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Abstract

We have generated and made publicly available two very large networks of molecular interactions: 49,493 mouse-specific
and 52,518 human-specific interactions. These networks were generated through automated analysis of 368,331 full-text
research articles and 8,039,972 article abstracts from the PubMed database, using the GeneWays system. Our networks
cover a wide spectrum of molecular interactions, such as bind, phosphorylate, glycosylate, and activate; 207 of these
interaction types occur more than 1,000 times in our unfiltered, multi-species data set. Because mouse and human genes
are linked through an orthological relationship, human and mouse networks are amenable to straightforward, joint
computational analysis. Using our newly generated networks and known associations between mouse genes and cerebellar
malformation phenotypes, we predicted a number of new associations between genes and five cerebellar phenotypes
(small cerebellum, absent cerebellum, cerebellar degeneration, abnormal foliation, and abnormal vermis). Using a battery of
statistical tests, we showed that genes that are associated with cerebellar phenotypes tend to form compact network
clusters. Further, we observed that cerebellar malformation phenotypes tend to be associated with highly connected genes.
This tendency was stronger for developmental phenotypes and weaker for cerebellar degeneration.
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Introduction

A quarter of century ago a (former) Hewlett-Packard executive

famously complained: ‘‘If only HP knew what HP knows’’ [1].

This inability to access invaluable ‘‘collective wisdom’’ is by no

means specific to a single community. It is felt acutely in every

present-day endeavor involving multi-human exploration of

complex phenomena. The problem is especially dramatic in the

case of the explosively expanding molecular biology literature.

There are thousands of existing biological periodicals and millions

of potentially useful publications. New journals are emerging on a

weekly basis and new articles accumulate as if deposited by an

avalanche.

Understandably, no omniscient repository exists that lists all

known (published) molecular events (such as protein–protein

interactions) detected in human or murine cells. Although current

text-mining tools are imperfect in their extraction accuracy and

recall, they do help us to process huge amounts of unstructured

text in nearly real time (which humans cannot do), moving us a bit

closer to total awareness about the current state of knowledge [2].

Here we describe and make available two large new data sets

derived through mining one-third of a million full-text research

articles and a complete and up-to-date PubMed collection of

journal abstracts. These data sets comprise mouse- and human-

specific molecular interactions between genes and/or their

products. We present here only the subset of text-mined

interaction assertions that involve gene or protein names that we

can link to unique identifiers in the standard sequence databases.

This choice is determined by the goal of making our data

immediately useful for applications that would have difficulty

handling ambiguity in gene identity. The complete data are

available through the Columbia University (http://wiki.c2b2.

columbia.edu/workbench) and the University of Chicago (http://

anya.igsb.anl.gov/genewaysApp).

We use our newly generated data to analyze genetic variation

related to abnormal cerebellum phenotypes in mouse and human.

Our analysis results in a compact set of statistically significant

predictions that can be tested experimentally.

Results/Discussion

Gene-centric networks
Text mining with the GeneWays system [3,4] allows us to

capture multiple classes of relationships among biological entities,

such as ‘‘A phosphorylates B,’’ ‘‘C activates D,’’ and ‘‘E is a part of

F.’’ Table S1 displays the full list of relations that we can extract

currently. The system also can recognize multiple classes of

biological entities (terms) mentioned in the text: genes, proteins,

mRNAs, small molecules, processes (such as cell death and

proliferation), tissues, cell types, and phenotypes (such as diabetes
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and hypertension). While one can immediately think of a wide

spectrum of applications where the full diversity of entities must be

used, most of the current experimental methods are either gene-

centric or genetic loci-centric (e.g., gene expression arrays, ChIP-

on-chip, yeast two-hybrid, and genetic linkage or association data).

For this reason, the molecular networks we present here are

gene-centric. This means that a given node in the network

represents the union of the gene and its products (mRNA(s) and

protein(s), if any); we exclude all other types of nodes (such as small

molecules and phenotypes). Our practice of collapsing multiple

nodes to a single node (gene plus mRNA plus protein) does not

lead to a loss of information, because most of the physical

interactions are defined for specific types of molecules. For

example, in our restricted network relationship, ‘‘phosphorylate’’

can link only a pair of proteins, one acting as a protein kinase and

another as the kinase’s substrate, but not a gene and an mRNA.

Furthermore, each original sentence used to extract the relation is

preserved in the data set, along with the extracted fact and the

reference to the appropriate paper, so that additional disambig-

uation can be conducted later, if required. We refer to each pair of

extracted relationships and the original snippet of text as an action

mention, as opposed to action, which is a relation disconnected from

the source text and potentially mapped to multiple distinct action

mentions.

A single pair of nodes in our text-mined network can be

connected with multiple edges. These edges (interactions) can be

undirected (we treat ‘‘A binds B’’ and ‘‘B binds A’’ as identical) or

directed (‘‘C activates D’’ is not the same as ‘‘D activates C’’). We

also subdivide edge types into two groups: logical and physical.

Logical interactions include a family of regulatory relations that

can be either direct (physical contact between two molecules) or

indirect (mediated by one or more other molecules), such as

activate, inhibit, and regulate (see Table S1). Physical interactions are

by definition direct, such as methylate, bind, glycosylate, and cleave (see

Table S1). The distinction between physical and logical interac-

tions is important in understanding the data sets that we describe

here. GeneWays ontology [5] includes a number of relationships

between molecules that are neither physical nor logical interac-

tions (for example, A is an ortholog of B, or C is part of D). We call this

class of relations other.

Reducing the noise level
In typical free text, gene names are dissociated from any

references to gene-annotation databases. Furthermore, the ‘‘raw’’

text-mined molecular-interaction data are vast (GeneWays 7.0

comprises more than 8 million action mentions) but rather noisy:

the error rate is close to 35% [6]. To get to smaller, cleaner,

species-specific networks, we performed the following steps.

First, out of the complete network we retained only those gene

names that can be linked to either human or mouse sequence

database entries (normalization step) (see ‘‘Mapping names to

genes’’ in the Text S1). Second, we filtered out relationships that

are not molecular interactions and collapsed multiple edges

between two nodes into a single edge. Third, we weeded out

‘‘raw’’ text-mined statements that did not meet our precision

threshold (precision is defined as the proportion of correctly

extracted statements among all those automatically extracted by a

system). The third step was conducted automatically, using our

automated curator engine [6], which has near-human curation

precision (see the ‘‘Quality-of-extraction assessment’’ section in the

Text S1.).

The first step resulted in the H70 and M70 networks (human-

and mouse-specific GeneWays 7.0), in which nodes can be

connected by multiple directed or undirected edges. The second

step led to generation of the H70-PL and M70-PL networks (PL

stands for physical and logical), where direction of edges was

abandoned. The third step, assigned a precision threshold of 0.9

(90% of action mentions are correct), produced even smaller data

sets, H70-PL0.9 and M70-PL0.9. Table 1 provides an overview of

these networks at different levels of granularity. All intermediate

data sets in this pipeline of data filtering are available for third-

party computational analyses (see Datasets S2 to S5)

In addition, we produced networks with non-redundant edges

and solely physical interactions, H70-P0.9 and M70-P0.9. As in

the previous data sets, to filter these networks we used a precision

threshold of 0.9.

Evaluating the precision of the data
To evaluate the quality of the H70-PL0.9 network, we chose

two random sets of logical and physical action mentions, a

hundred mentions each, and asked an expert to evaluate their

correctness. The expert commented on two steps of the process:

whether the action mention is correctly extracted by the Gene-

Ways system and, if the answer was ‘‘yes,’’ whether the

corresponding gene names were correctly mapped to sequence

identifiers. This allowed us to measure the absolute precision of the

H70-PL0.9 network, the precision of term mapping, and the

overall precision over the information extraction and term

mapping stages.

The physical action mentions set indicated a precision of 0.8,

with a confidence interval (CI) of [0.71, 0.87]. (We use CI at the

95% level of significance consistently throughout this paper.) The

logical action mentions set showed a higher precision of 0.91, CI:

[0.84, 0.95]. Because in our data set the number of logical

interactions exceeds the number of physical interactions by more

than two-to-one (2.49:1), the overall precision of the HL70-PL0.9

data set is close to the target value of 0.9 (0.88). Term-to-sequence

mapping precision was 0.89 (CI: [0.84, 0.93]) and 0.87 (CI: [0.81,

0.91]) for physical and logical action mentions, respectively (see

Table 2).

Author Summary

We described and made publicly available the largest
existing set of text-mined statements; we also presented
its application to an important biological problem. We
have extracted and purified two large molecular networks,
one for humans and one for mouse. We characterized the
data sets, described the methods we used to generate
them, and presented a novel biological application of the
networks to study the etiology of five cerebellum
phenotypes. We demonstrated quantitatively that the
development-related malformations differ in their sys-
tem-level properties from degeneration-related genes. We
showed that there is a high degree of overlap among the
genes implicated in the developmental malformations,
that these genes have a strong tendency to be highly
connected within the molecular network, and that they
also tend to be clustered together, forming a compact
molecular network neighborhood. In contrast, the genes
involved in malformations due to degeneration do not
have a high degree of connectivity, are not strongly
clustered in the network, and do not overlap significantly
with the development related genes. In addition, taking
into account the above-mentioned system-level properties
and the gene-specific network interactions, we made
highly confident predictions about novel genes that are
likely also involved in the etiology of the analyzed
phenotypes.

Text-Mined Interactomes of Mice and Humans
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Despite the favorable precision of the GeneWays extraction and

the per-term mapping, the precision over both steps is less

impressive: 0.66 (CI: [0.56, 0.74]) and 0.69 (CI: [0.59, 0.77]) for

the physical and logical datasets, respectively. The reason for the

lower overall result is the multiplicative calculus of the probability

of not making an error: The overall precision of a term-mapped

logical action is a product of the information extraction precision

and the precision of two independent term mappings:

0.9160.8760.87 = 0.69.

Thus far we have evaluated the quality of extraction and

mapping of action mentions. Recall that the same relation (action)

between a pair of genes can be independently extracted from

multiple sentences, generating distinct action mentions. Intuitively,

the precision of an action (because an action is correctly extracted

if at least one of its associated action mentions is correctly

extracted) should be at least as high (or higher) than precision of

the corresponding action mentions. To evaluate this precision, we

sampled a hundred random actions from the H70-PL0.9 dataset,

asked an expert to evaluate them at the levels of extraction and

term mapping, and obtained an estimate of action-level two-stage

precision of 0.74, CI: [0.65, 0.82]. This estimate is higher than the

estimate of two-stage action mention precision (0.66 or 0.69). We

believe that the action-level precision is more relevant to real-life

applications in which scientists tend to care primarily about the

precision of actions (statements distilled from multiple sources)

rather than about their individual instances linked to text.

Note that the precision discussed in this section reflects only

properties of our information extraction system and not the verity

of published data.

Comparison with HPRD
Several publicly accessible databases generated by manual

analysis of research literature are available, including the Human

Protein Reference Database (HPRD) [7,8], Reactome [9], the

Biomolecular Interaction Network Database [10], and the

Database of Interacting Proteins [11]. These four data sets, along

Table 1. Molecular networks and their properties.

Network tested
in our analysis How each network was generated

Ordered
relations
between
genes

Node
type

Node
count Interaction count

Action mention count
(instances of relations
mentioned in text)

GW70 Text-mining Y Name 1,759,377 5,934,024 8,424,449

H70 Filtering of GW70: all human-specific relations Y Gene 9,501 223,425 431,326

H70-PL Filtering of GW70: all physical and logical
human-specific interactions

N Gene 8,186 63,449
L: 42,791
P: 8,934
L,P: 11,724

306,531

H70-PL0.9 Filtering of GW70: physical and logical
human-specific interactions, 90% precision

N Gene 7,793 52,518
L: 35,811
P: 7,385
L,P: 9,322

261,733

H70-P0.9 Filtering of GW70: physical human-specific
interactions, 90% precision

N Gene 5,453 16,707 61,826

M70 Filtering of GW70: all mouse-specific relations Y Gene 8,049 250,774 492,122

M70-PL Filtering of GW70: all physical and logical
mouse-specific interactions

N Gene 7,975 70,445
L: 47,723
P: 9,586
L,P: 13,136

357,958

M70-PL0.9 Filtering of GW70: physical and logical
mouse-specific interactions, 90% precision

N Gene 7,600 57,786
L: 39,534
P: 7,860
L,P: 10,392

305,446

M70-P0.9 Filtering of GW70: physical mouse-specific
interactions, 90% precision

N Gene 5,356 18,252 69,360

HRPD Manual curation of literature [7] N Gene 9,460 37,081 ,45,000

doi:10.1371/journal.pcbi.1000559.t001

Table 2. Evaluation of the precision of the H70-PL0.9 dataset.

Evaluation Set Information extraction precision Gene name mapping precision Overall precision

Physical
100 action mentions from H70-PL0.9

0.80 (0.71, 0.87)
80/100 correctly extracted

0.89 (0.84, 0.93)
143/160 terms correctly mapped

0.66 (0.56, 0.74)
66/100 correctly extracted and mapped

Logical
100 action mentions from H70-PL0.9

0.91 (0.84, 0.95)
91/100 correctly extracted

0.87 (0.81, 0.91)
158/182 terms correctly mapped

0.69 (0.59, 0.77)
69/100 correctly extracted and mapped

100 physical and 100 logical action mentions were evaluated. The two steps of processing—GeneWays system extraction and the mapping of gene names—were
evaluated separately in addition to the evaluation of the overall process.
doi:10.1371/journal.pcbi.1000559.t002

Text-Mined Interactomes of Mice and Humans
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with a few others, were carefully compared in a recent study [12].

HPRD is by far the largest of the four.

As another quality control measure for our study, we compared

our data with HPRD 7. The HPRD 7 network [7,8] comprises

9,460 nodes (unique gene identifiers) and 37,081 edges, compared

to 7,793 nodes and 52,518 edges in the H70-PL0.9 network. The

H70-P0.9 network comprises 5,453 nodes and 16,707 edges; the

node-wise and the edge-wise overlaps of H70-P0.9 with the HPRD

networks are 4,543 and 4,877, respectively.

The HPRD and H70-PL0.9 networks share 5,945 unique gene-

specific nodes. Out of the possible maximum of 17,668,540

interaction pairs between these nodes, the HPRD network has

23,662 and the H70-PL0.9 covers 43,496. We would expect a

random overlap of about 58 interactions, while in reality we

observe 7,577. The expected and the observed values are so far

apart that the p-value (obtained with a hyper-geometric overlap

test) is effectively zero—that is, the apparent overlap between the

two sets of data is extremely non-random.

Gold standard evaluation
Because human-curated databases may still harbor errors [13],

we also compared our literature-mined dataset to a small set of

high quality interactions produced by careful manual verification

of a set of interactions shared by several human-curated databases

[13].

In a recent study, Cusick et al. sought to evaluate the ultimate

(truth) quality of the molecular interaction datasets generated via

manual curation of the literature [13]. The authors selected two

sets of curated interactions: one consisted of interactions that were

curated in multiple databases and that were supported by multiple

manuscripts and the other consisted of interactions supported by a

single publication. They then carefully recurated the selected

interactions and were able to estimate the corresponding error

rates. As a byproduct of the evaluation, the authors produced two

relatively small datasets, LC-multiple and LC-single, with 110 and

92 interacting pairs respectively, of exceptionally high-quality

curated interactions. The LC-multiple set contained the interac-

tions that were supported by multiple manuscripts even after the

recuration and the LC-single set contained the interactions with

one supporting manuscript that was confirmed during the

recuration. The LC-multiple set subsequently was used as a gold

standard for the evaluation of high-throughput yeast two-hybrid

assays in a second manuscript by the same group, in which an

additional random set of 188 supposedly non-interacting pairs (the

Negative set) was selected [14].

We used the LC-multiple, LC-single, and Negative sets as

comparison standards for our own literature-mined networks (see

Table 3). It is reassuring that our H70-PL network covers nearly

70% (75 out of 110 pairs) and that our most filtered human

network, H70-P0.9, covers more than 55% of the well-supported

interactions in the LC-multiple set. The more obscure interactions

from the LC-single set are not covered as well (i.e., H70-P0.9

contains about 20% of the LC-single set). However, given that we

have processed only a small portion of all of the scientific literature

with a system that highly favors precision over recall, being able to

recover 20% of the interactions supported by a single article is

surprisingly high. Finally, our networks do not contain any of the

interactions listed in the Negative set. For comparison, the last two

lines in Table 3 give the results for the two high-throughput assays

MAPPIT and Y2H-CCSB evaluated in Figure 2 of [14].

Precision versus recall
The performance of text-mining methods is commonly evaluated

using two metrics: precision and recall. For information-extraction

systems, precision is defined as the proportion of correctly extracted

statements among all those automatically extracted by a system.

The recall is the ratio between the number of statements correctly

extracted by the system and the total number of statements that can

be extracted from the original text by a hypothetically perfect

system. In a less than perfect system, recall and precision are

antagonistic: one is increased at the expense of the other.

In this study we favored precision at the expense of recall: We

explicitly used a statement precision threshold as a filtering

criterion. We also excluded actions with ambiguous gene names

and disqualified some 105 potentially useful instances of text-

mined intramolecular relations that fit neither physical nor logical

categories (such as contain and is a homolog of), thus worsening recall

and improving precision. In addition, we used only those actions

that involve either genes or their products (and no other entity

classes).

While our human-specific network, which unifies physical and

logical interactions (H70-PL0.9), is larger than HPRD 7, the

relationship is reversed for the physical-interaction (H70-P0.9)

data set and HPRD 7. This is because we filtered out from our

data numerous physical action mentions that did not pass our

precision threshold. (Note that HPRD 7 incorporates high-

throughput interaction data that is probably distinct from the

small-scale experimental data published in research papers, in

terms of error patterns.) Nevertheless, the HPRD 7 data sets and

our data sets are very different. The joint interaction coverage of

HPRD 7, H70-P0.9, and M70-P0.9 ortholog data sets is more

than twice as large as the coverage of HPRD 7 alone (Figure 1);

this is enough to merit the use of a union of these networks in

biological applications.

Because we are making the ‘‘raw’’ (unfiltered) statements

publicly available, anyone interested in using our data can apply

his/her own custom-made filtering process to achieve the desired

balance between recall and precision in the output.

Table 3. Overlap with the comparison standards.

Test Set

Network LC-multiple (110 pairs) LC-single (92 pairs) Negative (188 pairs)

H70-PL 75 28 0

H70-PL0.9 73 27 0

H70-P0.9 61 19 0

MAPPIT 19 N/A 2

Y2H-CCSB 15 N/A 0

doi:10.1371/journal.pcbi.1000559.t003

Text-Mined Interactomes of Mice and Humans
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Human and mouse networks
Two genes residing in genomes of distinct species can either

share a common origin (homology) or be unrelated. Homologs

come in at least in two flavors [15]: orthologs and paralogs. Two

genes in, say, human and mouse, are orthologs if they were

separated by a speciation event. If, in addition to speciation, an

intragenomic gene duplication occurred, separating two genes

from a common ancestral gene, they are paralogs. For example,

human and mouse embryonic b-globins are orthologs, but mouse

a-globin is a paralog of human b-globin.

Physical interactions between molecules are not immutable over

long evolutionary intervals [16]. Nevertheless, an interaction

between two proteins discovered in one species has a reasonable

chance of existing between orthologs of these proteins in another

species if the two species are closely related. Therefore, if we know

of interacting molecules in one species and can identify

orthologous molecules in another species, we can formulate

hypotheses about the existence of orthologous interactions in the

latter species. All such computationally formed hypotheses are

subject to experimental validation.

Mouse and human genomes are separated by more than 100

million years of independent evolution [17], but mouse genetics

and molecular biology are commonly used to understand human

phenotypes in health and disease. Therefore, we decided to

compile a molecular-interaction network summarizing the wealth

of knowledge for humans and mice. We used orthology-mapping

of human and mouse genes to connect the two networks.

(Reactome’s developers [9] used a similar strategy with their

manual compilation of data.) Such a network could potentially

have a multitude of practical applications.

We assembled our network by combining mouse- and human-

specific networks extracted from the biomedical literature using text-

mining tools. We used human-to-mouse gene orthology mapping

provided by the Mouse Genome Database [18,19]. Some of the mouse

interactions could not be mapped to corresponding human interactions

because at least one of the involved genes lacked known human

orthologs. We transferred by mouse-to-human orthology-mapping

49,493 and 16,317 interactions for physical-logical and physical

networks, respectively. These orthology-mapped interactions are

subsets of the 57,786 and 18,252 interactions in the physical-logical

and physical networks, respectively. Although a large number of

interactions occur both in humans and mice individually (see Figure 1),

the double-confirmed overlap constitutes only about a third of all

interactions in the union network (see Figure 1 A and B). Figure 1 C

shows a three-way Venn diagram for our text-mined interactomes

(human and mouse) and the HPRD dataset. Clearly, all three networks

contain a substantial number of unique interactions that merit their

joint consideration in biological applications (see Dataset S6).

To illustrate an application of our data to the analysis of

mammalian phenotypes, we performed mapping of mouse

cerebellar phenotypes (related to ataxia) to the three-data set

network.

Mapping ataxia phenotypes to the mouse-human
network

The word ataxia (atajia—‘‘lack of order’’), in its English usage,

refers to a lack of muscular coordination in an animal body.

Humans with ataxia often have difficulty walking, talking,

maintaining posture and balance, controlling eye movements,

holding and manipulating objects, gesturing, and even swallowing

food. In a mammalian brain, the cerebellum is predominantly

responsible for spatial and temporal coordination of complex

neuromuscular processes. Cerebellar function is also essential for

cognition sensory discrimination [20]. Most cases of ataxia are

associated with either environmental or genetic damage to this

brain region. The typical environmental triggers of ataxia include

head trauma, viral infections, and exposure to recreational or

medicinal poisons, such as alcohol, lithium carbonate, tranquiliz-

ers, antipsychotics, and the anticonvulsant carbamazepine.

Genetic factors include a diverse spectrum of genomic aberrations

that cause abnormal development and/or premature degeneration

of the cerebellum. Ataxia can be severely debilitating and,

unfortunately, the phenotype is reversible in only a minority of

cases (such as those caused by short-term alcohol intake).

Mouse and human geneticists who study brain phenotypes

typically group developmental malformations by the anatomical

structures that are affected. As brain topology in three-dimensional

space does not lend itself readily to verbal description, we provide

three projections of a typical mouse brain in Figure 2 (see also the

interactive model in Figure S1). Moving front-to-back in the

external view of the mouse brain, there are two olfactory bulbs

followed by hemispheres of cerebral cortex that are immediately

adjacent to the cerebellum and brainstem (see Figure 2 A–C). We

focus here on the cerebellum (literally, ‘‘little brain’’) that contains

involuted cortex with narrow leaf-like gyri (‘‘folia,’’ see Figures 3 A

and C). Like the brain itself, the cerebellum has two hemispheres

with a worm-like medial structure, the vermis, between them

(Figure 3 A and B).

In both humans and mice, a collection of genetic aberrations

exist that are known to predispose the bearer to specific cerebellar

abnormalities. For computational implementation it is convenient

to represent phenotypic variations of cerebellar structure with

hierarchically ordered categories in a mammalian phenotype (MP)

ontology [21]. We focused on five broad anatomical/cerebellar

causes of ataxia which can be observed as structural abnormalities

in brain imaging studies (such as MRI scans) or histological

analysis. These phenotypes are represented with MP concepts:

degeneration (MP:0000876), abnormal foliation (MP:0000857 and

MP:0000853), abnormal vermis (MP:0000864), small cerebellum/

Figure 1. Network interaction-overlaps. A. Overlap between the
human and mouse PL (physical and logical) networks. B. Overlap
between the human and mouse P (physical) networks. Interactions in A
and B are compared through gene orthology. C. Composition of the
union network (GeneWays human (H70-PL0.9), HPRD network, and
GeneWays mouse (M70-PL0.9) orthology).
doi:10.1371/journal.pcbi.1000559.g001

Text-Mined Interactomes of Mice and Humans
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cerebellar hypoplasia (MP:0000852 and MP:0000851), and absent

cerebellum (MP:0000850).

Cerebellar degeneration is abnormal death of cerebellar neurons—

the cerebellar folia become narrower over time and are separated

by irregular and wider spaces compared with those in a healthy

brain (see Figure 3 A). As with other major insults to the

cerebellum, degeneration reveals itself in abnormalities in body

balance, jerky movements of limbs, unsteady (wide-legged) gait,

and irregularities of speech (slurred or slow) and eye movement

(nystagmus, or rapid involuntary eye movements). Most defined

degenerative ataxias affect the fully mature cerebellum, but a small

subset of degenerative ataxias have a developmental onset [22].

Abnormal foliation typically involves the absence of some of the

cerebellar folia and irregular shape of those that are present. In

normal individuals, cerebellar foliation is stereotypical, with the

basic folial pattern conserved between mice and humans.

Disruption of foliation disrupts the topographical map of incoming

and outgoing neuronal connections [23].

An abnormal vermis is typically reduced (compressed and

distorted) compared with a normal one, or it can even be

completely missing (see Figure 3 A). Clinical outcome is variable

[24]. Dandy-Walker malformation is one of the well-known birth

defects in humans and mice that are defined by an abnormal

vermis. In addition to an aberrant vermis, Dandy-Walker

malformation frequently involves enlargement of the fourth brain

ventricle and an increase in fluid-filled space around the brain

[25]. It is not uncommon in clinical reports to find an abnormal

vermis coupled with other cerebellar malformations [26,27].

Small cerebellum, or cerebellar hypoplasia, refers to phenotypes in

which the cerebellum, while present, does not develop to normal

size (see Figure 3 A). In humans, cerebellar hypoplasia can lead to

delayed or undeveloped speech, difficulties with walking and

maintaining balance, mental retardation, floppy muscle tone,

nystagmus, and seizures. In its worst forms, cerebellar hypoplasia

can be completely debilitating and even lethal [28].

Absent cerebellum is infrequent in adult humans and mice, possibly

because in most cases it causes early death. Rarely, individuals are

only mildly affected. For example, a documented brain autopsy of

a 38-year-old individual who accidentally electrocuted himself

revealed a virtually absent cerebellum [29]. The individual was

apparently functional and capable of conducting all common

human activities, including gesturing, talking, performing complex

manual work, and participating in social interactions. Some have

proposed that an absent cerebellum is therefore less disabling than

a present, but abnormal cerebellum [30].

Fortunately, the Mouse Genome Database (MGD, [18]) uses the

MP ontology to link genetic variation in mouse genes to phenotypic

aberrations that are causally related to known genomic changes. We

were able to use the MGD to associate 244 human genes (with the

help of the human and mouse orthology) with the five ataxia

phenotypes described above and with ataxia (MP:0001393) (see

Table S7). By integrating mouse (M70-PL0.9), human (H70-PL0.9),

and HPRD (Release 7) networks through human–mouse gene

orthology mapping, we obtained a larger network of interacting

human genes with annotation of ataxia phenotypes generated in

mouse studies. The largest connected component of the ataxia

graph includes 88 human genes. These 88 genes are connected with

145, 147, and 72 interactions derived from human GeneWays,

mouse GeneWays, and HPRD, respectively (see Figure 3 D).

Our analysis of ataxia-related phenotypes in the context of a

molecular network generated rather curious and statistically

significant results, as described in the following section.

Observations and predictions derived from analysis of
ataxia phenotypes in the context of a molecular-
interaction network

Same-gene co-association of phenotypes. First, we looked

at how often genetic aberrations causing distinct cerebellar

phenotypes occur within the same gene (see Tables S2 and S3).

Within the five phenotypes considered here, four appear to be

associated with errors in development of the organ (abnormalities of

foliation and vermis, and small or absent cerebellum), while the fifth

phenotype is related to degeneration of the already-developed organ.

Genetic variation causing cerebellar degeneration does not seem to

occur at more than random frequency in the same gene as variation

causing the ‘‘developmental’’ phenotypes. Put differently, cerebellar

degeneration appears to be statistically independent of the other

cerebellar malformation phenotypes in terms of genetic variation,

given our current sample size. In contrast, the four developmental

phenotypes are highly significantly correlated pair-wise in terms of

their gene associations (see Tables S2 and S3). This indicates that the

developmental phenotypes are genetically entangled, in that they are

associated with highly overlapping sets of genes. It is likely that

pleiotropic genetic variation exists that can cause more than one of

the four phenotypes simultaneously. Although cell death is a normal

part of development, the lack of overlap between these two

phenotypic classes is not surprising given our current understanding

of these disorders. Many genes causing cerebellar degeneration when

mutated are involved in neuronal metabolism and are widely

expressed throughout the brain. The high metabolic rate of the large

cerebellar Purkinje neurons may predispose these specific neurons to

lethal metabolic stress when they are not functioning normally [31].

In contrast, developmental cerebellar genes are enriched for cell

signaling and signal transduction molecules.

Network clustering of phenotype-specific genes. We next

asked if phenotype-specific genetic variation in our data set maps

to non-randomly clustered groups of genes within our text-mined

molecular network. To test the significance of gene clustering, we

used three different approaches: a parametric test of clustering (see

Figure 2. Morphology of mouse brain: olfactory bulbs, cerebral
cortex, midbrain, cerebellum, and spinal cord are labeled. A.
Top view: a mouse brain is shown next to an outline of a mouse head.
B. Side view of a mouse brain superimposed with a mouse head. C.
Perspective view of a mouse brain and head.
doi:10.1371/journal.pcbi.1000559.g002
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Figure 3. Molecular-interaction network integrating genes related to the ataxia phenotype. The network was identified by selecting the
human orthologs of the mouse genes associated with ataxia in the MGI database. Interactions from the three different sources are indicated with
different edge colors. The flower-like design of nodes indicates the specific subset of cerebellar phenotypes associated with each gene. A. Schematic
representation of the abnormal cerebellum phenotypes and assignment of petal phenotypes. The thin gray line represents what a normal cerebellum
should look like and the red line shows the observed cerebellum. B and C. Schematic representation of a normal cerebellum in relation to whole
mouse body in top view B and in side view C. D. The largest connected component of the ataxia sub-network. The abnormal cerebellum phenotype
assignments are shown with the flower petals, the size of a node represents the number of interactions it is involved in, and the color of the edges
represents the source network as defined in the legend.
doi:10.1371/journal.pcbi.1000559.g003

Text-Mined Interactomes of Mice and Humans

PLoS Computational Biology | www.ploscompbiol.org 7 November 2009 | Volume 5 | Issue 11 | e1000559



Text S1) and two non-parametric approaches. Both non-

parametric tests are based on estimation of a background

distribution of a test statistic (under a no-clustering scenario) by

stochastic permutation of the original network. We used the total

number of interactions among phenotype-specific genes as test

statistics for both non-parametric tests.

The simpler non-parametric test (Ini) involved stochastic sampling of

1,000 gene sets of the same cardinality as the original set of phenotype-

associated genes. The slightly more sophisticated non-parametric test

(Rwr) generated 1,000 randomly re-wired molecular networks with

both node identities (phenotype mapping) and node connectivity values

preserved exactly as in the original network. We computed empirical p-

values for both tests by comparing the real value of our statistic against

the appropriate background distribution.

The three tests are based on different sets of assumptions about

the background model. For example, non-parametric tests attempt

to emulate the empirical connectivity distributions of genes,

whereas the parametric test does not.

We applied the three tests to the five phenotypes chosen for this

study and a set of molecular networks: the union of human–mouse

GeneWays and HPRD (the union network), HPRD alone, and subset

of the union network including only physical interactions (we

assumed that all HPRD interactions are physical) (see Table S5).

All tests indicated significant clustering of phenotype-specific genes

within our networks; the re-wiring test generated the most

conservative (high) p-values.

The HPRD network and the physical network allowed detection

of highly significant gene clustering in all groups of phenotypes

except for degeneration and absent cerebellum. The whole network

showed highly significant gene clustering for all studied groups of

phenotypes; significance was most impressive for the largest (union)

network (see Table S5). It is reassuring that genes for the same

phenotype are brought close together in our largest network and this

can be used as an argument for the necessity of the extended

network. This result might be due in part to a publication bias:

Genes that were discovered earlier tend to accumulate a larger

number of published logical interactions. However, when we

repeated the analysis of the union network with logical interactions

removed, the phenotype-specific clustering was still present and

significant, albeit at a lower significance level (see Table S5). We

observed higher clustering for genes specific to developmental

phenotypes. Finally, the most conservative rewiring test failed to

detect significant clustering of genes associated with abnormal vermis

and absent cerebellum in physical-interaction and HPRD networks.

Cerebellar malformations tend to be caused by highly

connected genes. While examining the lists of genes associated

with cerebellar malformations, we suspected that the highly

connected genes appear in these lists with greater than random

frequency. A parametric test designed to test this hypothesis

confirmed that this trend is highly significant for most phenotypes,

with the exception of cerebellar degeneration and absent cerebellum,

analyzed in the context of physical interactions (see Table S4 and

Text S1 for a description of the test).

We came up with four possible explanations for this finding. First,

the genes involved in embryogenesis often have high connectivity.

Second, genetic variation harbored by highly connected genes has

elevated the odds of affecting the morphology of the cerebellum. Third,

our knowledge about molecular interactions is skewed by the history of

the field—that is, genes that were studied earlier are more likely to

accumulate a large number of known links (especially logical ones)

compared to their peers that were examined much later [32]. By the

same logic, well-studied genes are more likely to be tested for causal

association with a phenotype than their more obscure counterparts.

Another explanation is that more than one of the above factors

contributed to the observed abundance of highly connected genes in

our lists of genes relevant to cerebellar development.

While all of these hypotheses are testable, we have to wait for

adequate data to be available to distinguish among them. We are well

aware that the historical knowledge bias is real, especially for logical

interactions of well studied and conserved genetic pathways. To test if

our degree preference results are due solely to the literature bias, we

ran the same test using the protein–protein network produced by

fusing two large-scale yeast two-hybrid assays (Y2H with 2936 nodes

and 5722 edges) [33,34]. The strong significance for high-degree

preference was diminished in the Y2H network, suggesting that the

literature bias could be a factor, but did not disappear completely.

(Empirical p-values calculated for the ‘‘all’’ and ‘‘abnormal vermis’’

gene sets within Y2H network were smaller that 0.05, leaving room

for the first and second explanation.) Therefore, at the moment, we

favor the fourth (composite cause) explanation.

Predicting new phenotype-specific genes. We used a

molecular triangulation technique [35] to identify additional

candidate genes relevant to each phenotype by studying clusters

of phenotype-specific genes. The molecular triangulation

technique is designed to analyze the output of a genetic linkage

analysis: it detects non-random gene clustering within a molecular-

interaction network. Triangulation uses a null model in which the

linkage signals are uninformative (unlinked to the phenotype) and

any observed gene clustering within a molecular network is

accidental. The hypothesis competing with the null assumes that

the linkage signal is associated with a group of genes forming a

functional cluster within the molecular network. In this application

we used as input to molecular triangulation analysis phenotype-

specific causal genes (rather than genetic linkage signals). The

triangulation analysis generated a surprisingly large number of

statistically significant predictions (results are not shown).

We expect that a large number of genes—possibly thousands—

contribute to shaping the architecture of an organ as complex as the

human or mouse cerebellum. This is clearly supported by the large

number of genes expressed in this region of the developing brain [36].

It is not productive, however, for an experimentalist to start with too

many predictions. In addition, as long as we have firm evidence that

highly connected nodes are over-represented among our phenotype-

specific genes, some of the significant predictions may be artifacts of

the excessive connectivity. For this reason we modified the

triangulation technique (see Text S1) to take into account the

apparent connectivities of genes within the molecular network in

general and of potentially biased seed genes in particular. While

retaining the major assumptions of the original molecular triangu-

lation, this modified test involved node degree-preserving random

rewiring of the network, not unlike our test applied to phenotype-

specific gene clustering. The degree-preservation addition made the

test much more conservative (see Tables 4 and S6 and Figure 4);

instead of hundreds or thousands of predictions, only a few survived

the significance threshold of a 0.5 level of false discovery rate (FDR)

(see Tables 4 and S6 and Figure 4). (FDR is a computational

technique used to adjust significance results of statistical testing for

multiple tests [37,38]) The 0.5 FDR threshold means that half our

predictions are expected to be false positive. We also conducted a test

with stricter FDR levels of 0.1 and 0.01 and indicated the genes that

are significant at these levels with bold and underlined bolds gene

symbols, respectively, in Tables 4 and S6. Further, the numerous

genes that are significant at FDR level of 0.0001 based on our ini-trn

analysis (see the Text S1) are listed in Table S9.

Our leave-one-out cross-validation experiments (see Text S1)

demonstrated that the union network clearly outperformed the

smaller networks in our comparison in predicting ‘‘missing’’

phenotype-associated gene sets.

Text-Mined Interactomes of Mice and Humans
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As Figure 4 shows, absent and small cerebellum phenotypes

were especially rich in gene candidate predictions, whereas

cerebellar degeneration was the poorest. Following is an overview

of a few selected genes that appeared in the prediction gene lists

for both abnormal vermis and absent cerebellum phenotypes.

One of our top predictions, the Ascl1 gene, is involved in

neuronal commitment and differentiation [39]. Another gene,

Bmp7, encodes a member of the bone morphogenic protein (BMP)

family; genes of this family are implicated in a wide spectrum of

developmental processes in vertebrates, including bone develop-

ment [40,41]. Both genes are expressed in the developing

cerebellum (informatics.jax.org), but no cerebellar phenotypes

have been described in available mouse mutants. Homozygous

Ascl1 mouse mutants die neonatally before extensive cerebellar

development. Nevertheless, it has recently been reported that

complete loss of Ascl1 alters the development of cerebellar

interneurons, oligodendrocytes and astrocytes during late embryo-

genesis [42] validating our prediction. There is extensive published

evidence that Bmp7 can influence multiple aspects of cerebellar

development both in vitro and in vivo [43,44], but again the

cerebellum has not been the focus of published mouse mutant

phenotypic analysis, hence Bmp7 is not yet associated with any

MP category.

An exciting quadruplet of predictions (Fgf8, Fgf18, Spry2, and Spry4)

is tightly linked to tissue differentiation pathways. Spry2 and Spry4 are

inhibitors of fibroblast growth factor [45,46] and of receptor-

transduced mitogen-activated protein kinase (MAPK) signaling

pathways [47]. Fibroblast growth factors (FGFs) and fibroblast

Table 4. A subset of the phenotype-specific gene predictions at 0.5 FDR level.

Gene Gene p-value

Phenotype Id symbol Initial neighbors whole HPRD physical

degeneration 412 sts 261025 0.396

abnormal foliation 7471 wnt1 ccnd1, ccnd2, ctnna2, en1, gas1, lmx1a, pten 861027 0.999 0.372

abnormal vermis 22943 dkk1 en1, fgfr1, msx2, tp53 561026 0.962 0.983

5076 pax2 en2, fgf8, pax5, rb1, tp53 861026 0.041 0.012

2253 fgf8* en1, en2, fgf17, fgfr1, pax5, zic1 161025 0.287 0.355

4487 msx1 fgf8, msx2, tp53, zic1 161025 0.003 0.020

5077 pax3 fgf8, gli2, msx2, tp53, zic1 461025 0.590 0.676

8817 fgf18 en2, fgf8, fgfr1 661025 0.115 0.194

27330 rps6ka6 fgf8 761025 0.332 0.294

10253 spry2 fgf8, fgfr1 861025 0.521 0.037

81848 spry4 fgf8, fgfr1 961025 0.391 0.026

7471 wnt1 ctnna2, en1, fgf8, lmx1a 961025 0.999 0.113

655 bmp7 en1, fgf8, fgfr1, msx2, zic1 161026 0.956 0.542

268 amh rbl1 0.0001 0.389 0.053

1745 dlx1 fgf8 0.0002 0.143 0.035

3223 hoxc6 fgf8, fgfr1 0.0002

5178 peg3 tp53 0.0003 0.582 0.380

7476 wnt7a en1, fgf8, lmx1a 0.0003 0.953 0.849

2637 gbx2 fgf8, gli2 0.0004

2737 gli3 fgf8, fgfr1, gli2, zic1 0.0004 0.026 0.002

4613 mycn pax5, rb1, tp53 0.0005 0.578 0.032

429 ascl1 fgf8 0.0005 0.197 0.151

5727 ptch1 fgfr1, gli2 0.0005 0.600 0.533

17 aavs1 0.0006 161024

3222 hoxc5 fgf8 0.0006

2535 fzd2 0.0006 0.486 0.133

8646 chrd en2, fgf8, fgfr1 0.0008 0.908 0.390

54756 il17rd fgf8, fgfr1 0.0009 0.044 0.046

5081 pax7 fgf8, gli2 0.0010 0.593 0.340

985 cdc2l2 0.0011 0.040

6677 spam1 tp53 0.0012

small cerebellum 1020 cdk5 ccnd1, ccnd2, cdk5r1, cdk5r2, dab1, dcx, erbb3, pura, rb1, reln 761026 161025 961027

7471 wnt1 ccnd1, ccnd2, ctnna2, en1, gas1, lmx1a, lmx1b, shh 261025 0.999 0.794

The bold genes are significant at 0.1 FDR level and the bold and underlined genes are significant at 0.01 FDR level. For a complete list of our predictions see Table S6.
The *Fgf8 is among our initial genes for the abnormal vermis phenotype.
doi:10.1371/journal.pcbi.1000559.t004
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growth factor receptors (FGFRs) participate in regulatory processes of

tissue pattern formation and cell differentiation. They are implicated

in the developmental regulation of all the major systems of the

mammalian body, including the limbs, bones, and brain. There are

multiple neurological phenotypes, including mood disorders and

asocial behavior [48–50], linked to genetic variation harbored by

genes representing these families. Fgfs have long been implicated in

cerebellar development [23]. More recently, Basson et al. [51] have

demonstrated that regulation of Fgf signaling by ectopic misexpres-

sion of Spry2 has profound effects on cerebellar vermis development.

The endogenous roles of these proteins in cerebellar development

have not yet been the focus of any phenotypic investigation in the

mouse. Our analysis here suggests a second look.

We also found a triplet of PAX genes: Pax2, Pax3, and Pax7. PAX

(paired-box) family genes form a small yet critical family of

developmental genes encoding transcription factors that regulate

cell proliferation, cell-lineage specification, migration, and survival

[52,53]. There is experimental evidence linking PAX genes to the

development and function of the cerebellum [54]. Although no Pax3

cerebellar phenotype has yet been described in mice or humans, a

Dandy-Walker malformation locus (abnormal cerebellar vermis)

has recently been mapped to the upstream region of the Pax3 gene

Figure 4. Overlap of genes associated with several cerebellar phenotypes. A. Venn diagrams for phenotype-specific gene sets retrieved
from the Mouse Genome Database. B. Similar Venn diagram for newly predicted candidate genes for the same phenotypes generated through
analysis of the union network (both logical and physical interactions). C. Analysis of the union network with only physical interactions retained.
doi:10.1371/journal.pcbi.1000559.g004
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[55], suggesting that Pax3 misregulation may be involved in human

cerebellar development. The superimposition of genetic locus

information on the cerebellar malformation gene network thus is

likely to generate lists of candidate genes for mapped phenotypes.

Yet another pair of predictions, the Hoxc5 and Hoxc6 genes, are

neighbors on chromosome 12 in the human genome and belong to

the HOX (homeo-box-containing) family. HOX genes are major

players in vertebrate embryonic pattern formation, particularly

(but not exclusively) in the central nervous system [56]. Again, no

cerebellar phenotypes have been reported for these genes.

Notably, however, these genes are never expressed in the

developing cerebellum but do have well known roles in more

posterior regions of the developing central nervous system. Thus,

these particular Hox gene predictions highlight the importance of

future work to integrate additional known biological information

such as expression patterns (for example, GeneSat) into the gene

network to generate more biologically relevant predictions.

Additional observations and predictions. See Text S1

and Dataset S1 for our Gene-set enrichment and Cross-Validation

experiments.

Conclusion
We have provided two very large molecular-interaction sets for

human and mouse genes (Datasets S2, S3, S4, S5). The sets were

integrated through gene orthology and are immediately applicable

to a spectrum of experimental data analysis tasks (Dataset S6). Our

analysis of mouse mutant cerebellar phenotypes, with the aid of

our text-mined networks, lead to a number of intuitively

reasonable and biologically testable predictions.

Our present study shares its spirit, goals, and some methods with

other efforts in the field. For example, one of the most recent studies

succeeded in integrating a diverse array of approaches to design a tool

generating new disease-related hypotheses [57]. This group was able

to combine information extraction [58], biomedical ontology mining,

statistical analysis of sequences of natural language tokens, probabi-

listic analysis of error patterns across data types, computational

reasoning, understanding of large-scale experimental datasets, and

exploratory visualization in one application.

Because we are releasing our complete set of annotated data to

public domain, these data might be instrumental for direct

comparison for analogous text-mining results produced elsewhere

[59–67].

Automated reasoning over text-mined, experimental, and

machine-deduced data (Reading, Reasoning, and Reporting, as

[57] put it), is likely to become a dominant mode of science in the

near future, as size of experimental datasets and complexity of

natural system under scrutiny grows.

Methods

GeneWays system and GeneWays 7.0 database
GeneWays is an information extraction (text-mining) system: It

ingests computer-encoded full-text research articles or journal

abstracts and distills from them a collection of biological relations.

The architecture and implementation of the system are described

in great detail elsewhere [3,4,6,68–71], so here we provide just a

brief outline of the system.

In a simplified view, the processing pipeline inside the GeneWays

system is a sequence of just two steps. The first step deals with

recognition of words or phrases representing important biological

entities (such as p53, Alzheimer’s disease, or endoplasmic reticulum;

computer scientists call this step named entity recognition, NER). The

second step deals with detecting relations among the entities (such as

p53 activates JAK) and is called information extraction (IE).

Our NER module (MarkIt, [72]) works by following a hierarchy

of rules defined by human experts. Our IE module (GENIES,

[3,68]) also is based on a collection of expert-encoded rules, but

the underlying mathematical model is a bit more sophisticated (a

deterministic context-free grammar). We use MarkIt to identify a

spectrum of biological entities, such as disease, process, gene,

protein, RNA, small molecule, tissue, and species. We apply

GENIES to each individual sentence, trying to reconstruct the

most probable steps that led to generation of the sentence. This

reconstruction process is called parsing; besides satisfying our

academic curiosity, parsing is useful for capturing complex

relationships between entities. The results of parsing depend

strongly on the formal grammar implemented in the parser.

Most of the relations that we can extract from biomedical texts

are directional (A activates B is not the same as B activates A) and

binary (only two entities are involved, which we call upstream and

downstream, according to their position within the relation). A

sentence can contain any number between none and dozens of

relations. We can think of a typical binary relation as a quadruplet

of values: [negation, upstream entity, action, downstream entity]

(see Figure 5). Negation allows us to capture negative statements

(‘‘In our experiment, AKT failed to phosphorylate BAD’’R[not,

AKT, phosphorylate, BAD]) as well as positive statements. Relation

type (action) indicates semantic connection between the two entities

(bind, activate, methylate, transport, is part of, is homolog of, etc.).

To facilitate automatic reasoning over semantic groups of

relations, we arrange them into an acyclic directed graph, where

graph arcs represent the relation ‘‘is a.’’ The GeneWays system

currently recognizes 391 different action types, 207 of which are

frequent (see Table S1).

Textual and text-mined data
To generate the molecular networks described in this study, we

analyzed 368,331 full-text articles and 8,039,972 article abstracts

from PubMed (see Table S8). The system identified 5,890,150

relations in the full text articles and 2,534,299 relations in the

abstracts: in total, 5,934,024 unique relationships. The action types

with the largest number of relationships are induce (695,615), bind

(532,385), inhibit (386,523), associate (370,133), contain (366,654), and

activate (332,336); the numbers in parentheses indicate the

abundance of relations of each type in the GeneWays 7.0 database.
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