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Abstract

DNA sequence and local chromatin landscape act jointly to determine transcription factor (TF) binding intensity profiles. To
disentangle these influences, we developed an experimental approach, called protein/DNA binding followed by high-
throughput sequencing (PB–seq), that allows the binding energy landscape to be characterized genome-wide in the
absence of chromatin. We applied our methods to the Drosophila Heat Shock Factor (HSF), which inducibly binds a target
DNA sequence element (HSE) following heat shock stress. PB–seq involves incubating sheared naked genomic DNA with
recombinant HSF, partitioning the HSF–bound and HSF–free DNA, and then detecting HSF–bound DNA by high-throughput
sequencing. We compared PB–seq binding profiles with ones observed in vivo by ChIP–seq and developed statistical
models to predict the observed departures from idealized binding patterns based on covariates describing the local
chromatin environment. We found that DNase I hypersensitivity and tetra-acetylation of H4 were the most influential
covariates in predicting changes in HSF binding affinity. We also investigated the extent to which DNA accessibility, as
measured by digital DNase I footprinting data, could be predicted from MNase–seq data and the ChIP–chip profiles for
many histone modifications and TFs, and found GAGA element associated factor (GAF), tetra-acetylation of H4, and H4K16
acetylation to be the most predictive covariates. Lastly, we generated an unbiased model of HSF binding sequences, which
revealed distinct biophysical properties of the HSF/HSE interaction and a previously unrecognized substructure within the
HSE. These findings provide new insights into the interplay between the genomic sequence and the chromatin landscape in
determining transcription factor binding intensity.
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Introduction

Binding of transcription factors (TFs) to DNA elements is

necessary to establish and maintain functional changes in gene

expression levels. The mechanism by which these factors seek out

and bind to their cognate motif elements remains an area of active

investigation (reviewed in [1]). TFs are present at cellular

concentrations that allow binding to sites that are degenerate

from the consensus sequences, and genomes of eukaryotes are

littered with potential degenerate binding sites; however, only a

small fraction of potential binding sites are recognized in vivo.

Moreover, TF binding sites vary dependent upon cell type and

cellular conditions. In vivo, TF binding is potentially dependent

upon motif accessibility and the surrounding chromatin landscape.

Therefore, determining a comprehensive set of potential genomic

binding sites and quantifying the joint effects of DNA sequence

and chromatin landscape upon binding intensity remains a

challenge.

Experimental approaches to characterize TF binding sites

include assays such as ChIP-seq, protein binding microarrays

(PBM) [2], iterative rounds of protein-DNA binding and

selection with a complex oligonucleotide library [3], or

extrapolation from DNase I hypersensitivity regions [4].

However, perhaps the most direct way to determine all potential

TF binding sites within a genome is to incubate purified TF and

naked sheared genomic DNA in vitro, and then specifically

quantify the TF-bound DNA [5]. This in vitro method allows

binding sites to be interrogated in their native sequence context

without the confounding effects of chromatin and cooperation

between chromatin-bound factors.

It is challenging to predict in vivo TF binding accurately even

when all potential in vitro binding sites have been characterized,

because the chromatin landscape dramatically influences binding

and it changes dynamically with development and with alterations

in cellular nutrition and environment [6,7]. Recent TF binding

site modeling efforts have considered genomic nucleosome

occupancy or DNase I hypersensitivity data to account for the

effect chromatin has upon in vivo TF occupancy [8–11]. However,

these models are limited in that they rely upon genomic

accessibility data and TF binding data produced under the same

conditions. To date there are no data sets that describe the full set

of potential TF binding sites, the chromatin state data prior to

binding, and occupied binding sites in vivo, in a single inducible

system. Integration of these three data sets would allow one to
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decouple the effect TF binding has upon chromatin state from the

effect pre-existing chromatin state has upon induced TF binding.

The heat shock response of Drosophila is a model system

extensively used to study the general functions of sequence specific

activators and how they function to regulate transcription (reviewed

in [12]). The master regulator of the heat shock genes, Heat Shock

Factor (HSF), has a modest affinity for DNA under non-stress

conditions [6,13,14], and upon stress, HSF homotrimerizes and

inducibly binds to a conserved consensus motif at over 400 sites in

the Drosophila genome [6,14]. While over 95% of the HSF binding

sites contain an underlying HSF sequence motif element (HSE), the

vast majority of predicted genomic HSEs remain HSF–free

following heat shock. Therefore, the chromatin landscape most

likely plays a prominent role in determining binding of HSF.

Here, we describe an experimental technique, protein/DNA

binding followed by high-throughput sequencing (PB–seq), to

quantify the binding potential of all binding sites within a genome.

We then develop a quantitative model that incorporates HSF PB–

seq data, together with HSF ChIP-seq in Drosophila S2 cells [6] and

S2 cell chromatin data, that accurately predicts observed in vivo

HSF binding profiles. Moreover, our model allows us to quantify

the relative importance of the chromatin features influencing HSF

binding intensity. Finally, we develop a sequence model that uses

HSF PB–seq data to characterizes the relationship between

positions within the HSE and provide biophysical insight into

the mechanisms by which HSF interacts with its cognate element.

Results

Quantification of the absolute binding affinity of all
genomic Drosophila HSEs

We performed an in vitro binding experiment with purified

HSF (Figure S1) and naked, sheared genomic Drosophila DNA, to

derive an accurate set of potential HSF binding sites in the

Drosophila genome. HSF–bound DNA was specifically eluted and

detected by high throughput sequencing (Methods). The HSF PB–

seq experiment yielded 68% of the sequence tags within peaks. In

contrast, typical ChIP-seq protocols are more inefficient and the

majority of DNA (60% to .99%) sequenced is uninformative

background DNA [15].

Peak calling revealed 3952 HSF–binding peaks (p,0.01; 2848

peaks were common to both experimental replicates), which

include 60% of the previously identified high-confidence HSF

binding peaks in vivo [6]. The naı̈ve expectation is that every in

vivo HSF peak should have a corresponding in vitro peak, but it is

not surprising to observe an incomplete overlap of in vivo by in

vitro peaks, for various reasons. As will be discussed, binding sites

detected in vivo but not in vitro tend to be more degenerate and

have higher DNase I accessibility. Additionally, in vivo binding

sites that are dependent upon cooperative interactions with pre-

bound chromatin factors, long range DNA interactions, post-

translational modifications of HSF [16], higher-order chromatin

structure, or bridging protein interactions [17] will not be detected

in the current form of PB–seq.

Underlying the in vitro binding peaks, we detected 3735 clusters

of HSF binding site HSE sequences (2896 in peaks common to

both replicates) at 20% HSE False Discovery Rate (FDR). We

used clusters of co-occurring sites due to the uncertainty in HSE

detection (see Methods). Furthermore, the majority, 3389 clusters

(2586 in peaks common to both replicates) are not detectably

bound in S2 cells in vivo. Figure 1 shows two examples of in vitro

binding sites flanking the Cpr67B gene that are not bound in vivo.

Moreover, the in vitro binding data quantifies differences in the in

vitro and in vivo HSF binding intensity, such as the peaks within

each of the promoters for Hsp23 and Hsp26 (Figure 1).

The PB–seq experiment allows for an estimate of the relative

binding intensity of each HSE, based on the number of sequence

tags associated with it. To compute the dissociation constant (Kd)

values it is necessary to have estimates for both the fraction of

bound and free HSE in the PB–seq experiment. Since the PB–seq

data only provides information on the bound fraction, we needed

to determine the absolute Kds for two HSEs that are found within

the PB–seq data in order to provide enough information to

estimate the free fraction (see Methods).

To generate the HSF/HSE Kd measurements, we performed

electrophoretic mobility shift assays (EMSA). The EMSAs were

performed with purified HSF and HSEs that are only modestly

degenerate from the consensus. We found that HSF binds to the

first HSE with ,42.6 pM interval: 36.8–49.4 pM; Figure 2A and

2C) and the second HSE with ,224 pM affinity (95% confidence

interval: 181–276 pM; Figure 2B and 2D). The resulting two

absolute Kd values enabled us to transform PB–seq read depths

into absolute Kd values (Figure 2E and Methods). We confirmed

the transformation of the relative Kd values to absolute Kds by

performing band shifts with genomic HSEs of different predicted

Kd values (Figure S2). The experimental verifications of the

measurements are within the estimated error of the EMSA

confidence interval and the variability between PB–seq replicates

(Figure S3).

Taken together, these measurements allow us to characterize

the binding energy landscape for HSF across the entire Drosophila

genome, in the absence of chromatin. Our estimated Kd values for

isolated HSEs in the Drosophila genome ranged from 40–400 pM

(Figure 2E). These in vitro binding results demonstrate the

feasibility and efficiency of combining high-throughput detection

methods with classic EMSA and competition experiments to

quantify the binding energy for the comprehensive set of potential

genomic binding sites for a sequence-specific TF.

Chromatin features and PB–seq data predict HSF binding
intensity in vivo

Our data reveals substantial differences between in vivo and in

vitro binding intensities (Figure 3A), underscoring the role of

chromatin in determining in vivo binding site selection and

Author Summary

Transcription factors (TFs) bind DNA to modulate levels of
gene expression. TF binding sites change throughout
development, in response to environmental stimuli, and
different tissues have distinct TF binding profiles. The
mechanism by which TFs discriminate between binding
sites in a context dependent manner is an area of active
research, but it is clear that the chromatin environment in
which potential binding sites reside strongly influences
binding. This study used the Heat Shock TF (HSF) to study
the effect chromatin has upon induced HSF binding. We
implemented an experimental technique to quantify all
potential HSF binding sites in the genome. These data
were incorporated into a modeling framework along with
chromatin landscape information prior to HSF binding to
accurately predict the intensities of inducible HSF binding
sites. DNase I hypersensitivity and tetra-acetylation of H4
were the most influential covariates in the model. The
binding data enabled the development of a more
complete HSF/DNA interaction model, providing insight
into the biophysical interaction of HSF trimer subunits and
target DNA pentamers.

Transcription Factor Binding Intensity Prediction
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affinity. We found DNase I hypersensitivity was the most

important predictor of HSF binding; therefore, we scaled the in

vivo and the in vitro read counts so that they were approximately

equal at in vivo sites with high DNA accessibility (Methods, Figure

S4). After this normalization, we partitioned the binding sites that

were detectable in vitro into classes: ‘‘unaffected’’ sites, bound at

Figure 1. In vitro binding reveals potential HSF binding sites. The blue box highlights strong differences in the usage of potential binding
sites in vivo at the Cpr67B locus, while the green boxes highlight differences in the magnitude of binding to major heat shock genes promoters,
despite comparable in vitro binding affinities.
doi:10.1371/journal.pgen.1002610.g001

Figure 2. Recombinant HSF binds HSEs with picomolar affinity in vitro. A and B) The mobility of the constant 200 attomole HSE probe shifts
into a trimeric-HSF:HSE complex as increasing HSF is added. There is no HSF in the left-most lane, the right-most lane contains 3 nM HSF (1 nM
trimeric HSF), and the intervening lanes contain two-fold serial dilutions of HSF. C) A hyperbolic curve based on the Kd equation (see Methods) was
modeled using the band shift data, indicating a Kd of 42.6 pM (95% confidence interval of 36.8–49.4 pM). D) A hyperbolic curve based on the Kd
equation (see Methods) was modeled using the band shift data, indicating a Kd of 224 pM (95% confidence interval of 181–276 pM). E) The intensity
of each isolated HSE in the Drosophila genome is transformed to an absolute Kd using the absolute Kds calculated from band shift data in panels A
and B. The Kd values range from 40–400 pM.
doi:10.1371/journal.pgen.1002610.g002

Transcription Factor Binding Intensity Prediction
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comparable affinities in vivo and in vitro (55 red points in

Figure 3A; 2% of all sites); ‘‘suppressed’’ sites, with reduced, but

detectable, in vivo intensity (365 green points; 13%); and

‘‘abolished’’ sites, below the in vivo threshold for detection (2223

blue points; 76%). In addition, sites not detectable in vivo or in

vitro were labeled ‘‘background’’ (249 gray points; 9%), and sites

with stronger relative in vivo intensity compared to in vitro were

labeled ‘‘enhanced’’ (4 black points; 0.1%).

PB–seq data reveals potential HSF binding sites, providing the

opportunity to model the effect that non-stressed chromatin

landscape has upon induced HSF binding intensity. There is a

wealth of chromatin data available for S2 cells during unstressed

conditions [18,19], and heat-shock induced binding sites of HSF in

S2 cells are also known [6]. We used DNase I hypersensitivity data

[18], MNase data [19] and ChIP-chip data for 9 factors and 21

histone modifications for unstressed Drosophila S2 cells (Table S1)

[18] to predict the intensity of inducibly bound in vivo HSF–bound

sites (Figure 4A, Figure S5 and Figure S6). For our statistical model,

we selected a rules ensemble [20], a linear regression model in which

some terms are combinations of covariates known as ‘‘rules’’. This

approach allowed us to capture fairly complex interactions between

covariates. For example, a rule might apply when H3K27ac and

DNase I hypersensitivity both exceeded designated thresholds (value

ranges can also be expressed). Each rule’s coefficient is added to the

predicted value if, and only if, the rule applies. When there is only

one covariate, the model reduces to a linear regression.

The Pearson’s correlation coefficient between HSF ChIP-seq

data for the model incorporating all these data sets was r = 0.62

(Figure S6 and Figure S7). As the large number of covariates

brings with it some danger of overfitting, we tested combinations

of the four classes of covariates: DNase I hypersensitivity, MNase,

histone modifications/variants, and non-histone factors (Figure 4B,

Figure S6, Figure S7). Of notice, the correlation of the linear

regression model that incorporates DNase I data was r = 0.64 on

the test data (Figure 4B and Figure S7B). Our study is consistent

with a previous study that obtained r = 0.65 for actual and inferred

TF binding intensities using a DNase I dependent model [8].

Other covariate classes produce similar, but lower, correlations.

The rules model using histone modifications and histone variants

yielded r = 0.57 (Figure 4B and Figure S7), while a rules model

incorporating non-histone bound chromatin factors yielded

r = 0.58 (Figure 4B and Figure S7). Combining covariate classes

further improves the correlation to as much as r = 0.70 (Figure S6

and Figure S7). We also examined the Receiver Operator Curves

(ROC) for the different covariate combinations (Figure S8) and

found concordant results. If we assume that the PB–seq, genomic

ChIP, DNase I-seq, and MNase-seq experiments are maximally

resolved and sensitive, with no experimental noise, an approxi-

mate upper bound is given by r = 0.90, as observed for two HSF–

ChIP-seq replicates [6]. Notably, the higher resolution of the

DNase I-seq data, compared to the ChIP-chip data, may be why

DNase I-seq alone is strongly predictive in the linear regression

model and most influential in the rules ensemble models. Notably,

we used the chromatin landscape prior to induced TF binding to

predict binding intensity, whereas previous models have used the

chromatin landscape present when the TF is bound in order to

infer binding intensity [8] or infer binary binding events [10,11]

(see Discussion).

Figure 3. In vitro and in vivo binding of HSF to genomic HSEs do not correlate. A) A scatter plot comparing the observed in vivo HSF
binding intensity and in vitro binding intensity for each isolated HSE indicates that the vast majority of in vivo binding is suppressed (green) or
abolished (blue), if we assume that the top seven most DNase I hypersensitive isolated HSE clusters provide the best estimates for sites that are
minimally influenced by chromatin. After scaling, red points have similar in vivo and in vitro intensity, black points may be enhanced in vivo, while
green and blue points are suppressed and abolished, respectively. B) The points from panel A were categorized, and the resulting bar chart shows the
relative frequencies of each category.
doi:10.1371/journal.pgen.1002610.g003
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Our data and modeling indicated that the presence of active

chromatin features, such as histone acetylation and DNase I

hypersensitivity, had a significant influence on the predictive

power of the model, while repressive features had minimal

influence (Figure S9). DNase I hypersensitivity was a strongly

predictive covariate in the model when used in a simple linear

regression model (Figure 4), or in combination with histone

modification and non-histone factor covariates in the rules

(Figure S9E–S9G, S9J, S9K, and S9M). Tetra acetylation of

H4 and H3K9ac were the most informative histone marks in

the model that used histone variants and histone modifications

as covariates (Figure 5A). GAGA associated factor (GAF),

which has a proposed role in permitting HSF binding [21], was

the most influential factor in the HSF binding prediction

model that considered all chromatin-binding factors

(Figure 5B).

Defining genome-wide DNA accessibility by chromatin
composition

The analysis above indicates that DNA accessibility, as

measured by DNase I hypersensitivity, is a primary determinant

of binding intensity. Previous studies have similarly shown that

TF binding sites correlate strongly with DNase I hypersensitive

sites [8,10,11,22]. For instance, histone acetylation causes local

chromatin decondensation by reducing the ionic interactions

between lysine residues and DNA and promotes accessibility, but

the extent to which combinations of histone marks and TFs act

together to dictate chromatin accessibility is not known.

Therefore, it is of interest to see whether DNA accessibility can

be predicted from specific features of the chromatin landscape,

such as histone modifications and non-histone chromatin bound

factors. In addition, accurate predictions of DNA accessibility

would be of practical use, because direct measurements are often

not available.

To address this question, we applied our rules ensemble

framework to predict DNase I hypersensitivity (the best available

proxy for DNA accessibility) from ChIP-chip data for histone

features, non-histone chromatin bound factors, MNase data and

combinations of these covariate pools (Figure 6). Tetra-acetyla-

tion of H4 and H3K9 acetylation were most influential in the

model that uses histone modifications, bulk histone and histone

variant intensities (Figure S10E); the correlation coefficient for

this model using the test data is 0.51 (Figure S11B). The model

that uses non-histone factor ChIP-chip data obtains a correlation

of 0.52 (Figure S11B), which is consistent with TFs having

characteristic DNase I hypersensitivity footprints [10,11]. The

model that combines both histone data and non-histone data into

a rules model performs the best on the test set, with a correlation

of 0.60 (Figure S11B). Repressive histone marks appear to

contribute little to generating the DNase I hypersensitivity

pattern (Figure S10) and the lack of active chromatin marks

appears to be sufficient to package DNA into inaccessible units.

These models reinforces the notion that the biochemical

composition of chromatin permits DNase I hypersensitivity and

quantifies the contributions individual modifications, and combi-

nations thereof, make to DNase I hypersensitivity (Figure S11). As

more and higher-resolution genome-wide data becomes available,

these models will be refined.

Dissection of the Heat Shock Element
PB–seq provides the opportunity to model the sequence-

dependent binding preferences of a purified TF genome-wide

and independent of chromatin or other factors. In the case of HSF,

the consensus binding site is well characterized and consists of

three pentamers, ÒAGAAN NTTCT AGAANÓ, (here denoted

pA, pB, and pC), each bound by a monomer of the HSF

homotrimer. Note that the consensus sequences for pA and pC are

identical, while the one for pB is their reverse complement. Of

course, the consensus HSE is a crude summary that ignores

subtleties in the base preferences at each position. A position-

specific scoring matrix (PSSM) provides a somewhat improved

description but still ignores dependencies between positions within

the binding site. We sought to use genome-wide binding sites from

PB–seq to produce an improved model for the sequence

preferences at HSEs.

We began by computing the mutual information for all pairs of

HSE positions based on the identified in vitro binding sites. We

found negligible evidence of correlated base preferences between

positions, but we did observe that some pentamers within PB–seq

peaks adhered closely to the consensus motif while others did not.

This led us to formulate a probabilistic model that allows each

pentamer in an HSE to closely match the consensus (‘‘strict’’) or

diverge from it more substantially (‘‘relaxed’’), and considers all

possible combinations of pentamer composition (Figure S12).

More specifically, we described each of the three pentamers using

a two-component mixture model, with a latent variable indicating

‘‘strict’’ or ‘‘relaxed’’ binding preferences, and estimated the joint

distribution of these three latent variables from the data.

The model parameters—the position-specific nucleotide prob-

abilities and prior distribution for the combinations of strict/

relaxed pentamers—were estimated from the data by maximum

likelihood using an expectation maximization algorithm (see

Methods). In fitting the model, we considered only the 1309

isolated HSEs, sequence elements that were at least 200 base pairs

away from any other degenerate HSE motif, to avoid complica-

tions arising from overlapping HSEs. The model fit the data

substantially better than did a simple PSSM (lnL = 215442 vs.

lnL = 215673 for the PSSM; Akaike information criterion

[AIC] = 15636 vs. AIC = 15763 for the PSSM), suggesting that it

effectively captures important dependencies between positions.

Based on the estimated model parameters, we computed a

posterior probability distribution over all combinations of

pentamer stringency and order for each HSE (Methods;

Figure 7B). These values were averaged across HSEs to obtain

expected genome-wide fractions of HSEs having each of the strict/

relaxed pentamer combinations. We found that binding sites with

strict pB and pC, and relaxed pA, were most frequent (an expected

38% of sites), indicating that this configuration is preferred

(Figure 7B). The next most frequent configurations were a relaxed

pB flanked by a strict pA and pC (33%), and a strict pA and pB

combined with a weak pC (29%). Interestingly, combinations of

three strict pentamers occur at negligible frequency. Indeed, only 5

out of 1309 isolated genomic HSEs matched the consensus

sequence exactly, while 148 differed from it by a single mismatch.

Configurations with at most one strict pentamer were also rare.

Together, these results indicate that the biophysical interactions of

the pentamers within the binding sites are critically dependent

Figure 4. Genomic chromatin and PB–seq data accurately predict in vivo HSF binding intensity. A) The intensity of in vivo ChIP-seq
peaks is not recapitulated by in vitro PB–seq data; however, genomic DNase I hypersensitivity data and histone modification ChIP-chip data can be
used to accurately predict HSF binding intensity. B) The experimentally determined ratio between in vivo ChIP-seq HSF intensity and in vitro PB–seq
intensity is plotted against the predicted in vivo/actual PB–seq ratio. The Pearson correlation for each model is shown.
doi:10.1371/journal.pgen.1002610.g004

Transcription Factor Binding Intensity Prediction
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upon their composition and position relative to the other

pentamers in an HSE.

While the three estimated strict pentamer matrices were similar

(Figure 7A top), the relaxed matrices showed substantial

differences with respect to each other (Figure 7A bottom). For

example, the relaxed pA matrix indicates that 70–80% of HSEs

containing a weak pA have the consensus base at positions two,

three and four. In contrast, position 12 in pC (the analog of

Figure 5. Histone acetylation and GAF occupancy are important covariates in predicting HSF binding intensity. Plotted are the relative
values of the sums of the coefficients associated with all rules that reference each covariate in the rules ensemble [20]. Results are shown for (A) the
histone variant and modification model and (B) the non-Histone factor model.
doi:10.1371/journal.pgen.1002610.g005

Transcription Factor Binding Intensity Prediction
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Figure 6. DNase I hypersensitivity can be inferred using histone marks and MNase data. A) The intensity of DNase I hypersensitivity
landscape is inferred by models (colors) that use histone modification profiles, non-histone factor profiles, DNase I data and MNase-seq data. B) The
experimentally determined DNase I hypersensitivity data is plotted against inferred intensity for the various models. The Pearson correlation for each
model is shown.
doi:10.1371/journal.pgen.1002610.g006

Transcription Factor Binding Intensity Prediction
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position 2 in pA) almost invariably contains a G in all HSEs, while

positions 7 and 8 in pB (analogous to positions 3 and 4 in pA) have

only modest base preferences in HSEs containing a weak pB. This

analysis indicates that each monomeric HSF/pentamer interaction

has distinct biophysical properties within the context of the

broader HSF/HSE interaction.

We also devised a simplified model, with a single strict matrix

shared by all three pentamers, and a single relaxed matrix

obtained by applying a ‘‘dampening’’ factor to the strict matrix

(Figure S13, Methods). This model further supports the strict/

relaxed pentamer split (lnL = 215908 vs. lnL = 216048 for a

single-monomer PSSM; and AIC = 15952 vs. AIC = 16078),

although both the full model and the full PSSM fit the data

better (lower AIC). Moreover, not only was the simplified model

still able to reproduce the posterior distributions over pentamer

configurations of the full model, but it was also able to replicate

synthetic patterns from simulated data (Figure S14).

Finally, the preference for single pentamer degeneracy was also

observed independently by comparing the pentamer-specific KL-

divergence in PSSMs obtained from subsamples of HSF bound

peaks (Figure S15; Methods).

Discussion

The PB–seq technique combined with EMSA and competition

assays provides a straightforward, yet versatile and powerful

framework for characterizing all potential binding sites in a genome,

regardless of tissue specificity, developmental stage, or environmen-

tal conditions. Comparing in vitro and in vivo binding profiles, in

the context of pre-induction genomic chromatin landscape,

revealed DNase I hypersensitivity, H4 tetra-acetylation, and GAF

as critical features that modulate cognate element binding intensity

in vivo. Furthermore, DNase I sensitivity was found to be strongly

influenced by high GAF occupancy and histone acetylation, while

repressive factors were minimally influential in the statistical models.

Finally, the full set of potential genomic binding sites provided a rich

data set that was used to build more detailed sequence models,

which tease apart substructure and features that are lost with

traditional PSSM models.

One initially surprising observation from our study was that

40% of the in vivo HSF peaks were not found in vitro. We believe

that the limited dynamic range for quantifying in vitro binding

affinity may be responsible for the lack of detectable in vitro peaks.

Although we quantify in vitro binding over an order of magnitude

(40–400 pM), the experimental concentrations of HSF and

genomic DNA and our depth of sequencing do not permit the

detection of lower affinity HSF binding sites. For instance, only

eleven sequence tags would be predicted to underlie a hypothetical

5 nM HSF binding site, and these would not be distinguishable

from background. Upon further examination, we find that the

composite HSE representing those in vivo binding sites that were

not found in vitro is more degenerate than those found using both

assays (Figure S16A). Moreover, the in vivo sites that were not

found using PB–seq were also more accessible in vivo (Figure

S16B), in support of our hypothesis. Performing PB–seq at a range

of protein and DNA concentrations, or increasing sequence

coverage would expand the dynamic range of quantification by

PB–seq.

Other possible explanations for this observation include

cooperative interactions with pre-bound chromatin factors, long-

Figure 7. Pentamers within the HSEs are dependent upon their consensus match and also their position relative to the other
pentamers. A) The mixture model defines each pentamer within the HSE as strict or relaxed depending upon how well it conforms to the canonical
HSE. Note that the position of relaxed pentamers strongly influences their composition. B) A probabilistic sequence model reveals that the presence
of two strict (red) and one relaxed (blue) pentamer provides the best explanation of the data.
doi:10.1371/journal.pgen.1002610.g007
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range DNA interactions, post-translational modifications of HSF,

higher-order chromatin structure, or bridging protein interactions.

The influence of DNA modifications and immediate flanking

sequence do not contribute to this disparity, since we use large

fragments of purified genomic DNA. Bridging protein interactions

[17], which do not involve HSF directly binding to DNA, appear

not to be responsible for our results because 95% of in vivo peaks

encompass at least one HSE near the peak center [6]. However, if

other proteins were cooperating with HSF in vivo to enhance HSF

binding intensity at low affinity binding sites, then some of these

peaks may not be observed in vitro. Since our PB–seq experiment

used recombinant HSF in the binding experiments, we would also

not capture differences in binding site affinities that are due to

post-translational modifications of HSF [16]. To overcome these

potential limitations, PB–seq could be adapted to include known

bridging/cooperative factors and proteins could be purified from

in vivo sources to capture indirect or modification-dependent

interactions.

The notion that motif accessibility is driving inducible TF

binding in vivo is supported by independent studies of distinct TFs:

STAT1, HSF, glucocoticoid receptor (GR), and GATA1 [6,22–

24]. These studies show that the chromatin landscape prior to TF

binding influences inducible TF binding. In the first study, it was

found that a large fraction of STAT1 induced binding sites

contained H3K4me1/me3 marks prior to interferon-gamma (IFN-

c) induced STAT1 binding [23]. Our group previously found that

inducible HSF binding sites are marked by active chromatin

compared to sites that remain HSF–free [6]. A more recent study

has shown that inducibly bound GR sites are marked by DNase I

hypersensitive chromatin prior to GR binding [22]. Likewise, the

permissive chromatin state at GATA1 binding sites is established

even in GATA1 knock out cells [24]. While these correlations are

instructive, no previous attempt has been made to model inducible

TF binding using biological measurements of chromatin landscape

present prior to TF binding. Recent models have successfully

inferred TF binding profiles using DNA sequence and chromatin

landscape data, generated at the same time the TF is bound [8–

11]. However, these models do not distinguish between the

influence TFs have upon local chromatin and the chromatin

features that permit TF binding. In contrast, we modeled the

changes between HSF in vitro binding (PB–seq) and in vivo

binding (ChIP-seq) landscapes as a function of the non-heat shock

chromatin state. This produced a quantitative model describing

the important features that modulate the in vivo HSF binding

intensity. Moreover, the use of our rules ensemble model enabled

the capture of potential interactions between these chromatin

features.

Our study reveals that DNase I hypersensitivity and acetylation

of H4 and H3K9 are strong predictors of inducible HSF binding

intensities, however the molecular events and factors that precede

TF occupancy to maintain accessible chromatin remain poorly

characterized. For instance, the degree to which pioneering factors

or flanking DNA sequence, individually or in combination,

maintain or restrict accessibility remains unclear. A recent study

highlights the biological consequences of maintaining the inacces-

sibility of TF binding sites, in order to repress expression of tissue-

specific transcription factors in the wrong tissues. The authors

found that ectopic expression of CHE-1, a zinc-finger TF that

directs ASE neuron differentiation, in non-native C. elegans tissue is

not sufficient to induce neuron formation [25]. However,

combining ectopic CHE-1 expression with knockdown of lin-53

did modify the expression patterns of CHE-1 target genes in non-

native tissue, effectively converting germ line cells to neuronal cells

[25]. LIN-53 has been implicated in recruitment of deacetylases,

and deacetylase inhibitor treatment mimics lin-53 depletion,

suggesting that LIN-53 is actively maintaining CHE-1 target sites

inaccessible in germ cells.

Alternatively, functional TF binding sites could be actively

maintained in the accessible state. HSF binding within ecdysone

genes has a functional role in shutting down their transcription

[14], and activating ecdysone-inducible genes containing inacces-

sible HSEs causes chromatin changes that are sufficient to allow

HSF binding [6]. In this special case of HSF–bound ecdysone

genes, active transcription and the corresponding histone marks

are mediating access to HSEs, in order for HSF to bind and

repress transcription upon heat shock. A more recent study has

shown that activator protein 1 (AP1) actively maintains chromatin

in the accessible state, so that GR can bind to cognate elements

[26].

Although TF accessibility to critical genomic sites appears to be

actively maintained, many binding sites may be a non-functional

result of fortuitous TFBS recognition. It has long been hypoth-

esized that the binding affinities for TF/DNA interactions are

sufficiently strong to allow promiscuous binding at the cellular

concentrations of TFs and DNA [27,28]. There are roughly

32,000 HSF molecules per tetraploid S2 cell [29] and the

dissociation constants for trimeric-HSF/HSE interactions are in

the picomolar range (Figure 2E); therefore much of the in vivo

HSF binding may be non-functional promiscuous binding.

Additional investigation will further illuminate the role of

chromatin context in TF binding and the mechanisms by which

programmed developmental or environmental chromatin changes

permit or deny TF binding.

Elucidating the rules that govern accessibility is essential for

predicting in vivo occupancy of TFs. Diverse transcription factors

[7], from a broad spectrum of organisms [22], bind their

sequences based on site accessibility. We found that chromatin

accessibility as measured by DNase I hypersensitivity could be

inferred using ChIP-chip data for various histone modifications

and transcription factors. Although our model can infer accessi-

bility based on chromatin composition, the mechanism by which

accessibility originates is not addressed. Previous studies have

shown that activators, such as HSF, glucocorticoid receptor, and

androgen receptor bind to their cognate sites and direct a

concomitant increase in local acetylation, DNase I hypersensitiv-

ity, and nucleosome depletion [6,22,30,31]. Androgen receptor

also acts to position flanking nucleosomes marked by H3K4me2

[31]. These post-TF binding chromatin changes that occur are the

result of acetyltransferase and nucleosome remodeler recruitment,

both of which functionally interact with activators. For instance,

both GR and GATA1 interact with the nucleosome remodeling

complex Swi/Snf [32,33]. Concomitant increases in locus

accessibility likely allow large molecular complexes such as RNA

Pol II and coactivators to access the region that in turn can

reinforce and maintain active and accessible chromatin.

Thorough biophysical characterization of TF binding site

properties is critical for accurate predictions of TF binding sites,

underscoring the need for more complete models of TF binding.

While the commonly used PSSM model makes the assumption of

base independence, recent work has revealed that richer models

providing for interactions between positions are necessary [34,35].

Our model captures critical features of the HSF/HSE interaction

that are lost with simpler computational models, namely the

interdependencies between the sub-binding sites of each HSF

monomer. Consistent with our model, a series of in vitro

experiments with S. cerevisiae, D. melanogaster, A. thaliana, H. sapien

and D. rerio HSFs indicate that HSF from each of these species can

bind to discontinuous HSEs containing canonical pentamers that
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contain intervening five base pair gaps [36,37]; interestingly,

however, C. elegans HSF strictly binds to continuous HSEs that do

not contain gaps [36]. The complex interactions between positions

within a binding site are a critical aspect of inferring whether a

polymorphism or mutation affects TF binding. These features

should prove useful in providing degenerate HSE sequences for

optimal co-crystallization of trimeric HSF and DNA and inferring

changes in DNA sequence that affect HSF binding within and

between species.

In conclusion, the data and models presented here reinforce

both the importance of chromatin landscape in modulating in vivo

TF binding intensity and how genome wide, chromatin free,

binding assays contribute to the understanding of TF sequence

binding specificity.

Methods

Cloning and purification of recombinant HSF
Drosophila HSF was N-terminally tagged with glutathione s-

transferase and a tobacco etch virus (TEV) protease cleavage site.

The C-terminus of the recombinant HSF was fused to the

3xFLAG epitope. Recombinant HSF was purified from E. coli with

glutathione resin as previously described [38], with the following

modifications: HSF–3xFLAG elution was achieved by addition of

6xHistidine tagged TEV protease and TEV protease was cleared

from the HSF preparation using a Nickel-NTA column.

Densitometry was used to show that the HSF protein preparation

was 40% full length HSF–3xFLAG, and known amounts of bovine

serum albumin (BSA) were used to quantify the HSF (Figure S1).

Band shift assay
Serial two-fold dilutions of recombinant HSF, from 3 nM

(1.5 nM for the 221 pM HSE) to 23.3 pM, was incubated with

200 attomoles of radiolabeled dsDNA containing modestly degen-

erate HSEs (chrX:3380775–3380824 (224 pM), chr2L:5009892–

500994 (42.7 pM), chr2R:3529792–3529841 (308 pM), chr3L

13470978–13471009 (221 pM), and chr3L:4073542–4073591

(97.5 pM)) and allowed to come to equilibrium for 30 minutes in a

total of 10 ml of 1xHSF binding buffer (20 mM HEPES pH 7.9,

10% glycerol, 1 mM EDTA, 4 mM DTT, 3 mM MgCl2, 100 mM

NaCl, 0.1% NP-40, and 300 mg/ml BSA) at room temperature.

Binding reactions were loaded in a 3% agarose TBE (10 mM Tris-

HCl pH 8.0, 25 mM boric acid, and 1 mM EDTA) gel and

electrophoresed at 50 Volts for 2 hours. The HSF–bound probe and

free probe were quantified by densitometry and the dissociation

constant, Kd = ([A][B])/[AB], was estimated using a non-linear least

squares method on the function [AB]/[A]total = [B]/([B]+Kd) where

[AB]/[A]total is the measured shifted fraction and [B] is the free HSF

trimer concentration.

PB–seq: Genomic in vitro binding experiment
We incubated 600 pM HSF and 2500 ng genomic DNA

(sonicated to 100–600 bp fragment size as previously described

[6]) in 1500 ml final volume of 1xHSF binding buffer and let it

come to equilibrium for an hour at room temperature. We added

20 ml ANTI-FLAG M2 affinity gel for 10 minutes and washed 8

times with 1xHSF binding buffer to remove unbound DNA,

3xFLAG peptide was added to a final concentration of 200 ng/ml

to specifically elute HSF and HSF–bound DNA. The mock IP was

done in the absence of recombinant HSF. We attribute the in vitro

binding assay’s low background to the design of the experiment.

Since recombinant C-terminally 3xFLAG tagged HSF was used,

the HSF–associated DNA could be specifically eluted by the

addition of excess 3xFLAG peptide. In contrast, standard ChIP

protocols rely on non-specific elution of all protein and DNA that

binds the resin.

Illumina library preparation
The sample preparation was as previously described [6], except

that 15 rounds of amplification were performed in this case.

PB–seq HSF peaks and HSE sites
The PB–seq reads were aligned to the Drosophila Genome

(BDGP R5/dm3) using BWA (v 0.5.8c) [39]. We obtained

5,052,425 uniquely aligned reads for replicate one, 4,694,846 for

replicate two and 5,410,049 for the mock. Files that contain raw

sequence data and uniquely aligned reads were deposited into

NCBI’s Gene Expression Omnibus (GEO) [40], accession number

GSE32570.

We called peaks using MACS (v 1.3.7.1) [41], both for each

individual replicate and for the merged set, using a tag size of

55 bp, a starting bandwidth of 100 bp and an appropriate genome

size. After experimenting with several p-value thresholds, we

selected a value of p = 0.01, which achieved a good tradeoff

between maximizing the number of called peaks and ensuring

consistency between replicates. Our results were largely unaffected

by the ‘mfold’ parameter (the threshold for fold enrichment

relative to background for inclusion in the peak model), so we left

this parameter at its default value.

To improve our sensitivity in binding site detection, we made

use of an ensemble of position weight matrices (PSSMs), rather

than a single matrix. We sampled 10,000 sets of 100 peaks and

used the program MEME [42] for motif discovery in each set. As

input, MEME was given the 100 bp sequence centered at each

peak summit. We used a fixed motif width of 14 bp, a second

order background Markov model estimated from the entire peak

set, and the ‘zoops’ model (zero or one site per sequence) with the

restriction that at least 75% of the sequences must contain a site.

The resulting PSSMs were compared by KL-divergence against

the canonical monomer PSSM (four base pair unit with consensus

AGAA) estimated from the previously published in vivo high-

confidence HSF binding sites detected by ChIP-seq [6]. In each

PSSM, one of the three monomers had on average about twice the

KL-divergence as the other two. Figure S15 shows a scatter plot of

the KL-divergence of the PSSMs in the ensemble

Each peak was scanned for matches to all PSSMs in the

ensemble, allowing for overlapping sites. The score at each

position was taken to be the maximum score across the ensemble.

Peaks were split into three groups by GC% quantile, and for each

group a 10 kbp sequence was simulated from a second order

Markov model, which was then used to estimate the FDR

associated with the score.

In our context, an appropriate FDR threshold should strike a

balance between recapitulation of in vivo results and limiting the

number of spurious binding sites. In vivo results are defined by

high-confidence peaks, which are ChIP-seq peaks that were called

by two peak calling programs and have a corresponding binding

site sequence underlying the peak [6]. Whereas, spurious sites are

accounted for by limiting the average number of HSE clusters per

peak (set of potentially overlapping HSE no more than 10 bp

apart from each other). Due to the repetitive nature of the HSE, a

cluster is a better representative than a single site of a functional

binding locus. We chose a 20% FDR threshold, which maximizes

the fraction of peaks having a single HSE cluster while ensuring

that a large fraction (97%) of the high-confidence in vivo peaks

contain HSEs. This threshold resulted in 3735 clusters (71% with a

single HSE, 20% with two HSEs overlapping by 10 bp, ,5% with

two HSEs overlapping by 5 bp; see Figure S17).
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The final set of HSE clusters was obtained by combining data

from the two experimental replicates. First, a set of genomic

regions was identified by intersecting the peaks from the two

experimental replicates, and retaining only those peaks for which

the two replicates were in close agreement (.80% of reads fall in

the overlapping region). We then identified the 2896 HSE clusters

that fell in these regions (,77% of all clusters).

HSE cluster intensity
The problem of measuring the intensity of each peak is

complicated by the fact that some peaks contain multiple, closely

spaced clusters, whose contributions are difficult to disentangle.

Furthermore, peaks often include trailing edges that are

dominated by the background signal. To address these concerns

we experimented with various measures of intensity based on the

output produced by MACS (wig files giving shifted read counts in

10 bp windows) as well as the reported ‘bandwidth’ B. We

considered three measures, applied to a window of radius B

centered at each cluster: maximum read count, read count sum,

and an ‘‘integrated’’ read count based on a biweight kernel (which

produces a curve at each peak that is similar to the one implied by

the peak model used by MACS). We selected the biweight kernel

measure, which does the best job of handling closely spaced

clusters (see Figure S18).

Computing Kd values for all genomic HSE sites
We assume that each HSE site i is at approximately the same

initial concentration in the experiment ([HSEi]
initial = C). Further-

more, all sites compete to bind a shared amount of free HSF, with

the remaining unbound concentration denoted by [HSF]. At the

end of the experiment, a fraction of site i is bound, with

concentration [HSEi : HSF], and the remainder is unbound, with

concentration [HSEi]. The dissociation constant for a particular

HSE site is therefore given by:

Ki
d~

HSF½ � HSEi½ �
HSEi : HSF½ �

The bound HSE concentration is measured by the PB–seq

experiment in terms of the number of reads at element i (Ri). This

leaves two unknown quantities, [HSF] and [HSEi], in units of read

counts. The first of these unknowns, [HSF], can be eliminated by

considering instead the relative Kd with respect to a known

reference value (for an HSE present in the experiment).

To solve for [HSEi], we express this quantity as the difference

between the initial concentration C and the measured bound

concentration:

HSFi½ �~ HSEi½ �initial
{ HSFi : HSF½ �!C{Ri

By substituting the expression for Kd
i (above) and dividing by the

Kd value for the reference HSE, Kd
ref, we obtain an expression with

a single unknown, C:

Ki
d

K
ref
d

~

HSF½ � HSEi½ �
HSEi : HSF½ �

HSF½ � HSEref

� �
HSEref : HSF
� �

~

HSEi½ �
HSEi : HSF½ �

HSEref

� �
HSEref : HSF
� �

~
C{Rið ÞRref

C{Rref

� �
Ri

With the use of a reference dissociation value for a second HSE,

we can solve for C and obtain estimates of the dissociation

constants for all other HSE sites for which read counts are

available. Replacing Kd
i and Ri by the corresponding values for the

second reference HSE and solving for C:

K
ref 2
d ~K

ref
d

C{Rref 2

� �
Rref

C{Rref

� �
Rref 2

uC~
K

ref 2
d {K

ref
d

� �
Rref Rref 2

K
ref 2
d Rref 2{K

ref
d Rref

Heat Shock Element model
Our probabilistic model for HSEs was designed to capture

interactions among the binding preferences of the three monomers

that form the HSF homotrimer. The model consists of three

PSSM-based submodels corresponding to the three 5 bp sequenc-

es (pentamers) that are bound by the HSF monomers. Each of

these submodels is defined by two PSSMs, one ‘strict’ and one

‘relaxed’. These three submodels allow for eight possible

combinations of strict and relaxed pentamer binding. Within each

pentamer the positions are considered independent, as in standard

PSSM models.

Formally, let a candidate 15 bp HSE sequence Xk be composed

of random variables Xi,j
k where i is the pentamer index and j is the

base position within that pentamer. Additionally, let each

sequence have an associated unobserved random variable Yk

which indicates which of the eight combinations of strict/relaxed

distributions are applied the corresponding Xi,j
k (Figure S12). For

simplicity, our model definition assumes that the middle monomer

sequence has been reverse complemented and is therefore in the

same orientation as the outer monomer binding sequences. We

considered two versions of the model: a sparsely parameterized

‘constrained’ version and a more parameter-rich ‘expanded’

version, as described below.

Constrained version. This version of the model assumes

that the three monomers share the same strict and the same

relaxed PSSM-based sequence distributions. In addition, it

assumes that the relaxed PSSM is defined as a more degenerate

version of the strict PSSM. This is accomplished by means of a

single ‘degeneracy’ parameter, which ‘pulls’ the nucleotide

distribution at each position toward the uniform distribution.

Specifically, the nucleotide distribution at position j of pentamer i

is defined as:

P(X k
i,j~b Y k

i

�� )~

f b
j if Y k

i ~strict

f b
j zB

1z4B
if Y k

i ~relaxed

8><
>:

where fj
b is the probability of observing nucleotide b at position j of

the monomer and B is the free parameter controlling how close to

an uniform distribution the relaxed version is.

To estimate the model parameters from the HSE sequence

data, we first held B fixed and then estimated the nucleotide

frequencies and the prior probabilities of each strict/relaxed

monomer combinations through Expectation Maximization (EM).

A grid search was then used to find the value of B that maximized

the model likelihood.

Estimating the model parameter updates for EM is simple for

the prior but slightly more complicated for the nucleotide

frequencies due to the interdependency between the strict and

relaxed distributions. Nevertheless, it can be solved by using a

Lagrange multiplier together with the derivatives of the expected

complete log-likelihood. This produces an estimator that depends

on the Lagrange multiplier and requires the use of a root finding
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method as part of the maximization step of EM. Figure S13C

shows the results of the parameter estimation. To initialize the

optimization procedure, the nucleotide frequencies were estimated

from the high-confidence in vivo HSEs from [6].

Simulation study. To test the performance of this model, we

estimated unconstrained strict/relaxed matrices from real data

and simulated data under various distributions of Yk. All of the

parameters of the simplified model were then estimated from this

simulated data, and the posterior distribution of Yk under the

model was compared with the values used for simulation (Figure

S14).

Expanded version. This version of the model allows for

completely separate PSSMs for the three pentamers, and

completely separate strict and relaxed versions of each of these

models. It has 5636362 = 90 PSSM parameters plus seven free

parameters for Yk, for a total of 97 free parameters. Parameter

estimation is again accomplished by expectation maximization,

but in this case the parameter updates are trivial.

Chromatin effect and DNase I hypersensitivity models
The chromatin effect and DNase models are rule ensemble

models, estimated using the RuleFit R package. This package was

also used to estimate the relative importance of the model

covariates. The covariates were obtained from modENCODE

tracks, taking the mean value over a 200 bp window centered on

the target point. Furthermore, these data were filtered to contain

only points that had a value for every covariate used.

Chromatin effect model. This model estimates the ratio

between the in vivo and in vitro intensities at each site from a set of

chromatin covariates. Ratio values were obtained from the

measured intensities using the in vitro HSE cluster coordinates.

The set of HSE clusters was pre-filtered by finding a threshold on

the in vitro intensities that approximately minimized the

differences between experimental replicates. The threshold was

obtained as follows: 1) for each candidate in vitro threshold value,

collect the mean absolute difference between experimental

replicates for the ratios computed using in vitro intensities above

that value; 2) compute the mean of the values collected in the

previous step; 3) pick the first in vitro threshold that falls below the

mean.

The model was estimated on the selected HSE clusters using

different combinations of chromatin covariates. For each partic-

ular combination, an estimated Pearson correlation value was

obtained from ten-fold cross validation. Furthermore, to obtain the

figures presented in this paper, the data was split into 60% training

data and 40% test data. The model obtained on the training data

was used to make the test data predictions shown in the figures and

the corresponding Pearson correlation.

DNase I hypersensitivity model. The data set used for this

model was independent of the HSE clusters. 10K points were

randomly sampled from across the genome with the restriction

that the points did not fall within the regions shown in the figures

presented in this paper or within 200 bp of the HSE cluster sites.

These 10K points were used as a training set to build the model

used to make the predictions for the browser tracks and at the

HSE cluster regions. They were also used to estimate the Pearson

correlation via ten-fold cross validation.

Prediction tracks. To produce the in vivo intensity

prediction tracks, the chromatin model was applied to a version

of the in vitro intensities that were scaled so that they would be

comparable to the in vitro intensities. To obtain the scaling factor,

we selected the top seven most accessible isolated HSE clusters (as

measured by DNase hypersensitivity) that had a significant read

count. The reason for these restrictions is that highly accessible

sites should be good proxies for sites that are not being influenced

by chromatin effects and the sites with significant in vitro intensity

should produce better estimates of the in vivo to in vitro ratio used

for scaling (see Figure S4 for point choices).

The browser tracks were produced by collecting values in 50 bp

steps with a 100 bp window average and applying the respective

model and scaling (if needed). Values were then smoothed with a

Gaussian kernel having a 100 bp bandwidth.

Supporting Information

Figure S1 HSF purification and quantification. A) Purified full-

length HSF (arrow) was estimated to be 40% pure as quantified by

a silver stained gel and densitometry. B) A silver stained gel using

known concentrations of BSA (10 ng/ml, 5 ng/ml, 2.5 ng/ml,

1.25 ng/ml) was used to quantify the stock concentration of

purified full-length HSF (arrow) at 1.9 ng/ml. Note that one gel is

shown, but intervening lanes were removed for simplicity.

(TIF)

Figure S2 A) The mobility of the constant 200 attomole HSE

probe shifts into a trimeric-HSF:HSE complex as increasing HSF

is added. There is no HSF in the left-most lane, the right-most lane

contains 3 nM HSF (1 nM trimeric HSF), and the intervening

lanes contain two-fold serial dilutions of HSF. B) A hyperbolic

curve based on the Kd equation (see Methods) was modeled using

the band shift data, indicating a Kd of 97.5 pM (95% confidence

interval of 59.8–158 pM). C) The constant 200 attomole HSE

probe shifts into a trimeric-HSF:HSE complex as increasing HSF

is added. There is no HSF in the left-most lane, the right-most lane

contains 1.5 nM HSF (500 pM trimeric HSF), and the intervening

lanes contain two-fold serial dilutions of HSF. D) A hyperbolic

curve based on the Kd equation (see Methods) was modeled using

the band shift data, indicating a Kd of 221 pM (95% confidence

interval of 197–250 pM). E) This panel has the same description as

panel A. F) A hyperbolic curve based on the Kd equation (see

Methods) was modeled using the band shift data, indicating a Kd

of 308 pM (95% confidence interval of 214–448 pM).

(TIF)

Figure S3 Each panel shows smoothed 95% confidence intervals

(CI) (dotted lines) for the estimated genomic Kd values (blue lines).

The red and green points correspond to the Kd values determined

by the EMSA assays. Error bars indicate 95% confidence intervals

(CIs), as estimated in the non-linear regression (see Methods). Red

points indicate those used as references to compute the genomic

Kd values in each panel. The CIs shown in panels A1, B1, A2 and

B2 were estimated by propagating various sources of uncertainty

through our formula for estimating Kd values, using the first order

Taylor expansion approximation. In panels A1 and A2, only the

variance associated with the reference Kd points was considered,

whereas in B1 and B2 the variance associated with the site

intensity estimates was also used. At each binding site in the

genome, the variance in intensity was estimated analytically from

the two PB–seq replicates, after quantile normalization of the PB–

seq replicate intensities to remove systematic biases. In panels C1

and C2, the CIs were computed by sampling the reference Kd

values from normal distributions corresponding to their respective

CIs and by selecting site intensities at random from one of the two

PB–seq replicate values (again after quantile normalization). To

account for the uncertainty associated with the choice of reference

points, we show the CIs based on the two best EMSA points in the

top panels and those based on the two worst EMSA points in the

bottom panels.

(TIF)
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Figure S4 These data points (HSE cluster sites) were used to

determine the scaling factor between in vivo and in vitro binding

intensities in Figure 1 and Figure 3. The top left plot shows how

the in vivo to in vitro intensity ratio varies with the number of

points included; dashed line signals the final choice of seven points.

Scatter plots show the top 30 data points (HSE cluster sites) with

the highest DNase I signal, against their in vivo and in vitro

intensity values; black indicates the seven chosen points. The

points with higher DNase I hypersensitivity offer the best choice

for unbiased scaling.

(TIF)

Figure S5 This UCSC genome browser shot provides additional

examples of in vivo prediction of HSF binding intensity using

chromatin and PB–seq data.

(TIF)

Figure S6 The experimentally determined ratio between in vivo

ChIP-seq HSF intensity and in vitro PB–seq intensity is plotted

against the predicted in vivo/actual PB–seq ratio. The Pearson

correlation for each model is shown.

(TIF)

Figure S7 The bar graphs indicate the Pearson correlation of

predictions versus experimental measures for each model used to

predict the in vivo/in vitro binding intensity ratio (Rul: Rules

Ensemble model, Lin: linear regression model). The correlations

for both the training data (panel A) and the test data (panel B) are

indicated.

(TIF)

Figure S8 ROC plots for in vivo HSF binding predictions. In

vitro HSE sites were partitioned into bound and unbound cases by

applying a threshold to the estimated in vivo intensity values.

Three thresholds were considered: a permissive threshold (shown

in red; 36% bound), a moderate threshold (green; 24% bound) and

a strict threshold (blue; 12% bound). Each panel in the figure

represents a distinct covariate set (see panel titles). For each

covariate set, the corresponding rules ensemble model was applied

to predict the in vivo intensity of the HSE sites. Each site was then

classified as predicted to be bound or unbound by applying a

threshold to these predicted intensities. These thresholds were

varied to produce the Receiver Operating Characteristic (ROC)

curves shown. As a baseline, we show predictions based on the

scaled in vitro intensities in gray. For each ROC curve, we

compute the Area Under the Curve (AUC) as a general measure of

prediction performance (higher is better). Notice that the ROC

curves are not highly sensitive to the threshold that is applied to

the in vivo intensities, but in most cases the ensemble model

produces a substantial improvement over the baseline prediction.

At the same time, some covariates produce substantially better

predictions than others.

(TIF)

Figure S9 For each of the models shown in Figure S6 we show

the relative importance [20] of each covariate in the Rule

Ensemble model built with each indicated subset of covariates to

predict the in vivo/in vitro binding intensity ratio.

(TIF)

Figure S10 The bar graphs illustrate the relative importance

[20] of each covariate in the Rule Ensemble model built with each

indicated subset of covariates to predict DNase I hypersensitivity.

(TIF)

Figure S11 These bar graphs indicate the Pearson correlation of

predicted versus experimentally measured DNase I sensitivity for

each DNase I prediction model (Rul: Rules Ensemble model, Lin:

linear regression model). The correlations for the training data

(panel A) and test data (panel B) are indicated.

(TIF)

Figure S12 The structure of the HSE probabilistic sequence

model recapitulates the structure of the HSE. Each hidden

variable Y1,Y2,Y3, determines if the respective underlying

pentamer bases are drawn from a strict base distribution or a

relaxed version.

(TIF)

Figure S13 Pentamers within the HSEs are dependent upon

their stringency and position relative to the other pentamers. A) A

composite pentamer matrix was derived from all pentamers found

within PB–seq peaks. B) The strict motif from panel A and a

dampening factor from panel C were used to generate a relaxed

motif. C) The dampening factor was optimized to generate a

relaxed motif that best explained the data. D) A probabilistic

sequence model reveals that the presence of two strict and one

relaxed pentamer provides the best explanation of the data.

(TIF)

Figure S14 The reduced HSE sequence model predictions are

compared for patterns of strict/relaxed pentamer combinations.

Three different simulated patterns are shown and are recapitulat-

ed by the model.

(TIF)

Figure S15 Scatter plots show similarity of each HSE pentamer

to the canonical monomer PSSM. Each point represents a PSSM

estimated via MEME by sub-sampling the in vitro peaks identified

by MACS. Pattern of the scatter plot shows evidence for pentamer

divergence occurring on one pentamer at a time (points are spread

following the axis, mainly corresponding relaxed versions of the

first and second pentamers).

(TIF)

Figure S16 In vivo HSF binding sites that were either detected

or not detected in vitro have distinct properties. A) The

composite PSSM for the 40% of HSF binding sites that are only

found in vivo exhibits more degeneracy than the PSSM from the

sites that are found both in vivo and in vitro. B) The binding sites

exclusively found in vivo are generally more accessible, as

measured by DNase I signal, than those sites found both in vivo

and in vitro.

(TIF)

Figure S17 A) Balance between in vivo recall and number of per

peak in vitro HSE is reached at 20% estimated FDR,

corresponding to the inflection point for the number of clusters,

as well as near maximal recall of high-confidence in vivo sites. B)

An HSE (or HSE cluster) is considered isolated if the nearest

neighbor is more than 200 bp away. An HSE (or HSE cluster) is

considered overlapping if it overlaps with a single other HSE (or

HSE cluster); overlaps between more than two HSE (or HSE

clusters) are denoted as complex overlaps.

(TIF)

Figure S18 Three different measures were compared for

computing HSE cluster intensities: max, sum and bi-weight

kernel. A) Each measure was incorporated into a scatter plot of

scaled intensities. Max was rejected because it produced a more

compressed range of intensity values. B) In comparing the

difference in intensities across replicates, the bi-weight kernel

approach fares slightly better than the sum. C) The difference in

magnitudes given a cluster distance on isolated clusters was

compared between measures. For each distance, the isolated

clusters are made to overlap an identical copy of themselves and
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the magnitude difference is computed by comparing the value of

the isolated cluster with the partially overlapping, using either the

sum or kernel measures. Average values per intensity quartile show

that bi-weight kernel measure introduces less error as a function of

distance than the sum measure. D) Replicate intensities strongly

correlate, as predicted, using the kernel measure.

(TIF)

Table S1 ModENCODE identification number or GEO

accession number for each data set used in the paper.

(XLS)
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