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Materials and Methods
responses to odorants
Responses to 144 odorants were obtained from Dravnieks (1985) 
and represented in a set of 146D vectors ri

→
 (i = 1…144). We used 

the percent used (PU) set of responses from Dravnieks (1985). 
PU describes the fraction of about 150 observers that thought 
that a given descriptor applies to an odorant. We verified that our 
conclusions do not change substantially if other parameters are 
used instead of PU. We performed principle component analysis 
(PCA) on the vectors using the single value decomposition (SVD) 
procedure. All computations were performed using MATLAB 
(Mathworks, Inc.). Before applying PCA we normalized response 
vectors to have unit length in terms of the L

2
 measure. This 

implies that the vectors resided on a unit sphere in 146D. This 
reduced somewhat the dimensionality of the dataset to 145D. 
The normalization step was intended to equalize the odorants 
in their perceived intensity or concentration. We verified that 
our conclusions do not change qualitatively if other measures 
(L

2
 through L

9
) are used for normalization. We noticed some 

deterioration of the fits beyond this range.

approxiMating odorant response with curved spaces
Each odorant vector ri

→
 was approximated with the “projected” 

vector pi

→
. Here index i enumerates the odorants while each vector 

contains 146 components corresponding to semantic descriptors. 
The projected vectors were sought in the form
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introduction
Our current understanding of many sensory modalities is based on 
knowledge of the underlying sensory spaces. For example, visual 
stimuli are well described by their position and the spectral content 
of the light emitted/scattered by them. The somatosensory system 
represents positions of stimuli relative to the body surface, which 
leads to the body-centric somatosensory world. Our understand-
ing of the sense of smell is hindered by the lack of a well-defined 
perceptual space and knowledge of how this space is related to 
the properties of odorant molecules (Wise et al., 2000; Gottfried, 
2010). These questions have been the topics of several recent studies 
(Mamlouk and Martinetz, 2004; Khan et al., 2007; Haddad et al., 
2008a; Zarzo and Stanton, 2009).

Here we investigate the structure of olfactory space defined by the 
responses of human observers. We base our analyses on the Atlas of 
Odor Character Profiles, (AOCP; Dravnieks, 1985), a database of sen-
sory responses of human observers to an array of odorants. We show 
that odorants in human olfactory space accumulate near a 2D curved 
manifold (a curved surface that can be locally approximated by a 
plane). The 2D manifold accounted for 51% of the variability in the 
experimental data. This finding prompted us to seek an approxima-
tion to the sensory space in the form of curved continuous surfaces 
of higher dimension. Below we show that an approximation of these 
responses with continuous spaces of sufficiently low dimensionality 
higher than two could account for 81% of the variability in experi-
mental data. We also found that the intrinsic statistical variability in 
the data is at least 7%. Thus, only the remaining variance of 12% or 
less can be attributed to discontinuous features in the sensory space. 
We therefore argue that a curved continuous manifold of sufficiently 
low dimension carries most of the information about known features 
of human olfactory perception.
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Here A
→

, Bα

→
, and Cαβ

→
 are odorant-independent parameters 

of the surface. Parameters Cαβ

→
 specify the curvature of the mani-

fold. Parameters xαi
 define positions of odorants on the surface. 

D is the number of parameters per odorant which is the dimen-
sionality of the surface. The manifold defined by this equation is 
D-dimensional. In Figure 2 we used D = 2, while in Figure 4 the 
dimensionality was varied. To find A

→
, Bα

→
, Cαβ

→
, and xαi

 we minimized 
|| ||

i
∑ → →

−r pi i

2
 using the conjugate gradient algorithm. The set of 

parameters xαi
 was determined therefore as the nearest points on 

the curved manifold. The nearest points define “projections” onto 
the curved manifold.

Jackknife procedure
Approximating human sensory responses with higher dimensional 
curved manifolds is confounded by a dramatic increase in the num-
ber of parameters of fit. Because the number of parameters increases 
as a second power of the number of dimensions in our quadratic 
regression, for a moderately low-dimensional manifold we find 
that we can perfectly fit all of the experimental data (Figure 4A, 
dashed line). To avoid this overfitting problem we employed the 
jackknife technique, in which we remove a single odorant from the 
perceptual database, obtain a high-dimensional fit for the responses 
to the remaining compounds, and calculate the distance between 
the fitted manifold and the removed odorant. By applying this 
procedure for all odorants in the database sequentially we evalu-
ated a variance of the approximation with curved manifolds. The 
variance does not vanish for spaces of high dimensionality due to 
overfitting (Figure 4A, solid line).

estiMating the variability due to a finite nuMber of 
observers
The perceptual variable used here PU is convenient for estimat-
ing the experimental variability. We resampled the data for every 
entry in the database independently using 149 observers as specified 
in Dravnieks (1985). We estimated the variance of the resulting 
ensemble to be equal to 7% of the experimental variance present 
in Dravnieks (1985).

the coordinates on the surface
The natural system of coordinates of the 2D surface was used to 
equilibrate the density of odorants (grid in Figure 3). The odorants 
were projected onto the 2D plane and the Delaunay triangula-
tion (Berg, 2008) was calculated. The edges of triangulation were 
replaced with elastic strings of unit equilibrium length and a coor-
dinate transformation was found that minimizes the elastic energy 
of the strings. The coordinate transformation was constrained to 
the form used above (Eq. 1) with the mapping of 2D to 2D space. 
The results are shown in Figure S2 in Supplementary Material.

physico-cheMical paraMeters
The values of 72 parameters were calculated using the program 
Molecular Modeling Pro™ (ChemSW, Failfield, CA, USA). We 
verified that the use of 1999 parameters generated by E-Dragon 
(VCCLAB.org) did not improve the result suggesting a redun-
dancy in the data. We used z-scores for the parameters as 
detailed in the Supplementary Materials online (see Materials 
and Methods).

results
approxiMation of olfactory perceptual data by a 2d curved 
space
The AOCP database contains information about responses of 
human observers to 144 monomolecular odorants. Each odor-
ant is characterized by a set of 146 semantic descriptors, such 
as “fruity,” “floral,” “sickening,” “warm,” etc. (see Supplementary 
Material for complete list of odorants and descriptors.) The 
database was constructed by having ∼150 participants rate appli-
cability of each of the 146 semantic descriptors to each of 144 
monomolecular odorants. The parameter used in our analysis 
reflects the percentage of observers that recognized the semantic 
descriptor as applying to a given odorant (Dravnieks, 1985). 
The database can therefore be viewed as a set of 144 points 
representing individual odorants positioned in a 146-dimen-
sional space of semantic descriptors. The resultant cloud of 
144 points placed into the multidimensional space of descrip-
tors contains vast information about human perception of 
monomolecular odorants.

To visualize the multidimensional cluster of odorants, we pro-
jected the 146D descriptor space onto the first three principal 
components (PCs), which were defined as the most informative 
directions about the data set (Figures 1A,B). Only 52% of the data 
variance is included in the low-dimensional representation by the 
first three PCs (Figure 1E). We use PCA only for visualization of 
the correlations present within the dataset. To account for these 
correlations, we analyze the full, 146D set of data rather than the 
PCA projection, as detailed below.

Odorants projected to 3D PC space when viewed from a cer-
tain direction clustered near a C-shaped curve, suggesting that the 
data points reside close to a 2D surface (Figure 1B). We therefore 
fitted the set of points with the smooth curved surface shown in 
Figures 1C,D. The best fit was obtained in the full 146D space of 
responses by minimizing the distances from the data points to 
the nearest points on the surface. To capture the curvature of the 
surface, it was defined by a second-order polynomial function of 
two parameters: the first PC and a linear combination of the second 
and the third PCs. After fitting, the 2D curved surface (manifold) 
accounted for 94% of the data variance projected to the three PCs 
(Figures 1A,B) and 56% of the data variance contained in the entire 
data set containing 146 dimensions. The approximation of data 
by a 2D curved manifold accounted for more data variance (56%) 
than the space of first three PCs (52%). This is because the curved 
manifold was not limited to the 3D PCA space and extended into 
the entire 146D dataset.

How well does a 2D curved manifold in 146D space predict 
the responses of human observers? To answer this question we 
compared the original data and their projection onto a 2D curved 
surface (Figure 2). The projection was defined as the nearest point 
on the 2D surface to a given odorant, as illustrated in Figures 1C,D. 
The comparison of the two sets of points yielded a correlation coef-
ficient of 87%. Because some correlation is introduced by the aver-
age responses to a given descriptor (horizontal bands in Figure 2), 
we also obtained the correlation coefficient when the averages along 
the rows are excluded from the matrices. This procedure resulted 
in a correlation coefficient of 75% between the original data and 
the 2D projection. We conclude that the 2D curved space yields 
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Figure 1 | Odorants in the PCA space. (A) Each of the 144 odorants can be 
represented as a point in the 146D space of perceptual descriptors. The 
odorants are shown by blue crosses placed in the 3D space of principal 
components. (B) When viewed from a certain direction, the odorants clustered 
near a C-shaped 1D curve, suggesting that in 3D the odorants are distributed 
close to a 2D curved surface. (C,D) The 2D surface representing the best fit to 
the data. The odorants (blue crosses) are connected to the nearest points on the 

surface by the red lines representing the residual errors. The 2D surface 
minimizes the total squared length of the residuals computed in 146D. The total 
squared length of residuals can be viewed as the remaining variance in the data 
not accounted for by the projection onto the 2D curved manifold. (e) The fraction 
of included variance as a function of the number of PCA dimensions. The 
fraction of variance accounted by the 2D curved manifold in (C) and (D) is 56% 
(red dotted line).
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Methods]. To avoid overfitting, we used the jackknife procedure 
(Saito et al., 2009; see Materials and Methods for details). In this 
procedure, a single odorant is removed from the database, an 
approximation is calculated based on the remaining odorants 
in the database, and the result is compared with the odorant 
that is left out. Our results show that a space of sufficiently 
small dimensionality ( ≤ 10) can account for a substantial 
fraction of the variance in the experimental data (up to 81%, 
Figure 4A). Similarly to the analysis for 2D manifolds, we pro-
jected the experimental data onto smooth curved surfaces of 
varying dimensionality and estimated the correlation between 
experimental and projected coordinates with (and without) 
subtraction of average responses (Figure 4B). The correlation 
coefficient can reach 90% (94%) for 10D spaces. The jackknife 
analysis shows that low-dimensional curved spaces are predic-
tive of responses to odorants, which were excluded from the 
evaluation of the parameters of the surface.

We found therefore that about 81% of the variance in the 
dataset is captured by the smooth curved manifolds. We also 
estimated the errors present in the data due to a finite number 
of human subjects contributing to the dataset to be about 7% 
(see Materials and Methods). We conclude that only about 12% 
of the variance in the experimental data cannot be captured by 
continuous curved manifolds of dimensionality ≤ 10. Most (51%) 
of the experimental variance is reproduced by the 2D curved 
surface considered above.

an accurate approximation to the responses of human observ-
ers and therefore forms a reliable surrogate for human olfactory 
sensory space.

We next determined what descriptors contribute to the two 
parameters on the surface. The first parameter (elevation) is asso-
ciated with the first PC of the data. As has previously been sug-
gested, this parameter could be correlated with the pleasantness 
or perceptual valence of odorants (Berglund et al., 1973; Jones 
et al., 1978; Khan et al., 2007). Consistent with this observation, 
we find that the perceptual descriptors that contribute to the first 
coordinate with large positive/negative coefficients are associated 
with repulsive/attractive odorant properties (see top and bottom 
of Figure 3 for the 10 descriptors with the largest positive/nega-
tive coefficients, respectively). The second coordinate on the 2D 
manifold (azimuth) was obtained as a linear combination of the 
second and the third PCs. The descriptors contributing with large 
coefficients to this coordinate are listed in Figure 3 too (left and 
right). A possible significance of the second coordinate is discussed 
below.

higher diMensional curved Manifolds
Could a curved manifold of dimensionality higher than two 
characterize human olfactory space more fully? Because we use 
second-order polynomials in our approximation, the number 
of parameters of the regression is proportional to the square 
of the number of dimensions [see Eq. (1) in Materials and 
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Figure 2 | Comparison between original perceptual data and its their projection on to a 2D curved manifold. Images represent the coordinates (color coded) 
of 144 odorants in 146D space of descriptors for (A) the original data, (blue crosses in Figure 1 C,D) and (B) their projections onto a 2D curved manifold (circles in 
Figure 1 C,D).
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that can be explained by the monomolecular spaces of varying 
dimensionality by finding the nearest points on the monomolecu-
lar curved surfaces for all 15 mixtures. The results are presented 
in Figure 5.

Three observations are evident from this figure. First, 3D 
monomolecular space can explain the same amount of variance 
for mixtures as 2D space for monomolecular odorants (about 50%, 
Figure 5B). Therefore 3D monomolecular space is about the same 
for mixtures as 2D space for monomolecular odorants. At the level of 
50% variance, mixture space acquires an extra dimension compared 
to the space of monomolecular odorants. Second, to obtain the 3D 
space we only used information about responses to monomolecular 
odorants. This 3D space accurately approximates percepts of a novel 
class of smells, i.e. mixtures, that did not take part in the calculation 
of the surface. Fluctuations of  monomolecular odorant percepts 

MonoMolecular curved Manifolds approxiMate the space of 
Mixtures
In addition to monomolecular odorants, the AOCP database con-
tains perceptual data for 15 mixtures (listed in Supplementary 
Materials). Here we attempted to verify whether the same curved 
low-dimensional spaces that approximated the responses to the 
monomolecular odorants can describe the responses to mixtures. 
A positive answer to this question would suggest that low-dimen-
sional approximation applies to a broader set of odorants than 
previously discussed. To test this hypothesis we first obtained the 
curved monomolecular spaces of various dimensionalities (one 
through 10) as described above. These spaces were calculated on the 
basis of responses to 144 monomolecular odorants only. We then 
obtained the responses to 15 mixtures from the AOCP database. 
Next we calculated the fraction of variance in the mixture data 
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Figure 3 | The descriptors that contribute with large positive/negative coefficients to the coordinates on the 2D surface. The two coordinates are defined as 
elevation and azimuth as indicated.
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equivalent to PCA and is shown for comparison. (A) Variance of the dataset 
accounted for by the low-dimensional representation. The 2D curved manifold 
accounted for 51% of experimental variance. (B) Pearson correlation as a 
function of surface dimensionality.

around the 2D surface therefore contain information about the 
percepts of mixtures. Lastly, by about six included dimensions, the 
difference between monomolecular odorant space and the space of 
mixtures disappears almost completely. This observation implies 
that 6D curved space contains both the percepts of mixtures and 
monomolecular odorants. Overall, these results suggest that curved 
low-dimensional manifolds obtained for monomolecular odorants 
as described above are predictive of the responses to a novel class 
of odorants, i.e., mixtures.

relationship of the perceptual diMensions with the 
properties of odorant Molecules
We then attempted to establish the relationship between the two 
perceptual dimensions (elevation and azimuth) and the physico-
chemical properties of odorants. To this end it is necessary to refine 
the definition of perceptual coordinates on the surface. As seen in 
Figure 3, the odorants tend to accumulate near the poles of the 
2D surface (large positive and negative values of elevation). To 
remove this singularity we found a non-linear (quadratic) trans-
formation that makes the density of odorants approximately uni-
form throughout the surface (see Materials and Methods). The new 
coordinate grid is displayed in Figure 3 on the 2D manifold. The 
resulting two coordinates on the surface, elevation and azimuth, 
were then compared to various physico-chemical and structural 
properties of odorants. Seventy two physico-chemical properties 
were obtained from the computer package Molecular Modeling Pro 
(Burden, 1997). The structural descriptors included seven atom 
counts, 16 pair counts, and 31 triples counts obtained from struc-
tural formulas of odorants. The total physico-chemical/structural 
space included 126 properties for each molecule. We then applied 
a greedy algorithm developed by Saito et al. (2009) and Haddad 
et al. (2008b) to find which properties correlate best with the two 
perceptual dimensions. The greedy algorithm is an iterative pro-
cedure that increases the number of included properties one by 
one. On each step a new property is added if it results in a maxi-
mum increase of the Pearson correlation coefficient with a given 

 perceptual dimension. The results of this analysis, physico-chemical 
properties that yield the best correlation with both azimuth and 
elevation, are presented in Table 1 as a function of the number of 
included physico-chemical properties (iteration steps).

The elevation coordinate on the surface is correlated with 
Burden chemical intuitive molecular indices (CIMs), which rep-
resent eigenvalues of the connectivity matrix (Burden, 1997). 
These eigenvalues represent simple surrogates for the solution of 
the quantum-mechanical Hamiltonian equation. We found that all 
CIMs (1 through 10) are generally well correlated with the elevation 
coordinate. We also found that simple number of carbon atoms per 
molecule yields almost the same correlation as CIMs (R = 0.50, see 
Figure S3 in Supplementary Material for more detail). For the azi-
muth coordinate we find that the correlated variables are descriptive 
of molecules’ polarity or hydrophobicity. Thus, four of the five best 
correlated properties in Table 1 for azimuth depend on molecules’ 
polarity, including the melting point temperature. We conclude 
that the azimuth on the 2D curved manifold is correlated with the 
hydrophobicity or polarity of odorant molecules.

discussion
In this study we showed that a smooth curved surface of substantially 
small dimensionality can successfully approximate the responses of 
human observers to a variety of monomolecular odorants. A 2D 
curved surface can account for most of the variance in behavioral 
data. In agreement with previous studies (Berglund et al., 1973; 
Jones et al., 1978; Belkin et al., 1997; Khan et al., 2007), we suggest 
that one of the dimensions on the 2D surface is the pleasantness 
or perceptual valence of the odorants. This dimension is correlated 
with physico-chemical properties of the molecules, such as the 
carbon atom number or eigenvalues of the connectivity matrix 
associated with the structural formula (CIMs;  Burden, 1997). The 
second perceptual dimension is correlated with the measures of 
polarity or hydrophobicity, such as water of hydration, normal 
melting point temperature, etc (Table 1). Because mammalian Class 
I olfactory receptors (ORs) are related to fish ORs that are expected 
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subjects was shown to be independent of the pleasantness of odor-
ants (Belkin et al., 1997). The latter observation suggests an inter-
pretation of the second olfactory dimension (azimuth) as related 
to the auditory pitch of sounds synesthetically associated with the 
odorants. The motivation for this is that the azimuth dimension is 
perpendicular (decorrelated) to pleasantness (elevation) similarly 
to the decorrelation between auditory pitch and pleasantness shown 
in (Belkin et al., 1997). The perceptual link between auditory and 
olfactory stimuli is supported by the cross-modal modulation of 
neuronal responses recently observed in olfactory tubercle (Wesson 
and Wilson, 2010).

to bind water-soluble compounds (Zhang and Firestein, 2002), the 
second dimension may be detected by the difference in responses 
of the two classes of ORs: class I and II (Tsuboi et al., 2006; Bozza 
et al., 2009). The perceptual significance of this second coordinate 
(dimension) is less straightforward.

An intriguing possibility for the second perceptual coordinate 
is suggested by studies of cross-modal correlations between smells 
and sounds. For example, it was found that human subjects can 
adjust the loudness-equalized pitch of an auditory tone to match a 
stimulus odor (Belkin et al., 1997). Most importantly, the arrange-
ment of odorants on the auditory frequency axis by the study’s 
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Figure 5 | Perceptual space of mixtures. (A) The percepts of 15 mixtures 
(red circles) placed in the 3D PCA space of monomolecular odorants. The 2D 
curved manifold of monomolecular odorants is also shown (colored surface). 
(B) Remaining variance after projection onto the curved space as a function of 
dimensionality of this space. Black/red lines show results for monomolecular 
odorants and mixtures respectively. The curved space was the same in both 
cases and was obtained by optimizing the surface for monomolecular odorants 
only. JN stands for jackknife analysis. The 2D curved space explains 51% of the 

variance in the monomolecular dataset. 3D surface explains about 50% of the 
variance for mixtures. Therefore the 3D space obtained from monomolecular 
smells is as predictive of mixture data as 2D space for monomolecular data. (C) 
The original mixture data (left, 146 descriptors, vertical axis, by 15 mixtures, 
horizontal axis) and the results after projecting onto 3D monomolecular space. 
The point-by-point Pearson correlation is about 0.83 indicating that 3D 
monomolecular curved space contains major information about the responses 
to mixtures.
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exhaust the variability contained in the 146- dimensional perceptual 
database (Figure 4). Thus, although a correlation is present in the 
data that allows us to reduce the dimensionality of the dataset, olfac-
tory percepts remain complex and varying in all 146 dimensions, 
due to the curved geometry of the underlying perceptual space.

We report here that the human perceptual space of monomo-
lecular odorants can be viewed as continuous, curved, and low-
dimensional. Most of the variance in the perceptual data is captured 
by a 2D curved surface. The two dimensions of the surface can be 
related to physico-chemical properties of odorant molecules such 
as an eigenvalue of the odorant molecule connectivity matrix and 
the polarity of the molecules respectively.
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The low dimensionality of the olfactory space reported here 
does not eliminate the complexity of olfactory percepts. Indeed, if 
one adopts a 2D approximation to olfactory space, odorant percept 
depends only on two parameters. But the surface buckles into all 146 
dimensions due to its curvature. Our findings indicate that the use 
of six to 10 parameters (six to 10D curved manifolds) can essentially 

Table 1 | Physico-chemical and structural properties of odorant 

molecules that contribute most strongly to the two perceptual 

dimensions.

Order elevation Azimuth

 Name R Name R

1 Burden CIM8 0.53 Water of hydration 0.33

2 C-S pairs 0.59 Normal melting point 0.38

3 N count 0.63 Debye dipole moment 0.42

4 Molecular width 0.66 H-S pairs 0.44

5 H-C-O triples 0.68 Dispersion 3D 0.47

CIM is Chemical intuitive molecular index. Order is the number of dimensions 
included. R is Pearson correlation coefficient.
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