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Abstract

N -methyl-D-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors,

which mediate most excitatory synaptic transmission in mammalian brains. Calcium permeation

triggered by activation of NMDA receptors is the pivotal event for initiation of neuronal plasticity.

Here we show the crystal structure of the intact heterotetrameric GluN1/GluN2B NMDA receptor

ion channel at 4 Å. The NMDA receptors are arranged as a dimer of GluN1-GluN2B heterodimers

with the two-fold symmetry axis running through the entire molecule composed of an amino

terminal domain (ATD), a ligand-binding domain (LBD), and a transmembrane domain (TMD).

The ATD and LBD are much more highly packed in the NMDA receptors than non-NMDA

receptors, which may explain why ATD regulates ion channel activity in NMDA receptors but not

in non-NMDA receptors.

Brain development and function rely on neuronal communication at a specialized junction

called the synapse. In response to an action potential, neurotransmitters are released from the

presynapse and activate ionotropic and metabotropic receptors at the postsynapse to generate

a postsynaptic potential. Such synaptic transmission is a basis for experience dependent

changes in neuronal circuits. The majority of excitatory neurotransmission in the human

brain is mediated by transmission of a simple amino acid, L-glutamate (1), which activates

metabotropic (mGluRs) and ionotropic glutamate receptors (iGluRs). iGluRs are ligand-

gated ion channels that comprise three major families, AMPA (GluA1-4), kainate

(GluK1-5), and NMDA receptors (GluN1, GluN2A-D, and GluN3A-B). Non-NMDA

receptors can form functional homotetramers that respond to only L-glutamate. In contrast,

NMDA receptors are obligatory heterotetramers mainly composed of two copies each of

GluN1 and GluN2, which activate upon concurrent binding of glycine or D-serine to GluN1

and L-glutamate to GluN2 and relief of a magnesium block of the ion channel pore by

membrane depolarization (2). Opening of NMDA receptor channels results in an influx of

calcium ions that trigger signal transduction cascades that control strength of neural

connectivity or neuroplasticity. Hyper or hypo activation of NMDA receptors is implicated

in neurological disorders and diseases including Alzheimer’s disease, Parkinson’s disease,

depression, schizophrenia, and ischemic injuries associated with stroke (3).
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The NMDA receptor subunits, like other iGluR subunits, contain modular domains that are

responsible for controlling distinct functions. In NMDA receptors, an amino terminal

domain (ATD) contributes to control of ion channel open probability and deactivation

speeds (4–6), and contains binding sites for subtype-specific allosteric modulator

compounds including zinc (GluN2A and 2B), ifenprodil (GluN2B), and polyamines

(GluN2B) (7–9). A ligand-binding domain (LBD) binds agonists and antagonists to control

ion channel opening. A transmembrane domain (TMD) forms the heterotetrameric ion

channel. A carboxyl terminal domain (CTD) associates with postsynaptic density proteins,

which in turn facilitates intracellular signaling pivotal for neuroplasticity. In non-NMDA

receptors, the ATD does not regulate ion channel activity, the LBD binds only one agonist,

L-glutamate, and the TMD forms an ion channel pore with no voltage sensing capacity and

with significantly less calcium permeability compared to NMDA receptors. The

significantly shorter CTD interacts with postsynaptic proteins that are distinct from the

NMDA receptor-associating proteins. Thus, despite being categorized in the same iGluR

family, non-NMDA receptors and NMDA receptors have clear differences in basic ion

channel physiology and pharmacology. The only crystal structure of an intact iGluR is the

homotetrameric GluA2 AMPA receptor bound to an antagonist (10). In NMDA receptor

families, structural information has been limited to that of isolated ATD (7, 8, 11) and LBD

(12–15) extracellular domains. Thus, the modes of subunit and domain arrangement of intact

heterotetrameric NMDA receptors have remained enigmatic. Moreover, the structure-

function relationship of NMDA receptors has been difficult to dissect because functions

such as ATD-mediated allosteric regulation, ligand-induced gating, and ion permeability

occur in the context of heterotetramers and involve inter-subunit and domain interactions.

Thus, to facilitate understanding of complex functions in NMDA receptors, we sought to

capture the pattern of inter-subunit and -domain arrangement by crystallographic studies on

the intact heterotetrameric GluN1a/GluN2B NMDA receptor ion channel.

Production and structural study of heterotetrameric NMDA receptors

NMDA receptors are obligatory heterotetramers composed of two copies each of GluN1 and

GluN2. Structural studies of heteromultimeric eukaryotic membrane proteins from a

recombinant source have been hindered by difficulties in properly assembling multiple

membrane proteins in recombinant expression host cells. After extensive exploration of

expression methods, we succeeded in obtaining homogeneously assembled heterotetrameric

NMDA receptors by expressing modified GluN1-4a and GluN2B subunits (GluN1a/

GluN2Bcryst; fig. S1–4, see Supplementary Methods) in Sf9 insect cells using a recombinant

baculovirus containing both of those subunits under the Hsp70 promoter from Drosophila

melanogaster. Expression under conventional late promoters such as P10 and Polyhedrin

promoters hampers proper heteromeric assembly of the NMDA receptor subunits (fig. S2).

The GluN1a/GluN2Bcryst construct forms an ion channel that is opened upon glycine and L-

glutamate application and allosterically regulated by ifenprodil and polyamines similarly to

the wild-type receptor (fig. S5–6). GluN1a/GluN2Bcryst was crystallized in the presence of a

GluN1 agonist, glycine, a GluN2 agonist, L-glutamate, and an ATD-binding allosteric

inhibitor, ifenprodil. The structure was initially solved at 5.7 Å by molecular replacement

using the extracellular domain structures as search probes (Supplementary Methods).
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Overall the extracellular domains of the receptor were well resolved and electron density for

the TMD was of sufficient quality to conclude that TMD helices of GluN1a/GluN2Bcryst

receptor are arranged similarly to those of GluA2 (fig. S7) (10). To improve the x-ray

diffraction quality, we stabilized the heterotetramer by forming disulfide cross-links between

subunits (fig. S1). Based on the 5.7 Å structure, we engineered a GluN2B Ser214Cys

mutation to form a disulfide bond between the ATDs of two GluN2B subunits and pairs of

mutations, the GluN1a Thr561Cys/Phe810Cys and GluN2B Asp557Cys/Ile815Cys, to tether

the M1 helices to the M4 helices of the neighboring subunit at the TMD. The disulfide

cross-linked mutant receptor (GluN1a/GluN2Bcrystx) is trapped in an inhibited state, which

could be unlocked by application of reducing agents (fig. S6). The cross-linking improved

the diffraction limit to better than 4 Å, which resulted in electron density sufficient to build

most of the GluN1a/GluN2B NMDA receptor including the entire extracellular domains,

TMD, linkers between ATD and LBD and between LBD and TMD except some residues in

the cytoplasmic loops (GluN1a 583–604, 617–622 and 834–847, and GluN2B 570–601,

616–629 and 841–852), in the loop connecting the LBD to the TMD (GluN2B 541–548 and

803–806) and in the extracellular loops (GluN1a 95–104 and 442–444, and GluN2B 440–

450) (Fig. 1, S3 and S4). The model for the TMD was built using GluA2 TMD as a guide

and residue assignment was verified using selenomethionine labeling (fig. S8, table S1), and

electron density for aromatic residues and cross-link sites. Even though structural refinement

was conducted using the most advanced refinement methods for treating low resolution data

(16, 17), we suggest cautious interpretation of our structural model at the TMD, since there

is some level of positional uncertainty intrinsic to a 4 Å model. No significant difference in

the architecture between GluN1a/GluN2Bcryst and GluN1a/GluN2Bcrystx was observed

demonstrating that disulfide cross-linking of the subunits did not alter the overall structure.

Overall Structure

The GluN1a/GluN2B NMDA receptor bound to glycine, L-glutamate, and ifenprodil is

shaped like a hot-air balloon where the balloon and basket correspond to the extracellular

domains and the TMD, respectively (Fig. 1). There is a clear boundary between the layers of

LBD and TMD, while the ATD and LBD appear as a single unit. The GluN1a and GluN2B

subunits assemble as the staggered GluN1-GluN2-GluN1-GluN2 (1-2-1-2) heterotetramer in

every domain as previously predicted (10, 18, 19) (Fig. 1–2). The GluN1a/GluN2B ATD

and LBD heterodimers are similar to isolated GluN1b/GluN2B ATD complexed to

ifenprodil (rmsd 0.9 Å) (8) and isolated GluN1/GluN2A LBD complexed to glycine and L-

glutamate (rmsd 1.1 Å) (12). Observed electron density for glycine, L-glutamate, and

ifenprodil supports the view that the structure represents the allosterically inhibited state

(fig. S9). The assembly of the NMDA receptor tetramer as a dimer-of-dimers at the

extracellular region is similar to the organization of the GluA2 AMPA receptor (10, 20) and

likely of other iGluR members. Despite the similarity in the pattern of tetrameric

arrangement, the overall shape of GluN1a/GluN2B NMDA receptor is distinct from that of

the “Y” shaped GluA2 AMPA receptor (Fig. 1) (10). This is attributed to tight packing of

the ATD and LBD in GluN1a/GluN2B NMDA receptors. In contrast ATD and LBD interact

minimally in GluA2 AMPA receptors.
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Organization of GluN1 and GluN2B subunits

There are two key features in the pattern of subunit arrangement. First, pseudo-symmetry

mismatch is present between the extracellular region and the TMD. The GluN1a and

GluN2B subunits are arranged in a 1-2-1-2 orientation with two-fold symmetry between the

two GluN1a/GluN2B heterodimers in the ATD and LBD, but with pseudo-four-fold

symmetry in the TMD (Fig. 2). A similar subunit arrangement is observed in the GluA2

homotetrameric structure that has two-fold symmetries within and between homodimers of

the ATD and LBD and fourfold symmetry in the TMD (10) indicating that symmetry

mismatch may be common to iGluR structures. The second important feature is swapping of

dimer pairs between the ATD and LBD layers (Fig. 2A and B). In the ATD layer,

heterodimer pairs assemble as GluN1a (α)/GluN2B (α) and GluN1 (β)/GluN2B (β) whereas

in the LBD layer, they assemble as GluN1a (α)/GluN2B (β) and GluN1 (β)/GluN2B (α)

(Fig. 2A and B). A similar pattern of domain swapping is also observed in the

homotetrameric GluA2 AMPA receptor where subunits assemble as a dimer of A/B and C/D

homodimers at the ATD and as a dimer of A/D and B/C dimers at the LBD (Fig. 2A and B)

(10). Overall the conformations of GluN1a and GluN2B subunits approximately correspond

to those of A/C and B/D subunits in the GluA2 AMPA receptor homotetramer. This

assignment is based on the observation that the ATD-LBD linker and the M3-LBD linker

are respectively more “distal” and “proximal” from the overall two-fold symmetry axis for

GluN1a than GluN2B similar to the orientation of the A/C than B/D subunits in the GluA2

AMPA receptor (Fig. 2 and fig. S10).

Though they share a dimer-of-dimers arrangement, the modes of subunit association in each

domain differ significantly between NMDA and AMPA receptors. In the ATD, the two

GluN1a/GluN2B heterodimers interact with each other at two interfaces involving upper

lobes of the two GluN1a subunits (α and β) and lower lobes of the two GluN2B subunits (α

and β). In contrast the GluA2 receptor has only one interface between Subunit B and D (Fig.

2A and fig. S11). The ATDs of NMDA receptor and AMPA receptor subunits have low

sequence identity and this is reflected in the large differences in structures (7, 8).

Consequently, the ATD layer is more compactly packed in GluN1a/GluN2B than in GluA2.

At the LBD, the dimer-of-dimers arrangement is comparable between the GluN1a/GluN2B

and GluA2 receptors. The GluN1a/GluN2B heterodimers interact between the lower lobe of

GluN1a and the upper lobe of GluN2B at the two equivalent sites (Fig. 2B and S11). In

GluA2, the equivalent regions are much more loosely packed, but instead, there is another

closely packed region involving Subunit A and C (10). Whether these distinct modes of

interactions at the LBD represent an architectural difference between NMDA and AMPA

receptors or different functional states remains an open question. In the previous study, the

GluA2 AMPA receptor was crystallized in the presence of an antagonist (ZK200775)

whereas the GluN1a/GluN2B NMDA receptor was crystallized in the presence of the

allosteric inhibitor, ifenprodil, and agonists, glycine and L-glutamate. Finally, at the TMD,

the subunits form pseudo four-fold symmetrical interactions between the M3 helices at the

center of the ion channel and between M4 helices of one subunit and M1 and M3 helices of

the adjacent subunit, similar to the GluA2 AMPA receptor (Fig. 2C and fig. S11). Within the
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pore, the M2 helices are close to the M1 and M3 helices of the same subunit and the M3

helices of the adjacent subunit.

Inter-subunit interfaces and function

The crystal structure of the heterotetrameric GluN1a/GluN2B NMDA receptor shows inter-

subunit interfaces that are distinct from those in the GluA2 AMPA receptor. Thus, we have

tested whether the distinct interfaces observed in our crystal structure are present in intact

NMDA receptors in the membrane environment. We engineered cysteine residues and tested

for spontaneous disulfide bond formation at the following subunit interfaces: (I). GluN2B

(ATD)-GluN2B (ATD); (II). GluN1a (ATD)-GluN2B (LBD); (III). GluN1a (LBD)-GluN2B

(ATD); (IV). GluN1a (LBD)-GluN2B (LBD); and (V). GluN1a (TMD)-GluN2B (TMD)

(Fig. 3). The Western blot experiments on the mutant GluN1a/GluN2B NMDA receptor

proteins have shown that all of the single cysteine mutant pairs in the extracellular region

form disulfide cross-links resulting in GluN2B–GluN2B homodimer formation (I) and

GluN1a-GluN2B heterodimer formation (II, III and IV), whereas the double cysteine mutant

pair in the TMD forms GluN1a-GluN2B-GluN1a-GluN2B disulfide cross-links resulting in

heterotetramer formation (V) in the absence of a reducing agent (Fig. 3B). In the presence of

reducing agents, or when a subunit with the cysteine mutation is expressed with a subunit

with no mutation, bands representing monomers of GluN1a and GluN2B appear (fig. S12).

This indicates that the disulfide cross-links are formed by engineered cysteine pairs, and

validates the physiological relevance of the subunit arrangement observed in our crystal

structure.

What are the molecular determinants that favor the 1-2-1-2 arrangement over 1-1-2-2

arrangement? Previous studies have shown that the ATD is important for allosteric

modulation and for controlling open probability and deactivation speeds (4, 5), but not

required for formation of functional ion channels (21). Furthermore, interactions of helices

in the TMD are similar to those in the homotetrameric GluA2 AMPA receptor structure,

thus, the structural determinant for the 1-2-1-2 subunit arrangement may reside in the LBDs.

In silico construction of GluN1a-GluN2B heterotetramers in the 1-1-2-2 format by

superposing the GluN1 LBD structure onto the GluN2B LBD structure and vice versa

revealed steric clashes in both the GluN1a-GluN1a and the GluN2B-GluN2B interfaces (fig.

S13). The GluN1a-GluN1a interaction is prevented by a collision between Loop1 of one

GluN1a and Helix G of the other, whereas the GluN2B-GluN2B interaction is disfavored by

a steric hindrance between Helix K′ of one subunit and Helix E′ and F′ of the other (fig.

S13). Thus, while the TMD is essential for tetramerization, the structural features in the

LBD appear to favor the 1-2-1-2 arrangement.

The GluN1a/GluN2B heterotetrameric structure shows that some residues and motifs

previously shown to play important roles in function are located at the interface between

GluN1-GluN2B heterodimers (fig. S14). One example is Loop 1′ of GluN2B located within

the LBD. The equivalent motif in GluN2A has been suggested to play a major role in

negative cooperativity between the glycine and L-glutamate binding sites (22). Another

example is a point mutation on Helix E of the GluN1 LBD lobe (Asp669Asn), which has

previously been shown to affect gating properties by altering sensitivity to pH, spermine and
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ifenprodil (23). Our cross-linking results also showed “trapping” GluN1a-GluN2B ATD

attenuates the ion channel activity. Taken together these results suggest that rearrangement

between the two GluN1a-GluN2B dimers may be important for activity. Consistent with

this, a recent study on GluA2 AMPA receptor showed that rearrangement of two GluA2

homodimers at the LBD regulates ion channel gating activity (24).

Inter-domain interaction between ATD and LBD and function

One of the major functional differences between NMDA receptors and non-NMDA

receptors is the ATD-mediated regulation of ion channel activity present in the former and

absent in the latter. In NMDA receptors, binding of allosteric modulators at the ATD alters

agonist potency at the LBD indicating tight functional coupling between the ATD and the

LBD (25). This coupling is structurally well represented by the more extensive ATD-LBD

interaction in NMDA receptors (3,107 Å2) than in AMPA receptors (1,470 Å2). The crystal

structure shows the two major sites, Site-II and –III, mediating the tight ATD-LBD

association mainly through hydrophilic interactions even though the exact mode of residue-

by-residue contacts cannot be pinpointed due to limitation in resolution (Fig. 3D and E). In

Site-II, GluN1a ATD and the GluN1a/GluN2B LBD heterodimer are packed together

through interaction between the loop extending from Helix α5 to Strand β7 at GluN1a ATD

and GluN2B Helix J′ at the GluN1a-GluN2B interface at LBD (Fig. 3D). The region around

GluN1a Helix α5 is where the twenty one residue long loop that contains numbers of basic

amino acids would be present in the GluN1b splice variant. This loop, encoded by exon 5,

has been shown to accelerate the deactivation time course (26), and to influence allosteric

modulation by decreasing potency of protons, polyamines, and Zn2+ (27). In Site-III, the

GluN1a LBD and the GluN1a/GluN2B ATD heterodimer are packed together by GluN1a

Loop 2 “wedging” into the interface between GluN1a ATD and GluN2B ATD. Furthermore,

GluN1a Helix F and G, GluN2B Loop 1′, and the loop extending from GluN2B Helix α4′

stack onto each other to further stabilize the ATD-LBD interaction (Fig. 3E). Helix F in

GluN1 has been implicated in gating control, thus, this may be a key locus where ATD may

have an impact on gating properties (28). Overall, the ATD and the LBD are in a tight

arrangement that is suited to transmit structural changes between domains (fig. S15).

Transmembrane domain and the extracellular vestibule

The TMD of the GluN1a/GluN2B NMDA receptor forms a heterotetrameric ion channel

with pseudo four-fold symmetry similar in overall shape to the homotetrameric ion channel

of the GluA2 AMPA receptors (rmsd 2.2 Å) except the M4 helix in GluN2B (Fig. 4A). The

tetrameric crossing of the M3 helices occludes the ion penetration pathway to a similar

degree in the presumed allosterically inhibited GluN1a/GluN2B NMDA receptor to the

closed GluA2 AMPA receptor (Fig. 4A). This crossing of the M3 helices occurs around the

highly conserved SYTANLAAF motifs in iGluRs, mutations of which are known to modify

gating properties (29). The ion channel pore (M1 to M3) of the GluN1a/GluN2B NMDA

receptor shows high structural similarity to that of KcsA potassium channels in a closed

conformation (30) (rmsd 2.4 Å) despite the low sequence identity (19%) (fig. S16). In

contrast, shaker (31) and MthK (32) potassium channels in open conformation do not

superpose well, mainly due to bending of their TM2 helices compared to the M3 helices in
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GluN1a/GluN2B NMDA receptor (Fig. 4B and fig. S16). On the basis of structural

similarities with the potassium channel, we speculate that gating of the GluN1a/GluN2B

NMDA receptor may involve rearrangement of M3 helices.

One of the hallmarks of NMDA receptor function is the high permeation of calcium ions,

which plays a major role in neuronal plasticity as well as excitotoxicity. The crystal structure

complexed with holmium or gadolinium, lanthanides known to occupy calcium binding sites

in many biological macromolecules (33, 34), show binding between the LBD-TMD linkers

from the two GluN1 subunits around the center of the ion channel (Fig. 5). A set of acidic

residues in GluN1 (DRPEER motif) located in this region is critical for the high calcium

flux characteristic of NMDA receptors (35). Thus, the lanthanide binding site along with the

previous electrophysiological study further confirms the presence of the calcium pool

located right outside of the ion channel. A similar charge-based ion pooling mechanism has

been suggested for cation conductance in P2X4 receptors and nicotinic acetylcholine

receptors (36, 37). Despite extensive efforts, the regions of the TMD that determine voltage-

dependent Mg2+ block and Ca2+ permeation (38) are not resolved in this crystal structure.

Structure-based understanding of cation selectivity and voltage-dependent Mg2+ block is

thus a question that remains to be addressed.

Conclusion

The crystal structure of GluN1a/GluN2B NMDA receptors in the current study reveals the

patterns of inter-subunit and –domain interactions, which are different from those observed

in AMPA receptors. These differences widely reflect functional differences. The structure

will serve as a template for designing experiments that addresses functional questions

specific to NMDA receptors. Finally, the defined subunit interfaces should serve as an

important blueprint for design of therapeutic compounds.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overall structure of heterotetrameric GluN1a/GluN2B NMDA receptor and
comparison with GluA2 AMPA receptor
Overall structures of GluN1a/GluN2B NMDA receptor (left) and GluA2 AMPA receptor

(right, PDB ID: 3KG2). Both structures are placed so that the tetramers of both receptors are

in the similar orientation at the LBD layer. GluN1a and GluN2B subunits, labeled as

GluN1a (α), GluN1a (β), GluN2B (α), GluN2B (β) are colored in orange, yellow, cyan and

purple, respectively. The amino (NT) and carboxy (CT) termini are located on top and

bottom, respectively. Ifenprodil (IF), located at the GluN1a/GluN2B ATD heterodimer

interfaces, and agonists, glycine (Gly) and L-glutamate (L-Glu), lodged at the LBD

clamshells, are shown in green spheres. N-glycosylation chains are shown in green sticks.
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Figure 2. Domain-by-domain structural comparison of heteromeric GluN1a/GluN2B NMDA
receptors and homomeric GluA2 AMPA receptor
Structures of ATD (A), LBD (B), and TMD (C) viewed from the top of the receptors. All of

the domains are assembled around the overall two-fold axis (large black oval) in GluN1a/

GluN2B heterotetramers (left). In GluA2 homotetramers (right), the local two-fold axis

(small black oval) runs within the ATD and LBD dimers, a two-fold axis (large black oval)

runs between the ATD and LBD dimers, and the fourfold axis (black square) runs in the

center of the TMD. Schematic figures next to the structures represent subunit organization at

each domain, where subunits with black dots in between represent dimer pairs. Ifenprodil,

glycine, L-glutamate, and ZK200775 are shown in spheres. N-glycosylation chains are

shown in green sticks.
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Figure 3. Inter- and intra-subunit interfaces in GluN1a/GluN2B NMDA receptors
(A) Ribbon and surface representation of GluN1a/GluN2B NMDA receptor colored as in

Fig. 1. Inter-subunit interfaces that are probed by disulfide cross-linking experiments are

surrounded by colored boxes. (B) Western blot analysis of disulfide bond formation by

cysteine substitutions at the subunit interfaces probed by anti-GluN1 (top) and anti-GluN2B

(bottom) antibodies under non-reducing conditions. Arrows indicate positions of non-cross-

linked monomers and cross-linked dimers and tetramers. (C–G) Close up views of the inter-

and intra-subunit interfaces between GluN2B ATD (α) and GluN2B-ATD (β) (Site-I, yellow

box) (C), between GluN1a ATD and GluN1a LBD, and GluN1a-ATD and GluN2B-LBD

(Site-II, green box) (D), between GluN1a LBD and GluN2B ATD, and GluN2B ATD and

GluN2B LBD (Site-III, blue box) (E), between GluN1a LBD and GluN2B LBD (Site-IV,

red box) (F) and between GluN1a TMD and GluN2B TMD (Site-V, purple box) (G). Side

chains without clear electron densities are modeled as alanine. Residues that are mutated to

cysteine are labeled in red.
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Figure 4. Structural comparison of NMDA receptor ion channel with GluA2 AMPA receptor
and Shaker potassium channels
TMDs of GluN1a subunits (yellow, left panel) and GluN2B subunits (cyan, middle panel)

are superposed onto the ion channel regions (red) of the closed conformation of GluA2

AMPA receptor (PDB ID: 3KG2) (A), open conformation of Shaker potassium channel

(PDB ID: 2R9R) (B). The superposed structures are viewed from the side (left and middle

panels) or from the extracellular side (right panel). Superposition is performed using

Secondary-structure matching (SSM) tool in the program Coot. Loops are excluded from the

figure for clarity.
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Figure 5. Putative calcium binding site at the extracellular vestibule
(A) Overall structure of GluN1a/GluN2B NMDA receptors with the anomalous Fourier

difference maps for holmium (green mesh; from the 7.5 Å dataset) and gadolinium (red

mesh; from the 7.8 Å dataset) countered at 4.5 σ. (B) Close up view of the boxed region in

panel A. Holmium and gadolinium binding sites are located at the extracellular vestibule

over the bundle of M3 helices. Cα atoms of the residues on GluN1a DRPEER motif from

the GluN1a/GluN2Bcrystx structure are shown as spheres. Residues for the disordered

DRPEER motif (shown as dashed lines) on the GluN1a (β) protomer (yellow) are positioned

based on the structural alignment of the GluN1a (α) protomer (orange).
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