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The multifunctional simian and human immunodeficiency virus (SIV and HIV) Nef proteins are important
for virulence. We studied the importance of selected Nef functions using an SIV Nef with mutations in two
regions that are required for CD4 downregulation. This Nef mutant is defective for downregulating CD4 and,
in addition, for enhancing SIV infectivity and induction of SIV replication from infected quiescent peripheral
blood mononuclear cells, but not for other known functions, including downregulation of class I major
histocompatibility complex (MHC) cell surface expression. Replication of SIV containing this Nef variant in
rhesus monkeys was attenuated early during infection. Subsequent increases in viral load coincided with se-
lection of reversions and second-site compensatory changes in Nef. Our results indicate that the surfaces of Nef
that mediate CD4 downregulation and the enhancement of virion infectivity are critical for SIV replication in
vivo. Furthermore, these findings indicate that class I MHC downregulation by Nef is not sufficient for SIV
virulence early in infection.

The Nef protein of simian and human immunodeficiency
virus (SIV and HIV) is an important determinant of AIDS
pathogenesis (12, 20, 23). Both HIV-1 and SIV Nef interact
with cell signaling and protein sorting machinery and have
several potentially important effects (for reviews, see refer-
ences 9, 11, and 13), including (i) the downregulation of sur-
face CD4 molecules (36, 45), (ii) the downregulation of surface
class I major histocompatibility complex (MHC) molecules (8,
43), (iii) the induction of alterations in T-cell receptor signal
transduction pathways (2, 3, 17, 19, 30, 42, 44), and (iv) the
enhancement of viral replication in primary lymphocyte cul-
tures infected prior to stimulation and the enhancement of
virion infectivity in certain cell lines (2, 7, 30, 33, 39, 44).
However, the importance of these functions for AIDS patho-
genesis and of the surfaces of the Nef molecule that mediate
them has only begun to be addressed (4, 5, 21, 28, 41).

The mechanism by which Nef induces CD4 endocytosis in-
volves the recruitment of CD4 molecules to the endocytic
machinery via the AP2 clathrin adapter complex at the plasma
membrane (36, 45). This likely requires direct molecular con-
tacts between an element in the N-terminal region of SIV Nef
molecule and the AP2 complex, as well as an interaction be-
tween the C-terminal disordered loop in Nef with CD4 itself or
other cellular factors (14, 29, 35). By decreasing CD4 cell
surface expression, Nef can promote the release of progeny
virions from the infected cells and facilitate Env incorporation
into viral particles, thus enhancing the infectivity of progeny
virions (27, 38). Consistent with this possibility is the observa-
tion that the positive effects of Nef on viral replication in vitro
map to surfaces of Nef that are also involved in downregula-
tion of CD4 expression (10, 29). However, additional evidence
indicates that Nef also enhances viral replication via alter-

ations of the activation state of the infected cells (2, 17, 39, 42,
44, 48).

The effects of Nef on CD4 expression, class I MHC expres-
sion, and the signal transduction machinery are genetically
separable and map to different surfaces in HIV-1 and SIV Nef
molecules (15, 19, 29, 36, 45, 47). Here we investigate the role
of surfaces of the SIV Nef protein involved with CD4 down-
regulation and with the enhancement of SIV infectivity and
replication in vitro for SIV replication in rhesus macaques. We
constructed an SIVmac239 variant containing three amino acid
substitutions in Nef which disrupted its ability to downregulate
CD4 but had no detectable effect on downregulating CD3 or
class I MHC, and in associating with the p62 serine/threonine
kinase activity (28, 34, 40) or with the AP2 adapter/clathrin
complex (19, 29). This mutant Nef did not stimulate SIV in-
fectivity or replication in rhesus peripheral blood mononu-
clear cells (rPBMC). Six rhesus macaques inoculated with this
SIVmac239 variant showed low plasma viral loads early in
infection. Subsequent increases in viral loads coincided with
the selection of amino acid changes that restored Nef function.
Our results indicate that surfaces of the Nef protein that me-
diate molecular interactions important for CD4 downregula-
tion are important for optimal SIV replication in vivo and that
class I MHC downregulation by Nef is not sufficient for SIV
virulence.

MATERIALS AND METHODS

Construction of 239-Nef expression plasmids. Mutations were generated by
oligonucleotide-directed mutagenesis of SIVmac239 nef(open) (239-nef), as pre-
viously described (19). Mutant 239-nef sequences amplified by PCR from pro-
viral DNA were subcloned into the pCD3-b or pCG expression vector or into
a modified pBR322 vector containing the full-length SIVmac239 proviral
DNA using standard techniques (28, 44). The construction of the nef-defective
SIVmac239 variant used in this study, 239(DNU), which has a 188-bp deletion in
the unique region of nef together with a deletion of 325 bp in the long terminal
repeat (LTR) U3 region, was previously described (16). The SIVmac239DUS
(EDR) variant was constructed by deleting the same 325-bp fragment from the
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59 LTR of the SIVmac239(EDR) provirus. All mutations and all constructs
containing these mutations were verified by DNA sequencing.

Cell lines, transfections, and flow cytometry. Transfection of CD4-positive
Jurkat T cells (provided by Dan R. Littman) and analysis of the effect of 239-Nef
on CD4 expression and on CD3 signaling and expression were performed as
previously described (19, 29, 47). At 18 to 24 h after transfection, cells were
stimulated by overnight incubation with the anti-CD3 HIT3A monoclonal anti-
body (MAb) (PharMingen). At 30 to 36 h after transfection, cells were incubated
for 1 h on ice with peridinin chlorophyll-a protein-conjugated anti-CD20 MAb
(Leu-16; Becton Dickinson) and either a phycoerythrin-conjugated anti-CD4
MAb (Leu3A; Becton Dickinson) together with a fluorescein isothiocyanate-
conjugated anti-HLA-A,B,C MAb (G46-2.6; PharMingen), anti-CD69 MAb
(FN50; PharMingen), or anti-CD3 MAb (HIT3A; PharMingen). CD3, CD4,
CD20, CD69, and class I MHC surface expression was analyzed using an Epics-
Elite flow cytometer. For dose-response analysis, the levels of CD4, CD69, or
class I MHC were represented by the peak channel number of red or green
fluorescence on CD201 cells. The determination of relative stability of mutant
239-Nef proteins was performed as previously described (19).

Determination of viral replication and infectivity. Viral stocks were generated
by transfection of proviral DNA into COS-7 or 293T cells as described (28), or
following cocultivation of rPBMC with CEMx174 cells. The p27 antigen levels
for these stocks were determined with a commercial HIV-1/HIV-2 antigen cap-
ture assay under conditions recommended by the manufacturer (Immunogenet-
ics). For replication assays, aliquots of viral stocks containing 2 ng of p27 antigen
were used to infect freshly isolated rPBMC. Cells were washed 16 to 18 h later
to remove unadsorbed virus. At 6 days postinfection, rPBMC were stimulated for
2 days with phytohemagglutinin (4 mg/ml) (Sigma), and reverse transcriptase
activity in these supernatants was determined as described (28). The infectivity of
viral stocks in sMAGI cells was assayed as previously described (6, 28).

Infection of rhesus macaques and clinical assessment. Rhesus macaques were
housed at the German Primate Center in Goettingen in accordance with the
institutional guidelines. Rhesus macaques were infected intravenously with cell-
free aliquots of viral stocks containing 10 ng of p27 antigen, prepared from
COS-7 cells transfected with SIVmac239(EDR) or SIVmac239DUS(EDR) vari-
ants or control 239 nef(open) or SIVmac239DNU viruses. The animals were
seronegative for SIV, type D-retroviruses, and simian T-cell lymphotropic virus
type 1 at the time of infection. The amount of p27 antigen in the plasma was
determined by antigen capture assay. Sera and cells were collected at regular
intervals, and serologic, virologic, and immunologic analyses were performed as
previously described (15, 28).

Viral DNA amplification and DNA sequence analysis. 239-nef sequences were
amplified by PCR from DNA isolated from rPBMC or from rhesus organ biop-
sies with a nested PCR approach or from rPBMC-CEMx174 cocultures by a
single round of amplification, as previously described (22, 28). All PCR frag-
ments were purified and sequenced directly or after subcloning into the pCRII
vector (Invitrogen), with the Prism sequencing kit (Perkin Elmer) and an auto-
mated Applied Biosystems 373 DNA sequencer. Nucleotide changes were quan-
titated as previously described (28).

RESULTS

Construction of a 239-Nef mutant impaired in CD4 down-
regulation. We have previously identified amino acid changes
that disrupt the ability of 239-Nef to downregulate CD4 but
not CD3 or class I MHC surface expression (19, 28, 47). For
the purpose of animal experiments, we combined three such
changes involving substitutions of glutamic acid for proline P73
(P73E), aspartic acid for alanine A74 (A74D), and arginine for
aspartic acid D204 (D204R; referred to as the EDR mutation)
on the same molecule [239(EDR)-Nef]. We expected that com-
bining these changes would disrupt the ability of Nef to down-
regulate CD4 expression even more severely than each muta-
tion alone and delay selection of revertants, allowing us to
better assess effects on SIV replication and pathogenesis.

As shown in Fig. 1A, dose-response experiments revealed
that the P73E and D204R mutations severely disrupted the
ability of 239-Nef to downregulate CD4; however, the A74D
mutation had a much lesser effect (panel 1). Combining all
three substitutions on the same molecule further impaired the
residual activity. Importantly, the relative stabilities of mutant
Nef proteins, including 239(EDR)-Nef, differed less than two-
fold from that of wild-type 239-Nef (panel 4), and in addition,
fluorescence microscopy studies showed that 239(EDR)-Nef had
cellular distribution indistinguishable from that of wild-type
239-Nef (data not shown) and associated with p62 phospho-

protein in in vitro kinase assays, similar to wild-type 239-Nef
(data not shown). Furthermore, all mutant 239-Nef proteins
tested, including 239(EDR)-Nef, retained wild-type ability to
downregulate surface expression of class I MHC and of CD3
complexes (Fig. 1A, panels 2 and 3, and Fig. 1B). Thus, the
EDR substitutions likely disrupt specific molecular interac-
tions of 239-Nef required for CD4 downregulation without
causing a global misfolding of the 239-Nef molecule.

239(EDR)-Nef does not stimulate SIV replication and infec-
tivity. Nef stimulates SIV replication induced from rPBMC
infected prior to stimulation and infectivity of SIV virions to
sMAGI cells. To assess the effect of mutations in 239-Nef on
these functions, the P73E, A74D, and D204R mutations in Nef
were introduced singly or in combination into the full-length
SIVmac239 provirus. We then assayed their effect on SIV
replication and on SIV virion infectivity (6, 28). rPBMC were
infected at low multiplicity with mutant and control SIV and
stimulated with phytohemagglutinin 6 days later, and the re-
verse transcriptase activity in the culture supernatants was de-
termined at various times following stimulation. As shown in
Fig. 2A, the nef-deleted (239DNU) virus and SIV containing
the 239(EDR)-nef allele replicated less efficiently and with de-
layed kinetics compared to wild-type 239 (239wt). Similarly,
the infectivity of the 239(EDR)-Nef variant in CD41 sMAGI
indicator cells was comparable to that of nef-deleted virus and
approximately fourfold lower than that of wild-type SIV (Fig.
2B). The P73E and D204R substitutions significantly reduced
both SIV replication and infectivity, while the A74D mutation
had little effect. The observation that these mutations also
disrupt the ability of 239-Nef to downregulate CD4 is consis-
tent with the links between CD4 downregulation and viral
replication previously reported for HIV-1 and SIV Nef (27, 29,
38).

Attenuated replication of SIV containing 239(EDR)-nef in
rhesus monkeys early in infection. Six rhesus macaques were
infected with SIV containing 239(EDR)-nef using two different
proviral constructs; three macaques (Mm8003, Mm8151, and
Mm8155) were inoculated with SIV239(EDR), and three ani-
mals (Mm8493, Mm8494, and Mm8495) were infected with
SIV239DUS(EDR). SIV 239(EDR) contains nucleotide substitu-
tions only in the nef open reading frame (ORF) at the 39 end
of the provirus, but not in the 59 LTR. Since genomic tran-
scripts initiate in the 59 LTR downstream of the nef coding
region present in U3, wild-type nef sequences should not be
propagated during the viral replication cycle. The second con-
struct, SIV239DUS(EDR), contains a 334-bp deletion in the 59
LTR U3 region that spans the nonmutated nef sequence but
does not affect important transcriptional elements or the ge-
nomic RNA sequence (36). This eliminated any possible inter-
ference by the nef sequence in the 59 LTR.

In all animals, including controls, a peak of plasma antigen-
emia and viral RNA was observed at 2 weeks postinfection
(wpi) (Fig. 3). Compared to 239wt infection, the average p27
plasma concentration was 70-fold lower in animals infected
with nef-deleted SIV, and the viral RNA load was 100-fold
lower (Fig. 3B and D). In the six animals infected with SIV
containing the nef mutation, the levels of plasma antigenemia
and the viral RNA loads were indistinguishable from those in
animals infected with the nef-deleted virus at 2 wpi. These
results show that, similar to large deletions in Nef, mutations
P73E, A74D, and D204R consistently reduced SIVmac239
replication early in infection by almost 100-fold. Measurement
of RNA loads showed that at later time points, SIV containing
239(EDR)-Nef replicated with an efficiency comparable to that
of 239wt in four animals. The remaining two animals showed

VOL. 74, 2000 Nef FUNCTION IN VIVO 9837
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FIG. 1. EDR mutation disrupts the ability of 239-Nef to downregulate CD4 but not to downregulate CD3 or class I MHC. (A) Dose-response analysis of the effect
of mutations in 239-Nef on the expression of CD4 (panel 1), class I MHC (panel 2), and CD3 (panel 3) on the surface of CD201 live cells is shown on the ordinate
as peak channel number of CD4, class I MHC, and CD3 fluorescence, respectively. Panel 4 shows the relative stabilities of the indicated Nef proteins, represented as
relative radiolabel incorporation over the indicated times. (B) Two-color flow cytometric analysis of CD4 and class I MHC or CD3 on the surface of cells transfected
with 20 mg of control (panels 1 and 4), wild-type 239-Nef (panels 2 and 5), or 239(EDR)-Nef (panels 3 and 6) expression plasmids.

9838 IAFRATE ET AL. J. VIROL.
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RNA loads intermediate between those of animals infected
with wild-type and nef-deleted SIV (Mm8003 and Mm8494).

SIV replication in the postacute phase of infection. After the
acute phase, the course of infection differed between the six
individual animals infected with SIV containing 239(EDR)-nef.
Mm8003 remained healthy with stable CD4 counts throughout
the observation period and was euthanized at 99 wpi. No
plasma p27 antigen could be detected at any time (Fig. 3A),
and the RNA copy numbers were about 100-fold reduced com-
pared to wild-type SIVmac239 infection (Fig. 3C). At nec-
ropsy, this animal showed a moderate lymphoid hyperplasia,
which was confirmed by histological examination. The second
animal, Mm8151, also did not develop AIDS within the first
year but showed clear signs of disease progression, including a
declining number of CD41 T lymphocytes, lymphadenopathy,
and weight loss. It died at 99 wpi. This animal showed an
unusual second peak in the plasma p27 concentration at 16 and
20 wpi (Fig. 3A). Histopathologic analysis of this animal re-
vealed a marked lymphoid involution and depletion which
correlated with a systemic cytomegalovirus infection and a
severe purulent bronchopneumonia induced by Streptococcus
pneumoniae. The third infected macaque, Mm8155, showed
characteristics similar to some rapid progressors of wild-type
SIVmac239 infection. It generated a weak antibody response
(data not shown), developed exceedingly high viral loads (Fig.
3C), and progressed to fatal disease within 21 wpi (24). Au-
topsy revealed a disseminated giant cell disease in the lungs,
spleen, lymph nodes, and intestine with marked generalized
depletion and fibrosis of the lymphatic tissue. In the lymph
nodes, the lymphoid tissue was replaced by infiltrates of his-
tiocytes and multinucleated giant cells of the macrophage-
monocyte lineage.

The three animals infected with the SIV 239DUS(EDR) vari-
ant also showed different courses of infection. Mm8493 showed
a decline in the number of CD41 T cells after 16 wpi and
developed lymphadenopathy and splenomegaly by 44 wpi. This
animal died at 62 wpi because of an erosive, chronically active

gastroenteritis induced by opportunistic organisms (Giardia,
Trichomonas, Trichuris, and Campylobacter species). Histopath-
ologic examination also revealed a moderate to severe follicu-
lar hyperplasia with progression to depletion of some follicles
in lymph nodes and spleen. Furthermore, the animal devel-
oped lymphohistiocytic infiltrates with follicular morphology
in multiple other organs, including brain, liver, kidney, blad-
der, skin, muscle, and pancreas. In contrast, Mm8494 re-
mained clinically healthy throughout the 80-week observation
period. Post mortem examination at euthanization revealed no
pathological abnormalities except a mild hyperplasia of the
lymph nodes and the splenic white pulp. The remaining ani-
mal, Mm8495, showed declining CD41 T-cell counts by 16 wpi,
mild lymphadenopathy by 24 wpi, and splenomegaly by 28 wpi.
This animal had to be euthanized at 46 wpi because of severe
disease. Histopathologic examination revealed SIV-associated
lymphoid hyperplasia with progression to depletion, a chronic
active gastroenteritis with opportunistic infections, and a mod-
erate interstitial pneumonia.

Thus, the four animals (Mm8151, Mm8155, Mm8493, and
Mm8495) with high viral loads developed AIDS and died
within the 80 to 84 weeks of observation as a result of simian
AIDS. Two macaques, Mm8003 and Mm8494, with interme-
diate viral loads remained clinically healthy with relatively sta-
ble CD41 T-cell counts throughout the same period.

Changes in Nef are selected in vivo. Sequence analysis of
PCR fragments amplified from PBMC, plasma RNA, and pos-
itive bulk cocultivations revealed that the increase in viral loads
in animals infected with SIVmac239(EDR) coincided with con-
sistent selection of changes at and in the vicinity of the mutated
residues in Nef. The reversion of the D204R mutation was
detected at 2 wpi in Mm8151 and Mm8155 and at 4 wpi in
Mm8003 (Table 1). In contrast, no reversion was seen in three
animals infected with the second construct in which the non-
mutated D204 codon in the 59 LTR was deleted. The rapid
emergence of the D204R reversion in animals infected with the
first construct likely reflects recombination between the mu-

FIG. 2. P73E, A74D, and D204R mutations in Nef reduce replication and infectivity of SIVmac239. (A) Ability of SIVmac239 239wt (■) and of the variants with
mutations in nef, including DNU (h), P73E ({), A74D (}), P73E,A74D (‚), D204R (Œ), and EDR (F), to replicate in rPBMC. Fresh unstimulated rPBMC were
infected with virus stock containing 2 ng of p27 and stimulated with phytohemagglutinin at day 6, as described in the text. Reverse transcriptase (RT) activity of
supernatants on the indicated days poststimulation was quantitated using a phosphorimager and is indicated on the ordinate as photo-stimulated light emission units
(PSL). Similar results were obtained with PBMC from four different macaques. (B) Infectivity of SIVmac239 and of the indicated variants in the sMAGI indicator cell
line. sMAGI cells were infected with aliquots of virus stocks containing 100 ng of p27. The values are percentages of 239wt activity and are the averages of 12
independent measurements of four different virus stocks.

VOL. 74, 2000 Nef FUNCTION IN VIVO 9839
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tated 39 and nonmutated 59 LTRs present in the proviral clone.
Interestingly, there was selection of a serine at position 204 in
the majority of sequences from Mm8493 and Mm8495 after 28
wpi. This suggested that serine could functionally substitute for
the aspartic acid usually found at this position in 239-Nef.

No rapid reversion at mutated codons 73 and 74 was de-
tected in any of the six animals. A single nucleotide change
predicting a change of P73E to lysine, however, was detected in
five animals (Table 1). In Mm8155, Mm8493, and Mm8495,
this lysine-73 predominated until death from AIDS, whereas
forms containing the original proline came to predominate
later in infection in Mm8003 and Mm8151. We also found that
the wild-type asparagine codon at position 72 of the nef ORF,
which was not mutated, was replaced by an aspartic acid in

sequences from the same five animals. This change always co-
existed with the P73E3K change on the same molecule (data
not shown). While no reversion of the mutated codon 74 was
observed, later in infection A74D3G or A74D3N changes
were detected. This weak selective pressure for changes at
position 74 is not surprising, because the A74D substitution
had little effect on Nef functions in vitro (Fig. 1 and 2). Nev-
ertheless, selective pressure for changes at each of the three
mutated positions was consistently observed in five of the an-
imals infected with SIV containing 239(EDR)-nef. Importantly,
in animal Mm8494, which maintained low cell-associated viral
loads (data not shown) and did not progress to AIDS, we
observed no reversions throughout the observation period of
84 weeks. While the inability to detect reversions in this animal

FIG. 3. Replication of the SIVmac239 EDR Nef variants in rhesus macaques. Three macaques, Mm8003 (F), Mm8151 (}), and Mm8155 (Œ), were infected with
SIV239(EDR), and three animals, Mm8493 (E), Mm8494 ({), and Mm8495 (‚), were infected with SIVDUS239(EDR). (A) Levels of p27 plasma antigenemia. The limit
of detection is approximately 20 pg/ml. In animals infected with SIVmac239DNU, p27 antigen was below the detection limit at all time points after 2 wpi. For
comparison, values obtained from four animals infected with SIVmac239DNU (h) and from 12 macaques inoculated with 239 nef(open) virus SIVmac32H/1XC ( )
are shown. Each symbol represents the result of a single determination from a single animal at a given time point. (B) Histograms showing p27 antigenemia at 2 wpi.
The mean p27 values for control viruses at 2 wpi are 67 (639) pg/ml for SIVmac239DNU, n 5 4, compared to wild-type 4,689 (62,928) pg/ml, n 5 12. The mean p27
level for the six experimental animals is 63 (669) pg/ml. (C) Viral RNA loads. For comparison, values obtained from 10 animals infected with SIVmac239DNU and
from seven animals inoculated with nef(open) SIVmac32H/1XC are shown. (D) Histogram showing viral RNA loads at 2 wpi. The mean RNA load values for control
viruses are 1.8 3 105 (61.7 3 105) for SIVmac239DNU, n 5 10, compared to 239wt 1 3 107 (65 3 106), n 5 7. The mean RNA load for the six experimental animals
at 2 wpi is 1.9 3 105 (61.7 3 105).
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may be the consequence and not the cause of lower levels of
replication, this result supports our previous observations from
long-term nonprogressors of HIV-1 infection, which showed
that nonprogression can be associated with point mutations
that disrupt the ability of Nef to downregulate CD4 and en-
hance viral replication in vitro (31).

Amino acid changes selected in vivo restore 239-Nef func-
tion. The emergence of amino acid changes in Nef in five of the
six infected macaques coincided with an enhanced infectivity in
sMAGI cells and with enhanced replication in PBMC of SIV
reisolated from these animals (Table 1 and Fig. 4). In contrast,
SIV reisolated from the remaining animal, Mm8494, in which
no reversions were detected, showed inefficient replication and
low infectivity. To confirm that the enhanced replication of
reisolated virus resulted from the observed changes at posi-
tions 72, 73, and 204 in 239-Nef rather than from alterations
elsewhere in the viral genome, we engineered the observed
changes onto the 239wt provirus and tested their effect on SIV
replication in vitro. The D204R3D and D204R3S changes in
239(EDR)-Nef alone did not completely restore SIV replication
(Fig. 5A) or infectivity (Fig. 5B). However, the additional
P73E3K substitution and a third N723D change sequentially
restored functional activity in both assays to levels observed
with wild-type 239-Nef. Similar results were obtained with nef
alleles containing these changes derived from the infected an-
imals (data not shown). As shown in Fig. 5C, these changes
also restored the ability of 239(EDR)-Nef to downregulate CD4
expression. Thus, P73E3K and N723D P73E3K changes
can functionally replace P73 and A74 and the D204R3S
change can replace D204 to enhance SIV replication in
rPBMC and in sMAGI cells and to downregulate CD4. The
efficient selection of second-site compensatory changes in the

surfaces disrupted by P73E, A74D, and D204R is strong evi-
dence that these surfaces and their functions are important for
SIV replication in vivo.

DISCUSSION

Biochemical and cell-based studies indicate that Nef has
multiple functions and that these functions are performed
through multiple independent interactions with the host cell
signal transduction and protein sorting machinery (29, 36, 45).
This study indicates that a 239-Nef mutation which disrupts the
interactions of Nef required for the downregulation of CD4
expression and for enhanced SIV replication in vitro also dis-
rupts SIV replication in rhesus macaques. Not only were viral
loads low early in macaques infected with the SIV containing
the 239(EDR)-Nef variant, but there was also a strong selective
pressure for revertants and second-site mutations which re-
stored Nef function. The selection of these changes was asso-
ciated with rises in viral loads, and virus recovered from these
animals possessed virologic properties similar to those of wild-
type SIV. While the EDR mutation disrupts other Nef func-
tions, such as downregulation of CD28 cell surface expression
(T. Swigut and J. Skowronski, unpublished results), we con-
clude that the surfaces of Nef required to downregulate CD4
and to enhance SIV replication in vitro are critical for Nef
function in vivo.

The observation that amino acid changes selected in vivo
that restore CD4 downregulation also enhance SIV infectivity
in sMAGI cells and SIV replication induced from rPBMC
suggests that common molecular interactions of 239-Nef with
cellular factors may underlie these three functions (10, 29).
However, it remains possible that these three effects are not

FIG. 4. Replication and infectivity of reisolates. (A) Ability of virus reisolated from rPBMC obtained at 1 wpi (}), 2 wpi ({), 4 wpi (F), 8 wpi (E), 16 wpi (‚), and
32 wpi (3) to replicate in cultured rPBMC. 239wt (■) and SIVDNU (h) replication in aliquots of the same rPBMC cultures is shown on each panel for comparison.
Reverse transcriptase (RT) activity of supernatants was quantitated as described in the legend to Fig. 2A. (B) Infectivity of reisolates in sMAGI cells. The sMAGI
indicator cells were infected with stocks of virus containing 100 ng of p27 antigen produced by cocultivation of rhesus macaque PBMC with CEMx174 cells. The values
are shown as a percentage of 239wt activity and are the averages of four independent measurements.
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mediated by common molecular interactions but merely map
to overlapping surfaces in the 239-Nef protein. If mutations
that separate CD4 downregulation from the positive effect of
Nef on SIV replication are indeed identified, they can be used
to probe the relative contribution of these effects to SIV viru-
lence. A previous study showed that Nef enhances virion in-
fectivity even in cells lacking CD4 (1), suggesting that there
may be multiple components to the effect of Nef on infectivity,
including CD4-dependent and CD4-independent effects. The
EDR mutation may disrupt the CD4-dependent component,
which has been revealed recently by observations that CD4
expression on the cell surface inhibits both the infectivity of
HIV particles by reducing virion Env incorporation and the
release of HIV-1 progeny virions from producer cells, and that
these effects can be overcome by expression of Nef (27, 38).

Nef downregulates class I MHC complexes from the cell
surfaces and thereby can protect infected cells from detection
and lysis by cytotoxic T lymphocytes (8, 9, 32, 43). Notably, the
EDR mutation does not affect the ability of 239-Nef to down-
regulate surface expression of class I MHC complexes. Since
this mutation disrupts SIV replication early in infection, the
downregulation of class I MHC complexes from the surface of
infected cells cannot be the only mechanism by which 239-Nef
enhances SIV loads in vivo. The downregulation of class I
MHC is likely to be important after the first 10 to 14 days of
infection, when the host cytotoxic T-cell response is known to
be critical for controlling viral loads (26, 32). Therefore, the
ability of Nef to downregulate class I MHC and the ability of
Nef to downregulate CD4 may be complementary functions
that allow Nef to enhance the replication and persistence of
immunodeficiency viruses, and our data clearly show that class
I MHC downregulation is not sufficient for the positive effect
of 239-Nef on SIV virulence.

It now becomes clear that Nef has multiple functions which
are selected independently. Therefore, it is likely that their
combination is important for maximal enhancement of SIV-
HIV replication and persistence in the host. This possibility has

strong implications for the development of pharmaceutical
agents that would disrupt Nef function. While our data suggest
that the identification of drugs that can disrupt CD4 down-
regulation will be efficacious in inhibiting viral replication in
vivo, it will also be important to identify and target individual
molecular interactions of Nef that are critical for multiple
independent Nef functions. One such candidate interaction is
membrane association of Nef, mediated by posttranslational
N-terminal myristoylation of the Nef proteins (18), which has
been shown to be required for all known functions of Nef
proteins. A similar strategy that disrupts the membrane attach-
ment of the Ras oncoprotein by interfering with its posttrans-
lational C-terminal farnesylation has been successfully used to
prevent Ras-mediated cellular transformation (25).
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