The evolution of MIP technology

Yiyang 2013-3-15

all possible combination of primers

n PCR primer pairs, n target sequences, (2n²+n) possible pairwise primer combinations.

cross-reaction among primer pairs!

Hum Mutat. 2002 Apr;19(4):410-5.

Padlock Probes

Circularizing Oligonucleotides for Localized DNA Detection

Science. 1994 Sep 30;265(5181):2085-8.

highly parallel molecular bar-coding strategy

Nat Genet. 1996 Dec;14(4):450-6.

Nat Genet. 1996 Dec;14(4):450-6.

molecular inversion probes-MIP for SNP

MIP Genotyping Process Overview

Nat Biotechnol. 2003 Jun;21(6):673-8.....1,000plex Genome Res. 2005 Feb;15(2):269-75......12,000plex

molecular inversion probes-MIP for SNP

Anneal A mixture of Genomic DNA, up to 10,000 probes, thermostable ligase and polymerase is heat denatured and brought to annealing temperature. Two sequences located at each termini of the probe hybridize to their respective complementary sites on the genome thus forming a circular conformation with a single nucleotide gap between the termini of the probe.

Gap Fill polymerization Unlabeled dATP, dCTP dGTP or dTTP is added to each of the 4 reactions respectively. In reactions where the added nucleotide is complementary to the base being studied, DNA polymerase adds the nucleotide

CGGAGATGGCC GCCTCT ACCGGGT

Gap Fill ligation DNA ligase closes the gap to form a covalently closed circular molecule that encircles the genomic strand to which it is hybridized.

Nat Biotechnol. 2003 Jun;21(6):673-8.

molecular inversion probes-MIP for SNP

Nat Biotechnol. 2003 Jun;21(6):673-8.

The MIP before, during, and after inversion

Cancer Genet. 2012 Jul-Aug;205(7-8):341-55.

Advantage of MIP

- precise measurements, large assay dynamic range.(high specificity & minimum 'cross talk' between loci or alleles)
- use lower amounts of input genomic DNA.
- its use in degraded samples, such as fomaldehyde fixed paraffin embedded-FFPE samples (because MIP requires only 40 basepairs of intact genomic DNA)

evaluating multiplex targeting methods

- key performance parameters to consider include multiplexity, specificity and uniformity.
- Multiplexity refers to the number of independent capture reactions performed simultaneously in a single reaction. Specificity is measured as the fraction of captured nucleic acids that derive from targeted regions. Uniformity is defined as the relative abundances of targeted sequences after selective capture.
- Cost

Modification of the MIP strategy

Nat Methods. 2007 Nov; 4(11): 931-6.~10,000 exons

SMART (Spacer Multiplex Amplification Reaction)

Proc Natl Acad Sci U S A. 2008 Jul 8;105(27):9296-301, >53,000plex.

MIP application-1 in resequencing

Material & Methods

- 2494 ASD probands from Simon Simplex Collection (2446 successfully capture with both probe sets.
- MIP targeted 44 genes (from 192 candidates): disruptive mutations, associations with syndromic autism, overlap with known or suspected neurodevelopmental CNV, risk loci, structural similarities, and/or neuronal expression.
- 23 of the 44 genes intersect a 49-member betacatenin—chromatin-remodeling protein-protein interaction (PPI) network or an expanded 74-member network.
- Illumina Hiseq 2000 and Miseq (for confirmations).

49-member PPI network

Nature. 2012 Apr 4;485(7397):246-50.

Filtering & Validation

- filtering against variants observed in other cohorts, non-ASD exomes and MIP-based resequencing of 762 healthy, non-ASD individuals.
- Remaining candidates were further tested by MIP-based resequencing of the proband's parents and, if potentially de novo, confirmed by Sanger sequencing of the parent-child trio.

Results - four genes with multiple de novo mutation events

Severe de novo events (bold variants), i.e., coding indels, nonsense mutations, and splicesite disruptions (17/27 or 0.63), is four times the expected proportion for random de novo mutations.

Proband Sex		Gene	Mut	Assay	HGVS	NVIQ	
12714.p1	Μ	CHD8*	Ns	MIP	p.Ser62X	78	
13986.p1	Μ	CHD8*	Fs	MIP	p.Tyr747X	38	
11654.p1	F	CHD8*	Sp	MIP‡ (4)	c.3519-2A>G	41	
13844.p1	Μ	CHD8*	Ns	EX	p.Gln1238X	34	
14016.p1	Μ	CHD8*	Ns	MIP	p.Arg1337X	92	
12991.p1	Μ	CHD8*	Fs	MIP	p.Glu2103ArgfsX3	67	
12752.p1	F	CHD8*	Fs	EX	p.Leu2120ProfsX13	93	
14233.p1	Μ	CHD8*	Fs	MIP	p.Asn2371LysfsX2	19	
14406.p1	Μ	CHD8*	Aa	MIP	p.His2498del	98	
12099.p1	Μ	DYRK1A*	Fs	MIP‡ (4)	p.Ile48LysfsX2	55	
13890.p1	F	DYRK1A*	Sp	EX	c.1098+1G>A	42	
13552.p1	Μ	DYRK1A*	Fs	MIP§ (6)	p.Ala498ProfsX94	66	
11691.p1	Μ	GRIN2B†	Fs	MIP‡ (3)	p.Ser34GlnfsX25	62	
13932.p1	Μ	GRIN2B [†]	Ms	MIP	p.Cys456Tyr	55	
12547.p1	Μ	GRIN2B [†]	Ns	MIPII	p.Trp559X	65	
12681.p1	F	GRIN2B†	Sp	EX	c.2172-2A>G	65	
14433.p1	Μ	PTEN	Ms	MIP	p.Thr131Ile	50	
14611.p1	Μ	PTEN	Fs	MIP	p.Cys136MetfsX44	33	
11390.p1	F	PTEN	Ms	EX	p.Thr167Asn	77	
12335.p1	F	TBL1XR1*	Ms	EX	p.Leu282Pro	47	
14612.p1	Μ	TBL1XR1*	Fs	MIP	p.Ile397SerfsX19	41	
11480.p1	Μ	TBR1†	Fs	EX	p.Ala136ProfsX80	41	
13814.p1	Μ	TBR1†	Ms	MIP	p.Lys228Glu	78	
13796.p1	F	TBR1†	Fs	MIP‡ (4)	p.Ser351X	63	

Results -Six genes with recurrent de novo mutations

*Part of 49-member connected component reported in (3). exome sequenced by cited study and variant was ‡not reported or \$reported. IVariant reported in MIP screen from (3).

Results-mutation burden

"Probabilities shown are for observing x or more events, of which at least y belong to the severe class."

- Higher rate of de novo
 mutation than expected—
 in the overall set of 44
 genes, driven by the
 severe class (16/17
 intersect 74 PPI network).
- CHD8, GRIN2B, DYRK1A, PTEN, TBR1, and TBL1XR1, five fall within the betacatenin–chromatinremodeling network.
- ~1% of ASD probands harbor a de novo mutation in one of these six genes. (*CHD8*-0.35%)

Results

Table S5. Comparison of ASD1 MIP variant calls to exome variant calls for 48 samples (16 trios).

	Total	in dbSNP	% in dbSNP	Not in dbSNP	% Novel
Called by both	725	699	96.4	26*	3.6
Called only by MIP	72	63	87.5	9	12.5
Called only by exome	7	7	100	0	0

*All de novo events called by exome sequencing were also called by MIP-based resequencing.

Results – head circumference

microcephaly in our index DYRK1A mutation case, macrocephaly in both probands with CHD8 mutations.

De novo CHD8 mutations are present in $\sim 2\%$ of macrocephalic (HC > 2.0) SSC probands, a useful phenotype for patient subclassification.

Conclusion

- Our data support an important role for de novo mutations in six genes in ~1% of sporadic ASDs.
- "Whereas our data implicate specific loci in ASDs, they are insufficient to evaluate whether the observed de novo mutations are sufficient to cause ASDs."

MIP application-2 in resequencing- smMIP

"sample index": resolving capture products from distinct source DNAs;

"molecular tag": resolving reads derived from distinct genomic equivalents within individual source DNAs.

"fr-reads": Before alignment, overlapping regions of read-pairs are reconciled to produce ;152-nt forward- reverse reads;

"smc-reads": After alignment, groups of fr-reads form the basis for highly accurate single molecule consensus reads.

Material & Methods

- Design 1312 smMIP oligonucleotides.
- 53 specimens: 45 clinical cancer specimens+8 HapMap DNA mixtures (two HapMap cell lines).
- Tiling ~125 Kb of genomic sequence, including 99% of coding bases of 33 cancer-related genes.
- Massively parallel sequencing- Illumina Hiseq 2000 and Miseq, and analyzed using a custom pipeline.

Results-Coverage Distributions

- Mean smc-read coverage: HapMap samples: 3538x;
 Clinical specimens: 1051x.
- >100× smc-read coverage:
 78% of the clinical samples and all
 HapMap cell line samples, at least
 85% of all targeted coding bases.
- >1,000× smc-read coverage: all of the HapMap samples, 60% of all targeted coding bases; 42% of the clinical samples had at least 50% of targeted coding bases.
- >10× smc-read coverage: all HapMap samples and 80% of the clinical samples had at least
 97% of targeted coding bases.

Observed vs expected variant frequency in smc-read base-calls from mixtures of HapMap samples, for positions with >100x smc-read coverage.

Table 2. Substitution error rates

		fr-reads		smc-reads			
		Calls	Sub. rate	Calls	Sub. rate	Fold-reduction in sub. rate	
HapMap cell lines	All	1.0×10^{10}	1.1 × 10 ⁻⁴	4.6×10^{9}	8.4 × 10 ⁻⁶	12.8	
	No G>A, C>A	8.8×10^{9}	1.0×10^{-4}	3.9×10^{9}	3.5×10^{-6}	28.8	
Clinical (fresh)	All	2.3×10^{9}	1.1×10^{-4}	6.6×10^{8}	9.5×10^{-6}	11.5	
. ,	No G>A, C>A	2.0×10^{9}	1.0 × 10 ^{−4}	5.6×10^{8}	$2.9 imes 10^{-6}$	34.6	
Clinical (FFPE)	All	2.0×10^{10}	1.3×10^{-4}	7.1×10^{9}	2.9×10^{-5}	4.5	
	No G>A, C>A	1.7 × 10 ¹⁰	1.0 × 10 ⁻⁴	6.0 × 10 ⁹	5.3 × 10 ⁻⁶	19.8	
	Gap-fill						
Ļ			5' dinuc			3' dinuc	
5'	?> 3'	5	/??	-> 3'	5'	??> 3'	
3'	5'	3	'X	5'	3'	x5'	
				-			

Genomic DNA

PS: Excluding the G>A and C>A substitutions that are likely caused at least in part by patterns of DNA damage (deamination of C and 5-methyl-C, and oxidative damage to G resulting in 8-oxo-G).

- CG is an infrequent dinucleotide
- the substitution rate of G>A in the absence of CG>CA remains elevated
- deamination of 5mC is not the only factor
 causing high rates of G>A
 substitution, and that
 deamination of C to U
 may also be playing a
 substantial role.

Table 2. Substitution error rates

		fr-reads		smc-reads			
		Calls	Sub. rate	Calls	Sub. rate	Fold-reduction in sub. rate	
HapMap cell lines	All	1.0×10^{10}	1.1 × 10 ⁻⁴	4.6×10^{9}	8.4 × 10 ⁻⁶	12.8	
	No G>A, C>A	8.8×10^{9}	1.0×10^{-4}	3.9×10^{9}	3.5×10^{-6}	28.8	
Clinical (fresh)	All	2.3×10^{9}	1.1×10^{-4}	6.6×10^{8}	9.5×10^{-6}	11.5	
. ,	No G>A, C>A	2.0×10^{9}	1.0 × 10 ^{−4}	5.6×10^{8}	$2.9 imes 10^{-6}$	34.6	
Clinical (FFPE)	All	2.0×10^{10}	1.3×10^{-4}	7.1×10^{9}	2.9×10^{-5}	4.5	
	No G>A, C>A	1.7 × 10 ¹⁰	1.0 × 10 ⁻⁴	6.0 × 10 ⁹	5.3 × 10 ⁻⁶	19.8	
	Gap-fill						
Ļ			5' dinuc			3' dinuc	
5'	?> 3'	5	/??	-> 3'	5'	??> 3'	
3'	5'	3	'X	5'	3'	x5'	
				-			

Genomic DNA

PS: Excluding the G>A and C>A substitutions that are likely caused at least in part by patterns of DNA damage (deamination of C and 5-methyl-C, and oxidative damage to G resulting in 8-oxo-G).

Results – Sensitivity and false discovery rate

Results – Detection of somatic variation

Gene	Mutation	Expected # of events	% detected
BRAF	p.V600E	4	100
BRAF	p.V600K	2	100
EGFR	p.L858R	2	100
EGFR	15-bp deletion (exon 19)	1	100
EGFR	18-bp deletion (exon 19)	1	100
FLT3	67-bp insertion	1	0
FLT3	104-bp insertion	1	0
JAK2	p.V617F	3	100
KIT	6-bp insertion (exon 11)	1	100
KIT	15-bp deletion (exon 11)	1	100
KRAS	p.G12C	2	100ª
KRAS	p.G12V	1	100 ^a
KRAS	p.G12D	2	100
KRAS	p.G13D	2	100
NRAS	p.Q61R	1	100
PDGFRA	p.D842V	2	100
Total	All	27	92.6%

Table 3. Concordance with single mutation tests

Results- Alternate allele frequencies of somatic variants in clinical samples (tumor subclones)

"smMIP assay is highly quantitative for alternate allele frequencies as low as ~0.2%."

Results – subclonal somatic variztion at clinically informative sites

Sample	Cancer type	Gene	Chr.	Pos.	Ref. allele	Alt. allele	Sub. in gap-fill	Ref. allele counts	Alt. allele counts	Alt. allele fraction	Mutation in protein
43	Melanoma	BRAF	7	140453136	Α	т	A>T, T>A	1266	3	0.0024	p.V600E
19	Melanoma	JAK2	9	5073770	G	т	G>T, C>A	1465	19	0.0128	p.V617F
34	Colon	JAK2	9	5073770	G	Т	G>T, C>A	1058	15	0.0140	p.V617F
38	Lung	JAK2	9	5073770	G	Т	G>T	1229	4	0.0032	p.V617F
41	Lung	JAK2	9	5073770	G	т	G>T, C>A	795	6	0.0075	p.V617F
41	Lung	KRAS	12	25398284	С	Α	G>T	464	3	0.0064	p.G12V
12	Colon	NRAS	1	115256529	Т	С	A>G	184	9	0.0466	p.Q61R

Table 4.	Low-frequency	variation at	clinically	/ relevant	sites in	tumor sam	ples
----------	---------------	--------------	------------	------------	----------	-----------	------

P<10⁻⁻⁷.

"However, based on the FDR analysis performed using the HapMap samples, the P-value cutoff of 10⁻⁷ is expected to yield a nontrivial FDR of 40% for variants near 0.1% frequency, so it remains possible that one or more of these variants is artifactual."

Results - Rapid workflow timetable (miseq)

0	01			Total	Total	01.1		01.1	
step nbr.	description	(min)	lime (hrs)	time (mins)	time (hrs)	Start dav	End dav	Start time	End time
	Isolate		(((j		
1	genomic DNA	240	4.00	240	4.00	1	1	9:00 AM	1:00 PM
	Hybridization, Gap-fill								
2	Ligation*	300	5.00	540	9.00	1	1	1:00 PM	6:00 PM
	Wait								
3	overnight	900	15.00	1440	24.00	1	2	6:00 PM	9:00 AM
4	Exonuclease	65	1.08	1505	25.08	2	2	9:00 AM	10:05 AM
5	PCR	120	2.00	1625	27.08	2	2	10:05 AM	12:05 PM
	SPRI								
	purification								
6	(1.8x)	20	0.33	1645	27.42	2	2	12:05 PM	12:25 PM
	SPRI								
	purification								
7	(0.8x)	20	0.33	1665	27.75	2	2	12:25 PM	12:45 PM
8	Gel	60	1.00	1725	28.75	2	2	12:45 PM	1:45 PM
	Pooling and								
9	quantification	20	0.33	1745	29.08	2	2	1:45 PM	2:05 PM
10	MiSeq	1680	28.00	3425	57.08	2	3	2:05 PM	6:05 PM
11	Analysis**	360	6.00	3785	63.08	3	3	6:05 PM	12:05 AM

Results-Performance of rapid workflow

Sample	Cancer	Fraction of targeted bases	Fraction of high-coverage	Concordance with high-	Clinically informative	Detected clinically informative mutation?	Ref. allele / alt. allele
number	type	covereu	Siles covereu		mutation	mutation	counts
13	Colon	0.96	0.98	(77378/77378)	KRAS p.G12V	Yes	92/56
18	Melanoma	0.85	0.92	100% (68610/68610)	BRAF p.V600K	Yes	119/229
19	Melanoma	0.97	0.99	100% (77833/77833)	BRAF p.V600K	Yes	412/256
34	Colon	0.96	0.99	100% (77055/77055)	None	NA	NA
37	Lung	0.97	0.99	100% (77645/77645)	KRAS p.G12V	Yes	156/418
38	Lung	0.97	0.99	100% (78015/78015)	None	NA	NA
41	Lung	0.91	0.95	100% (73427/73427)	None	NA	NA
43	Melanoma	0.94	0.97	100% (75823/75823)	NRAS p.Q61R	Yes	27/6

Useful applications of smMIP

Detection and quantitation of of low-frequency mutations/ variation that is relevant:

- Human cancers: genetic heterogeneity.
- Pre-existence of subclonal resistance mutations to therapy.
- Somatic mosaicism detection.
- Noninvasively assay fetal DNA from maternal plasma at clinically relevant sites.
- etc. ...

Thank You!