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Abstract

Somatic mutations in the EGFR proto-oncogene occur in ~15% of human lung adenocarcinomas and the importance
of EGFR mutations for the initiation and maintenance of lung cancer is well established from mouse models and
cancer therapy trials in human lung cancer patients. Recently, we identified DOK2 as a lung adenocarcinoma tumor
suppressor gene. Here we show that genomic loss of DOK2 is associated with EGFR mutations in human lung
adenocarcinoma, and we hypothesized that loss of DOK2 might therefore cooperate with EGFR mutations to
promote lung tumorigenesis. We tested this hypothesis using genetically engineered mouse models and find that loss
of Dok2 in the mouse accelerates lung tumorigenesis initiated by oncogenic EGFR, but not that initiated by mutated
Kras. Moreover, we find that DOK2 participates in a negative feedback loop that opposes mutated EGFR; EGFR
mutation leads to recruitment of DOK2 to EGFR and DOK2-mediated inhibition of downstream activation of RAS.
These data identify DOK2 as a tumor suppressor in EGFR-mutant lung adenocarcinoma.
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Introduction mutations are found more frequently in smokers and predict

primary resistance to targeted EGFR inhibitors, whereas

EGFR and KRAS mutations are the two most frequent
oncogenic events in human lung adenocarcinoma, occurring in
approximately 15% and 30% of U.S. lung adenocarcinoma
cases, respectively [1]. Somatic mutation of EGFR defines a
specific subclass of lung adenocarcinomas with sensitivity to
treatment with the EGFR inhibitors gefitinib or erlotinib [2-4].
The two major classes of EGFR mutations are an L858R point
mutation and small, in-frame deletions in exon 19; both types of
mutation enhance the activity and oncogenicity of EGFR
compared to the wild-type protein [5]. Tumors harboring KRAS
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mutations in EGFR are more frequent in women, never-
smokers, and East Asian populations, and predict sensitivity to
EGFR kinase inhibitors [3,6-8].

The “downstream of tyrosine kinase” (DOK) proteins are a
family of adaptor proteins that modulate tyrosine kinase
signaling. Similar to the insulin receptor substrate (IRS)
proteins, the seven DOK family members contain an N-terminal
pleckstrin homology (PH) domain, a phospho-tyrosine binding
(PTB) domain, and a C-terminus containing numerous tyrosine
residues and proline-rich motifs. Upon growth factor
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Figure 1. Loss of DOK2 in human lung adenocarcinoma is associated with EGFR mutation. (A) Association between EGFR
or KRAS mutation status and genomic loss of the DOK2 locus from aCGH analysis of 199 primary human lung adenocarcinomas
[20]. ****, P < 0.001. *, P < 0.05 by Fisher’'s exact test. aCGH analysis and mutation calling of tumors was determined as previously
described [20]. (B) Quantitative representation of data shown in (A). Data shown is mean+SEM of log, ratio data from array CGH
data. ***, P < 0.001. *, P < 0.05 by two-tailed unpaired t-test. (C) Copy number and mutation associations in The Cancer Genome
Atlas (TCGA) data from 230 lung adenocarcinomas. Copy number and mutation data were downloaded from TCGA (https://tcga-

data.nci.nih.gov/).
doi: 10.1371/journal.pone.0079526.g001

stimulation, DOK proteins are localized to membrane signaling
complexes via interactions involving the DOK PH and PTB
domains, where they recruit additional proteins through
interactions of the phospho-tyrosine residues and PXXP motifs
on the DOK C-terminus with SH2 and SH3 domains,
respectively [9-11]. DOK1, DOK2, and DOKS3 regulate
numerous downstream targets of RTKs including AKT, SRC,
and RAS by functioning as inducible adaptors that recruit
negative signaling regulators into the signaling complex
[9,10,12-15]. For example, DOK1 and DOK2 function upstream
of RAS and inhibit RAS activity by enhancing the recruitment of
the RAS GTPase activating protein RASA1/RASGAP to RAS
[10,16].

In addition to other RTK pathways, DOK proteins are able to
regulate signaling downstream of EGFR. Both DOK1 and
DOK2 are phosphorylated after EGF stimulation and can bind
directly to phosphotyrosines on EGFR [12,17,18]. Moreover,
DOK2 has been shown to suppress SRC, AKT, and ERK
phosphorylation after EGF stimulation [12]. Given these data,
as well as our recent identification of DOK2 as a human lung
tumor suppressor gene [19], we sought to test whether
perturbation of DOK2 in human and mouse lung cell lines or
transgenic mice would alter EGFR- or KRAS-mutant lung
tumorigenesis.

Results

Association between genomic loss of DOK2 and
mutation of EGFR in human lung adenocarcinoma

We previously identified Dok family genes as murine lung
tumor suppressors and DOK2 as a candidate human lung
tumor suppressor gene [19]. DOK2 expression is
downregulated in human Ilung adenocarcinoma due to

PLOS ONE | www.plosone.org

heterozygous genomic loss encompassing the DOK2 gene at
the 8p21.3 locus [19]. To determine if DOK2 genomic loss was
a feature of a specific genomic class of lung adenocarcinoma,
we analyzed the relationship of DOK2 loss with mutation of
EGFR or KRAS in 199 primary human lung adenocarcinomas
[19,20]. Interestingly, loss of DOK2 strongly correlated with
EGFR mutation status; tumors with an EGFR mutation had a
significantly elevated frequency of loss of DOK2 (Figure 1A-B,
P < 0.0001). Moreover, we observed the same association in
recent data generated by The Cancer Genome Atlas (TCGA)
from 230 lung adenocarcinomas (Figure 1C). There was a
weak but significant association between loss of DOK2 and
KRAS mutation (Figure 1A-B, P < 0.05). However, only the
association with EGFR mutation was replicated in the TCGA
data, suggesting loss of DOK2 is associated with EGFR
mutation but not KRAS mutation in human lung
adenocarcinoma.

The observed genetic association is consistent with selection
for DOK2 loss in EGFR-mutant tumors. However, many other
genes reside in the region of 8p that encompasses the DOK2
gene, raising the possibility that selection for loss of other
genes could be responsible for the observed association. For
example, DOK2 lies telomeric to DUSP4, a MAP-kinase
phosphatase which negatively regulates MAPK signaling
downstream of RAS and has been identified as a candidate
tumor suppressor gene [20]. Thus we performed additional in
vitro and in vivo experiments to determine whether DOK2 could
inhibit EGFR- or KRAS-mutant lung tumorigenesis.

DOK2 suppresses EGF-induced RAS and ERK activity
and constitutively interacts with EGFR"3%R

First, using a RAS-binding domain (RBD) pull-down assay
and Western blotting, we confirmed that overexpression of
DOK2 suppresses EGF-induced RAS and ERK activity in
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Figure 2. EGFR activity regulates binding of DOK2 to EGFR and DOK2 localization. (A) Co-immunoprecipitation of DOK2,
EGFR, and RASA1. HEK293 cells were co-transfected with pCMV-DOK2 (all conditions) and either pcDNA3.1 empty vector or
pcDNA3.1-EGFR"T, pcDNA3.1-EGFR"%R, or pcDNA3.1-HA-HRAS®'?V, Cells were serum starved overnight in medium containing
0.1% FBS before stimulation with 50 ng/ml EGF for 2-5 minutes. DOK2 and associated proteins were immunoprecipitated from
extracts of stimulated and unstimulated cells with an anti-DOK2 antibody and then analyzed by Western blotting. Upper panels
show the proteins in the immunoprecipitation fraction; lower panels show proteins from the total lysate. A black arrowhead indicates
HA-HRASC®'2Y whereas a white arrowhead indicates endogenous RAS. Data shown is representative of results from at least three
independent experiments. (B) Immunofluorescence of NIH3T3 cells stably expressing WT or EGFR®%R, Cells were transfected with
pCMV-DOK?2, incubated overnight, serum starved, and then either fixed or stimulated with EGF before fixation. The left panels show
DOK2 (green) and DAPI (blue). White arrowheads indicate membrane-associated DOK2 staining. A Western blot indicates total
levels of EGFR in these cells (right panel). Data shown is representative from at least three independent experiments. (C) Confocal
microscopy analysis of colocalization of DOK2 and EGFR. 3T3-EGFR%R cells were transfected with FLAG-DOK2 and probed with
anti-FLAG (red) or anti-EGFR (green) antibodies. Arrowheads indicate colocalization (yellow) in the panel showing the merged

signals. Data shown is representative from at least three independent experiments.

doi: 10.1371/journal.pone.0079526.g002

HEK293T cells compared to cells transfected with empty vector
(Figure S1). Next, we examined the physical interaction
between DOK2 and EGFR. We overexpressed DOK2 alone or
in combination with human wild-type EGFR, EGFRW“%R  or
RAS®'?V, Under serum starvation conditions, no binding of
DOK2 to wild-type EGFR was observed (Figure 2A). EGF
stimulation induced interactions of DOK2 and wild-type EGFR
and RASA1 (Figure 2A). In contrast, DOK2 physically
interacted with EGFR"R and RASA1 not only after EGF
stimulation but also during serum-starvation (Figure 2A).
Therefore activation of EGFR, either ligand-induced or as a
consequence of oncogenic mutation appears to induce DOK2
recruitment to the EGF receptor complex and DOK2-mediated
recruitment of RASA1.

EGFR activation regulates localization of DOK2

Next, we used immunofluorescence to examine localization
of DOK2 with or without EGF stimulation in NIH3T3 fibroblasts
stably overexpressing wild-type EGFR or EGFR'“%R and
transfected with a DOK2 expression construct. In cells lacking
expression of EGFR, DOK2 was diffusely distributed in the
cytoplasm during serum starvation and after EGF stimulation
(Figure 2B). In cells expressing wild-type EGFR, however,
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DOK2 localization changed from diffusely cytoplasmic to
markedly localized at the plasma membrane after EGF
stimulation, consistent with recruitment of DOK2 to the receptor
complex after autophosphorylation of EGFR (Figure 2B). In
cells expressing EGFR%R DOK2 was present at the
membrane not only after EGF stimulation but also during
serum-starvation (Figure 2B), indicating that activation of
EGFR alone is sufficient to induce DOK2 localization at the
plasma membrane. Confocal microscopy confirmed that DOK2
and EGFR co-localized in these membrane regions (Figure
2C). These results thus corroborate our biochemical
observation in HEK293 cells and demonstrate that activation of
EGFR induces relocation of DOK2 to the plasma membrane,
where DOK2 binds to a protein complex containing EGFR
(Figure 2A, C).

DOK2 inhibits expansion of EGFR-mutant, but not
KRAS-mutant, lung adenocarcinoma cells

Next we sought to determine if DOK2 could inhibit the growth
of EGFR-mutant human lung adenocarcinoma cells. To this
end, we ectopically expressed DOK2 in NCI-H1975 cells, which
contain both the L858R point mutation of EGFR and also a
T790M mutation, the “gatekeeper” mutation in EGFR that
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Figure 3. DOK2 inhibits tumor formation of EGFR-mutant lung adenocarcinoma cells. (A) Tumor volume of NCI-H1975 cells
after xenografting into nude mice. NCI-H1975 cells were transduced with retrovirus to generate stable cell lines with or without
expression of DOK2 and each line was then injected subcutaneously into the flanks of nude mice. Data shown are mean +/- SD of
three replicates. (B) Weight of tumors formed by NCI-H1975 cells with or without expression of DOK2. Pictures (inset) were taken at
8 weeks post-injection. (C) RAS activity in NCI-H1975 cells with or without DOK2 expression. The cells were serum starved and
then stimulated with 100 ng/ml EGF for the indicated time, then lysed. GTP-bound RAS was isolated from lysates via a RAF-binding
domain (RBD) pulldown, and the pulldown fraction (top panel) or total lysate (bottom panels) were analyzed by Western blotting
using anti-RAS, DOK2, or HSP90 (loading control) antibodies.

doi: 10.1371/journal.pone.0079526.9003
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Figure 4. DOK2 fails to inhibit tumor formation of KRAS-mutant lung adenocarcinoma cells. (A) Tumor volume of A549 cells
after xenografting into nude mice. A549 cells were transduced with retrovirus to generate stable cell lines with or without expression
of DOK2 and then each line was injected subcutaneously into the flanks of nude mice. Data shown are mean +/- SD of three
replicates. (B) RAS activity in A549 cells with or without DOK2 expression. The cells were serum starved and then stimulated with
100 ng/ml EGF for the indicated time, then lysed. GTP-bound RAS was isolated from lysates via a RAF-binding domain (RBD)
pulldown, and the pulldown fraction (top panel) and total lysate (bottom panels) were analyzed by Western blotting using anti-RAS,
DOK2, or HSP90 (loading control) antibodies.

doi: 10.1371/journal.pone.0079526.g004

confers resistance to first-generation EGFR inhibitors [8,21]. (Figure 3C). In contrast, ectopic expression of DOK2 in KRAS-
We then analyzed the effect of DOK2 expression on tumor mutant A549 lung adenocarcinoma cells did not suppress
formation after subcutaneous xenograft into tumor growth (Figure 4A) or activation of RAS (Figure 4B).
immunocompromised mice (Figure 3A-B). DOK2 expression These data are consistent with the model that DOK2 functions
inhibited tumor formation (Figure 3A-B) and partially downstream of EGFR but upstream of RAS to suppress signal
suppressed EGF-induced RAS activation in NCI-H1975 cells transduction and oncogenesis.
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Loss of Dok2 cooperates with EGFR mutation, but not
Kras mutation, to promote lung tumorigenesis in vivo

To determine if loss of DOK2 cooperates with EGFR or
KRAS mutation in vivo, we crossed Dok2 knockout (KO) mice
[14] to lung-specific, doxycycline-inducible bitransgenic EGFR
(C/EGFRPEL) and Kras (C/Kras®?®) mouse models [22,23].
Cohorts of mice in either a Dok2 wild-type or Dok2 KO
background were placed on a diet containing doxycycline at
weaning age and tumor formation was compared in the
presence and absence of Dok2. Non- or mono-transgenic
animals that did not express the oncogenic transgenes were
used as controls.

We monitored tumor formation and progression in Dok2 wild-
type or Dok2 KO (-/-) C/EGFRPE- bitransgenic mice using
magnetic resonance (MR) imaging at intervals over the course
of one year. After 12 months of doxycycline induction, tumors
were clearly visible in the C/EGFRPF-/Dok2” cohort with the
MR images from C/EGFRPF./Dok2 mice showing markedly
more and larger tumors than seen in the lungs from C/
EGFRPE/Dok2** mice (Figure 5A, n = 4 Dok2” and n = 5
Dok2**). Upon pathological examination, lungs from C/
EGFRPE/Dok2'- animals had a significantly greater number of
tumors compared to lungs from C/EGFRPE/Dok2** mice
(Figure 5B,D). In agreement with these observations, the
weight of lungs from C/EGFRPE-/Dok2” mice was significantly
greater than that of lungs from the C/EGFRPE-/Dok2** controls
(Figure 5C). Dok2 KO mice without EGFR expression
displayed many fewer tumor nodules at this age than C/
EGFRPE: mice, indicating that Dok2 loss likely cooperates in a
synergistic manner with oncogenic EGFR (Figure 5D). These
differences in tumorigenesis resulted in a significantly impaired
survival in the C/EGFRPF/Dok2” animals compared to C/
EGFRPE/Dok2** mice (Figure 5E; P < 0.05, n = 29 Dok2** and
n = 39 Dok2").

Next we tested whether loss of Dok2 enhances lung
tumorigenesis in a mouse model of Kras-driven tumorigenesis.
C/Kras®'?® bitransgenic mice express the oncogenic Kras
mutation, Kras®’??, specifically in the lung and rapidly develop
hundreds of small adenomas and adenocarcinoma tumors after
doxycycline administration [23]. Both C/Kras®'?°/Dok2**and C/
KRAS®"22/Dok2” mice developed numerous tumors. At very
early time points less than 3 months post-doxycycline
administration we did observe an increase in tumor number in
Dok2 KO mice (data not shown). However, at 4-5 months of
doxycycline induction we did not detect a difference in tumor
burden by MRI or lung weight between the two groups (Figure
B6A-C). Pathological review revealed no differences between
the histology of the two cohorts. Both Dok2 wild-type and KO
C/Kras®'?® mice developed typical grade Il adenomas with
uniform nuclei. A few tumors in each genotype exhibited
nuclear pleomorphism. Furthermore, there was no difference in
overall survival between the two cohorts (Figure 6D). We
therefore conclude that it is unlikely that loss of Dok2 provides
a marked selective advantage for Kras-mutant lung cells.

PLOS ONE | www.plosone.org
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Discussion

Several lines of evidence support a role for DOK2 in
suppression of lung tumorigenesis driven by oncogenic EGFR.
First, we observe loss of DOK2 in human lung adenocarcinoma
and association of this feature with somatic mutation of EGFR.
Second, DOK2 overexpression inhibited the tumor-forming
ability of lung adenocarcinoma cells harboring an EGFR
mutation. Third, we demonstrate in mouse models that loss of
Dok2 promotes lung tumorigenesis initiated by oncogenic
EGFR. Fourth, DOK2 is constitutively membrane-associated
and bound to EGFR in cells expressing mutant, oncogenic
EGFR. Fifth, DOK2 can physically interact with EGFR and
suppress its downstream signaling [12,17], an observation that
we confirm for the first time in the context of EGFR mutation.

One possible mechanism of DOK2 function involves DOK-
mediated recruitment of RASA1, which in turn facilitates
RASA1-induced inactivation of RAS. The ability of DOK2 to
inhibit EGF-induced activity of wild-type RAS and the fact that
DOK2 is constitutively bound to RASA1 in cells harboring
EGFR"%R suggest that at least part of DOK2's tumor
suppressive function is to suppress RAS activation via RASA1.
In contrast to the effect of loss of DOK2 in tumors with an
EGFR mutation, loss of DOK2 is not consistently associated
with KRAS mutation in human lung adenocarcinoma and we do
not observe an enhancement of tumor formation in Kras-
mutant mice lacking Dok2. Thus the tumor suppressive
function of DOK2 in the context of EGFR-RAS signaling lies
upstream of RAS, likely through DOK2’s canonical effector,
RASA1. Together our data support a model (Figure 7) in which
loss of DOK2 impairs negative feedback on oncogenic
signaling, leading to enhanced EGFR-RAS signaling and
cancer. It remains possible that, in some contexts, RASA1-
independent functions of DOK2 may allow DOK2-mediated
regulation in parallel or downstream of activated RAS.
Similarly, continued inhibition of the remaining wild-type RAS in
a RAS-mutant cell may provide a biologically relevant level of
signal inhibition in some contexts. We previously observed
suppression of growth of an NRAS-mutant cell line by DOK2
[19] and so the relationship of DOK2 to mutated RAS genes
requires further investigation.

The findings presented here clearly indicate that loss of
DOK2 enhances EGFR-driven lung tumorigenesis. However,
EGFR mutation can nonetheless induce tumor formation in the
presence of an apparently intact DOK2 gene. We observe
human lung adenocarcinomas without copy number loss of
DOK2 (Figure 1), and expression of mutated EGFR induces
tumor formation in Dok2 wild-type mice, albeit more slowly and
less effectively than in a Dok2 null genetic context (Figure 5).
Additional analyses will be required to determine whether
DOK2 is indeed fully functional in those settings or whether the
gene may have been inactivated by other mechanisms, such
as methylation or mutation. It is also possible that EGFR is able
to override DOK2-mediated inhibition via mechanisms such as
increased expression of EGFR driven by amplification of the
mutant EGFR allele. Indeed, amplification of mutated EGFR is
frequently observed in tumors [24]. Another possibility is that
DOK2-mediated negative feedback may be disrupted via
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Figure 5. Dok2 suppresses lung tumorigenesis initiated by oncogenic EGFR. (A) MR images from the lungs of C/EGFRPE/
Dok2** and C/EGFRPE./Dok2’ mice after 12 months of doxycycline treatment. Images from four individual animals of each
genotype are shown. Arrowheads indicate tumor nodules. h, heart. Signal not indicated by arrows or arrowheads is likely to be
diffuse hyperplasia or bronchoalveolar carcinoma (BAC). (B) H&E staining of lungs from C/EGFRPE./Dok2** and C/EGFRPE-/Dok2*
mice after 12 months of doxycycline treatment. 20X total magnification. For each genotype, four lung lobes from a single
representative mouse are shown.

(C) Lung weight of lungs from C/EGFRPF/Dok2** and C/EGFRPE/Dok2” mice after 12 months of doxycycline treatment. Data
shown is mean + SEM. *, P < 0.05 by two-tailed t-test. C/EGFRPE/Dok2**, n = 8. C/EGFRDEL/Dok2”, n = 5. (D) Tumors per slide
per animal in C/EGFRPF/Dok2**, C/EGFRPFt/Dok2”, and age-matched non-transgenic Dok2 KO mice. Data shown is mean + SEM.
** P < 0.01 by two-tailed t-test. C/EGFRP®-/Dok2**, n = 5. C/EGFRDEL/Dok2”, n = 4. Non-transgenic Dok2 KO, n = 4. (E) Kaplan-
Meier plot of survival data from bitransgenic C/EGFRPE-/Dok2** (n = 29), C/EGFRPE-/Dok2” (n = 39), and non- or mono-transgenic
littermate controls of all Dok2 genotypes (n = 71). Spontaneous deaths or sacrifices due to poor body condition were recorded as
events. Planned sacrifices at other time points were censored.

doi: 10.1371/journal.pone.0079526.g005
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Figure 6. Loss of Dok2 fails to impact Kras-mutant lung tumorigenesis. (A) MR images of the lungs of C/Kras®'??/Dok2** and
C/Kras®'?/Dok2"- lungs after 5 months of doxycycline induction. h, heart. L, liver. (B) H&E staining of lungs from C/Kras®'??/Dok2**
and C/Kras®'?’/Dok2"- after 5 months of doxycycline treatment. 20X total magnification. For each genotype, four lung lobes from a
single representative mouse are shown. (C) Lung weight data from 4-5 month old animals. Mean + SEM is shown from n = 6 control
(non-transgenic) mice and n = 4 C/Kras®?°/Dok2** and C/Kras®'?’/Dok2"- animals. (D) Kaplan-Meier curve showing survival data
from C/Kras®'??/Dok2** and C/Kras®'?’/Dok2’- and non- or mono-transgenic controls (Dok2 +/+ and -/-) treated with doxycycline for
the indicated times.

doi: 10.1371/journal.pone.0079526.g006

alteration of other members of the pathway. For example, domain to phosphotyrosines on those receptors. Many other
SHC1 is an SH2-domain containing protein that recruits RTKs are known to play a role in lung adenocarcinoma,
RASGEFs to RAS and binds to the same pTyr sequences on including ALK and ERBB2, and it is interesting to speculate

EGFR as DOK2. Overexpression of SHC1 could conceivably  that DOK2 may also inhibit lung tumorigenesis driven by those
override the ability of DOK2 to be recruited to activated EGFR. oncogenes. It is also possible that loss of DOK2 on its own or

Although some doubt has been cast on a competitive-binding
model of DOK2/SHC1 regulation of RAS [17], additional
investigation is required to definitively rule out this model.
Alternatively, loss or mutation of DOK2's effector, RASAT,
would be predicted to disrupt DOK2’s ability to suppress EGFR
signaling. Recent sequencing data shows that RASA1
mutations are observed in lung adenocarcinoma (COSMIC
database), so further effort should be directed towards
understanding the relationship between RASA1, DOK2, EGFR, numbers limit the ability to definitively describe the effect of

in combination with loss of other tumor suppressors (e.g.
DUSP4 which is located with DOK2 in the same frequently
deleted locus at 8p21.3 [24]) is able to trigger a robust
activation of the MAPK pathway hence favoring lung
tumorigenesis.

Another unanswered question is the clinical consequence of
DOK2 genomic loss on patient outcome. Current sample

and KRAS in lung adenocarcinoma. loss of DOK2 on survival, and no data exist on the relationship

On the other hand, loss of DOK2 is also observed in EGFR of DOK2 to acquired resistance to EGFR inhibition. The
wild-type tumors, and Dok2 null mice do spontaneously continued characterization of patient samples with integrated
develop lung adenocarcinoma [17]. It is therefore possible such genomic, expression, and protein data will no doubt provide

tumors have alterations in other receptor tyrosine kinases that further insight into the regulation of EGFR-mutant lung
may also be regulated by DOK2 via binding of DOK2’'s PTB adenocarcinoma.
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Figure 7. Model of DOK2 function in normal lung and lung adenocarcinoma. Left, physiological function of DOK2 in normal
lung cells in regulation of the EGFR pathway. EGFR activation via ligand binding of EGF induces both KRAS activation (red arrow)
and a negative feedback loop involving recruitment of DOK2 (black arrow) and RASA1. Right, pathogenic loss of DOK2 and
deregulation of the EGFR signaling pathway. Loss of DOK2 (gray) results in decreased recruitment of RASA1 (blue), allowing
enhanced downstream activation of KRAS following EGFR mutation and activation (yellow).

doi: 10.1371/journal.pone.0079526.g007

Materials and Methods

Ethics statement

All animal studies were reviewed and approved by the
Institutional Animal Care and Use Committees at Memorial
Sloan-Kettering Cancer Center and Beth Israel Deaconess
Medical Center. Animals were euthanized at signs of distress
or poor body condition to ameliorate pain and distress
associated with tumor formation.

Human tumor analyses

Patient information, array CGH analysis, and mutation
identification in 199 primary human adenocarcinoma samples
are as previously described [19,20]. For the TCGA analysis,
data from 230 lung adenocarcinomas was downloaded (http://
tcga-data.nci.nih.sgov/) or analyzed using the MSKCC cbio
portal (http://cbioportal.org). GISTIC [25] was used to define
heterozygous losses.

Cell lines

NIH3T3, HEK293, NCI-H1975, A549, and ecotropic Phoenix
cells were purchased from the American Type Culture
Collection (ATCC).

Co-immunoprecipitation and Western blotting

HEK293 cells were co-transfected with pCMV-DOK2 and
pcDNA3.1-EGFR"T, pcDNA3.1-EGFR™"%R or pcDNA-HA-
HRASC'?V then incubated for 24 hours. Cells were serum
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starved overnight in medium containing 0.1% FBS, stimulated
with 50 ng/ml EGF for 2-5 minutes, then lysed in a co-
immunoprecipitation buffer (150 mM NaCl; 1mM EDTA; 50 mM
HEPES, pH 7.5; 1% Triton X-100; 10% glycerol; 1mM beta-
glycerol phosphate; 1mM NazVO,; 1mM NaF; and Roche
“Complete” protease inhibitor). Antibodies used for the co-
immunoprecipitation and Western blot were a-DOK2 (E10,
Santa Cruz), a-EGFR (13, BD Biosciences), a-phosphotyrosine
(PY99, Santa Cruz Biotechnology), anti-pan RAS (Ab-3,
Calbiochem), anti-RasGAP (Santa Cruz Biotechnology, sc-63),
and anti-tubulin (Sigma). Antibodies used for Western blot
(Figure 2B) were a-EGFR58R (a kind gift of Dr. William Pao,
Vanderbilt University), a-EGFR (BD), and anti-B-actin (Sigma).

Generation of NIH3T3 cell lines stably overexpressing
EGFR

Constructs pBabe-puro-EGFR and pBabe-puro-EGFR“%R g
kind gift of Jeonghee Cho and Matthew Meyerson (DFCI), were
used to transfect ecotropic Phoenix cells. 48 and 72 hours
post-transfection, culture  supernatants were filtered,
supplemented with polybrene, and added to NIH3T3 cells. 24
hours after the last infection, cells were selected for 2 days in
media containing 2 pg/ml puromycin before use in experiments.

Immunofluorescence

NIH3T3 cells were cultured on chamber slides, serum
starved overnight in medium containing 0.1% FBS, then either
left unstimulated or stimulated with EGF (50 ng/ml) for 5
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minutes. Cells were fixed with 4% paraformaldehyde (PFA) and
permeabilized with PBS containing 0.1% Triton X-100. Cells
were incubated with primary antibodies overnight at 4°C before
secondary detection using Alexafluor-conjugated secondary
antibodies  (Invitrogen) and mounting and  nuclei
counterstaining using Vectashield with DAPI (Vector Labs).
Primary antibodies used were: anti-EGFR (BD), anti-DOK2
(E10, Santa Cruz), or anti-FLAG.

Fluorescent Microscopy

Images were acquired with either with a Nikon Eclipse
TE300 microscope (Figure 2B) or a Zeiss LSM 510 Meta
Confocal Microscope (Figure 2C). Post-acquisition image
processing was performed using Adobe Photoshop.

Murine models

CCSP-rtTA; tetO-EGFRPE: (C/EGFRPEY) and CCSP-rtTA;
tetO-Kras®'?® (C/Kras®'?’) bitransgenic mice were crossed into
the Dok2 KO strain. All mouse strains have been previously
described [14,22,23]. Mice heterozygous for both transgenes
were used for all experiments, and monotransgenic or
nontransgenic mice were used as negative controls. Cohorts of
mice were continuously kept on a diet containing doxycycline
(625 ppm; Harlan-Teklad) from weaning (3 weeks) until the
experimental endpoint.

Magnetic resonance imaging

MR imaging experiments were performed at 4.7 Tesla
(BioSpec 47/40; Bruker Biospin) using a transmit/receive
birdcage coil (inner diameter, 30 mm). Animals were
anesthetized with 1-2% isofluorane (Florane; Baxter) via a
nose cone, and placed in prone position, headfirst, with the
thorax centered with respect to the center of the coil. Cardiac
and respiratory gating was used to trigger multislice acquisition
of a single line of k space in each cardiac cycle, during
exhalation interval of respiration. Axial images of lungs were
acquired using a spin echo pulse sequence with repetition time
(TR) = 1000 ms, echo time (TE) = 12 ms, matrix size = 256 x
256, field of view (FOV) = 2.56 x 2.56 cm, and slice thickness =
1 mm.

Histology and Immunohistochemistry

Animals were anesthetized with Avertin and then perfused
with 10 ml cold PBS through the left ventricle of the heart.
Lungs were inflated via intratracheal injection of 4% PFA,
dissected, and fixed in 4% PFA overnight before subsequent
processing, paraffin embedding, and H&E staining (Histoserv,
Inc or BIDMC Histology Core). Immunohistochemistry was
performed using a Ki67 antibody (Vector labs VP-451).
Histopathology was reviewed by R.T.B.

RAS activity assay

RAS activation was measured using GST-RBD (RBD, RAS-
binding domain of RAF) pull-down assays as previously
described [14]. Briefly, cells (either unstimulated or stimulated
with 50 ng/ml EGF) were lysed in lysis buffer (50 mM Tris-HClI,
pH=7.4; 150 mM NaCl; 1% Triton X-100; 10% glycerol; 0.25%
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sodium deoxycholate; 10mM MgCl,; 1mM EDTA). Equal
amounts of cell lysates were incubated with bacterially
expressed GST-RBD coupled to glutathione sepharose beads
(Amersham). Beads were washed with lysis buffer, and GST-
RBD associated RAS (RAS-GTP) and total RAS in cell lysates
were detected by Western blotting using a pan-RAS antibody
(BD Transduction Laboratories). Relative RAS activity was
quantified by normalizing the amount of RAS-GTP to the total
amount of RAS in cell lysates and then normalizing to the value
of 1.0 for control cells.

Cell culture and EGF treatment

A549 and NCI-H1975 cells were purchased from American
Type Culture Collection and cultured in RPMI 1640
supplemented with 10% fetal bovine serum (FBS) at 37 °C/5%
CO,. For the EGF treatment, cells were serum starved in RPMI
plus 0.1% FBS for 24h, and then stimulated with 100ng/ml EGF
(Invitrogen) for the indicated time. At the end of the stimulation,
cells were immediately washed with ice-cold PBS and lysed in
RIPA buffer (Sigma) containing complete EDTA-free protease
and phosphatase inhibitor cocktails (Roche). Cell debris was
pelleted, and supernatants containing the whole cell lysates
were analyzed on SDS-polyacrylamide gels.

In vivo tumorigenesis assay.

6-week-old male athymic nude mice (NCr-nu/nu) were
purchased from Taconic and inoculated subcutaneously in the
right flank with 5 x 10® A549 or 4 x 10® NCI-H1975 cells in 50ul
100% Matrigel (BD Biosciences). Tumor size was measured
weekly using a caliper, and tumor volume was determined
using the standard formula L X W? X 0.5, where L is the longest
diameter and W is the shortest diameter, as previously
described [19].

Statistics

For analysis of quantitative data, datasets were compared
using unpaired two-tailed Student’s t-tests with a P value less
than 0.05 considered significant. Datasets with unequal
variances were analyzed as above but with application of
Welch’s correction. For analysis of categorical data, 2x2
contingency tables were constructed and datasets were
compared using a Fisher's exact test with a P value less than
0.05 considered significant. For survival data, curves were
compared using a Log-Rank Mantel-Cox test. All statistical
tests were executed using GraphPad Prism software.

Supporting Information

Figure S1. DOK2 inhibits EGF-induced RAS and ERK
activation. (A) RAS activity assay measuring EGF-induced
activation of RAS in HEK293T cells transfected with empty
vector control or FLAG-DOK2. An anti-panRAS antibody was
used to detect RBD-bound active RAS (top panel) or total RAS
in lysates (second panel). Numbers below the two panels
represent relative RAS activity quantified by normalizing the
amount of RAS-GTP to the total amount of RAS in cell lysates,
and then to the value of 1 for control cells. Lower panels,
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Western blot analysis of total lysates using anti-FLAG (DOK2)
or anti-ERK2 (loading control) antibodies. (B) Western blot of
lysates from (A) using anti-phospho-ERK (top panel) or anti-
total ERK2 (loading control) antibodies. Data shown is
representative from at least three independent experiments.
(TIF)
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