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The validity of perturbation theory approximation 
 
In our study we considered fluctuations induced by noise 
to be small. This means that noise was considered a 
small perturbation, i.e. within a perturbation theory. 
Here we discuss the validity of this approximation. 
Although we used this approximation (perturbation 
theory) to solve equations of our model, our mechanism 
may take place even when the equations cannot be 
solved using this method.  
 
More precisely, smallness of the amplitude of noise was 
needed when we used Taylor expansion around the 
value iu in equation (12). This equation does not 
include second order term, i.e. 2''( ) / 2i iF u u . This 
approximation is valid when         
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where b  is given in equation (15). Because ~i iu  , 
this condition imposes a constrain on the noise 
amplitude  . To see this, solving equation (13), we get 
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From this and equation (8) we find 
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As follows from this equation, this quantity averaged 
over neurons is 
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Here ic  is the i-th eigenvalue of matrix W. Since there 
is only a small number of patterns, whose corresponding 

ic  are finite, and most of the eigenvalues ic  are close 
to zero, we have 
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Combining this with equation (22), we find the 
condition for perturbation calculation to be valid is  
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The amplitude of noise is therefore limited by 
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u  is a typical value of membrane voltage and f  is the 
typical value of the firing rates. Thus, the levels of noise 
have to be sufficiently low for the perturbation theory 
analysis to be valid.  
 
For bistability, we need the value of noise larger than 
certain threshold. The detailed conditions for this 
criterion are described in section titled ‘Conditions of 
bistability’. Thus, our analysis can be used when the 
level of noise is big enough for the bistability to exist, 
and small enough for the Taylor expansion in equation 
(12) to be valid. Can such a regime exist? Here, we will 
provide simple estimate for the existence of such a 
window of parameters. The perturbation theory is valid 
if noise is weak, i.e.  
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As follows from the discussion in the paper, the 
bistability exists, if, approximately speaking, learning 
rate is sufficiently strong, i.e.  
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Both conditions can be satisfied, if the amplitude of 
noise 2  lies within the range defined as follows  
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This range exists if the boundaries for the rage differ in 
the correct direction, i.e.  
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which implies that 
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Thus, if the learning rate A   is sufficiently big, both 
perturbation theory analysis (Taylor series expansion in 
equation (12)) is valid and bistability necessary for our 
mechanism exists. This occurred because the firing rate 
equations and, consequently, Taylor series expansion, do 
not depend on the learning rates. Thus, learning rates 
can be used as an independent parameter to reach the 
conditions of bistability. Also, the effects of noise can be 
big, even though we assume weak noise in the 
perturbation theory. This is because our assumption of 
the weakness of noise only includes the validity of 
Taylor series expansion. Thus, the overall impact of 
noise can be substantial despite its small amplitude.  
 
The validity of the mean field approximation 
 
In this section, we show that the mean-field calculation 
in section Materials and Methods is justified. In 
equations (9) and (11) we assumed that the learning 
rates are determined by the averages of the firing rates 
over the ensemble of noise. In reality, these equations 
should be used without such averaging. To derive our 
results, we therefore used an approximation that could 
be called the mean field approximation. At what 
condition can the instantaneous values of the pairwise 
products of the firing rates be replaced by their 
correlations? Below we will show that this condition is 
determined by the time scale of synaptic modifications. 
In particular, it is determined by the time constant of 
synaptic decay 0 . It is this time scale that determines 
the duration of time over which the firing rates are 
averaged in equations (9) and (11). We will show that 
when the duration of STDP learning kernels   
[equation (10)] is much smaller than the forgetting 
time-scale, i.e. 0   , the mean field approximation 
can accurately describe the behavior of the network. 

Because, in reality, the STDP learning kernel lasts 
around 100ms, while the forgetting time scale extends 
over several weeks, 9

0 ~ 10 ms, the variance of the 
deviations from the mean field values are small  
 

 
2 2

7
2 2

0

( ) ~ ~ 10MF

MF MF

c c c
c c





 . (S12) 

 
This makes the mean field approximation a valid 
method.  
 
We start from equation (9). Without averaging of noise, 
equation (9) has the following form  
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Let ( )ac t  be the strength of implicit pattern a. Using 
perturbation equation (12) and projecting both sides of 
(S13) with operator aP , we can find the equation for 

ac . In the main text, where we used mean-field analysis, 
the equation for ac  is given in equation (19). The 
quantity described by that equation will be called 

( )MFc t . Here we are interested in the difference 
between the mean field result and the result without 
averaging. To this end, we calculate the variance of the 
following quantity, 0( ) / .a aA t dc dt c  To make 
notations simpler, we will omit the subscript a in the 
remaining part of this section and it is understood that 
our calculation is about a certain implicit patter a whose 
strength is c.  
 
By projecting equation (S13) onto state a  we obtain  
 

 0 / ( )a adc dt c A t    (S14) 
where ( )A t  is given by  
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where  
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is the projection of the membrane voltage defined in the 
main text onto state a . This quantity can be related to a 
Gaussian variable describing noise 
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Here  
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Here, it is easy to see that ( ) 0t  and
2( ) ( ') ( ')t t t t     . It is also direct to show that 

( ) 0u t  and 
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From equation (19) we already know that  
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To see how well we can approximate ( )A t  by A, we 
need to calculate the variance of ( )A t , i.e. 
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In the calculation we use the fact, which follows from 
the properties of Gaussian white noise, that 
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By straightforward calculations using equation (S17), 
we find that  
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Here c , c and 0c are all functions of A ,   ,  and 
g . To simplify the results, define the following three 
variables, 
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With t  and n , terms in (S18) can be written as 
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From our analysis in the main text we know that near the 
second stable point t are both of order 1, i.e. ~ (1)t O . 
Therefore, c , c and 0c are all of order 1.  
 
From previous discussion, we can write

( ) ( )MFA t A A t  , such that ( ) 0A t  . To estimate
( )A t , notice the facts that  is about a few milliseconds, 

  are about a few hundred milliseconds and 0 is about 
a few weeks, i.e. 0    . By equation (S18), we 
have 
 

2( ) ( ') ~ ( ')MFA t A t A t t     .    
          (S24) 
 
We can now write MF( ) ( ) ( )c t c t c t  such that 

0 /MF MF MFdc dt c A    and 

0 / ( ) ( )d c dt c t A t      . The first equation leads 
the mean-field solution that is presented in the main text. 



The second equation describes the fluctuations around 
the mean field results. Solving the second equation, we 
get 
 

0

'

0

1( ) ' (t') .
t t

t
c t dt e A 







 

 (S25) 
 

From equation (S20), we find 
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If we choose 0 to be two weeks, then 9

0 ~ 10 ms  and 
  is a few hundred milliseconds, e.g. ~ 100ms  , 
therefore by equation (S26) we have ( ) ( ') 0c t c t   . 
This proves that we can approximate ( )c t  with ( )MFc t
and the mean-field calculations in the main text, e.g. 
equation (19), are indeed valid approximations.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


