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Abstract

In the past few years, case-control studies of common diseases have shifted their focus from single genes to whole exomes.
New sequencing technologies now routinely detect hundreds of thousands of sequence variants in a single study, many of
which are rare or even novel. The limitation of classical single-marker association analysis for rare variants has been a
challenge in such studies. A new generation of statistical methods for case-control association studies has been developed
to meet this challenge. A common approach to association analysis of rare variants is the burden-style collapsing methods
to combine rare variant data within individuals across or within genes. Here, we propose a new hybrid likelihood model that
combines a burden test with a test of the position distribution of variants. In extensive simulations and on empirical data
from the Dallas Heart Study, the new model demonstrates consistently good power, in particular when applied to a gene
set (e.g., multiple candidate genes with shared biological function or pathway), when rare variants cluster in key functional
regions of a gene, and when protective variants are present. When applied to data from an ongoing sequencing study of
bipolar disorder (191 cases, 107 controls), the model identifies seven gene sets with nominal p-valuesv0.05, of which one
MAPK signaling pathway (KEGG) reaches trend-level significance after correcting for multiple testing.
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Introduction

Research efforts over the past few years have yielded an

explosion of exome sequencing studies and exomic variation data

(reviewed in [1,2]). One surprising result has been the discovery of

hundreds of thousands of novel and rare nonsilent variants in

protein coding genes, some of which may have functional

consequences related to human health. Common diseases, once

hypothesized to be primarily due to common variants [3], are now

believed to have heterogeneous genetic causes, due to both

common and rare variants [4–6].

These developments have created demand for a new generation

of statistical and informatics approaches. Increasingly powerful

analysis methods have been developed to enable detection of

association between phenotype and variants with small to

moderate effect sizes (reviewed in [6]). Rather than testing each

variant individually, variants can be collapsed or summed with a

‘‘burden’’ approach, in which the strength of phenotypic

association is considered with respect to a group of variants

occurring at a common region or allelic frequency threshold [7–

10]. The contribution of each variant to the association may be

weighted by frequency or bioinformatically predicted impact [10].

Burden strategies yield a power gain, compared to independent

tests of single variants, but they lose power when variants with a

neutral or protective effect are included. Regression models [11]

and overdispersion tests [12] have been designed to detect variants

that affect phenotype, regardless of the direction of the effect

(deleterious or protective). New approaches continue to be

introduced, such as a mixture model that incorporates gene-gene

interactions and an adaptive weighting procedure [13]. A recent

study has even suggested that single-variant test statistics may be

more powerful than collapsing strategies on real data [14].

Importantly, no single method appears to be superior for all

phenotypes, genomic regions, disease models, and populations

[6,15,16].

Here we describe a new hybrid likelihood test BOMP (Burden

Or Mutation Position test), designed for case-control exome

sequencing studies, to detect the presence of causal variants in a

functional group. The functional group can be defined as a gene,

genomic region, or gene set (multiple genes involved in a pathway

or biological process). The test can incorporate variant weighting

by bioinformatically-predicted functional impact. We combine,

into a single statistic, a directional burden test in which low

frequency variants have increased weight and a non-directional

position distribution test that does not consider allele frequency.

Our burden test uses a collapsing strategy and metrics of variant
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functional importance, which are similar to previously published

burden tests (Table S1). An advantage of our test is that its

formulation into a likelihood ratio uniquely allows us to combine it

with the position distribution test. The two tests complement each

other and together yield increased power to detect biologically

important variants, particularly when applied to a gene set

containing genes with different kinds of variants (e.g., rare, low

frequency, common, protective).

To assess the utility of BOMP, we compare its power to three

leading methods for variant case-control association testing: VT

[10] a mutation burden statistic, SKAT [12] a regression model and

overdispersion test, and KBAC [13], which uses mixture modeling

and kernel density estimation. We generate simulated case-control

studies ranging from 200 to 5,000 individuals, using two

demographic growth models, and eight disease etiologies (models of

disease causation). We also apply BOMP to dichotomized empirical

data from a study of quantitative traits, the Dallas Heart Study,

which investigated the association between variants in angiopoietin-

like (ANGPTL) proteins and triglyceride metabolism [17].

In these experiments, BOMP is consistently powerful across a

spectrum of disease causality models, in simulations of case-control

studies drawn from populations of African-American and European-

American individuals, and for the ANGPTL variants from the Dallas

Heart Study. It appears to be particularly useful for detecting genes

containing causal variants when protective variants are present, when a

disease phenotype is associated with variants that cluster in key regions

on a gene, when a causal variant is common, or when applied to a

candidate gene set, rather than a single candidate gene.

Finally, we apply BOMP to identify causal gene sets in an an

ongoing, whole-exome case-control sequencing study of bipolar

disorder. We find that seven gene sets are nominally associated

with bipolar disorder and that one ‘‘MAPK signaling pathway’’

(KEGG) trends towards significance after correcting for multiple

gene sets tested. Notably, this pathway has been implicated

previously in bipolar disorder [18].

Results

We evaluated the power of the BOMP hybrid likelihood model

with both simulations and empirical data from the Dallas Heart

Study [17]. All results were compared to several leading statistical

methods to detect causal variation in case-control association

studies. We attempted to select representative methods for burden,

regression, and mixture modeling approaches.

First, we assessed the power of BOMP to detect genes with

causal variants in an extreme phenotype case-control study, for a

disease with 1% population prevalence, and significance level

a~0:05. We considered that deleterious causal variants might

either be rare, low frequency or common and that modifying

protective variants might be present. Power to detect causal

variants was assessed initially with respect to a single candidate

gene and then for candidate gene sets, ranging in size from 2 to 24

genes. We studied gene sets in which all genes contained causal

variants and those in which only a fraction of genes contained

causal variants. Both African-American and European-American

demographic models were considered. For each combination of

attributes (disease etiology, population demographic, case-control

study size), 250 case-control studies were simulated to assess

power.

Power analysis of simulated case-control studies
In single-gene case-control study simulations, a study size of

2000 (1000 cases, 1000 controls) was required for any of the

methods to achieve at least 80% power to detect causal variants.

BOMP had w80% power for three of the tested disease etiologies

(Common variant, KeyRegion+Protect, and Common+Protect).

When the study size was increased to 5000 (or 10000 (Figure S1)),

several of the methods (BOMP, SKAT, VT, and KBAC5P

(MAFv5%)) had w80% power for selected etiologies (Figure 1).

BOMP was consistently more powerful than other methods and

appeared to be particularly useful for certain disease etiologies

(Key region variant, Common variant, and all etiologies involving

protective variants (Table 1)). All methods were less powerful when

applied to case-control studies using the European-American

demographic model (in which variants are either rare or

singletons) (Figure S2).

Next, we explored how the power of the tested methods could

be improved by application to a candidate gene set rather than a

single candidate gene. We simulated case-control studies, in which

each genomic individual had multiple genes, all or some of which

contained causal variants. The gene sets in which all genes

contained causal variants ranged from 2 to 5 genes. Gene sets with

mixtures of casual and non-causal genes ranged from 4 to 15 genes

(ratios of causal to non-causal 3:1, 3:3, 3:6, 3:9, and 3:12). Causal

variants were equally likely to be from any of the disease etiologies

dominated by rare variants. The assumption that even 25% of

genes in a set contain causal variants is certainly optimistic, but this

experiment allowed us to compare the extent to which each

method was affected by the fraction of causal genes in a set.

When all genes in a gene set contained causal variants, power

increased for all methods as gene set size increased. When the gene

sets contained a mixture of genes, both with and without causal

variants, the power decreased with the causal to non-causal ratio.

For the African-American demographic model, BOMP and

SKAT were the most robust to gene sets with low causal to

non-causal ratio. As in the single gene experiment, all methods had

less power in the European-American demographic than in the

African-American. For the European-American, none of the

methods had power w80% for any of the gene sets. For the

African-American demographic, BOMP, SKAT, and VT had

power w80% when gene sets of sizes 4 and 5 contained all causal

variants. BOMP was the only method with power w80% for any

of the mixed gene sets tested (gene set sizes 3,6, and 9, with ratio of

causal to non-causal 3:0, 3:3 and 3:6) (Figure 2).

Author Summary

Inexpensive, high-throughput sequencing has transformed
the field of case-control association studies. For the first
time, it may be possible to identify the genetic underpin-
nings of complex diseases, by sequencing the DNA of
hundreds (even thousands) of cases and controls and
comparing patterns of DNA sequence variation. However,
complex diseases are likely to be caused by many variants,
some of which are very rare. Taken one at a time, the
association between variant and disease phenotype may
not be detectable by current statistical methods. One
strategy is to identify regions where important variants
occur by ‘‘collapsing’’ variants into groups. Here, we
present a new collapsing approach, capable of detecting
subtle genetic differences between cases and controls. We
show, in extensive simulations and using a benchmark set
of genes involved in human triglyceride levels, that the
approach is potentially more powerful than existing
methods. We apply the new method to an ongoing
sequencing study of bipolar cases and controls and
identify a set of genes found in neuronal synapses, which
may be implicated in bipolar disorder.

Hybrid Likelihood Model for Disease Association
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Next, we reconsidered the assumption that casual variants in a

gene set were equally likely to come from a few disease etiologies.

Instead, we sampled disease etiologies from nine multinomial

distributions (Figure S3). For these experiments, the number of

candidate genes was fixed at nine and the ratio of causal to non-

causal genes was 3:6. BOMP’s power advantage over the other

tested methods was larger in this experiment than in the single

candidate gene experiment. For case-control study size of 1000,

BOMP power was w80% for the multinomial distributions

dominated by the key region variant etiology (African-American)

and etiologies involving protective variants. For case-control

study size of 2000, BOMP power was w80% for all six

multinomial distributions possible for the African-American

model (Figure 3), and SKAT power was w80% for the

multinomial distributions dominated by the key region variant

etiology (African-American) and etiologies involving protective

variants.

We explored the power of BOMP with respect to case-control

study size, using a set of 24 candidate genes as the functional

group. We varied the ratio of casual to non-causal genes from 1:3,

1:1, and 3:1. Here, causal variants were again equally likely to be

from any of the disease etiologies dominated by rare variants. For

a case-control study size of 1000, BOMP’s power exceeded 0.8,

regardless of the causal-to-non-causal gene ratio (African-Amer-

ican only), and for the 1:1 and 3:1 causal-to-non-causal gene ratios

for European-American. A study size of 200 was sufficient for

power w0:8 for 1:1 and 3:1 ratios (African-American only)

(Figure 4).

We reasoned from these results that, for a population whose

allele frequency spectrum is similar to our European-American

demographic model simulations, current whole-exome case-

control studies are not sufficiently powered. These studies lack

power to find causal variants both at the single gene level (as

proposed by [19]) and for modestly-sized gene sets. However, if

Figure 1. Single gene methods power comparison. Power estimates for BOMP, VT, SKAT, KBAC (KBAC1P = minor allele frequency defined as
v1%, KBAC5P = minor allele frequency defined as v5%). Each vertical line represents power estimates for each method, based on 250 simulated
case-control studies. AA = the case-control studies were drawn from gene populations generated with an African-American simple bottleneck
demographic model. EA = the case-control studies were drawn from gene populations generated with a European-American exponential growth
demographic model. The eight variant causality (disease etiology) models are defined in Table 1. Since the European-American demographic model
does not account for common or protective variants, etiologies involving common or protective variants were only considered for the African-
American demographic model.
doi:10.1371/journal.pgen.1003224.g001

Hybrid Likelihood Model for Disease Association
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the allele frequency spectrum is more similar to the African-

American demographic model, BOMP may be able to detect

causal variation in larger gene sets, given the size of current whole-

exome studies.

To test this hypothesis, we considered a case-control study of

200 individuals, using a set of 100 candidate genes as the

functional group. The disease etiologies of causal genes were

sampled from three categories with the ratio of 10 (Rare variant or

Low frequency variant or Key region variant) :1 (Common

variant) : 1 (any etiology involving protective variants). Etiologies

were sampled with equal probability within each category. As

before, we varied the ratio of causal to non-causal genes in the set

from 1:3, 1:1, 3:1. BOMP power was w0:8 for all scenarios (0.852

for 1:3, 0.956 for 1:1 and 0.956 for 3:1).

Relative contributions of mutation burden and mutation
position distribution in simulated case-control studies

We computed average power for single candidate gene case-

control studies and multiple candidate gene case-control studies

(nine genes, 3:6 causal to non-causal ratio), with respect to both

demographic models, all disease etiologies (Table 1) for single

genes, and all combinations of disease etiologies for gene sets

(Figure S3). BOMP’s hybrid likelihood model had better power

than either of its components: the mutation burden and mutation

position distribution statistics (Figure 5). The burden statistic had

more power in single-gene studies, while the position statistic had

more power in the gene set studies.

In general, mutation burden tests outperform the position

distribution statistic when causal variants are rare and are not

clustered. The position distribution test outperforms burden tests

when the number of rare variants is similar in cases and controls, but

where cases and controls differ with respect to the position

distribution of the variants. To illustrate this point, we show a case

in which burden tests would miss such a difference (Figure 6). In the

genomic region shown, cases and controls each have 9 total

variants, but an informative window segmentation yields distinct

regions in which the number of variants seen in cases and controls is

substantially different. The difference between cases and controls is

also missed by SKAT, which consider variants one at a time,

because at each position the number of variants in cases and

controls is similar. (A more detailed example is shown in Figure 7.)

Both collapsing burden and position distribution tests outper-

form SKAT when causal variants are very rare. Figure S4 shows

the power of VT, SKAT, BOMP burden, and BOMP position

Figure 2. Power estimates for multiple gene case-control studies with causal variants equally likely to be from any disease etiology
dominated by rare variants. A,B. X-axis shows number of candidate genes in 250 simulated case-control studies (approximately one-third each
from disease etiologies Rare, LowFreq and KeyRegion). All genes contain causal variants. For each method, average power is shown. Power increases
for all methods as the number of candidate genes with causal variants increases. C,D. X-axis shows the number of candidate genes and the ratio of
genes containing causal variants to those that do not contain causal variants. As the ratio decreases, the power of the tested methods also decreases.
(Tested methods are BOMP, VT, SKAT and KBAC1P = minor allele frequency defined as v1%, KBAC5P = minor allele frequency defined as v5%).
AA = the case-control studies were drawn from gene populations generated with an African-American simple bottleneck demographic model.
EA = the case-control studies were drawn from gene populations generated with a European-American exponential growth demographic model.)
doi:10.1371/journal.pgen.1003224.g002

Hybrid Likelihood Model for Disease Association
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distribution in 10,000 simulated European-American individuals,

using our Rare and Key Region Variant disease etiologies. The

European-American populations contain a large fraction of rare

variants (Figure S2 shows exact allele frequencies and raw counts).

Our simulations of the Rare Variant etiology in this population

generate rare variants that are not clustered, and the methods with

highest power are VT burden and BOMP burden tests. In Key

Region Variant simulations where rare variants are positioned

differently in cases and controls, the position distribution statistic

has higher power than either of these burden tests.

Type 1 error
Because we used permutation to compute p-values, type I error

should be well controlled.

Dallas Heart Study
We applied the BOMP hybrid likelihood model to the analysis

of data from the Dallas Heart Study (DHS) [17]. Romeo et al.

explored genetic contributions to plasma triglyceride (TG) levels in

*3500 individuals in the DHS, by resequencing the coding

regions of several genes, including angiopoietin-like (ANGPTL)

family genes. The ANGPTL genes regulate the activity of a key

enzyme in TG metabolism, lipoprotein lipase (LPL), via post-

transcriptional modifications and were jointly associated with low

triglyceride levels by [17]. Specifically, ANGPTL3, ANGPTL4, and

ANGPTL5 were functionally validated as causal genes, playing

non-redundant roles and underlying TG levels as a functional

group [17]. The ANGPTL gene set has been analyzed in several

computational papers and used as a benchmark to compare

methods that predict the impact of rare and common variants

from sequencing data [10,12,13,20–23].

We stratified the DHS samples by ethnicity (Hispanic, non-

Hispanic white, non-Hispanic black) and gender. Because

BOMP was designed for dichotomous phenotypes, we selected

the lower and upper quartiles from each group, by TG level

(totaling 1775 individuals, with 897 cases and 878 controls).

Figure 3. Power estimates for multiple genes case-control studies with causal variants from disease etiologies randomly sampled
from nine multinomial distributions (Figure S3). Power estimates for BOMP, VT, SKAT, KBAC (KBAC1P = minor allele frequency defined as v1%,
KBAC5P = minor allele frequency defined as v5%). Each vertical line represents power estimates for each method, based on 250 simulated case-
control studies. The genomic individuals each had nine genes, of which three contained causal variants and six did not. The disease etiologies for the
three genes with causal variants were randomly sampled from nine multinomial distributions (Figure S3). AA = African-American simple bottleneck
demographic model. EA = European-American exponential growth demographic model.
doi:10.1371/journal.pgen.1003224.g003
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Sixty mutations in ANGPTL3, ANGPTL4, and ANGPTL5

occurred in these individuals.

We computed a P-value for each of the three ANGPTL

genes and for the ANGPTL gene set, using BOMP (with and

without bioinformatics scores), the burden statistic VT (with

and without bioinformatics variant weighting), the overdisper-

sion statistic SKAT, and the mixture-model KBAC statistic

(with four parameter settings) (Table 2).

The hybrid BOMP test, with bioinformatics scores and allele

frequency variant weighting, had the most significant P-value for

Figure 4. BOMP Power estimates for multiple genes (24) case-control studies. Power estimates for BOMP; each estimate is based on 250
simulated case-control studies ((approximately one-third each from disease etiologies Rare, LowFreq and KeyRegion). The genomic individuals each
had 24 genes, the ratio of genes with causal variants to those without causal variants was either 1:3 (6 causal, 18 non-causal), 1:1 (12 causal, 12 non-
causal), or 3:1 (18 causal, 6 non-causal). AA = African-American simple bottleneck demographic model. EA = European-American exponential growth
demographic model.
doi:10.1371/journal.pgen.1003224.g004

Figure 5. BOMP burden and position statistics complement each other. Breakdown of contribution of BOMP mutation burden (BOMP_B)
and BOMP position distribution (BOMP_P) statistics averaged over single candidate gene power estimates (Figure 1) and multiple candidate gene
power estimates (nine genes, 3 with causal variants and 6 with no causal variants) (Figure 3) for case-control study sizes of 200, 1000, 2000, and 5000.
Combining the two statistics consistently yielded improved power with respect to each statistic on its own. The BOMP burden statistic had more
power than BOMP position for the simulations based on a single candidate gene, and vice versa in the simulations with nine candidate genes and 3:6
causal to non-causal ratio.
doi:10.1371/journal.pgen.1003224.g005

Hybrid Likelihood Model for Disease Association

PLOS Genetics | www.plosgenetics.org 7 January 2013 | Volume 9 | Issue 1 | e1003224



the ANGPTL gene set (P~2:6E{05), which should be sufficient

to detect ANGPTL-phenotype association, using a gene set based

analysis in a whole-exome study, after multiple testing correction

(Table 2). The hybrid BOMP P-value was more significant than

either of its components (the BOMP burden and position

distribution scores). This result was consistent with the average

behavior of BOMP in our simulation-based analysis of power

(Figure 5). However, the two component scores did not yield an

improved hybrid score on every gene. For ANGPTL3, ANGPTL4,

and ANGPTL5, the hybrid score P-value was not as significant as

the P-values of the most significant component score. The burden-

based VT score (with bioinformatics score variant weighting) had

the most significant P-values for ANGPTL3 (P~0:015); the

BOMP position distribution score for ANGPTL4 (P~1:6E{05),
closely followed by VT (with bioinformatics scores) (P~1:7E
{05), and the overdispersion test SKAT (P~5:78E{05).
KBAC, with single directional scoring (only deleterious variants

counted) and threshold for rare variation set at MAFv1%, had

the most significant P-value for ANGPTL5 (P~0:023).
These results confirm previous reports that the performance of

current methods to detect causal variants depends on which genes

are selected for benchmarking [6,14].

Bipolar case-control study
We then used BOMP to test candidate gene sets in data from an

on-going whole exome sequencing study of bipolar disorder. We

examined whole-exome sequencing data on the first 191 cases and

107 controls from this study. These samples were sequenced in two

rounds, over a two-year period. In the first round, Nimblegen v1.0

arrays were used for exome capture and Illumina GAII platform

for next-generation sequencing. In the second round, Nimblegen

v2.0 arrays and the Illumina HiSeq2000 platform was used. Only

samples with target sequencing coverage of at least 80% at 206
sequencing depth were included for further analysis. Sequence

reads from the samples were aligned to the human reference

genome sequence database using BWA [24]. Variants were then

called after realignment around indels and recalibration of base

quality scores with GATK [25] in target regions. Quality control

measures for variant calling required coverage of at least 66depth

with a SNP quality score of 30 or higher to eliminate false-

positives. Variants were annotated to dbSNP135 and collected in

VCF files.

We obtained a collection of pathways for testing from

SynaptomeDB [26], a bioinformatics database that we developed

to collate available information on genes coding for proteins found

in synapses. In SynaptomeDB, a set-based analysis was performed

on gene sets from the MSigDB collection [27] to identify gene sets

that are enriched for synaptic genes. We extracted twenty gene sets

containing at least 100 genes that were most significantly enriched

for synaptic genes.

To control for differences in the number of exons targeted by

Nimblegen v1.0 and v2.0 (approximately 180,000 vs. 300,000

coding exons) in our analyses with BOMP, we only considered

variants in exons present in both Nimblegen kits. We used

OverlapSelect from the UCSC Kent source library to identify

variants in the shared exons. BOMP P-values and FDR were

computed for each of the twenty gene sets selected from

SynaptomeDB.

Seven of the gene sets were nominally associated with bipolar

disorder (Table 3). The most significant of these, the ‘‘MAPK

signaling pathway’’ defined by the KEGG Pathway Database,

trended toward significance after correcting for multiple gene sets

tested (nominal p-value = 0.0065;FDR = 0.095). This gene set

consisted of 267 genes involved in the signaling pathway, including

68 found in neuronal synapses (Discussion).

To check for possible systematic bias in our Bipolar analysis e.g.,

effects of population substructure, we compared the observed

distribution of BOMP P-values with that expected under the null

hypothesis of no association. The resulting Q-Q plot (Figure S5) is

not heavily skewed or heavy-tailed. We also checked for possible

Figure 6. Example variation pattern in which position distribution outperforms burden tests. A toy example of a genomic region
containing variants (blue squares) in cases and controls. We assume that the region is important for phenotype. Variant counts in cases (red). Variant
counts in controls (purple). Cases and controls each have a total of 9 variants in this region, so Burden statistics (e.g., VT or BOMP burden) will not be
able to detect that the region is important for phenotype. BOMP’s position distribution statistic collapses variants into short, localized windows (red
dashed lines) and detects that the number of variants seen in cases and controls is different within the windows. We note that a method that does
not collapse variants, such as SKAT, does not have much power to detect the difference between cases and controls, because at each position the
number of variants in cases and controls is similar.
doi:10.1371/journal.pgen.1003224.g006
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bias resulting from the version changes in exome capture and

change from Illumina GAII to HiSeq2000 sequencing platforms

between rounds one and two. We performed PCA analysis with

EISENSTRAT [28], which revealed no significant differences in

the nature or frequency of variants identified in the two rounds

(Figure S6).

Computational time
In our simulations, analysis of an average-sized gene (500

codons), using 100,000 permutations, required wall-clock times of

32 s, 57.8 s, 1 m23 s, and 3 m4.2 s for case-control study sizes of

200, 1000, 2000, or 5000 (African American demographic model)

and 22.8 s, 1 m7.6 s, 1 m25.2 s, and 3 m9.6 s for European

American demographic model. For our gene set analyses with real

data from the bipolar case-control study (298 individuals), using

100,000 permutations to compute P-values, BOMP computation

time ranged from 10 m for a gene set with 101 genes to 4 h16 m

for a gene set with 648 genes (Table 3). All computations were

done on a machine with four dual-core 2.6 GHz AMD Processors

and 16 Gb memory.

Discussion

In this work, we introduce and explore the power of a new

hybrid likelihood model BOMP to detect causal variants

Figure 7. Analytical comparison of SKAT, BOMP, and VT on a toy example. Genotypes of 8 cases and 8 controls at 10 positions. Matrix
column colors: controls = light blue, cases = light red. Position distribution bar colors: controls = blue, cases = red. Detailed description is in the section
‘‘Toy example with analytical calculations’’ (Text S1).
doi:10.1371/journal.pgen.1003224.g007

Table 2. Dallas Heart Study.

Method ANGPTL ANGPTL3 ANGPTL4 ANGPTL5

Hybrid BOMP+VEST 2.6E-05 0.09 2.3E-05 0.15

Hybrid BOMP 3.7E-05 0.14 4.3E-05 0.14

VT+VEST 8.3E-05 0.015 1.7E-05 0.18

SKAT 1.06E-04 0.068 5.78E-05 0.29

Positional BOMP 1.5E-04 0.4 1.6E-05 0.3

KBAC (1D,5P) 2.9E-04 0.031 1.5E-04 0.17

KBAC (2D,5P) 5.5E-04 0.064 3.2E-04 0.31

KBAC (1D,1P) 2.9E-03 0.24 0.033 0.023

VT 3.8E-03 0.04 4.56E-03 0.1

KBAC (2D,1P) 5.8E-03 0.47 0.067 0.045

Burden BOMP+VEST 0.006 0.04 0.008 0.09

P-values of association between dichotomized triglyceride levels and variation
in three ANGPTL family genes sequenced in Dallas Heart Study. ANGPTL -
multiple gene set including ANGPTL3, ANGPTL4, and ANGPTL5. The most
significant P-value for each is highlighted in bold. BOMP = combined Burden
and Position statistics VT = variable threshold burden test [10] SKAT = sequence
kernel association test (linear weighting version) [12], KBAC = Kernel-based
adaptive cluster [20] (1D = single direction, 2D = two direction, 1P = rare variants
defined as v1% MAF, 5P = rare variants defined as v5% MAF). VEST = BOMP
and VT with VEST score variant weighting.
doi:10.1371/journal.pgen.1003224.t002
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underlying dichotomous disease phenotypes. We compared its

power with that of several leading methods designed to detect

causal variation in whole-exome case-control studies. We per-

formed simulated case-control studies, using a variety of sizes,

demographic models, and disease etiologies. The hybrid BOMP

model had good power compared to several popular methods

(Figure 1, Figure 2, Figure 3). Its strengths were most apparent

when we tested gene sets for association with phenotype, when

protective or common variants were present, and when a

phenotype was associated with variants that cluster in key regions

on a gene.

Because no current variant collapsing methods have been

shown to be best for every disease etiology [6], we were

particularly interested in how the performance of BOMP and

other methods varied by etiology. Our case-control study

simulations were designed to represent eight etiologies (Table 1).

Etiologies were defined by properties of their causal variants,

based on range of minor allele frequencies, selection coefficients,

position distribution, and mean effect sizes. Some etiologies

include protective variants, while others include only deleterious

variants. For all of our etiologies, only coding, non-silent variants

were considered to have an impact. Importantly, our etiologies are

defined in a probabilistic way since we allow for a randomly

selected fraction of variants which meet the causality criteria for an

etiology to have no effect (Methods). As a result, in the rare variant

etiology, all causal variants are rare, but not all rare variants are

causal, etc.. Method performance also varied by the population

demographic models (European-American exponential growth

and African-American simple bottleneck) used in our simulations.

We provide details of how the performance of all tested methods

was affected by disease etiology and demographic model in Text

S1.

Gene set simulations
We considered the possibility that differences between cases and

controls might be detected with respect to a gene set, rather than a

single gene [29]. We tested the methods, using gene sets of

different sizes (Figure 2), different combinations of disease

etiologies (Figure 3, Figure S3), and different fractions of genes

containing causal variants (Figure 2). Of the tested methods,

burden statistics and KBAC were the least effective at detecting

gene sets containing causal variants. SKAT and the BOMP

position distribution statistic were the most effective.

Biologically, we don’t expect that every gene in a real gene set

will contain causal variants. Thus our simulated gene sets were

designed to contain a mix of genes with causal variants and those

without. The burden tests (VT and BOMP burden) were not able

to effectively capture the difference between the two and lost

power as the number of non-causal variants in the simulations

increased (Figure 2). The genotype vectors computed by KBAC

become larger and more heterogeneous when applied to a gene

set, rather than a single gene. Thus, the KBAC strategy of

leveraging the number of shared genotype vectors among cases

and/or controls is less effective when applied to gene sets than to

single genes. The BOMP hybrid likelihood statistic (with strong

contributions from the BOMP position distribution statistic), and

SKAT were the most powerful when applied to gene sets, rather

than single genes. We attribute this result to the increase in the

number of significant localized units in a gene set that contains

more than one causal gene.

We found in our simulations that a case-control study size of

1000 individuals (500 cases, 500 controls) BOMP was sufficiently

powered to detect causal variants in situations when a good

candidate gene set (of approximately 25 genes) was known.

However, if the ratio of causal to non-causal genes in the selected

gene set was low (1:3) and/or the individuals in the study carried a

high proportion of rare (MAFv1%) or singleton variants, the

power of the BOMP hybrid model, like all the methods examined,

was diminished. This result highlights the importance of very high

quality gene sets derived either from disease experts or improved

bioinformatics tools for success in real data analysis.

Dallas Heart Study benchmark set
When we applied BOMP, VT, SKAT, and KBAC to an

empirical dataset, each method displayed both strengths and

weaknesses. While the dataset is small, it is interesting to note that

P-values of association between variant ANGPTL family genes

and dichotomized serum triglyceride levels from the Dallas Heart

Study were most signicant for the BOMP hybrid model, when the

genes were considered together as a gene set. However, the burden

statistic VT had the most signicant P-value for ANGPTL3, and the

KBAC P-value was the most significant for ANGPTL5 (specically

with single directional scoring and threshold for rare variation set

at MAF v1%). For ANGPTL4, the most signicant P-values were

from the BOMP position distribution score, VT, and SKAT. Each

of these genes had a different pattern of variation frequencies in

cases and controls, which presented advantages and obstacles for

each method. For example, ANGPTL3 had a high frequency

variant (M259T) that occurred more often in cases than controls

and many ‘‘noisy’’ rare/singleton variants that occurred either in

cases or controls. VT took advantage of the signal in M259T

because its threshold adapted to maximize the burden increase in

cases versus controls, and thus M259T was included in its burden

calculation. BOMPs burden statistic did not give as much

importance to M259T, because it downweights high frequency

variants. KBAC included M259T only when its allele frequency

threshold parameter was set to 5% but was penalized when it was

set to 1%.

BOMP is not designed to be adjusted for additional covariates,

which are often available in disease studies. For example, it is not

designed to explicitly deal with different ancestries in a structured

population. However, if the true population structure is known

and the number of subpopulations is not too large, we can run

analyses with stratification to get around this problem, as we (and

the authors of the VT and SKAT papers) did for ANGPTL family

genes in the Dallas Heart Study [10,12]. Using this strategy, one

begins with a quantitative trait (serum triglyceride levels), stratifies

individuals into groups, then identifies extreme phenotype

individuals from each group. Cases are then those individuals

from all groups at one extreme and controls are those individuals

from all groups at the other extreme. An alternative strategy is to

permute case-control labels only within each group to generate a

correct null distribution.

Incorporating bioinformatics scoring of variants (by VEST)

yielded improved P-values for both BOMP and VT on the Dallas

Heart Study data. While it has been suggested that bioinformatics

misclassification of variants might be more of a liability than a

benefit, our results (albeit on a small gene set) suggest the opposite.

Functional classification of variants in both coding and non-coding

regions of the genome is an active research area in bioinformatics,

and as methods improve, it is likely that they will increasingly

contribute to statistical analysis of causal variation.

Bipolar whole-exome sequencing, case-control study
Finally, we applied BOMP (with VEST scoring) to test

candidate gene sets in data from an on-going whole-exome study

of bipolar disorder. The top gene set was the ‘‘MAPK signaling

pathway’’ defined from the KEGG Pathway Database

Hybrid Likelihood Model for Disease Association
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(map04010). This is a highly conserved pathway that is centrally

involved in cell proliferation, differentiation and migration. In the

nervous system, it is at the nexus of multiple neuronal signaling

cascades thought to mediate certain forms of synaptic plasticity

[30]. Interestingly, the pathway has been implicated before in the

etiopathogenesis of bipolar disorder [18] and a number of studies

have shown that two most commonly used anti-manic agents,

lithium and valproate, activate the MAPK signaling cascade,

which may in part be responsible for their therapeutic effects [31].

One of the key genes in this pathway, DUSP6, a cytoplasmic

phosphatase that plays an active role in MAPK signaling by

regulating the intensity and duration of MAPK activity and by

helping to shuttle MAPK between the cytoplasm and nucleus, has

been associated with bipolar disorder [32,33]. There are several

other genes of considerable interest in this gene set, as they have

been implicated previously in the genetics of bipolar disorder. For

example, this pathway also contains CACNA1C and other

members of the family of voltage gated calcium ion channels.

CACNA1C was recently implicated as one of the most significant

genes in a mega-analysis of genome-wide association studies

(GWAS) of bipolar disorder carried out by the Psychiatric GWAS

Consortium (PGC) [34]. This gene set also contains the

phospholipase A2 family of genes. Phospholipases mediate the

release of arachidonic acid from membrane phospholipids.

Arachidonic acids are involved in brain signaling processes that

mediate a number of effects, and there is growing evidence that

the arachidonic acid signaling cascade may be a common target of

multiple diverse mood stabilizers [35].

Complex diseases are expected to have considerable genetic

heterogeneity i.e., they may be the consequence of alterations in

hundreds of potentially causal genes, and affected individuals

may have causal and/or protective variants in different subsets of

these genes. The simulations done in this work reflect this

heterogeneity (example in Figure S7), and we still retain good

power.

Bayesian extensions of our work could include prior knowledge

about the probability that a functional group of interest is

associated with the phenotype. For example, if the functional

group is a gene, prior evidence could come from expert knowledge

based on previous functional and/or case-control studies. By

combining the log likelihood ratio (Equation 1) with a log prior

ratio, we could estimate the log ratio of the full posterior

distributions.

In summary, we have developed a new method for identifying

causal variants in high-throughput sequencing data from case-

control studies. It is shown to have good power relative to other

leading methods and can be flexibly used in a variety of realistic

scenarios. The genetic architecture of most common human

diseases is likely complex, involving variants with a wide spectrum

of frequencies from rare to common and contributing to disease

through a number of inter-related pathways. The emergence of

whole-exome and genome sequencing studies promises to accel-

erate our ability to interrogate the genetic architecture of these

disease. However, a major challenge remains how to make sense of

the enormous amounts of data generated by such studies. Our new

method provides another useful tool in a growing toolbox for

analyzing the data from such studies.

Methods

BOMP (Burden Or Mutation Position statistics), the hybrid

likelihood model proposed here, consists of two likelihood ratio

tests (mutation burden and mutation position distribution statistics)

with the same general form,

Lj~log
L(FGj DHA)

L(FGj DH0)

� �
ð1Þ

and tests the evidence for the alternative hypothesis HA that a

functional group (FG) of interest is associated with a disease

phenotype, compared to the null hypothesis H0 that they are not

associated. Higher values of Lj indicate stronger association

between unit j and the disease phenotype. In this work, the

functional groups of interest are either single genes or sets of

multiple genes.

BOMP mutation burden statistic
The first likelihood ratio test is based on comparing mutation

burden in cases and controls. Each individual is represented with a

Bernoulli random variable, which is 1 if the individual’s burden

exceeds a burden threshold, and 0 otherwise. To model the

likelihood, we assume that individual burden status is independent

and identically distributed (IID). The ratio compares an alternative

hypothesis that the probability of exceeding the burden threshold

is higher in cases than in controls and the null hypothesis (that

probabilities are equal or lower in cases than in controls).

Biologically, the IID assumption is not necessarily true. We

control for such violations by assessing the statistical significance of

the likelihood ratio by permuting case and control labels (Figure

S8).

Individual burden. For individual k the gene burden of gj is

Sgj,k
~
Xnj,k

i~1

xi,k, ð2Þ

where nj,k is the number of variants carried by individual k in gene

j and xi,k is the genotype of variant vi.

Individual burden thresholds. A binary variable is used to

label individuals whose mutation burden in a gene of interest

exceeds a critical threshold. If the burden of gene gj in individual k
is greater than or equal to the threshold t, then it is considered to

be disease phenotype associated for that individual and Ygj,k
~1 (0

otherwise). Because genes are heterogeneous in size, functional

importance, mutation rate, and tolerance to variation, each gene

may have a different value of t. For each gene j, this cutoff tj is

computed by iterating over all cut-offs and selecting the one that

maximizes its mutation burden statistic (Equation 4).

Aggregated burdens. The Ygj,k
values are then aggregated

by summing over cases and controls:

TA
j ~

X
k[cases

Ygj,k

TU
j ~

X
k[controls

Ygj,k

The maximum likelihood estimate of the probability that the

mutation burden of gene j exceeds the threshold in cases is then

p̂pA
j ~

1

mz2
TA

j z1
� �

, the estimate for controls is

p̂pU
j ~

1

lz2
TU

j z1
� �

and the estimate for both cases and controls

is p̂pj~
1

mzlz4
TA

j zTU
j z2

� �
, where m is the number of cases

and l the number of controls. The probability estimates p̂pA
j , p̂pU

j ,
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and p̂pj are used as the parameters of three Bernoulli distributions

(one for cases, one for controls, and one for cases and controls

together). Pseudocounts are added to avoid zero counts. The

aggregated burden calculation (without pseudocounts) is illustrated

in Figure 8 (and Figure 7).

Burden likelihood ratio statistic. For a gene gj the

mutation burden statistic is defined as a ratio of Bernoulli

likelihoods:

LB(gj)~log
LB

A|LB
U

LB
AzU

� �
ð3Þ

~log
p̂pA

j

� �TA
j

1{p̂pA
j

� � m{TA
j

� �
p̂pU

j

� �TU
j

1{p̂pU
j

� � l{TU
j

� �

p̂pj

� � TA
j

zTU
j

� �
1{p̂pj

� � mzl{TA
j

{TU
j

� �
0
BBB@

1
CCCAð4Þ

where m is the number of cases, l the number of controls; TA
j is the

number of cases whose mutation burden in gj exceeds an

optimized threshold (Individual Burden Thresholds); TU
j is the

number of controls exceeding the threshold; p̂pA
j is the maximum

likelihood estimate of the probability that the burden of gene j

exceeds the threshold in cases, p̂pU
j is the estimate that gene j

exceeds the threshold in controls, p̂pj is the estimate that gene j

exceeds the threshold in both cases and controls. First, we consider

only genes with higher burden in the cases, for which p̂pA
j §p̂pU

j .

Next, for the remaining genes, we modify Equation 4,

~log
p̂pU

j

� �TA
j

1{p̂pU
j

� � m{TA
j

� �
p̂pA

j

� �TU
j

1{p̂pA
j

� � l{TU
j

� �

p̂pj

� � TA
j

zTU
j

� �
1{p̂pj

� � mzl{TA
j

{TU
j

� �
0
BBB@

1
CCCAð5Þ

Thus genes with higher burdens in cases than controls get a high

value and those with higher burdens in controls than cases get a

low value.

It follows that under HA, the number of cases in which the

burden of gene j exceeds the threshold will be larger than in

controls, and that under H0, they will not be different.

If a gene set rather than a single gene is used as the functional

group, the burden is aggregated across all genes in the set, and the

procedure is otherwise identical.

BOMP mutation position distribution statistic
The second likelihood ratio test is based on comparing the

position distribution of mutations in cases and controls. The

codons of a gene are partitioned into windows and mutation

count (burden score) is computed for each window in cases only,

controls only, and in cases and controls together. To model the

likelihood, each window mutation count is considered to be a

random variable in a multinomial distribution. If the partition

contains d windows, there are d possible outcomes for each

mutation. There are also d multinomial parameters for the

partition.

Window mutation counts. Let the window mutation counts

in the multinomial distributions be W A
x,j , W U

x,j , and W AzU
x,j (cases

only, controls only, and in cases and controls together)

for cases W A
x,j~

X
k[cases

Sx,j,k, for controls W U
x,j~

X
k[controls

Sx,j,k,

for cases and controls W AzU
x,j ~

X
k[cases and controls

Sx,j,k:

where Sx,j,k (computed as in Equation 2) is the score for individual

k in window x.

The maximum likelihood estimate of the multinomial param-

eters (including pseudocounts) is then

p̂pA
x,j~

W A
x,jz1P

x W A
x,jz1

� � ð6Þ

p̂pU
x,j~

W U
x,jz1P

x W U
x,jz1

� � ð7Þ

p̂pAzU
x,j ~

W AzU
x,j z2P

x W AzU
x,j z2

� � ð8Þ

Position distribution likelihood ratio statistic. For a gene

gj , the statistic is defined as a ratio of multinomial likelihoods:

LP(gj)~log
LP

A|LP
U

LP
AzU

� �
ð9Þ

where

for cases LP
A~P

x
p̂pA

x,j

� �WA
x,j

z1

ð10Þ

for controls LP
U~P

x
p̂pU

x,j

� �WU
x,j

z1

ð11Þ

for cases and controls LP
AzU~P

x
p̂px,j

� �WAzU
x,j

z2

: ð12Þ

It follows that under HA, the likelihood for cases will be different

than for controls, and that under H0, they are not different. In

contrast to the mutation burden statistic, there is no directionality

in the mutation position distribution statistic, because LP(gj) will

be large when either p̂pA
x,j or p̂pU

x,j is large.

A toy example of aggregated window mutation count calcula-

tion is illustrated in Figure 8 (and Figure 7).

Windows and sequence segmentations. Each gene has

many possible window partitions, and we don’t know in advance

which is the most informative for the position distribution statistic.

One way to create candidate window partitions (i.e., sequence

segmentations) for a gene of length L is to select a window size s
and a series of possible offsets, based on a selected shift increment

t. Each offset generates a new segmentation (Figure S9). For

Hybrid Likelihood Model for Disease Association
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Figure 8. Components of BOMP Hybrid Likelihood Model compared. A. Mutation burden statistic. The Mutation burden statistic uses the
aggregated burden for cases, TA

j , and controls TU
j . B. Mutation position distribution statistic. Aggregated window mutation counts are calculated for

cases, W A
j , controls, W U

j , and cases and controls combined, W AzU
j , across x windows.

doi:10.1371/journal.pgen.1003224.g008
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example, if the window size is 8 and the shift increment is 1, the

first offset begins at the first position of the gene and generates a

segmentation of q
L

8
r windows. The second offset will begin at

position 2 of the gene and generate a new segmentation of

q
L{1

8
rz1 windows, etc. In this work we used four combinations

of window size s and shift increment t: (8,1), (16,2), (32,4) and

(64,8), yielding 32 candidate segmentations for a gene. These

choices were not optimized and can be adjusted, according to user

preference and/or prior knowledge. The best segmentation is

selected by computing the likelihood ratio LP(gj) (Equation 9) for

each segmentation and picking the segmentation with the largest

LP(gj). Alternatively, this likelihood ratio can be modified by

computing W A
x,j , W U

x,j , and W AzU
x,j with respect to total positions

mutated, rather than total number of mutations.

For the position distribution statistic, if a gene set rather than a

single gene is used as a functional group, the best window

segmentation is computed for each gene, and the calculation of the

position distribution statistic is otherwise identical.

The mutation burden and mutation position burden statistics

are combined into a single log likelihood ratio,

Lgj
~LB(gj)zLP(gj): ð13Þ

Controlling false positives through permutation
P-values for each Lgj

are computed with a null distribution,

generated by repeated permutation of case and control labels.

All parameters of LB(gj) and LP(gj), including the maximum

likelihood burden threshold and segmentation pattern, are

calculated initially for empirical data and then re-calculated

for each iteration of the permutation. Thus, N iterations yields

N null L(n)
gj

where n ranges from 1 to N (Figure S8, Figure S10).

The permutation controls for confounding effects, such as

properties that characterize a particular gene or region of

interest (i.e., nucleotide diversity, GC content, and recombi-

nation rate), which are the same when used to estimate Lgj
and

each null L(n)
gj

.

After N iterations (e.g., N~106 )

Pgj
~

# null L(n)
gj

§Lgj

� �
z1

Nz1
ð14Þ

While LB(gj) and LP(gj) are not independent, using the

permutation test yields an accurate P-value estimate, because

any dependencies in Lgj
are reproduced in each nullL(n)

gj
.

Extensions to the basic method
Genetic models. Either dominant or additive genetic models

can be specified. Under the dominant genetic model, both

homozygous and heterozygous variants have xi~1; under the

additive model, homozygous variants have xi~2 and heterozy-

gous variants xi~1. For all experiments in this work, additive

models were used.

Variant scores. The Individual Burden can be modified by

incorporation of score coefficients so that Sgj,k
~
Xnj,k

i~1
xi,ksi. The

score for a variant vi can be either a bioinformatics-based score

si~fi, an allele-frequency-based score si~
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hi(1{hi)
p , following

[9,10]; or the product of both si~fi

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hi(1{hi)

p . Next we explain

how these scores are calculated. In this work, variant scores were

used only in the burden statistic. The allele-frequency-based score

was used for all simulations and the product of allele-frequency

and bioinformatics scores was used on all empirical data.

Bioinformatics scores. Each nonsilent variant vi can be

assigned a score fi[½0,1� to represent its contribution to a disease

phenotype of interest, where fi~0 indicates no contribution and

fi~1 indicates a strong contribution. These scores are estimated

with Variant Effect Scoring Tool (VEST). Variants causing nonsense,

nonstop or frameshift alterations to a gene’s protein product

receive fi~1. Variants causing missense alterations are scored

with a Random Forest classifier [36,37]; the score is the fraction of

decision trees in the forest that classified the variant as deleterious.

Alternatively, other bioinformatics methods that score missense

variants can be used to generate fi values, if scaled to range from 0

to 1.

The Variant Effect Scoring Tool is a Random Forest classifier,

trained with the CHASM software suite’s Classifier Pack and

SNVBox [38]. The Forest contains 1000 decision trees. The

positive class of 45,000+ missense variants is taken from the

Human Gene Mutation Database (HGMD) [39]. The negative

class of 45,000+ missense variants is randomly selected from

variants validated by the 1000genomes project [40] in the SNP135

table of the UCSC Genome Browser database [41]. Each missense

variant is represented by 86 features in SNVBox, including

conservation scores, amino acid residue substitution scores,

UniProtKB annotations [42], and predicted local protein struc-

ture.

Allele-frequency-based scores. For each vi, we estimate its

mean population allele frequency hi as follows:

E½hi�~
xA

i zxU
i z1

2Nz2
ð15Þ

where xA
i and xU

i are allele counts of variant vi in cases and

controls, respectively; N is the number of individuals in both cases

and controls; and the constants are pseudocounts from a beta

prior.

Simulation framework
Simulated case-control studies are generated using two demo-

graphic growth models, eight disease etiologies, and a stochastic

model of genotype-phenotype association.

Generating genomic populations. The general Wright-

Fisher model/forward population genetic simulation tool

SFS_code [43] is used to generate 100 effective genomic

populations and to sample 1,000,000 haplotypes per population.

As in [13], the simulated haplotypes in each population are

randomly paired to generate 500,000 diploid individuals. Two

demographic growth structures are used: an exponential growth

model fitted to deep resequencing data from European Americans

[19] and a simple bottleneck model fitted to whole-genome

polymorphism data from African-Americans [44]. For the

exponential growth demographic model, distribution of fitness effects

of new mutations (DFE) is modeled with a two-component gamma

mixture (similar to [19]). For the simple bottleneck model, DFE

was modeled as described in [44] (Text S1:Demographic Models).

Following [19], the mutation rate is set to 1:8|10{8 per

generation for all simulations.

Generating phenotypic traits for individuals with a single

causal gene. The individuals in a population are then
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associated with a quantitative phenotypic trait, which we assume

drives a disease, so that individuals with high values of the trait will

have the disease and those with low values of the trait will not.

Eight possible disease etiologies are considered (Table 1). Each

etiology is defined by properties of its causal variants. Variants can

be rare, low frequency, or common. They can occur only in key

functional regions. They can have small or large effects (value of k
in Equation 17). Protective modifier variants may or may not be

present. In this work, only coding, non-synonymous variants are

considered as causal or protective for all etiologies. (However,

disease etiologies that consider silent variants, which impact gene

regulation, could also be defined.) For etiologies with key region

variants, we used haplotypes that contained multiple coding

segments (100 segments, each 30 bases long). Otherwise haplo-

types contained a single coding segment of 1500 bases.

To generate the phenotypic traits for the genomic populations,

we select a disease etiology and a population that contains variants

meeting the criteria for causality in that etiology (Table 1).

Next the quantitative disease trait QT is generated for each

individual in the population, using an approach based on [19].

Trait values are drawn from Gaussian distributions, such that

individuals with no causal variants have

QT*N(m,s),(m,s)~(0,1): ð16Þ

Individuals with n causal variants have

QT*N(mznks,s),(m,s)~(0,1): ð17Þ

where ks is the mean shift in trait value (the shift per variant) for

an individual.

To match the expected effect size of significant common and

rare variants in GWAS, effect sizes of 0:1s for common

variants (Text S1: Effect size of common variants) and

0:5s{1:0s for rare variants are used. The strongest effects

are 1:0s for rare variants in Key Regions. We assume that

these variants occur at functionally important positions and

that in a gene of interest, they are unlikely to occur more than

once in a single individual. Our choice of effect size is

somewhat larger than that used by Kryukov et al. [19], who use

0:25s{0:5s for rare variants. To account for heterogeneity

within a particular disease etiology, effect size can be 0 for a

designated fraction of causal variants.

Case-control study generation. At this stage, each popula-

tion consists of genomic individuals, each with a real-valued

quantitative trait. To construct the case-control studies, an

extreme phenotype model is used. Disease prevalence is set at

1%, i.e., the 1% of individuals in the selected population with the

highest values of QT are considered affected and the 25% of

individuals with the lowest values of QT unaffected.

Case-control studies are generated by sampling without

replacement from affected and unaffected groups in a population.

Individuals with intermediate phenotype values are not included in

case-control studies. The random process used to generate QT
(Generating phenotypic traits for individuals with a single causal

gene) ensures varied penetrance and phenocopy rates in each case-

control study, e.g., some individuals carrying deleterious variants

are not affected, while some with no deleterious variants are

affected.

Null case-control study. A null case-control sample is also

generated, with no disease etiology, in which the phenotypic trait

is drawn from a standard normal distribution for every individual

in the sample.

Generalization to multiple genes. For a scenario in which

the functional group of interest is a gene set e.g., involved in a

pathway or biological process, we construct a new population of

500,000 individuals, in which each individual has multiple genes.

This population is created by sampling genes from the diploid

gene populations generated previously (Generating genomic

populations). Next, we specify a gene set size and fraction of

genes in the gene set that contain causal variants. A disease

etiology is then randomly selected for each gene that contains

causal variants. Finally, the phenotypic trait for each individual in

the population is generated using Equations 16 and 17. Gene set

case-control studies were generated with the same protocol as for

single causal genes.

Supporting Information

Figure S1 Power estimates for BOMP, VT, SKAT, KBAC for

case-control study with 10,000 individuals. (KBAC1P = minor

allele frequency defined as v1%, KBAC5P = minor allele

frequency defined as v5%). Each column represents power

estimates for each method, based on 250 simulated case-control

studies. All case-control studies had 10,000 genomic individuals,

each with a single gene. AA = the case-control studies were drawn

from gene populations generated with an African-American

simple bottleneck demographic model. EA = the case-control

studies were drawn from gene populations generated with a

European-American exponential growth demographic model. The

eight variant causality (disease etiology) models are defined in

Table 1. Since the European-American demographic model does

not account for common or protective variants, etiologies

involving common or protective variants were only considered

for the African-American demographic model.

(PDF)

Figure S2 Distributions of allele frequencies and raw allele

counts in simulated European-American and African-American

populations. The European-American population consists almost

entirely of rare variants, while the African-American population

contains a wider range of rare, low-frequency, and common

variants. Percentage of variants with allele frequencies and raw

allele counts in the designated ranges are shown. Because w99%
of European-American allele frequencies are v0:1%, we include a

blow-up of frequencies w0:1%, which range from 0.05% to 0.2%.

Demographic models shown in Figure S11.

(PDF)

Figure S3 Nine multinomial distributions used to construct sets

of multiple candidate genes for case-control studies. Each

multinomial distribution is named for its dominant disease

etiology.

(PDF)

Figure S4 Power of position distribution statistics compared to

burden methods and SKAT. Burden tests outperform the position

distribution statistic when causal variants are rare and are not clustered,

as in our simulations of Rare Variant disease etiology and European-

American demographic. The position distribution test outperforms

burden tests when the number of rare variants is similar in cases and

controls, but where cases and controls differ with respect to the position

distribution of the variants, as in simulations of Key Region Variant

disease etiology and European-American demographic. Both collaps-

ing burden and position distribution tests outperform SKAT when

causal variants are very rare. RareEA = rare variant disease etiology

(Table 1) and European-American demographic model. KeyRegio-

nEA = key region variant disease etiology (Table 1) and European-
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American demographic model. Power shown on Y-axis. Simulations

with 10,000 samples are shown.

(PDF)

Figure S5 Q-Q plot of BOMP P-values for all genes in the

Bipolar case-control study. The plot shows no evidence of heavy

skew or heavy tails, indicating that there is no systematic bias in

our analysis. Empirical P-values are below the line because the

BOMP statistic is not continuous for genes with few variants in

only a few samples, leading to conservative P-values.

(PNG)

Figure S6 PCA plot showing the overlap of bipolar samples and

controls sequenced during rounds 1 and 2. Plot obtained using

EIGENSTRAT [28], where the first and second components of

the model (PC1 and PC2, respectively) are shown. The analysis

does not show significant differences in the nature or frequency of

variants identified in the two rounds. Round 1 = Nimblegen v1.0

and Illumina GAII, Round 2 = Nimblegen v2.0 and Illumina

HiSeq2000.

(PNG)

Figure S7 Example of how our simulations capture genetic

heterogeneity in complex disease. Each horizontal grid line

represents a genomic individual. (Cases and controls shown

separately.) Each vertical gridline represents a gene. Causal

variants (both deleterious and protective) are shown as triangles.

Different case individuals have different patterns of causal variants

and the allele frequencies of the variants range from rare (1 allele)

to common (190 alleles). Causal variants are also observed in the

control individuals. Type = Downward pointing triangles are

deleterious variants, upward pointing triangles are protective

variants. (200 genomic individuals from African-American demo-

graphic model are shown).

(PDF)

Figure S8 Flow chart for calculation of mutation burden

statistic. The statistic is first calculated from empirical data (by

following the blue and black arrows). The null mutation burden

statistics are calculated by following the red and black arrows. Key

steps in the calculation are: computing the burden for each

individual; sorting the individual burdens into a ranked list, where

m denotes list rank; selecting a candidate burden threshold;

computing maximum likelihood estimates of Bernoulli parameters

at this threshold; computing the LLR (log-likelihood ratio) with

these parameters. Candidate burden thresholds are iteratively

tested and the threshold yielding the largest LLR is returned. To

generate the null distribution, case-control labels are repeatedly

permuted and the key steps are followed to compute one point in

the null. The permuted null distribution is estimated by repeating

steps 1–4 10,000 times (or user-adjusted value) and used to

compute the p-value for the statistic.

(PDF)

Figure S9 Window and sequence segmentations. The mutation

position distribution statistic requires a segmentation for a

sequence of interest (e.g., a gene). We generate candidate

segmentations by selecting a window size s and allowing a series

of possible offsets, based on a selected shift increment t. In this

example, we illustrate the eight possible window segmentations of

a gene with 24 codons (represented by rectangles), using a window

size of 8 and a shift increment of 1.

(PDF)

Figure S10 Flow chart for calculation of position distribution

statistic. The statistic is first calculated from empirical data (by

following the blue and black arrows). The null position distribution

statistics are calculated by following the red and black arrows. Key

steps in the calculation are: choice of (user-selected) window sizes s
and shift increment t to generate a set of gene segmentations (Each

unique segmentation is defined by s, t, and shift, which represents

the current segmentation offset); estimation of d parameters for

each of three multinomial distributions – cases, controls, and cases

and controls together – (for a segmentation with d windows);

computation of log likelihood ratio; finding the largest log

likelihood ratio for all segmentations. To generate the null

distribution, case-control labels are repeatedly permuted and the

key steps are followed to compute one point in the null. The

permuted null distribution is estimated by repeating steps 1–4

10,000 times (or user-adjusted value) and used to compute the p-

value for the statistic.

(PDF)

Figure S11 Demographic models of European-American and

African-American populations. The models were fit to European-

American [19] and African-American sequencing data [44]

(PDF)

Table S1 BOMP, VT, and SKAT comparison. Approaches to

variant collapsing, variant importance, and choice of statistical

framework define differences and similarities among BOMP, VT,

and SKAT. A. Variant collapsing strategies. VT and BOMP

burden both collapse variants across a genomic region. SKAT

does not do collapsing and considers variants one at a time.

BOMP position distribution collapses variants across local

windows over a genomic region. These different collapsing

strategies are illustrated in a toy example in Figure 8 of our main

manuscript. B. Variant importance. All methods assume that some

variants are more important than others. This idea is implemented

by either filtering and/or weighting variants. C. Statistical

framework. VT and BOMP burden both use a summary statistic

to compare burden in cases and controls and assess the statistical

significance of the statistic with permutation. For VT, individual

burdens are summed over the case group and over the control

group and summarized by the difference in Z-score between the

two groups. For BOMP burden, individual burden is dichoto-

mized for each sample, by selecting a burden threshold. The

probability of exceeding the burden threshold for cases and for

controls is estimated. The difference between the two is compared

with a log-likelihood ratio. For SKAT, phenotypic labels (case or

control) are directly regressed for each variant. The coefficient for

each variant is tested by comparing it to 0, with a variance-

component score test. Statistical significance is calculated analyt-

ically. For BOMP position distribution, the difference of

distributions of variants over local windows between cases and

controls is modeled by multinomial likelihood and then summa-

rized by a log-likelihood ratio.

(PDF)

Text S1 Supplementary Material.

(PDF)

Acknowledgments

Thanks to Drs. Jonathan Cohen and Helen Hobbs for providing us with

data from the Dallas Heart Study on the ANGTPL genes.

Author Contributions

Conceived and designed the experiments: Y-CC RK. Performed the

experiments: Y-CC HC MP. Analyzed the data: Y-CC RK HC MP PPZ.

Contributed reagents/materials/analysis tools: Y-CC RK HC JP MK FSG

MP PPZ WRM JBP. Wrote the paper: RK Y-CC MP PPZ HC.

Hybrid Likelihood Model for Disease Association

PLOS Genetics | www.plosgenetics.org 17 January 2013 | Volume 9 | Issue 1 | e1003224



References

1. Stitziel NO, Kiezun A, Sunyaev S (2011) Computational and statistical

approaches to analyzing variants identified by exome sequencing. Genome Biol

12: 227.

2. Majewski J, Schwartzentruber J, Lalonde E, Montpetit A, Jabado N (2011) What

can exome sequencing do for you? J Med Genet 48: 580–589.

3. Reich DE, Lander ES (2001) On the allelic spectrum of human disease. Trends

Genet 17: 502–510.

4. Bodmer W, Bonilla C (2008) Common and rare variants in multifactorial

susceptibility to common diseases. Nat Genet 40: 695–701.

5. Witte JS (2010) Genome-wide association studies and beyond. Annu Rev Public

Health 31: 9–20 4 p following 20.

6. Bansal V, Libiger O, Torkamani A, Schork NJ (2010) Statistical analysis

strategies for association studies involving rare variants. Nat Rev Genet 11: 773–

785.

7. Morgenthaler S, Thilly WG (2007) A strategy to discover genes that carry multi-

allelic or mono-allelic risk for common diseases: a cohort allelic sums test (cast).

Mutat Res 615: 28–56.

8. Li B, Leal SM (2008) Methods for detecting associations with rare variants for

common diseases: application to analysis of sequence data. Am J Hum Genet 83:

311–321.

9. Madsen BE, Browning SR (2009) A groupwise association test for rare mutations

using a weighted sum statistic. PLoS Genet 5: e1000384.

10. Price AL, Kryukov GV, de Bakker PIW, Purcell SM, Staples J, et al. (2010)

Pooled association tests for rare variants in exon-resequencing studies. Am J Hum

Genet 86: 832–838.

11. Han F, Pan W (2010) A data-adaptive sum test for disease association with

multiple common or rare variants. Hum Hered 70: 42–54.

12. Wu MC, Lee S, Cai T, Li Y, Boehnke M, et al. (2011) Rare-variant association

testing for sequencing data with the sequence kernel association test. Am J Hum

Genet 89: 82–93.

13. Liu DJ, Leal SM (2011) A exible likelihood framework for detecting associations

with secondary phenotypes in genetic studies using selected samples: application

to sequence data. Eur J Hum Genet.

14. Kinnamon DD, Hershberger RE, Martin ER (2012) Reconsidering association

testing methods using single-variant test statistics as alternatives to pooling tests

for sequence data with rare variants. PLoS One 7: e30238.

15. Bansal V, Libiger O, Torkamani A, Schork NJ (2011) An application and

empirical comparison of statistical analysis methods for associating rare variants

to a complex phenotype. Pac Symp Biocomput : 76–87.

16. Ladouceur M, Dastani Z, Aulchenko YS, Greenwood CMT, Richards JB (2012)

The empirical power of rare variant association methods: results from sanger

sequencing in 1,998 individuals. PLoS Genet 8: e1002496.

17. Romeo S, Yin W, Kozlitina J, Pennacchio LA, Boerwinkle E, et al. (2009) Rare

loss-of-function mutations in angptl family members contribute to plasma

triglyceride levels in humans. J Clin Invest 119: 70–79.

18. Bezchlibnyk Y, Young LT (2002) The neurobiology of bipolar disorder: focus on

signal transduction pathways and the regulation of gene expression.

Can J Psychiatry 47: 135–148.

19. Kryukov GV, Shpunt A, Stamatoyannopoulos JA, Sunyaev SR (2009) Power of

deep, all-exon resequencing for discovery of human trait genes. Proc Natl Acad

Sci U S A 106: 3871–3876.

20. Liu DJ, Leal SM (2010) A novel adaptive method for the analysis of next-

generation sequencing data to detect complex trait associations with rare

variants due to gene main effects and interactions. PLoS Genet 6: e1001156.

21. Liu DJ, Leal SM (2010) Replication strategies for rare variant complex trait

association studies via next-generation sequencing. Am J Hum Genet 87: 790–

801.

22. King CR, Rathouz PJ, Nicolae DL (2010) An evolutionary framework for

association testing in resequencing studies. PLoS Genet 6: e1001202.

23. Yi N, Liu N, Zhi D, Li J (2011) Hierarchical generalized linear models for

multiple groups of rare and common variants: jointly estimating group and
individual-variant effects. PLoS Genet 7: e1002382.

24. Li H, Durbin R (2010) Fast and accurate long-read alignment with burrows-
wheeler transform. Bioinformatics 26: 589–595.

25. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, et al. (2010) The

genome analysis toolkit: a mapreduce framework for analyzing next-generation
dna sequencing data. Genome Res 20: 1297–1303.

26. Pirooznia M, Wang T, Avramopoulos D, Valle D, Thomas G, et al. (2012)
Synaptomedb: an ontology-based knowledgebase for synaptic genes. Bioinfor-

matics 28: 897–899.

27. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdtir H, Tamayo P, et al.
(2011) Molecular signatures database (msigdb) 3.0. Bioinformatics 27: 1739–

1740.
28. Price AL, Patterson NJ, Plenge RM,Weinblatt ME, Shadick NA, et al. (2006)

Principal components analysis corrects for stratification in genome-wide
association studies. Nat Genet 38: 904–909.

29. Fridley BL, Biernacka JM (2011) Gene set analysis of snp data: benefits,

challenges, and future directions. Eur J Hum Genet 19: 837–843.
30. Thomas GM, Huganir RL (2004) Mapk cascade signalling and synaptic

plasticity. Nat Rev Neurosci 5: 173–183.
31. Chen G, Manji HK (2006) The extracellular signal-regulated kinase pathway: an

emerging promis-ing target for mood stabilizers. Curr Opin Psychiatry 19: 313–

323.
32. Lee KY, Ahn YM, Joo EJ, Chang JS, Kim YS (2006) The association of dusp6

gene with schizophre-nia and bipolar disorder: its possible role in the
development of bipolar disorder. Mol Psychiatry 11: 425–426.

33. Kim SH, Shin SY, Lee KY, Joo EJ, Song JY, et al. (2012) The genetic
association of dusp6 with bipolar disorder and its effect on erk activity. Prog

Neuropsychopharmacol Biol Psychiatry 37: 41–49.

34. Sklar P, Ripke S, Scott LJ, Andreassen OA, Cichon S, et al. (2011) Large-scale
genome-wide association analysis of bipolar disorder identifies a new

susceptibility locus near odz4. Nat Genet 43: 977–983.
35. Rao JS, Lee HJ, Rapoport SI, Bazinet RP (2008) Mode of action of mood

stabilizers: is the arachidonic acid cascade a common target? Mol Psychiatry 13:

585–596.
36. Amit Y, Geman D (1997) Shape quantization and recognition with randomized

trees. Neural Computation 9: 1545–1588.
37. Breiman L (2001) Random forest. Machine Learning 45: 5–32.

38. Wong WC, Kim D, Carter H, Diekhans M, Ryan MC, et al. (2011) Chasm and
snvbox: toolkit for detecting biologically important single nucleotide mutations in

cancer. Bioinformatics 27: 2147–2148.

39. Stenson PD, Ball EV, Howells K, Phillips AD, Mort M, et al. (2009) The human
gene mutation database: providing a comprehensive central mutation database

for molecular diagnostics and personalized genomics. Hum Genomics 4: 69–72.
40. Durbin R, Altshuler D, Abecasis G, Bentley D, Chakravarti A, et al. (2010) A

map of human genome variation from population-scale sequencing. Nature 467:

1061–1073.
41. Dreszer TR, Karolchik D, Zweig AS, Hinrichs AS, Raney BJ, et al. (2012) The

ucsc genome browser database: extensions and updates 2011. Nucleic Acids Res
40: D918–D923.

42. Consortium U (2011) Ongoing and future developments at the universal protein
resource. Nucleic Acids Res 39: D214–D219.

43. Hernandez RD (2008) A exible forward simulator for populations subject to

selection and demog-raphy. Bioinformatics 24: 2786–2787.
44. Boyko AR, Williamson SH, Indap AR, Degenhardt JD, Hernandez RD, et al.

(2008) Assessing the evolutionary impact of amino acid mutations in the human
genome. PLoS Genet 4: e1000083.

45. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: A practical

and powerful approach to multiple testing. Journal of the Royal Statistical
Society Series B (Methodological) 57: pp. 289–300.

Hybrid Likelihood Model for Disease Association

PLOS Genetics | www.plosgenetics.org 18 January 2013 | Volume 9 | Issue 1 | e1003224


