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Abstract
The beginning of the 21st century has seen a renaissance in light microscopy and anatomical tract
tracing that together are rapidly advancing our understanding of the form and function of neuronal
circuits. The introduction of instruments for automated imaging of whole mouse brains, new cell
type-specific and transsynaptic tracers, and computational methods for handling the whole-brain
datasets has opened the door to neuroanatomical studies at an unprecedented scale. We present an
overview of the state of play and future opportunities in charting long-range and local connectivity
in the entire mouse brain and in linking brain circuits to function.

Since the pioneering work of Camillo Golgi and Santiago Ramón y Cajal at the turn of the
last century1,2, advances in light microscopy (LM) and neurotracing methods have been
central to the progress in our understanding of anatomical organization in the mammalian
brain. The discovery of the Golgi silver-impregnation method allowed the visualization of
neuron morphology, providing the first evidence for cell type- and connectivity-based
organization in the brain. The introduction of efficient neuroanatomical tracers in the second
half of the century greatly increased the throughput and versatility of neuronal projection
mapping, which led to the identification of many anatomical pathways and circuits, and
revealed the basic principles of hierarchical and laminar connectivity in sensory, motor and
other brain systems3,4.

The beginning of this century has seen a new period of method-driven renaissance in
neuroanatomy, one that is distinguished by the focus on large-scale projects generating
unprecedented amounts of anatomical data. Instead of the traditional “cottage industry”
approach of studying one anatomical pathway at a time, the new projects aim to generate
complete datasets—so-called projectomes and connectomes—that can be used by the
scientific community as resources for answering specific experimental questions. These
efforts range in scale and resolution from the macroscopic—studies of the human brain by
magnetic resonance imaging (MRI), to the microscopic—dense neural circuit
reconstructions of small volumes of brain tissue by electron microscopy (EM) (see
accompanying reviews in this issue by Michael Milham and colleagues and Moritz
Helmstaedter, respectively)5,6.
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Advancements in LM methods, the focus of our review, are being applied to the mapping of
point-to-point connectivity between all anatomical regions in the mouse brain by means of
sparse reconstructions of using anterograde and retrograde tracers7. Taking advantage of the
automation of LM instruments, powerful data processing pipelines, and combinations of
traditional and modern viral vector-based tracers, teams of scientists at Cold Spring Harbor
Laboratory (CSHL), Allen Institute for Brain Science (AIBS), and University of California
Los Angeles (UCLA) are racing to complete a connectivity map of the mouse brain—
dubbed the “mesoscopic connectome”—which will provide the scientific community with
online atlases for viewing entire anatomical datasets7. These efforts demonstrate the
transformative nature of today’s LM-based neuroanatomy and the astonishing speed with
which large amounts of data can be disseminated online and have an immediate impact on
research in neuroscience laboratories around the world.

As the mouse mesoscopic connectomes are being completed, it is clear that LM methods
will continue to impact the evolution of biological research and specifically neuroscience:
new transsynaptic viral tracers are being engineered to circumvent the need to resolve
synapses, which has constrained the interpretation of cell-to-cell connectivity in LM studies,
and new assays combining anatomical and functional measurements are being applied to
bridge the traditional structure-function divide in the study of the mammalian brain. This
review aims to provide an overview of today’s state of the art in LM instrumentation and to
highlight the opportunities for progress as well as the challenges that need to be overcome in
order to transform neuronal tracing studies into a truly quantitative science yielding
comprehensive descriptions of long-range and local projections and connectivity at the level
of whole mouse brains. We also discuss current strategies for the integration of anatomy and
function in the study of mouse brain circuits.

Automated light microscopes for whole brain imaging
The field of neuroanatomy has traditionally been associated with labor-intensive procedures
that greatly limited the throughput of data collection. Recent efforts to automate LM
instrumentation have standardized and dramatically increased the throughput of anatomical
studies. The main challenge for these methods is to maintain the rigorous quality of
traditional neuroanatomical studies, resulting from detailed visual analysis, careful data
collection and expert data interpretation.

There are currently two alternative approaches to automation of LM for imaging three-
dimensional (3D) whole-brain datasets, one based on the integration of block-face
microscopy and tissue sectioning, the other based on light-sheet fluorescence microscopy
(LSFM) of chemically cleared tissue. The first approach has been developed for wide-field
imaging, line-scan imaging, and confocal and two-photon microscopy8–16. Common to all
these instruments is the motorized movement of the sample under the microscope objective
for top view mosaic imaging, followed by mechanical removal of the imaged tissue before
the next cycle of interleaved imaging and sectioning steps (Figure 1 a and b). Since the
objective is always near the tissue surface, it is possible to use high numerical aperture (NA)
lenses to achieve submicron resolution close to the diffraction limits of LM.

Three instruments have been designed that combine two-photon microscopy17 followed by
tissue sectioning by either ultra-short laser pulses in all-optical histology10, milling machine
in two-photon tissue cytometry12, or vibrating blade microtome in serial two-photon
tomography (STP tomography)15 (Figure 1a). Whereas in both all-optical histology and two-
photon tissue cytometry the sectioning obliterates the imaged tissue, the integration of
vibratome-based sectioning in STP tomography allows the collection of the cut tissue for
further analysis by, for example, immunohistochemistry (see below). In addition, the tissue
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preparation by simple formaldehyde fixation and agar embedding in STP tomography has
minimal detrimental effects on fluorescence and brain morphology. This makes STP
tomography applicable to a broad range of neuroanatomical projects utilizing genetically
encoded fluorescent protein-based tracers, which are sensitive to fixation, dehydration and
tissue clearing conditions. This method is also versatile in terms of the mode and resolution
of data collection. For example, imaging the mouse brain as a dataset of 280 serial coronal
sections, evenly spaced at 50 µm and at xy resolution 1 µm, takes about ~21 hours and
generates a brain atlas-like dataset of ~70 GB (gigabytes). A complete visualization can be
achieved by switching to 3D scanning of z-volume stacks between the mechanical
sectioning steps, which allows the entire mouse brain to be imaged, for instance, at 1 µm xy
and 2.5 µm z resolution in ~8 days, generating ~1.5 TB (terabytes) of data15. The instrument
is commercially available from TissueVision Inc. (Cambridge, MA). The Allen Brain
Institute is using this methodology for its Mouse Connectivity project (see below).

Two instruments have been designed to combine bright-field line-scan imaging and ultra-
microtome sectioning of resin-embedded tissue in methods named knife-edge scanning
microscopy (KESM)13 and micro-optical sectioning tomography (MOST)14 (Figure 1b).
The latter was used to image Golgi-stained mouse brain at 0.33 × 0.33 × 1.0 µm x-y-z
resolution, generating >8 TB of data in ~10 days13,14. The MOST instrument design was
also recently built for fluorescent imaging (fMOST) by confocal laser scanning microscopy,
with the throughput of one mouse brain at 1.0 µm voxel resolution in ~19 days16. The
KESM imaging is now also available as a commercial service from 3Scan (San Francisco,
CA).

The second, alternative, approach for automated whole-brain imaging is based on light-sheet
fluorescence microscopy (also known as selective-plane illumination microscopy or SPIM18

and ultramicroscopy19) (Figure 1c). This approach allows fast imaging of chemically cleared
“transparent” mouse brains without the need for mechanical sectioning19,20, but, at least
until now, with some trade-offs for anatomical tracing applications. The chemical clearing
procedures reduced the signal of fluorescent proteins, but this problem appears to be solved
by a new hydrogel-based tissue transformation and clearing method called CLARITY21 (see
perspective by Karl Deisseroth about this methodology in this focus22). The spatial
resolution of LSFM for the mouse brain has also been limited by the requirement for large
field of view objectives with low power and low NA that were used for the visualization of
the whole brain19,23. However, new objectives with long working distance (WD) and high
NA, such as 8 mm WD / 0.9 NA objective from Olympus, promise to enable LSFM of the
whole mouse brain at submicron resolution. If necessary, LSFM can also be combined with
one of several forms of structured illumination (SI) to reduce out-of-focus background
fluorescence and improve contrast24–26. Taken together, these modifications are likely to
enhance the applicability of LSFM to anterograde tracing of thin axons at high resolution in
the whole mouse brain, as done by STP tomography in the AIBS Mouse Connectivity
project (see below) and by fMOST in a recent report16. In addition, LSFM is well suited for
retrograde tracing in the mouse brain, which relies on detection of retrogradely fluorescently
labeled neuronal somas that are typically > 10 micron in diameter. Such application was
recently demonstrated for mapping retrograde connectivity of granule cells of the mouse
olfactory bulb20 using rabies viruses that achieve high levels of fluorescent protein
labeling27,28.

Mesoscopic connectivity-mapping projects
The labeling of neurons and subsequent neuroanatomical tract tracing by LM methods has
been used for over a century to interrogate the anatomical substrate of information
transmission in the brain. Throughout those years, the credo of neuroanatomy “The gain in
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brain is mainly in the stain” meant to signify that progress was made mainly through the
development of new anatomical tracers. Yet, despite the decades of neuroanatomical
research, the laborious nature of tissue processing and data visualization kept the progress in
our knowledge of brain circuitry at a disappointingly slow pace7. Today, neuroanatomy
stands to greatly benefit from the application of high-throughput automated LM instruments
and powerful informatics tools for the analysis of mouse brain data29,30. The high-resolution
capacity LM methods afford, and the fact that an entire brain dataset can be captured, makes
these systems well-suited for systematic charting of the spatial profile and connectivity of
populations of neurons and even individual cells projecting over long distances.

The pioneering effort in the field of anatomical projects applied at the scale of whole animal
brains was the Allen Mouse Brain Atlas of Gene Expression, which catalogued in situ
hybridization maps of more than 20,000 genes in an online 3D digital mouse brain
atlas29,31,32. The proposal by a consortium of scientists led by Partha Mitra (CSHL) to
generate similar LM-based atlases of “brainwide neuroanatomical connectivity” in several
animal models7 has in short time spurred three independent projects, each promising to trace
all efferent and afferent anatomical pathways in the mouse brain. The Mitra team’s Mouse
Brain Architecture Project (http://brainarchitecture.org) at CSHL aims to image >1000
brains, the Allen Mouse Brain Connectivity Atlas project (http://connectivity.brain-map.org)
led by Hongkui Zeng at AIBS plans for >2000 brains, and the Mouse Connectome Project
(www.mouseconnectome.org) led by Hong-Wei Dong at UCLA plans for 500 brains, each
brain injected with 4 tracers. While the CSHL and UCLA projects use automated wide-field
fluorescence microscopy (Hamamatsu Nanozoomer 2.0 and Olympus VS110) to image
manually sectioned brains, the Mouse Connectivity project at the Allen Institute is being
done entirely by STP tomography15. The main complementary strength of these efforts,
however, comes from the broad range of tracers used. Given that each tracer has its own
advantages and problems33, the information derived from all three projects will ensure
generalizable interpretation of the projection results throughout the brain. The CSHL group
uses a combination of traditional anterograde and retrograde tracers, fluorophore-conjugated
dextran amine (BDA)34 and cholera toxin B (CTB) subunit35, respectively, which are
complemented by a combination of viral vector-based tracers, GFP-expressing adeno-
associated virus (AAV)36 for anterograde tracing (Figure 2a) and modified rabies virus27 for
retrograde tracing. While the virus-based methods are less tested, they offer advantages in
terms of the brightness of labeling and the possibility of cell type-specific targeting using
Cre-dependent viral vectors37 and transgenic lines expressing the Cre recombinase enzyme
under the control of cell type specific promoters38–40. The AIBS team uses solely
anterograde tracing by AAV-GFP viruses41 (Figure 2b), in many cases taking advantage of
Cre driver mouse lines for cell type-specific labeling. Finally, the team at UCLA is using a
strategy of two injections per brain, each with a mix of anterograde and retrograde tracers42,
CTB together with Phaseolus vulgaris leucoagglutinin (PHA-L)43 and FluoroGold (FG)44

together with BDA42,45. This approach has an added advantage since it allows direct
visualization of the convergence of inputs and outputs from across different areas in one
brain42,46,47.

The unprecedented amounts of data being collected by these projects means that the
significant person-hours historically spent performing microscopy have largely shifted
toward data analysis. The first step of such data analysis comprises the compilation of the
serial section images for viewing as whole-brain datasets at resolutions beyond the
minimum geometric volume of the neuronal structures of interest—somas for retrograde and
axons for anterograde tracing. All three projects offer a convenient way to browse the
datasets online, including high-resolution zoom-in views that in most cases are sufficient for
visual determination of labeled somas and axons. Importantly, all three projects use the
Allen Mouse Brain Atlas for the registration of the coronal sections, which will provide
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significant help in the cross-validation of results obtained from the different tracers. The
Allen Mouse Brain Connectivity Atlas website also offers the option to view the data after
projection segmentation, which selectively highlights labeled axons, as well as in 3D in the
Brain Explorer registered to the Allen Mouse Brain Atlas48 (Figure 2b).

The second step of data analysis requires the development of informatics methods for
quantitation of the datasets, which will facilitate the interpretation of the online available
data. The Allen Mouse Brain Connectivity Atlas online tools allow the user to search the
projections between injected regions and display the labeled pathways as tracks in 3D in the
Brain Explorer. The CSHL and UCLA connectomes can currently be viewed online as serial
section datasets. The data from the Cre driver mouse lines in the AIBS project provide a
unique feature of cell type specificity for the interpretation of the anterograde projections.
The main strength of the CSHL and UCLA efforts lies in the multiplicity of the anatomical
tracers utilized. The use of multiple retrograde tracers in particular will yield useful
information, since retrogradely labeled somas (> 10 µm in diameter) are easier to quantitate
than thin (< 1 µm) axon fibers. These experiments will also provide an important
comparison between the traditional CTB and FluoroGold tracers and the rabies virus-tracer
that is also being used in transsynaptic labeling (see below), but is less studied and may
show some variation in transport affinity at different types of synapses. In summary, the
LM-based mesoscopic mapping projects are set to transform the study of the circuit wiring
of the mouse brain by providing online access to whole-brain datasets from several thousand
injections of anterograde and retrograde tracers. The informatics tools being developed to
search the databases will greatly aid in parsing the large amounts of data and in accessing
specific brain samples for detailed scholarly analyses by the neuroscience community.

Mapping connectivity using transsynaptic tracers
In contrast to EM methods, which provide a read-out of neuronal connectivity with synapse
resolution over small volumes of tissue, the whole-brain LM methods permit the assessment
of projection-based connectivity between brain regions and in some cases between specific
cell types in those regions, but without the option to visualize the underlying synaptic
contacts. Transsynaptic viruses that cross either multiple or single synapses can help to
circumvent the requirement to confirm connectivity at the EM resolution, since such
connectivity may be inferred from the known direction and mechanism of spread of the
transsynaptic tracer. Transsynaptic tracers based on rabies (RV), pseudorabies (PRV), and
herpes simplex (HSV) viruses, which repeatedly cross synaptic connections in a retrograde
or anterograde direction, are powerful tools for elucidating multistep pathways up and
downstream from the starter cell population49–51. Furthermore, modified transsynaptic
rabies viruses have been developed that are restricted in their spread to a single synaptic
jump and thus can be used to identify monosynaptic connections onto and downstream of
specific neuronal populations and even individual cells27,52–58.

RV spreads from the initially infected cells in a transsynaptic retrograde manner49,59. RV
infection does not occur via spurious spread or uptake by fibers of passage and, since it
cannot cross via electrical synapses, it is an effective tool for unidirectional anatomical
tracing60. In the modified RV system, the infection can also be cell type-targeted by
encapsulating the glycoprotein-deficient rabies virus with an avian virus envelope protein
(SAD-ΔG-EnvA). This restricts infection to only those cells that express an avian receptor
gene (TVA), which is natively found in birds but not in mammals61,62. Thus, the delivery of
vectors driving the expression of both TVA and RV-G into a single cell28,56,54 (see below)
or a specific population of cells55,63, ensures that only the targeted cell/s will (i) be
susceptible to initial infection and (ii) provide the replication-incompetent virus with RV-G
required for trans-synaptic infection64. In this system, the virus can spread from the
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primarily infected cell/s to the presynaptic input cells, which become labeled by the
fluorescent protein expression. However, since the presynaptic cells do not express RV-G28,
the virus cannot spread further. This approach thus allows the discovery of the identity and
location of the upstream input network relative to a defined population of neurons57,58.

Brain region- and cell type-specificity for mapping connectivity by the modified RV system
can be achieved by using a Cre recombinase-dependent helper virus driving expression of
TVA and RV-G and transgenic mouse lines that express Cre in specific cell types or cortical
layers38,39,63. This strategy is particularly useful for brain regions comprising many different
cell types that could not be otherwise selectively targeted. Moreover, the engineering of
other neurotropic transsynaptic viruses is adding new tools for anatomical tracing, including
Cre-dependent anterograde tracers based on a modified H129 strain of HSV65 and vesicular
stomatitis virus66, and retrograde tracers based on a modified pseudorabies virus (H. Oyibo
and A. Zador, CSHL, personal communication). The use of retrograde and anterograde
transsynaptic viruses, in combination with whole-brain LM methods, thus promises to afford
unprecedented access to the upstream and downstream connectivity of specific cell types in
the mouse brain.

Current challenges and opportunities for whole-brain LM methods
As highlighted above, LM instruments for whole-brain imaging are expected to make a
significant contribution in large scale projects that focus on anatomical connectivity at the
level of the whole mouse brain. It has also become clear that the use of these instruments
will have an impact in many experimental applications in different neuroscience
laboratories. It is therefore imperative that there exist broadly applicable image processing,
warping and analytical tools that will facilitate data sharing and across-laboratory
collaboration and validation in future neuroscience studies focusing on, for example,
mapping whole-brain anatomical changes during development and in response to
experience.

One practical problem arising from the choice to scan entire mouse brains at high resolution
relates to the handling of large datasets (up to several TB per brain), which necessitates
automated analytical pipelining. STP tomography is currently the most broadly used method
among the whole-brain LM instruments and there are freely available informatics tools for
compiling STP tomography image stacks and viewing them as three-dimensional data,
including algorithms that automate seamless stitching15. Another key challenge for charting
the distribution of the labeled elements in the whole mouse brain is the process of accurate
registration of the individual brain datasets onto an anatomical reference atlas. To this end,
scientists at AIBS have generated the open source segmented Allen Mouse Brain Atlas for
the adult C57BL/6 mouse29,31,32,48, which is also available for registration of datasets
generated by STP tomography (Figure 2b and 4). In addition, the so-called Waxholm space
(WHS) for standardized digital atlasing67 allows comparisons of registered mouse brain data
using multiple brain atlases, including the Allen Brain Atlas, the digital Paxinos and
Franklin Mouse Brain Atlas68, and several MRI reference mouse brains. The continuing
development of the WHS and other online data analysis platforms30,69,70 will be essential
for standardized comparisons of mouse brain data collected by different laboratories using
different instruments.

The completion of the three mesoscopic connectome projects in the next several years will
yield a comprehensive map of point-to-point connectivity between anatomical regions in the
mouse brain7. Determining the cell-type identity of the neurons sending and receiving the
connections in the brain regions will be essential for interpreting the function of the
brainwide neural circuits. Immunohistochemical analyses of labeled circuits have proven
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invaluable for ascertaining the identity of specific classes of neurons71–73 and synaptic
connections52,74. The combination of immunohistochemical analysis by array
tomography75,76 and anatomical tracing by the whole-brain LM instruments promises to be
particularly powerful, since it will bring together two largely automated methodologies with
complementary focus on synaptic and mesoscopic connectivity, respectively. STP
tomography outputs sectioned tissue (typically 50 µm thick sections15), which can be further
resectioned, processed and re-imaged by array tomography for integrating cell type-specific
information into the whole-brain datasets. Industrial-level automation of slice capture and
immunostaining can be developed to minimize manual handling and enhance the integration
of immunohistochemistry and STP tomography. In addition, sectioning and immunostaining
can be also applied to LSFM imaged mouse brains20.

A related, cell-type focused application of whole-brain LM imaging will be to quantitatively
map the distribution (the cell counts) of different neuronal cell types in all anatomical
regions in the mouse brain. Several such cell count-based anatomical studies have been done
previously at smaller scales, revealing, for example, cell densities with respect to cortical
vasculature77 or the density of neuronal cell types per layers in a single cortical
column78–80. Using the whole brain LM methods, a comprehensive anatomical atlas of
different GABAergic inhibitory interneurons81 can now be generated by imaging cell type-
specific Cre knock-in mouse lines38,39 crossed with Cre-dependent reporter mice expressing
nuclear GFP. These and similar datasets for other neuronal cell types will complement the
mesoscopic brain region connectivity data and help the interpretation of the
immunohistochemistry data by providing a reference for total numbers of specific cell types
per anatomical brain regions.

Integrating brain anatomy and function
The anterograde, retrograde and transsynaptic tracing approaches described above will yield
the structural scaffold of anatomical projections and connections throughout the mouse
brain. However, such data will not be sufficient to identify how specific brain regions
connect to form functional circuits driving different behaviors. Bridging whole-brain
structure and function is the next frontier in systems neuroscience and the development of
new technologies and methods will be crucial in achieving progress.

The structure-function relationship of single neurons can be examined by in vivo
intracellular delivery of the DNA vectors required for targeting and driving transsynaptic
virus expression via patch pipettes in loose cell-attached mode for electroporation56 or via
whole-cell recording54 (Figure 3). Used in combination with two-photon microscopy, this
single cell delivery technique may also be targeted at fluorescently labeled neurons of
specific cell types56,82,83. The whole-cell method is particularly informative, since its
intracellular nature permits recording the intrinsic biophysical profile of the target cell,
which, in turn, may reflect its functional connectivity status within the local network84. In
addition, by recording sensory-evoked inputs, it is possible to compare single cell synaptic
receptive fields and anatomical local and long-range connectivity traced by LM methods54.
This combinatorial approach, involving single cell electrophysiology and genetic
manipulation designed for connection mapping, makes it possible to test long-standing
theories regarding the extent to which emergent features of sensory cortical function
manifest via specific wiring motifs85.

As has recently been achieved for serial EM–based reconstruction86,87, it will also be
valuable to functionally characterize larger local neuronal populations for registration
against LM-based connectivity data. In this sense, genetically encoded calcium indicators,
which permit physiological characterization of neuronal activity in specific cell types88–90,
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alongside viral vectors for transsynaptic labeling and LM-based tracing will play critical
complimentary roles. Large volume in vivo two-photon imaging of neuronal activity prior to
ex vivo whole-brain imaging will establish the extent to which connectivity patterns relate to
function91 at the level of single cells, local and long-range circuits. Interpolation of such
experiments will be reliant on the ability to cross-register in vivo functional imaging with
complete ex vivo LM connectivity data. Preliminary experiments, already hinting at the
spatial spread of monosynaptic connectivity of individual principle cortical cells, suggest
that combination of functional imaging and traditional anatomical circuit reconstruction may
only be feasible at the local network level where connection probability is the highest92–94.
Given the broad, sparse expanse of connectivity in most brain regions and especially in
cortical areas, high-throughput whole brain LM methods will be imperative for complete
anatomical circuit reconstruction of the functionally characterized local networks.

The amalgamation of whole-brain LM and physiological methods for single neurons and
small networks offers a powerful means to study the mouse brain. An exciting application of
this approach will be to trace the synaptic circuits of neurons functionally characterized in
head-fixed behaving animals engaged in tasks related to spatial navigation, sensorimotor
integration and other complex brain functions95–97. This research will lead to the generation
of whole-brain structure-function hypotheses for specific behaviors, which can then be
tested for causality by optogenetic methods targeted to the identified cell types and brain
regions98. Furthermore, the LM, physiological and optogenetic methods can be applied to
interrogate entire brain systems in large scale projects, as is currently being done for the
mouse visual cortex in an effort led by Christof Koch and R. Clay Reid at AIBS99.

Finally, a discussion in the neuroscience community has been initiated regarding the
feasibility of mapping activity at cellular resolution in whole brains and linking the
identified activity patterns to brain anatomy100. Today, such experiments are possible in
small, transparent organisms, as was demonstrated by two-photon microscopy and LSFM-
based imaging of brain activity in larval zebrafish expressing the calcium indicator
GCaMP89,101,102. Understandably, LM-based approaches will not be useful for in vivo
whole-brain imaging in larger, non-transparent animals and the invention of new disruptive
technologies will likely be needed to achieve the goal of real-time brain activity mapping at
cellular resolution in, for example, the mouse. On the other hand, LM methods can be used
to map patterns of whole-brain activation indirectly, by post hoc visualization of activity-
induced expression of immediate early genes (IEGs), such as c-fos, Arc, or Homer 1a103.
Transgenic fluorescent IEG-reporter mice, like c-fos-GFP or Arc-GFP mice104–106, can be
trained in a specific behavior, their brains subsequently imaged ex-vivo, and the exact
distribution of GFP-positive neurons mapped and analyzed by computational methods
(Figure 4). In this approach, a statistical analysis of the counts of GFP-labeled neurons can
be used to identify brain regions and cell types activated during behaviors, but without
providing an information on the temporal sequence of brain region activation or the firing
patterns of the activated cells. However, the development of more sensitive, for instance,
fluorescent RNA-based methods, may allow calibration of the cellular signal with respect to
the temporal window and the pattern of activity related to the IEG induction. Such
calibration would significantly enhance the power of LM-based whole-brain IEG mapping,
which, in combination with the connectomic data, could then be used to begin to build
cellular resolution models of function-based whole brain circuits.

Conclusions
The advances in automated LM methods, anatomical tracers, physiological methods and
informatics tools have begun to transform our understanding of the circuit wiring in the
mouse brain. The focus on the mouse as an animal model is, of course, not accidental. In

Osten and Margrie Page 8

Nat Methods. Author manuscript; available in PMC 2014 April 10.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



addition to the generation of cell type-specific knock-in mouse lines38–40 that allow the
study of specific neuronal populations in the normal brain, mouse genetics are used in
hundreds of laboratories to model gene mutations linked to heritable human disorders,
including complex cognitive disorders such as autism and schizophrenia. Without doubt,
understanding the relationships between brain structure and function in the genetic mouse
models will be crucial to understanding the underlying brain circuit mechanisms of these
disorders. The toolbox of LM methods described here, and the continuing development of
new methods, promise to transform the study of brain circuits in animal models and to
decipher the structure-function relationships essential to the understanding of complex brain
functions and their deficits in human brain disorders.
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Figure 1.
Whole-brain LM methods. (a) STP tomography. Two-photon microscope is used to image
the mouse brain in a coronal plane in a mosaic grid pattern and microtome sections off the
imaged tissue. Piezo objective scanner can be used for z-stack imaging (image adapted from
Ragan et al.15). (b) fMOST. Confocal line-scan is used to image the brain as 1 µm thin
section cut by diamond knife (image adapted from Gong et al.16). (c) LSFM. The cleared
brain is illuminated from the side with the light sheet (blue) through an illumination
objective (or cylinder lens19) and imaged in a mosaic grid pattern from top (image adapted
from Niedworok et al.20). In all instruments, the brain is moved under the objective on
motorized XYZ stage; PMT, photomultiplier tube.
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Figure 2.
Primary motor cortex (MOp) projection maps. (a) Mouse Brain Architecture (http://
brainarchitecture.org) data of AAV-GFP injected into the supragranular layers and AAV-
RFP injected in the infragranular layers (F. Mechler and P. Mitra, CSHL, unpublished data).
Top panels show frontal (left) and lateral (right) views of the volume-rendered brain (scale
bars = 1000 µm); bottom panels show high-zoom views of the regions highlighted in the
central image: axonal fibers in the cerebral peduncle (left) and projections to the midbrain
reticular nucleus (right) (scales bar = 20 µm). (b) Mouse Connectivity (http://
connectivity.brain-map.org) data of a similar AAV-GFP injection show the MOp
projectome reconstructed in the Allen Brain Explorer48 (H. Zeng, AIBS, unpublished data).
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The lower left inset shows high-zoom view and coronal section overview of projections in
the ventral posteromedial nucleus of the thalamus (VPM)..
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Figure 3.
Mapping the function and connectivity of single cells in the mouse brain in vivo. a) Patch
pipettes–with internal solutions containing DNA vectors used to drive the expression of the
TVA and RV-G proteins–are used to perform a whole-cell recording of the intrinsic and
sensory-evoked synaptic properties of a single Layer 5 neuron in primary visual cortex (b).
Following the recording, the encapsulated modified rabies virus is injected into the brain in
close proximity to the recorded neuron. c) After a period of up to 12 days that ensures
retrograde spread of the modified rabies from the recorded neuron, the brain is removed and
imaged for identification of the local and long-range presynaptic inputs underlying the
tuning of the recorded neuron to the direction of visual motion (polar plot). (top and bottom
scale bar = 300 and 50 µm, respectively) Images modified from Rancz et al., 201154.
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Figure 4.
Imaging c-fos induction as a means to map whole-brain activation. (a) 3D visualization of
367,378 c-fos-GFP cells detected in 280 coronal sections of an STP tomography dataset of a
mouse brain after novelty exploration. (b) Examples of anatomical segmentation of the brain
volume with the Allen Mouse Brain Reference Atlas labels48 modified for the 280-section
STP tomography datasets: hippocampus (blue), prelimbic (aqua blue), infralimbic (orange)
and piriform (green) cortex. (c) Visualization of c-fos-GFP cells in the hippocampus (38,170
cells), prelimbic (3,305 cells), infralimbic (3,827 cells) and piriform (10,910 cells) cortex (P.
Osten, Y. Kim, K. Umadevi Venkataraju, CSHL, unpublished data).
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