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Although the similarities between humans and mice are typically
highlighted, morphologically and genetically, there are many differ-
ences. To better understand these two species on a molecular level,
we performed a comparison of the expression profiles of 15 tissues
by deep RNA sequencing and examined the similarities and differ-
ences in the transcriptome for both protein-coding and -noncoding
transcripts. Although commonalities are evident in the expression of
tissue-specific genes between the two species, the expression for
many sets of genes was found to be more similar in different tissues
within the same species than between species. These findings were
further corroborated by associated epigenetic histonemark analyses.
We also find that many noncoding transcripts are expressed at a low
level and are not detectable at appreciable levels across individuals.
Moreover, the majority lack obvious sequence homologs between
species, evenwhenwe restrict our attention to those which are most
highly reproducible across biological replicates. Overall, our results
indicate that there is considerable RNA expression diversity between
humans and mice, well beyondwhat was described previously, likely
reflecting the fundamental physiological differences between these
two organisms.
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The mouse has served as a valuable model organism for hu-
man biology and disease. It is widely assumed that bio-

chemical, cellular, and developmental pathways in the mouse are
highly conserved with humans and that many processes are
clearly preserved at a molecular and genetic level. Moreover,
recent detailed studies have examined gene expression in a lim-
ited number of tissues in humans and mice. These studies have
indicated that gene expression is often conserved and is more
similar between the comparable tissues of different organisms
rather than within tissues of the same organism. In contrast, the
transcript isoform repertoire was found to be markedly different
between species (1, 2).

Gene Expression Is More Similar Among Tissues Within
a Species Than Between Corresponding Tissues of the Two
Species
To examine the similarities between humans and mice in much
greater detail, we produced RNA-seq data from 13 human tissues
[as part of the Encyclopedia Of DNA Elements (ENCODE)],
another 11 human tissues [as part of the Roadmap Epigenomics
Mapping Consortium (REMC) (3)], and 13 mouse tissues (for
mouse ENCODE). We also included in our analysis other data
from mouse ENCODE and the Illumina Human BodyMap 2.0
(HBM) (SI Materials and Methods). Sequencing was performed
to a depth of 11,313,824–166,188,101 mappable reads (median
of 68,399,538 with and an interquartile range of 31,557,381–
81,836,199). In total, our analysis used 93 datasets encompassing
the most tissue-diverse RNA-seq dataset to date spanning several

major projects. Thirteen of the mouse and human orthologous
datasets were produced by the same laboratory. For our analysis
regarding noncoding transcripts, we incorporated an additional 294
RNA-seq datasets from the Genotype-Tissue Expression (GTEx)
project (4).
We first explored gene expression similarities and differences by

analyzing the expression of ∼15,106 protein-coding orthologs; this
list was generated by the modENCODE and mouse ENCODE
consortia and represents the most recent mouse–human ortholog
list to date (biorxiv.org/content/biorxiv/early/2014/05/31/005736.full.
pdf). Fragments per kilobase of transcript per million (FPKM)
values were obtained from each dataset, and principal component
analysis (PCA) was used to compare gene expression (Materials and
Methods). In contrast to what was reported previously (1, 2, 5),
surprisingly, we found that themouse and human samples cluster by
species when the data are projected onto the first three principal
components (Fig. 1A). Because the same tissues of the same species
produced by different laboratories did not cluster together, the
possibility of methodologic differences among laboratories con-
founding our results was considered. To address this issue, analysis
of only the 13 paired samples processed under one experimental
protocol yielded the same species-specific clustering (Fig. 1C). The
same species-specific clustering was observed when other combi-
nations of 10 or more tissues were examined, indicating that the
clustering is not due to the particular 13–15 tissues selected. Finally,
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and mice on a molecular level, and indeed, the murine model
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dominate similarities between the two species. These findings
provide the basis for understanding the differences in pheno-
types and responses to conditions in humans and mice.
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different normalization methods (e.g., quantile normalization) ap-
plied to the data produced similar groupings.
To understand the differences between our results and those

of others (1, 2, 5), we performed extensive additional analyses.
We first varied the ortholog list and similarity measure, but these
changes did not significantly alter our results (Fig. S1A). We next
applied our analytic process to human and mouse data produced
from other studies that reported tissue dominated clustering (1,
5), and we were able to reproduce their findings (Fig. S1 B and
C). Moreover, in our own dataset, we observed a more tissue-
dominated clustering for principal components 4–6 (Fig. 1 B and
D). Thus, gene expression profiles of different organism tissues

do exhibit similarities in gene expression but of lower strength
relative to organismal signals.
To determine whether we could further reconcile these vari-

ous observations, we identified the groups of genes that are tis-
sue specific and those present in all tissues (i.e., housekeeping)
using Shannon entropy (H) (6). H is a parameter commonly used
to assess tissue specificity, with lower values signifying expression
in a smaller fraction of the total set. We calculated H for each
gene using our expression data and considered genes with values
below two to be tissue specific. We found that testes, brain, liver,
muscle (cardiac and/or skeletal), and kidney were among the
tissues that expressed the most tissue-specific genes (Fig. 1E),

Fig. 1. Loading plots from PCA on human and mouse gene expression data. (A) PCA is performed on the combined Stanford (human, mouse), Salk (human),
HBM (human), LICR (mouse), and CSHL (mouse) expression datasets using 15 tissue types, 15,106 orthologs (biorxiv.org/content/biorxiv/early/2014/05/31/
005736.full.pdf), and Pearson’s correlation as the distance measure. The loadings on principal components 1–3 are plotted. (B) Same as in A except loadings
on principal components 4–6 are plotted. (C ) The loadings on principal components 1–3 are plotted from a PCA performed as in A except only 13 human
and mouse tissue sets processed at Stanford. (D) The loadings on principal components 4–6 for the analysis in C are used. (E ) Barplot of number of tissue
specific-genes per tissue. (F ) PCA is performed as in A except the tissue set is restricted to testis, brain, heart, liver, and kidney, which have higher numbers
of tissue-specific genes. The loadings on principal components 1–3 are plotted.
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and interestingly, tissue-specific genes are generally more highly
expressed than housekeeping ones (Fig. S2). Other studies
restricted their analyses to the same tissues expressing high
numbers of tissue-specific genes, thereby likely explaining their
finding that gene expression clustering is dominated by tissues.
Indeed, when we limit our analysis to the same tissues (testes,
brain, liver, muscle, and kidney), we obtain tissue-specific clus-
tering in the first three principal components (Fig. 1F). Overall,
our results indicate that for the human–mouse comparison, tis-
sues appear more similar to one another within the same species
than to the comparable organs of other species when examining
a more complete set of tissue types. When other clustering
algorithms are used, species-specific clustering is still observed
with the exception of one to three tissues.

A Subset of Housekeeping Genes Drives Species-Specific
Expression
To better understand the genes driving the species-dominated
clustering, we identified those most different in the two species by
using the nonparametric Mann–Whitney test on expression levels
between human and mouse across all tissues for our set of
orthologous genes. A total of 4,767 genes are statistically signifi-
cant at a false discovery rate (FDR) of 0.0005; 2,569 of these are
expressed at higher levels in the human relative to the mouse, and
2,198 are expressed at lower levels. As expected, removal of genes
that are differentially expressed between human and mouse
changes the clustering in the PCA from a pattern that is species
oriented to one that is more dominated by tissues (Fig. S1D).

To determine the types of genes that drive the species-specific
expression across different tissues, genes were examined for
enrichments in Gene Ontology (GO) biological processes (7).
Among those associated with the most proteins are cellular ni-
trogen compound metabolic process, biosynthetic process, signal
transduction, anatomical structure development, and transport
(Tables S1 and S2). Thus, the genes differentially expressed
between human and mouse generally participate in basic cellular
functions, and indeed, the H of these genes is weakly higher than
background (median H of differentially expressed genes is 3.40 vs.
background of 3.20, P < 2.2 × 10−16 by the Mann–Whitney test),
signifying they are composed of more housekeeping genes.

Histone Mark Differences for Differentially Expressed Genes
Between Humans and Mice
To further explore and extend the observation that gene expres-
sion is more similar between tissues in the same organism than in
the same tissues across organisms, we used an independent assay
in which chromatin marks were analyzed. Recent studies with
human cell lines studied by ENCODE (8) have reported detailed
relationships between histone modification and expression levels
(9). For a limited set of tissues (heart, lung, small bowel, spleen,
liver, and brain), data on the same histone modifications exist
from the human REMC and mouse ENCODE projects. For
the 4,767 differentially expressed genes between humans and
mice, we examined the histone marks H3K4me3, H3K4me1,
H3K27me3, H3K9me3, H3K9ac, and H3K27ac modification
levels using available ChIP-seq data in the 1-kb flanking regions of

Fig. 2. Histone peak intensities for species-sepa-
rating genes. Fold enrichment over control of (A)
H3K4me3 and (B) H3K27ac present at promoters of
4,767 of the most differentially expressed genes
between humans and mice are visualized with box-
plots for various tissues. Histone intensities are
quantile normalized in human and mouse pairs for
each tissue on all orthologs beforehand. The rep1
and rep2 designation represents biological repli-
cates. The nm1 and nm2 (i.e., normalization 1 and 2)
boxplots originate from the same sample but are
scaled differently, because they are quantile nor-
malized to different samples. Sm int and cing gyr are
abbreviations for small intestines and cingulate gy-
rus, respectively. (i) Boxplots show intensities for the
2,569 genes in which human expression is higher
than in mouse. (ii) Boxplots show intensities for the
2,198 genes in which human expression is lower
than in mouse. P values are generated by the non-
parametric paired Wilcoxon test between the hu-
man and mouse ChIP intensity values.
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transcription start sites (Fig. 2). We found that the signals for
active promoter marks (10) H3K4me3 and H3K27ac correspond
to gene expression levels: i.e., the 2,569 genes in which human
genes are more highly expressed than mouse have higher
H3K4me3 and H3K27ac mark levels in human tissues compared
with mouse and vice versa for the 2,198 remaining genes. These
patterns were consistent across all other REMC available tis-
sue data which can be compared with corresponding mouse
ENCODE data regardless of laboratory of origin [either

Ludwig Institute for Cancer Research (LICR) or the Broad (11)].
Because histone ChIP-seq represents a technically orthogonal
assay to RNA-seq, the H3K4me3 and H3K27ac patterns support
the observation that differential expression of a large number of
genes between human and mouse is biological and not an experi-
mental artifact. Moreover, because the gene expression findings
were produced across five laboratories [Stanford, Salk, Illumina,
LICR, and Cold Spring Harbor Laboratory (CSHL)] and are
concordant with features of the H3K4me3 and H3K27ac data

Fig. 3. Features of intergenic noncoding transcripts. The number of noncoding (NC) (i), noncoding single exon (NC 1 exon) (ii), and protein-coding (PC) (iii)
transcripts expressed in various tissues is shown for (A) humans and (B) mice at varying levels of replicability. The number of biological replicates for each
tissue is listed in parentheses in the legend. FPKM greater than zero is considered expressed. For the same transcript types, the fraction of transcripts with
various histone marks present around the transcription start sites for (C) humans and (D) mice is plotted against different levels of replicability.
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generated by two laboratories (LICR and Broad), our findings are
reproducible by analyzing data generated by several groups.
In addition to the examination of protein-coding sequences,

we also examined noncoding RNA conservation and expression
in different tissues across multiple biological replicates of
humans and mice. Because the HBM and GTEx RNA-seq data
do not contain strand information, we focused our analysis on
intergenic noncoding transcripts, which includes long intergenic
noncoding RNAs (lincRNAs), as well as single exon noncoding
transcripts. eRNAs are not expected to be represented in our
collection because they are not captured in poly(A)+ fractions
(12). In total, using approaches described in Materials and
Methods, we arrived on a set of 70,390 and 116,526 noncoding
transcripts for humans and mice, respectively. For humans, our
number of noncoding transcripts is much higher than the 8,195
compiled by Cabili et al. (13), mainly because we include single
exon transcripts. Because we analyzed a large number of bi-
ological replicates for several tissues in both humans and mice,
we could assess the ability to detect reproducibly each transcript
in more than one sample (defined here as replicability), which
has not been performed previously. We found that as the
threshold of replicability increases, we observe a marked drop-
off in the number of noncoding transcripts detected (Fig. 3 A and
B), a pattern that holds for the Cabili et al. (13), Gencode 14
(14), and Washietl et al. (15) sets of lincRNAs (Fig. S3). For
example, of the 29,530 noncoding transcripts expressed in at
least one sample of human heart, only 3,116 can be found in 75%
or more of the 51 biological replicates analyzed. This trend is not
observed when the same analysis is performed on protein-coding
genes, which are generally quite reproducible across multiple
experiments (Fig. 3 A, iii and B, iii). Of note, many thousands of
single exon noncoding transcripts are reproducible over scores of
biological replicates. Overall, the replicability of noncoding tran-
scripts is positively correlated with higher expression, but only for
the extreme end of transcripts that are detected by many experi-
ments (Fig. S4); between 50% and 80% reproducibility, there is
minimal relationship between replicability and median expression.
Next, we examined replicability in the context of promoter

histone marks generated from a single heart sample studied in
REMC. We observed that as the replicability threshold is in-
creased, the proportion of genes with activating histone marks
increases (Fig. 3 C and 3 D for heart; see Figs. S5 and S6 for
other tissues). The presence of activating histone marks (e.g.,
H3K27ac and H3K4me1) at noncoding transcript promoters is
thus also associated with higher replicability. The histone
associations revealed in our work extend the H3K4me3 and
H3K36me3 results described in Guttman et al. (16) in that other
activating marks (e.g., H3K27ac and H3K4me1) are also posi-
tively associated with noncoding transcripts. We also observe
that a majority of highly replicable, noncoding transcripts is not
associated with histones. The failure to find histone marks at
transcript boundaries may be due to degradation of RNA sam-
ples, leading to imputation of 5′ truncated noncoding transcripts.
The same observations were also found for the lincRNAs called

by Cabili et al. (13) and Gencode 14 (17) (Fig. S7). Comparison
with an analogous analysis on protein-coding genes yields several
other findings of note (Fig. 3 C and D; see Fig. S6 for other
tissues). First, the number of heart noncoding transcripts with
H3K4me1 is greater than those with H3K4me3; for protein-
coding genes, the opposite is true. Second, unlike for noncoding
transcripts, the proportion of protein-coding genes with activat-
ing histone marks is comparatively higher and does not change as
appreciably with replicability threshold. For example, the pro-
portion of protein-coding genes with H3K27ac in the human
heart increases by a factor of only 1.16, from 62.9% to 72.9%,
across different thresholds of replicability, compared with a fac-
tor of 2.7, from 6.6% to 17.6%, for noncoding transcripts.
We further extended the concept of replicability as a gauge for

noncoding transcript validity by examining the tissue-specific/
housekeeping composition of noncoding transcripts. Heretofore,
the vast majority of noncoding transcripts were thought to be
tissue-specific, with a recent estimate as high as 78% in humans
(13). However, if putative noncoding transcripts are actually bi-
ological noise or very lowly expressed, they are more likely to be
deemed tissue specific rather than to be replicated across multiple
tissues. We prepared boxplots of Shannon entropy H across
increasing thresholds of expression replicability for noncoding
transcripts and found that the proportion of tissue-specific non-
coding transcripts decreases in both humans and mice (Fig. 4 A
and C for heart; see Fig. S8 for other tissues). This trend is not
observed for protein-coding RNAs (Fig. 4 B and D). Determining
the precise number of noncoding transcripts that are tissue-specific
will require multiple biological replicates of RNA-seq runs across
a wide range of tissues beyond what has been analyzed thus far.
In the aforementioned aspects of noncoding transcripts, we see

characteristics change markedly as the replicability threshold is
increased. One feature with a less pronounced change is the
number of human and mouse noncoding transcript orthologs,
which had been previously found to be low (17, 18). We used the
University of California, Santa Cruz (UCSC) liftOver tool (19) to
find conserved noncoding regions in the human and mouse
genomes. Table 1 shows the number of orthologous noncoding
transcripts over a range of replicability thresholds for human and
mouse heart. At increasing thresholds of expression replicability,
the proportion of orthologs increases but remains low. Even at the
threshold of transcription in greater than or equal to 75% of bi-
ological replicates, of the approximate 3K noncoding transcripts in
human and mouse, the proportion of orthologs is no more than
20%. Thus, noncoding transcripts represent another aspect of gene
expression that is markedly different between humans and mice.

Discussion
Overall, we demonstrate that, by examining a wide range of tis-
sues, differences in gene expression between humans and mice
predominate, a feature that is corroborated in the epigenome by
examining H3K4me3 and H3K27ac patterns. Thus, differences in
gene transcription level between species are evident from the split
of the human and mouse lineages, a time point much later than

Fig. 4. Boxplots of tissue specificity of noncoding transcripts in heart. Tissues specificity, as measured by the Shannon entropy H, is shown in boxplots at
increasing thresholds of expression replicability for (A) noncoding transcripts in humans, (B) protein coding transcripts in human, (C) noncoding transcripts in
mice, and (D) protein coding transcripts in mice. The number of genes represented in each boxplot in A–D correspond to those plotted in Fig. 3 A, i and iii and
B, i and iii, respectively.
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was described by previous studies that examined chickens and
other distantly related organisms (1, 2, 20). We presume that this
extensive difference in expression likely reflects the underlying
biology of the two species. For example, mice and humans have
very different metabolism and physiology—differences that are
overall greater than tissue-specific differences even though tissue-
specific genes have higher gene expression signals than broadly
expressed genes. Indeed, differences in the transcriptional pro-
gram between humans and mice have also been observed on a
limited basis by other groups, for example, in the context of the
inflammatory response (21).
In this study, we also examined replicability using a large

number of datasets from biological replicates. More recently,
work by Washietl et al. (15) suggested that noncoding transcripts
are as reproducible as protein-coding ones. We did not find this
to be the case, and our use of a much higher number of replicates
for certain tissues may offer advantages over the limited number
of samples that they examined. Moreover, the transcripts they
considered were somewhat different from ours (a quarter of
their set was antisense), and our analysis methods were simpler.
In any case, we find that most noncoding transcripts cannot be
found at an appreciable level in multiple individuals, in contrast
to protein-coding transcripts. Such expression might be the
consequence of biological noise or that many noncoding tran-
scripts are expressed at a very low level or in a limited number of
cells and not detected. Regardless, we found that even those
noncoding transcripts that are highly replicable are not con-
served between mice and humans. When the biological function
of lincRNAs can be found, they appear to be involved in

regulation; our results are consistent with the idea that regula-
tory information in general, such as transcription factor binding,
is highly diverged (22, 23). Overall, our study demonstrates the
extensive divergence in the expression of both noncoding genes
as well as conserved, protein-coding genes that likely mediates
the extensive differences between humans and mice.

Materials and Methods
Detailed experimental procedures are provided in SI Materials and Methods.
RNA-seq data from all sources were processed in an identical fashion. Gene
expression values were determined using Tophat and Cufflinks (24). For non-
coding transcripts, we first assembled RNA-seq datasets from ENCODE, mouse
ENCODE, HBM, and REMC with mouse and human data from Brawand et al.
(5), Barbosa-Morais et al. (1), and Merkin et al. (2), as well as human brain,
heart, lung, and adipose samples from the GTEx project (4). We performed ab
initio transcript construction by Cufflinks on each human (348 samples) and
mouse (103 samples) tissue sample, and thenmerged all results with Cuffmerge
(24), and imputed their noncoding status with the Coding-Potential Assessment
Tool (CPAT) (25).
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Table 1. Number of heart noncoding transcript orthologs

Replicability Noncoding transcript Orthologs (%)

Human to mouse
≥1 of 51 29,530 3,511 (11.9)
≥2 of 51 23,844 3,000 (12.6)
≥13 of 51 9,513 1,478 (15.5)
≥26 of 51 5,455 949 (17.4)
≥38 of 51 3,116 603 (19.4)

Mouse to human
≥1 of 11 31,450 2,952 (9.4)
≥2 of 11 19,554 2,047 (10.5)
≥3 of 11 13,934 1,513 (10.9)
≥6 of 11 6,189 794 (12.8)
≥8 of 11 3,810 527 (13.8)
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