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Abstract
Background: Differential coexpression is a change in coexpression between genes that may
reflect 'rewiring' of transcriptional networks. It has previously been hypothesized that such changes
might be occurring over time in the lifespan of an organism. While both coexpression and
differential expression of genes have been previously studied in life stage change or aging,
differential coexpression has not. Generalizing differential coexpression analysis to many time
points presents a methodological challenge. Here we introduce a method for analyzing changes in
coexpression across multiple ordered groups (e.g., over time) and extensively test its validity and
usefulness.

Results: Our method is based on the use of the Haar basis set to efficiently represent changes in
coexpression at multiple time scales, and thus represents a principled and generalizable extension
of the idea of differential coexpression to life stage data. We used published microarray studies
categorized by age to test the methodology. We validated the methodology by testing our ability
to reconstruct Gene Ontology (GO) categories using our measure of differential coexpression and
compared this result to using coexpression alone. Our method allows significant improvement in
characterizing these groups of genes. Further, we examine the statistical properties of our measure
of differential coexpression and establish that the results are significant both statistically and by an
improvement in semantic similarity. In addition, we found that our method finds more significant
changes in gene relationships compared to several other methods of expressing temporal
relationships between genes, such as coexpression over time.

Conclusion: Differential coexpression over age generates significant and biologically relevant
information about the genes producing it. Our Haar basis methodology for determining age-related
differential coexpression performs better than other tested methods. The Haar basis set also lends
itself to ready interpretation in terms of both evolutionary and physiological mechanisms of aging
and can be seen as a natural generalization of two-category differential coexpression.
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Background
Differential coexpression is defined as a change in the cor-
relation relationships between genes. It is a natural exten-
sion of the concept of 'guilt by association', which states
that functional relationships tend to be reflected in coex-
pression relationships [1,2]. We think of differential coex-
pression as potentially revealing 'rewiring' of gene
networks, reflecting dynamic changes in the regulatory
relationships between genes which can then be 'read out'
at the level of transcription. Because of the potential
importance of network rewiring, differential coexpression
could be useful for uncovering molecular mechanisms of
normal processes such as development and aging as well
as of disease processes. A schematic outlining the features
of differential coexpression is provided in Figure 1.

Differential coexpression has previously been studied pri-
marily in the context of changes in coexpression between
two contrasting sample groups such as tumors and nor-
mal tissue [3-5]. However, no method to handle multiple
ordered groups, such as over age or time, has been pro-
posed.

The current study was motivated by our interest in study-
ing human life stage and aging. For our purposes, we take
'life stage' to include both developmental changes and
normal senescent changes. In searching for biomarkers for
life stage and aging it has been usual to look for differen-
tial expression over time [6-8], sometimes in conjunction
with coexpression [9], but not differential coexpression
over age. The equivalent task in differential coexpression
analysis would look for differences in coexpression across
time. Previous expression profiling studies have demon-
strated that the expression patterns of age-regulated genes
are indicators for a functional measure of aging in
humans [10,11]. Because many functional changes occur
over the lifespan and biological function often involves
the interactions of many genes, we hypothesize that life
stage is associated with differential coexpression - many
changes in functional relationships or rewiring of tran-
scriptional networks.

To explore these ideas, we used the Gemma database of
publicly-available microarray studies [12] for a meta-anal-
ysis of expression patterns over age. Using these data we
answer three distinct methodological questions:

1) What is an appropriate, generalizable and princi-
pled basis set corresponding to differential coexpres-
sion over time?

2) How feasible is the repurposing of pre-existing data
for a life stage meta-analysis of differential coexpres-
sion and how statistically confident can we be in the
results?

3) Does differential coexpression provide novel infor-
mation beyond coexpression or differential expression
alone?

In reference to the first question, it is important to con-
sider what a basis set for differential coexpression would
constitute. Coexpression over time is taken to be the cor-
relation between genes at each point in time. Differential
coexpression, then, is the difference in coexpression over
time. If this difference is taken by linear combination of
the original data and conforms to other desirable proper-
ties (e.g., spans the original data), it will constitute a basis
set for coexpression. Because differential coexpression is
defined as the change in coexpression, ideally one of the
basis set vectors will represent coexpression, while the rest
represent differential coexpression. Another important
issue is how to partition lifespan into stages that can be
compared, and how to compare those stages. One
approach to analyzing changes would be to take a deriva-
tive of gene coexpression across time, describing the dif-
ferential coexpression between each age group and the
next. However, the derivative comparison will fail to
detect gradual changes which can only be characterized
over many groups in the long term. Another possible
approach to characterize multiple time points would be to
compare every age group to every other, but this is highly
redundant and ignores the temporal relationship between
data points. We hypothesize that changes might occur
over both short scales and long scales.

Processes related to aging have been hypothesized to
occur over a variety of timescales up to and including link-
ing development and old age [13]. Thus, it may be a desir-
able property for changes in coexpression over age to be
characterized both in their rapid (short scale) change and
their gradual (long scale) change.

Thus a good method for differential coexpression should
have the following properties:

• It would characterize the change in coexpression at
each time.

• It would characterize the change in coexpression
over functionally relevant timescales.

• It would form a basis set for the temporal data.

For two groups of data, this reduces to conventional dif-
ferential coexpression (i.e. a difference between gene cor-
relations).

In the more general case, these three properties suggest we
require a transformation incorporating both changes in
scale and timing. In order to reduce to conventional two-
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Schematic of differential coexpressionFigure 1
Schematic of differential coexpression. The left and right sides of the figure correspond to two hypothetical experimental 
conditions. A. Heatmap representation of expression levels of 20 genes in 10 samples per condition; lighter shades indicate 
higher relative expression. The correlations among some genes changes, eg genes 16-18. B. Correlation matrix heatmaps cor-
responding to the data in A. Light colors indicate higher correlations. The changes in the position and size of the 'blocks' of 
highly coexpressed genes changes between conditions. C. Coexpression networks generated by thresholding the correlations 
between each pair of genes, illustrating the concept of 'rewiring'.
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group differential coexpression, our basis transform of
age-specific coexpression data should be seen as taking
the difference between groups. This corresponds to the
Haar basis set [14], which consists of the difference
between adjacent values, adjacent pairs of values, adjacent
quartets of values, and so on, in addition to the overall
mean. The use of the Haar transform (or D2 wavelet) fol-
lows from our belief that different scales of activity will be
present. This can be compared to an alternative hypothe-
sis that the relevant timescales are not lifelong, and only
consider instantaneous change, or the discrete derivative
over time. This too would meet the criteria laid out above
(although not the criteria of an orthogonal basis set),
under the assumption that functional timescales are not
lifelong (each interval can be explained best by looking at
the previous interval). We use coarse age bins to validate
our approach, but any of the possible basis sets men-
tioned (Haar, derivative, direct temporal coefficients) can
be generalized to any resolution or length of time, and all
are particularly appropriate to temporal (or ordered data).

In this paper, in order to validate our choice of the Haar
basis as an answer to the first question we posed, we use
semantic similarity and statistical independence to show
the relative performance of reasonable differential coex-

pression basis sets. In order to answer the second question
posed, we assess the data with respect to a Haar coefficient
null distribution and show that repurposing by age pro-
duces significant results. Lastly, in answer to our third
question, we demonstrate that differential coexpression
captures functionally-relevant information not identified
using coexpression alone. Because life stage is a process so
strongly characterized by changes in function, these tech-
niques developed to characterize life stage may also shed
light on how life stage changes function and thus how
dysfunction occurs.

Methods
Data grouping and Standardization
Human microarray studies from Gemma's database were
categorized by their subjects' mean ages into the four
groups; "prenatal", "child/young adult" (0-18 years),
"adult" (19-54), and "older adult" (55+). Most studies
picked fell primarily within one age group. It is important
to note that the studies used were not necessarily designed
to study age effects, and include a variety of tissues. The
selection procedure yielded 3 studies for each age group
and 12 in all, encompassing 579 individual microarrays
(12 to 193 arrays per study) across a variety of tissues and
platforms (Table 1). We analyzed a list of 18534 genes

Table 1: The Gemma ID number, experiment name, organism part, array design and age category for the experiments are listed in 
each column.

Experiments used for analysis.

Gemma ID Name Organism part Array Design Age category

622 GSE8586 Umbilical cord GPL570 Prenatal

726 GSE9164 Foreskin cells GPL5876 Prenatal

233 GSE1397 Brain, heart GPL96 Prenatal

215 khatua-astrocytoma Brain GPL91 Child/young adult

218 pomeroy-embryonal Brain, kidney GPL80 Child/young adult

555 GSE5808 Blood cell GPL96 Child/young adult

585 GSE7586 Placenta GPL570 Adult

178 GSE80 Muscle GPL91 Adult

633 GSE8607 Testis GPL91 Adult

275 GSE4757 Brain GPL570 Older adult

721 GSE8919 Brain GPL2700 Older adult

263 GSE5281 Brain GPL570 Older adult
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from the UCSC GoldenPath database "known gene" table
[15]. Spearman correlations coefficients of the expression
profiles between all possible pairs of genes were calcu-
lated for each expression study. For genes annotated by
Gemma as having multiple probes in a given study, the
correlation coefficients for the probes were averaged. For
genes sharing a probe (e.g. non-sequence-specific probes),
correlations were excluded. Correlation coefficient values
were normalized in each dataset to form a Gaussian distri-
bution with standard deviation 1 and mean 0, and aver-
aged across datasets within the same age grouping.

To allow the investigation of differential expression over
age, we computed a relative rank-based measure of expres-
sion level for each gene. Each gene's expression level for
each study was averaged across samples in each study,
converted into a rank with the study, and then averaged
within each age group.

Haar transform
Over our four age groups (prenatal, child/young adult,
adult, older adult), the Haar basis consists of four values:

• The averaged correlation across genes across all four
time points: (1/2, 1/2, 1/2, 1/2)

• The averaged correlation difference between pre-
adult and post-adult: (1/2, 1/2, -1/2, -1/2)

• The averaged correlation difference between prenatal
to child/young adult: (1/sqrt(2), -1/sqrt(2), 0, 0)

• The averaged correlation difference between adult to
older adult: (0, 0, 1/sqrt(2),-1/sqrt(2))

The four Haar differential coexpression values are the dot
product of these vectors with the age grouped expression
data. Note that the first Haar coefficient represents the
average coexpression across all ages. The remaining three
coefficients represent differential coexpression and no
direct aspect of coexpression (since the coefficients are
orthogonal). Henceforth "differential coexpression coeffi-
cients" excludes the first coefficient. For each age group,
the mean coexpression was calculated as a weighted sum
of the underlying experiments, where the weighting was
the number of microarrays used in the experiment. The
variance of temporal coefficient values across the experi-
ments used was calculated. Two other basis sets were also
examined which meet our criteria to varying degrees and
overlap somewhat with the Haar basis set: The zero-pad-
ded discrete derivative and the direct temporal basis set. A
method schematic for the Haar transform is shown in Fig-
ure 2.

The first coefficient in the discrete derivative remained the
first value in time, while the remaining coefficients were
calculated by taking a discrete derivative, or difference
between successive pairs of values across time. This set
will be referred to as the derivative set. Conceptually this
overlaps with the direct temporal basis first coefficient
and the Haar third and fourth coefficients, but lacks any
scale variation, such as that found in the Haar second
coefficient.

We performed the Haar transform both on the averaged
correlation between pairs of genes (as a time series across
our age groups) as well as on the averaged expression level
ranks of individual genes. To ensure that the differential
coexpression findings may not be explained by simpler
underlying changes in expression level, genes exhibiting
significant differential expression values at a given time
and scale (top 5% rank change) were removed. If a gene
exhibited differential expression for one coefficient, other
coefficient values for the same gene which were not exhib-
iting differential expression were retained. This procedure
resulted in the removal of 448 genes for each coefficient,
on average. (There was slight variation in the number of
genes removed due to variation in missing data across
experiments). This allows our analysis to focus on genes
which are relatively stable in expression level, but which
might exhibit changes in coexpression relationships with
other genes. In pure biological discovery, as opposed to
this validation of the utility of differential coexpression
and this methodology specifically, such a step may not be
necessary.

Statistical Assessment
To determine the statistical significance of a differential
coexpression pattern and estimate false discovery rates, we
need to develop an appropriate null distribution. We treat
each Haar coefficient as random variables. Each Haar
coefficient is a weighted sum of the correlation values
from the underlying experiments. We observe that since a
sum of random variables is the convolution of their prob-
ability density functions, and the probability density func-
tions of the correlations were normalized to the unit
Gaussian (section 2.1), a null distribution is readily calcu-
lable as a convolution of Gaussians. This is the null distri-
bution to calculate false discovery rates for coexpression.
For differential coexpression the situation is more com-
plex. We are instead asking if the specific data grouping
(by age) produces heavier tails in the distribution of coef-
ficients than would occur due to random grouping of the
data. Note that this does not require the data to be inde-
pendent, which, in fact, it will generally not be (since
genes are frequently coexpressed in multiple data sets) [2].
The variance for each possible data grouping is calculable
from the standard formula for a sum of weighted varia-
bles:
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where n is the number of experiments with weighting Ai
and variable Xi for indices i, j, and k from 1 to n. The aver-
age correlation between experiments, r, was calculated
from the weighted sum in equation 1, excluding i = j
terms. The Haar coefficient variance was then calculated
from the above by multiplying AiAj terms by -1 where
experiment's i and j belong to different age groupings.
Thus, with equal weightings, the Haar coefficient variance
using the average correlation would be

A final complication is that there are missing data, as not
all data sets have data for all genes (and thus gene pairs).
Failure to address this would cause us to underestimate
false discovery rates. We therefore computed null distribu-
tions specific to the combination of data sets in which any
given gene pair was measured. Fortunately the number of
combinations which must be considered is small as many
combinations are not present (i.e., missing in data sets 1,
5,7 would be one combination, missing only in data set 4
would be another combination, etc). Fewer than 10 com-
binations of missing data accounted for 95% of all data
combinations, although the true total number of combi-
nations of missing data was as high as 88 across all data-
sets. The methods code is available in the supplementary
matlab methods data (see additional file 1: Supplemen-
tary.rar) and at http://www.chibi.ubc.ca/diffExAge.

Semantic similarity validation
Semantic similarity was used to assess the quality of links
generated using different basis sets [16]. The number of
overlapping Gene Ontology (GO) terms for each pair of
genes was calculated. The change in this semantic similar-
ity was calculated as a function of an increasing threshold
on the coefficient score for each of our basis sets; that is,
the semantic similarity, y, of the top x% of high value
coefficients (representing a large positive change in corre-
lation) was calculated as a function of x. Links were gener-
ated across all coefficients for each basis set.

Gene function prediction validation
All GO groups of genes for which 10-30 genes had differ-
ential coexpression values as calculated in section 2.3
were assembled using the Gemma web services (see sup-
plementary data at http://www.chibi.ubc.ca/diffExAge).
This size range was chosen for computational tractability
of cross-validation, and to avoid using GO categories
which overlap extensively. This generated 648 separate
GO groups with 91% coverage of the genes for which a
GO category is assigned.

We used these GO groups for validation of the differential
coexpression results. By an analogy with the use of coex-
pression to predict gene function, we propose that each
gene within a given GO set might have a characteristic dif-
ferential coexpression relationship with genes inside the
set and a characteristic relationship with genes outside the
set. For each gene inside the set, gene A, the respective dis-
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Method schematicFigure 2
Method schematic. A. An example of coexpression data 
for one pair of genes plotted across age groups. B. The Haar 
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of previous scales, summing to the original.
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tributions of differential coexpression coefficients can be
calculated. An arbitrary gene, gene B, outside the set has
differential coexpression values with gene A that may also
be calculated. We may then ask if gene B's relationship
with gene A resembles gene A's relationship with other
genes inside the set or with genes outside the set. As a con-
trol, the same calculation was performed using the coeffi-
cient representing coexpression.

A leave-one-out methodology was employed in which
one gene was removed from the GO group to form a new
set. Then for each gene now in the set, the rank score it
possesses with each other genes in the set was calculated,
and the genes outside the set ranked by how close their
own score is to the in-set score. This procedure was then
repeated by rotating through each gene in the set and each
coefficient for differential coexpression. Ranks across
coefficients were averaged and values re-ranked. Then,
this entire method was repeated by rotating through each
gene originally in the GO group (leave-one-out method-
ology). Receiver operator characteristic (ROC) curves were
then calculated from this data.

ErmineJ [17] was used to perform overrepresentation
analysis (under the ROC setting) for each gene for each
coefficient. The full gene set was used for the overrepre-
sentation analysis (e.g., not limited to 10-30 genes as in
the ROC analysis). Multiple test corrected p values less
than 0.001 were retained for each gene. ErmineJ uses Ben-
jamini-Hochberg correction [18].

Results
To test our approach, we analyzed differential coexpres-
sion across human lifespan in a corpus of 12 expression
studies (579 individual microarrays in total). This pro-
duced 4 symmetric matrices of 18534 by 18534 genes
with potential Haar coefficient values, consisting of coex-
pression (the first coefficient) or differential coexpression
over different time (the other three coefficients). Dis-
counting missing data, this yields 320,201,152 data
points.

To gain preliminary insight into the functional relevance
of differentially-coexpressed genes, we applied GO term
enrichment analysis. For each gene (a "query"), we ranked
all other genes by the extent to which they are coexpressed
or differentially coexpressed with the query (based on
each of the four Haar coefficients). We selected GO terms
which were significantly associated with each ranking,
and summarized the results by counting how many times
a GO term appeared, summed across all genes (Table 2;
full data available in the supplement). The strongest coex-
pression patterns are given by the first coefficient (first col-
umn of Table 2) while differential coexpression patterns
are represented by the other columns. For example, the

GO term "hormone activity" was very frequently (83% of
the time) associated with genes showing changes in coex-
pression across the first two age groups. In agreement with
our hypothesis that different time scales might be associ-
ated with changes in different functions, the different time
scales give high rankings to different GO terms. A more
detailed analysis of the biological relevance of the age-
related changes we found with reference to specific genes
and pathways will be described elsewhere; here we focus
on validating the method we developed.

In the following sections, we analyze the differential coex-
pression data set in several other ways. First, we discuss
how statistical significance of differential coexpression
can be determined. Second, we compared our Haar trans-
formation approach to one based on derivatives of coex-
pression changes or other coexpression measures. Finally,
we explored whether differential coexpression is relevant
to gene function using an analysis of Gene Ontology cat-
egories.

Statistical analysis
To determine whether the patterns of differential coex-
pression we observed could occur by chance, we com-
pared the distribution of Haar coefficients found in the
age differential coexpression analysis to null distributions
computed as described in the methods. If the grouping of
data sets by age group is meaningful, the distribution of
Haar coefficients should be heavy-tailed compared to the
null distribution. To test this we compared the real data to
a theoretical null distribution (equation 2) as well as an
empirical distribution computed by generating every pos-
sible random grouping of data sets (of the same size as in
the real experiment), repeating the Haar analysis, and
constructing histograms of the values. In Figure 3A, the
probability density function across all possible random
reassignments of the experiments to adult vs. older adult
is shown (inner curve). Experiments were weighted
equally for this analysis so that the null distribution
would remain the same across data reshuffling. The null
distribution calculated from the average correlation equa-
tion is shown (dots sitting atop the inner curve), showing
an excellent agreement between the analytic prediction
and the shuffled data. The distribution of the actual age
categorized data is shown (heavy-tailed curve). This is the
largest variance distribution of all possible combinations
of data (by label reassignment), indicating that grouping
data by age reveals significant differential coexpression.
While other combinations of data generate heavy tails
reflective of other heterogeneities in the data (e.g., tissue),
grouping by age produces the strongest effect. False dis-
covery rates can then be calculated, shown in Figure 3B,
confirming the presence of significant differential coex-
pression. As with a coexpression matrix, universal statisti-
cal significance would also be problematic, and the
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sparsity of significance values we see here is similar to that
present in coexpression analyses (e.g.,[2,19]). The false
discovery rate shown is representative of the average
across all weighted null distributions for each Haar coeffi-
cient; that is, the tails are similar to those seen in each of
the, say, 88 combinations of missing data referred to in
section 2.3. Lifelong variation generally produced the
heaviest tails with no other discernable trends.

Because this is a large and complex data set, we stress that
important trends may exist outside of examining only the
most statistically significant cases. Our validation experi-
ments below use all the data; however, we have also con-
structed an adjacency matrix consisting of the most
significant gene-pairs across all coefficients (false discov-
ery rate <0.01). This produced 367161 significant unique
gene-pair relationships, available as supplementary data.

Comparison to other basis sets
As mentioned, an alternative basis is the discrete deriva-
tive of coexpression, starting with the first time point's
expression level and then each subsequent coefficient
reflecting change from the previous value. It might also be
reasonable to question whether changes in coexpression
are helpful to consider at all, rather than simply independ-
ently observing each time point for coexpression. In that
case, the natural basis set would be the direct temporal
basis set (age groups 1-4) of coexpression data directly.
Each pair of genes has 4 coefficients associated with it.
There is little point to this if significance in one coefficient
implies significance in another.

Supplementary Figure 1 (see additional file 2:
supfig1_sup.eps) shows the correlation of basis coeffi-
cients with one another within each basis set. Strongly
correlated coefficients will diminish the chances of
observing any change with age. The lack of orthogonality
in the derivative basis set makes it the worst performing
set with respect to independence (mean correlation coef-
ficient magnitude of 0.27). By this standard, the Haar
basis set performs better (correlation of 0.08) than the
derivative basis set. The Haar coefficients are also less cor-
related than the direct temporal basis set (correlation of
0.16). The corrected Haar basis set performs better still
(correlation of 0.03). Just adding noise to our data would
produce a similar effect so it is important to verify that this
increase in independence does not cause a decrease in
functional links.

Figure 4 shows the change in semantic similarity at
increasingly stringent cutoffs for selecting gene pairs. A
link persists and is included in the semantic similarity if it
passes the changing threshold in any coefficient. Starting
from the left (all data included) and moving to more pos-
itive thresholds, up to the top 0.01% of data, semantic
similarity rises for all measures. The reversal in perform-
ance is due to the good performance of extremely negative
values (also statistically significant). The Haar basis set
performs very well (thin solid line in Figure 4) with the
lifelong differential coexpression being its highest per-
forming coefficient. In this case, the improvement is a
substantial fraction of the average gene's maximum
improvement possible, calculated by averaging the maxi-
mum semantic similarity pairing for each gene and then

Table 2: For each time period listed, an overrepresentation analysis was performed for each gene's coexpression or change in 
coexpression. 

The top 5 Gene Ontology (GO) groups for each age range.

Coexpression Lifelong change Early change Late change

translational elongation
(GO:0006414)

Glycolysis
(GO:0006096)

hormone activity
(GO:0005179)

ATP metabolic process
(GO:0046034)

Mitochondrial membrane part
(GO:0044455)

aerobic respiration
(GO:0009060)

muscle system process
(GO:0003012)

ribonucleoside triphosphate metabolic 
process
(GO:0009199)

ribosomal subunit
(GO:0033279)

cellular respiration
(GO:0045333)

Hemostasis
(GO:0007599)

nucleotide biosynthetic process
(GO:0009165)

regulation of ubiquitin-protein ligase activity
(GO:0051438)

glucose metabolic process
(GO:0006006)

secretory granule
(GO:0030141)

monovalent inorganic cation transmembrane 
transporter activity
(GO:0015077)

proteasome complex
(GO:0000502)

pigment granule
(GO:0048770)

calcium ion homeostasis
(GO:0055074)

purine ribonucleotide biosynthetic process
(GO:0009152)

Corrected p values <0.001 were assembled and the top 5 GO groups across all genes are shown for each category.
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Statistical properties of Haar coefficientsFigure 3
Statistical properties of Haar coefficients. A. The inner curve (thin curve) is the probability density function generated 
from generating differential coexpression coefficients grouping the data cross all possible combinations using data categorized 
as adult and older adult. The heavier tailed curve (thick curve) is the probability density function resulting from grouping the 
data by age. The dots are the calculated null distribution for the differential coexpression coefficient. The x axis is the correla-
tion difference between the two groupings of data used. B. The false discovery rate is shown. Again, the x-axis is the difference 
between coexpression in older adults and coexpression in adults, when each experiment is normalized to a unit Gaussian.
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averaging across genes to give an improvement of 18.4.
The shorter timescales perform less well in differential
coexpression, as also seen in the weaker performance of
the derivative basis set (Figure 4, dotted line). The deriva-
tive basis set also suffers here due to its lack of orthogonal-
ity, performing even worse than the age segregated values
(direct temporal basis set; dashed line). Correcting for
missing data in the Haar basis set improves performance,
as expected (thick line).

Gene function is reflected in differential coexpression 
patterns
To evaluate the functional significance of differential
coexpression in age, we used annotations provided by the
Gene Ontology [20]. We used a cross-validation approach
(see methods) to test whether gene function can be pre-
dicted on the basis of differential coexpression, as com-
pared to the ability to do so using coexpression alone.
Results are shown in Figure 5. For each training set (a GO
group minus one in-group gene, rotated through each in-
group gene) classification of a testing set (all genes outside
the GO group plus one in-group gene, rotated through
each in-group gene) was performed. Note that genes
exhibiting strong differential expression across age were
removed to ensure that changes in coexpression are not
better explained by differential expression of the same
genes [21]. The area under the curve (AUC) for the differ-
ential coexpression ROC curve is 0.81 with a standard
deviation 0.09 across the GO groups. The AUC of 0.81
represents the probability of correctly assigning a higher
score to a random in-group gene over a random out-group
gene (out of one of each). As a control we also attempted
this classification using coexpression alone and obtained
an AUC of 0.74 (Figure 5). Random sets of genes (of the
same size) were used to generate the expected identity line
with an AUC of ~0.5 (Figure 5). Using coexpression in
conjunction with differential coexpression does improve
performance further, although slightly (AUC of 0.84),
suggesting that coexpression and differential coexpression
are somewhat independent, as expected.

Discussion
Our results suggest that the Haar basis set view of differen-
tial coexpression is a useful tool for capturing functional
relationships between genes as their expression changes
over ordered sets of conditions. Using this method, we
provided evidence that there is substantial differential
coexpression associated with life stage. In addition to their
good performance compared to a derivative approach, the
Haar basis had an additional feature making it attractive
for meta-analysis, in that individual studies with samples
containing multiple 'ages' could be combined and ana-
lyzed at multiple scales. For example, if a study covered
the age groups prenatal and child/young adult, it could be
included in both, ensuring it contributed to only the first

and second Haar coefficients, as appropriate for the scale
at which the study was performed. It should be noted that
since its introduction, the Haar transform has become
more widely known as the first wavelet transform. Our use
of the wavelet transform is unconventional because we
have only four time points, in contrast to more typical
applications where temporal resolution is much finer.
However, in this case, the specific wavelet transformation
is a useful basis set with a biological underpinning, and
having a convenient generalization. Thus the wavelet
method could equally well be applied to studies specifi-
cally geared toward the analysis of data with different or
finer temporal resolution, or to other ordered conditions.

Differential coexpression over time using the Haar basis
The relatively poor performance of the temporal coeffi-
cient method was not surprising, since lifelong coexpres-
sion is not an independent coefficient in this basis set and
will dominate at each time point. That is, if a gene pair is
highly coexpressed, even if it is also highly variable over
age (yielding large coefficients in the other two bases), it
is still quite likely to be considered highly coexpressed at
all ages. The inferior performance of the derivative basis
suggests that longer scale dynamics are relevant to expres-
sion changes with age. This would seem consistent with
the proposal of Barker et al. [22] that fetal programming
can play a significant role in determining factors affecting
longevity [23].

One possible concern with our study is that we have
mixed data sets from various tissues. The precise tissue for
prenatal vs. adult, for example, may differ. Likewise there
are study parameters (such as population type or array
design) that might vary with age. It could then be argued
that the differential coexpression across age that we see is
simply a proxy measure for differential coexpression
between tissue type. However, this is not consistent with
the statistical assessment we have performed. It is quite
likely that controlling for tissue (and other experimental
parameters) would yield even better results, but even
absent that, grouping by age produces a clear statistical
effect compared to the null distribution, relative to rand-
omized groupings compared to the null distribution. Pre-
vious studies (e.g., [6]) have shown tissue dependent
aging signatures which may well be excluded from the
present analysis. However, we find differential coexpres-
sion across tissue to have a less pronounced signature
than across aging. To bolster this finding, we examined
the tissue dependent coexpression signature in a wholly
independent dataset, the full mouse experiment sets avail-
able in Gemma (492 datasets). The coexpression signa-
tures in all brain datasets is very similar to the
coexpression in all datasets excluding brain tissue using
Gemma's significant coexpression list [12]; in particular,
the no-brain set (sparsity of 2.5%) obtains 98% of the sig-
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nificantly coexpressed gene pairs in the brain only set of
significantly coexpressed gene pairs. This suggests there is
a common coexpression signature which may be differen-
tially present over age, but does not imply there is not dif-
ferential coexpression between tissues. A particular
concern might be that tissue heterogeneities particularly
could have an effect on the last of our Haar coefficients
(all brain data), but this does not appear to be the case.
Comparing brain to no-brain data across all datasets pro-
duced false discovery rates much higher than across aging,
suggesting it is not a significant contributory factor in this
case, where brain (widespread expression) is mixed with a
variety of tissues without strong homogeneities. Another
consideration is that because differentially expressed
genes are easily differentially coexpressed, our filtering by
differential expression removed prominent cases of differ-

ential coexpression, and may well have contributed to
minimizing tissue dependencies in our analyses. How-
ever, those trends are better considered as cases of differ-
ential expression (a much more tractable phenomenon)
than differential coexpression.

Another advantage of the Haar method is that studies
originally performed over a variety of ages can be more
effectively repurposed since including a study across mul-
tiple ages tends to remove its effects not operating at the
scale of the original data (that is, including a study in
older adult and adult will tend to have no late-in-life only
differential coexpression effects).

Our results make the point that in general, the choice of
an appropriate basis set is important to extracting infor-

Semantic similarity of extreme basis coefficientsFigure 4
Semantic similarity of extreme basis coefficients. Starting from the left, only the more extreme coefficient values are 
retained. Corrected Haar values (red line) perform the best, followed by Haar values (black line), age segregated values (blue 
line), and last derivative basis set values (green line)
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mation from the data. A contrasting approach would be to
choose a basis post hoc, as is effectively done in any dimen-
sion reduction. This presents a number of problems. First,
it will vary from dataset to dataset and introduce new nor-
malization difficulties. The variation from dataset to data-
set would also reduce the general applicability of any
results since any past findings would have to be reinter-
preted in the context of whatever basis set is calculated for
the new work. In addition, there would be no reason to
see the new basis set as a form of differential coexpression
precisely since it is unlikely that a single component
would end up wholly representing coexpression (thereby
removing it from the others, as was the case with the Haar
basis). Finally, a principled transformation of the data can
be geared to offer value as an interpretive tool, as opposed
to a purely methodological tool.

A reasonable concern for our statistical analysis might be
that in considering only consistency of rank across exper-
iments, we have thrown away useful information in the
form of the correlation distributions themselves. In that
case, a natural alternative to the non-parametric statistical
analysis we have performed would be to consider the dis-
tribution of correlation values themselves, and then com-
bine those p values and determine the false discovery rate.
This could be performed by using Fisher's transformation
[24] to test the significance of correlation values and then
combining datasets using a meta-analysis technique such
as Fisher's method [25]. Such an analysis would be erro-
neous for a number of reasons. Most importantly, it
would be dominated by heterogeneity unrelated to the
variable of interest because significance in any one exper-
iment will tend to dominate (since usually very signifi-

Functional categories of genes can be predicted by differential coexpressionFigure 5
Functional categories of genes can be predicted by differential coexpression. The blue line curve shows the result of 
leave one out validation to generate an ROC curve for reconstructing GO categories containing 10-30 genes using their differ-
ential coexpression values with AUC 0.81. The red line shows if coexpression values alone are used (0.74). The black line 
curve shows the resulting ROC curve if in place of GO sets, random sets with 10-30 genes are used (AUC 0.49).
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cantly heavy-tailed), but individual experiments have
many heterogeneities unrelated to age. More reasonably,
one could construct null distributions by computing a
reasonable sample of distributions with randomly labeled
datasets. As we show, in figure 5, this is quite close to the
approach we took (absent weighting), but would become
very cumbersome for even intermediate numbers of data-
sets (remembering that each combination of missing data
requires a different null distribution).

Biological interpretation of the Haar approach
The GO group overrepresentation analysis (Table 2),
while providing only a high-level coarse overview, sug-
gests some possible interpretations of differential coex-
pression with age. It is biologically plausible that static
coexpression (the first column in Table 2) is dominated
by GO terms reflecting stoichiometric complexes such as
protein synthetic machinery. In contrast, we expected
more dynamic processes to show differential coexpres-
sion. It is therefore interesting that "Hormone activity"
shows strong early life differential coexpression. Similarly,
more gradual ("lifelong", second column of Table 2) dif-
ferential coexpression should reflect processes implicated
in gradual aging. Metabolic processes, such as glycolysis
are interesting since they are implicated in ageing diseases
over a long temporal scale (e.g., [26]). Table 3 shows the
top three most significant differential coexpression rela-
tionships for each coefficient along with KEGG pathway
information [27] and gene age information from the
GenAge database [28]. The gene pairs shown in common
KEGG pathways also have significantly high semantic
similarity (>99%), and the list is overrepresented with
respect to the GenAge gene list of 261 human aging asso-
ciated genes (p < 0.01). Biasing from experimental heter-
ogeneity was not evident among these other top 10
choices. For example, while Alzheimer's related data is
present among the experiments, it was not among those
contributing to the early differential coexpression coeffi-
cient. More detailed exploration of these results is a topic
for future study.

Our data covers a range of age categories including both
development and senescence. Two fundamental theories
of senescence are Williams [29] theory of antagonistic
pleiotropy and Medawar's [30] theory of mutation accu-
mulation. These theories present an interesting interpreta-
tion in the context of our differential coexpression
coefficients. Antagonistic pleiotropy posits a long-scale
connection between early states and late states, in which a
characteristic useful in youth is harmful later (e.g., [31]).
A changing functional role over age in this way would be
a good candidate for finding differential coexpression,
and, in particular, we would expect such differential coex-
pression to be present in the coefficient at the appropriate
time-scale. We would expect to see antagonistic pleiotropy

candidate genes showing significant values in their life-
long change coefficient (youthful tradeoff), while muta-
tion accumulation should particularly exhibit enrichment
significance in the fourth coefficient (senescent change).
The third Haar coefficient maps most readily onto devel-
opmental change, representing rapid and early changes in
coexpression which we are tempted to interpret as devel-
opmentally-related changes in function.

More specific mechanistic interpretations of function and
dysfunction over age also map more readily onto a Haar
basis than other bases because they typically involve both
a factor in time and scale. As previously mentioned,
Barker's theory of fetal programming suggests a long term
effect between early and late. One well studied mecha-
nism reviewed by Maric [32] involves fetal programming
for high blood pressure. While some research has cast
doubt on the importance of fetal programming in longev-
ity itself [33], there may well be similar processes that do
not affect longevity simply, but do affect function in more
complex ways [34] or relate developmental and late stage
changes [35]. Because the Haar coefficients can capture
both the scale and timing of this event, they might serve
to elucidate the unknown genetic causes for the well char-
acterized physiological changes. With only four groupings
by age, interpretation of this sort in our data must remain
somewhat restrained, but finer resolution age groupings
could make this a valuable characteristic of our method.

Conclusion
Differential coexpression over age generates significant
information about the genes producing it. Our Haar basis
methodology for determining age-related differential
coexpression performs better than either a derivative
based method, or using the age groups independently.
The Haar basis set also lends itself to ready interpretation
in terms of both evolutionary and physiological mecha-
nisms of aging and can be seen as a natural generalization
of two-category differential coexpression. The good per-
formance across the multiple GO sets implies that age
related differential coexpression may be a common proc-
ess due to the degree to which life stage produces changes
in function and functional relationships. Because our
Haar-based method for differential coexpression draws
upon such a well established signal processing tool for
temporal data, it offers a well characterized, efficient and
convenient avenue for further study.
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