datasets and the lack of dynamics, is an en-
couraging confirmation of the validity of the genomic classification
of cell types. Moreover, the estimated densities are independent
from the annotation of voxels by classical neuroanatomy. This
could be of special interest in the case of songbirds (2), as the very
existence of some brain regions (such as the cerebral cortex) in the
zebra finch is an open problem, whereas the existence of localized
cell types could be established in a genetic way (even though the
nomenclature of the brain regions from which the cells are isolated
is controversial). The availability of the ABA of the human brain
(43) gives rise to more technical challenges due the paucity of
specimens and to the partial brain coverage. Importantly, our
model enables single-cell transcriptome analysis to be extended to
the spatial distribution of cell types. The errors in the estimates
vary across cell types and voxels because of missing genes and cell
types, but confidence intervals are accessible to numerical simu-
lations, and some striking neuroanatomical patterns hold with
high probability. The model will remain applicable as the taxon-
omy of cell types matures.

Methods
Correlations Between Cell-Type–Specific Transcriptomes and ABA. The value at
voxel v for cell type t reads as follows:

Corrðv,tÞ=
PG

g=1

�
CtðgÞ−

PT
t=1ðCtðgÞ=TÞ

��
Eðv,gÞ−PV

v=1ðEðv,gÞ=VÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPG
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�2PG
h=1
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v=1ðEðv,hÞ=VÞ�2q :

[3]

Estimating Brain-Wide Density of Cell Types. For a given voxel v, the numbers
ρtðvÞ1≤t≤T are the entries of the vector in RT

+ that is mapped by the matrix C
to the best possible approximation of the vector Eðv,gÞ1≤g≤G. They minimize
a quadratic form under positivity constraint:

ðρtðvÞÞ1≤t≤T = argminν∈RT
+

XG
g=1

 
Eðv,gÞ−

XT
t=1

CtðgÞνðtÞ
!2

: [4]

We solved these quadratic optimization problems, one per voxel, using the
CVX toolbox (44, 45).

Fig. 5. Biclustering-based discovery of separable brain regions. (A1–A4)
Maximal-intensity projection of the genes corresponding to four of the
biclusters. (B) Separation of underlying cell types. A matrix shows the expres-
sion of genes in clusters A1 (green) and A2 (blue) in cell types that correlate
mostly to the striatum (green) and to the cerebellum (blue), respectively.

Fig. 6. Coexpression of genes in the ABA and the Reactome database. Shown
is a heat map of the density function of coexpression of pairs of genes, as
a function of the minimal number of reactions shared by the genes.
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