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Table 1. Considerations and challenges for the identi!cation of disease causal mutations
Considerations Challenges Solutions

Mutation detection Platform selection Di!erent sequencing platforms have 
variable error rates

Increased sequencing coverage for platforms with high 
error rates

Sequencing target selection Exome sequencing may miss regulatory 
variants that are disease causal

Use whole genome sequencing when budget is not 
a concern, or when diseases other than well-studied 
classical Mendelian diseases are encountered

Variant generation Genotype calling algorithms di!er from 
each other and have speci"c limitations

Use multiple alignment and variant calling algorithms 
and look for concordant calls. Use local assembly to 
improve indel calls

Variant annotation Multiple gene models and multiple 
function prediction algorithms are 
available

Perform comprehensive set of annotations and make 
informed decisions; use probabilistic model for ranking 
genes/variants

Variant validation Predicted disease causal mutations may 
be false positives

Secondary validation by Sanger sequencing or capture-
based sequencing on speci"c genes/regions

Type of mutations Coding and splice variants Many prediction algorithms are 
available

Evaluate all prediction algorithms under di!erent 
settings. Develop consensus approaches for combining 
evidence from multiple algorithms

Untranslated region, synonymous 
and non-coding variants

Little information on known causal 
variants in databases such as HGMD

Improved bioinformatics predictions using multiple 
sources of information (ENCODE data, multispecies 
conservation, RNA structure, and so on)

Speci"c application 
areas

Somatic mutations in cancer Tissues selected for sequencing may 
not harbor large fractions of cells with 
causal mutations due to heterogeneity; 
variant calling is complicated by 
stromal contamination; current 
databases on allele frequencies do not 
apply to somatic mutations; current 
function prediction algorithms focus on 
loss-of-function mutations

Sample several tissue locations for sequencing; 
utilize algorithms speci"cally designed for tumor 
with consideration for heterogeneity; use somatic 
mutation databases such as COSMIC; develop function 
prediction algorithms speci"cally for gain-of-function 
mutations in cancer-related genes/pathways

Non-invasive fetal sequencing Variants from fetal and maternal 
genomes need to be teased apart; 
severe consequences when variants are 
incorrectly detected and predicted to 
be highly pathogenic

Much increased sequence depth and more 
sophisticated statistical approaches that best leverage 
prior information for inferring fetal alleles; far more 
stringent criteria to predict pathogenic variants

Inheritance pattern Inherited from a!ected parents Rare/private mutations may be neutral Evaluate extended pedigrees and ‘clans’ to assess the 
potential role of private variants

De novo mutations from 
una!ected parents

Every individual is expected to carry 
three de novo mutations, including 
about one amino acid altering 
mutation per newborn

Detailed functional analysis of the impacted genes

Biological validation Known disease causal genes Di#cult to conclude causality when 
a mutation is found in a well-known 
disease causal gene

Examine public databases such as locus-speci"c 
databases

Previously characterized genes 
not known to cause the disease 
of interest

Relate known molecular function to 
phenotype of interest

Evaluate loss of function by biochemical assays where 
available

Genes without known function Di#cult to design functional follow-up 
assays

Evaluate gene expression data. Use model organisms 
to recapitulate the phenotype of interest

Statistical validation Rare diseases Limited power to declare association Sequence candidate genes in unrelated patients to 
identify additional causal variants

Idiopathic diseases Lack of additional unrelated patients Comprehensive functional follow-up of the 
biospecimens from patients to prove causality

Mendelian diseases or traits Finding rare, unrelated individuals with 
same phenotype and same mutation 
to help prove causality

Networking of science through online databases 
can help "nd similarly a!ected people with same 
phenotype and mutation

Type of phenotypes Mendelian forms of complex 
diseases or traits

Several major-e!ect mutations may 
work together to cause disease

Statistical models of combined e!ects (additive and 
epistatic) of multiple variants within each individual

Complex diseases or traits Many variants may contribute to 
disease risk, each with small e!ect sizes

Refrain from making predictions unless prior evidence 
suggested that such predictive models are of practical 
utility (for example, receiver operating characteristic 
>0.8)

HGMD, Human Gene Mutation Database.
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variants is needed, beyond simple variant annotation. 
!ere are several important reasons to pursue this 
approach. Firstly, conventional protein functional predic-
tion algorithms only provide a binary prediction on 
whether a variant is deleterious or tolerated. However, a 
defect in protein function does not necessarily mean that 

a specific phenotype will be affected and investigators 
often have to search for clues on the specific disease 
classes (for example, cancer, immunological or cardio-
vascular traits) that the variant may influence. With this 
information in hand, biologists can design experiments 
to test the functionality of the variants in the context of 

Table 2. A list of open-access bioinformatics software tools or web servers that can perform batch annotation of genetic 
variants from whole-exome/genome sequencing data*
Tool URL Description Features Limitations

ANNOVAR [http://www.
openbioinformatics.org/
annovar/]

A software tool written in 
Perl to perform gene-based, 
region-based and !lter-based 
annotation

Rapid and up-to-date annotations 
for multiple species; thousands of 
annotation types are supported

Requires format conversion 
for VCF !les; command line 
interface cannot be accessed 
by many biologists

AnnTools [http://anntools.sourceforge.
net/]

A software tool written in 
Python to annotate SNVs, indels 
and CNVs

Fast information retrieval by 
MySQL database engine; output in 
VCF format for easy downstream 
processing

Only supports human genome 
build 37; does not annotate 
variant e"ect on coding 
sequence

Mu2a [http://code.google.com/p/
mu2a/]

A Java web application for 
variant annotation

Web interface for users with limited 
bioinformatics expertise; output in 
Excel and text formats

Does not allow annotation of 
indels or CNVs

SeattleSeq [http://snp.gs.washington.
edu/SeattleSeqAnnotation/]

A web server that provides 
annotation on known and 
novel SNPs

Multiple input formats are supported; 
users can customize annotation tasks

Limited annotation on indels 
or CNVs

Sequence Variant 
Analyzer

[http://www.svaproject.org/] A graphical Java software tool 
to annotate, visualize and 
organize variants

Intuitive graphical user interface; 
ability to prioritize candidate genes 
from multiple patients

Functionality is not very 
customizable; depends 
on ENSEMBL database for 
annotations

snpE" [http://snpe".sourceforge.
net]

A command-line software 
tool to calculate the e"ects of 
variants on known genes such 
as amino acid changes

Rapid annotation on multiple 
species and genome builds; supports 
multiple codon table

Only supports gene-based 
annotation

TREAT [http://ndc.mayo.edu/mayo/
research/biostat/stand-alone-
packages.cfm]

A command-line software 
tool with rich integration of 
publicly available and in-house 
developed annotations

An Amazon Cloud Image is available 
for users with limited bioinformatics 
infrastructure; o"ers a complete set 
of pipelines to process FASTQ !les 
and generates annotation outputs

Only supports ENSEMBL gene 
de!nition and with limited sets 
of annotations

VAAST [http://www.yandell-lab.org/
software/vaast.html]

A command-line software tool 
implementing a probabilistic 
disease-gene !nder to rank all 
genes

Prioritize candidate genes for 
Mendelian and complex diseases

Main focus is disease gene 
!nding with limited set of 
annotations

VARIANT [http://variant.bioinfo.cipf.es] A Java web application 
for variant annotation and 
visualization

Intuitive interface with integrated 
genome viewer

Highly speci!c requirement 
for internet browser; slow 
performance

VarSifter [http://research.nhgri.nih.
gov/software/VarSifter/]

A graphical Java program 
to display, sort, !lter and sift 
variation data

Nice graphical user interface; 
allows interaction with Integrative 
Genomics Viewer

Main focus is variant !ltering 
and visualization with limited 
functionality in variant 
annotation

VAT [http://vat.gersteinlab.org/] A web application to annotate 
a list of variants with respect 
to genes or user-speci!ed 
intervals

Application can also be deployed 
locally; can generate image for genes 
to visualize variant e"ects

Requires multiple other 
packages to work; only 
supports gene-based 
annotation by GENCODE

wANNOVAR [http://wannovar.usc.edu/] A web server to annotate user-
supplied list of whole genome 
or whole exome variants with 
a set of pre-de!ned annotation 
tasks

Easy-to-use interface for users with 
limited bioinformatics skills

Limited set of annotation types 
are available

*Tools that are only commercially available (such as CLC Bio, Omicia, Golden Helix, DNANexus and Ingenuity) or are designed for a speci!c type of variant (such as SIFT 
server and PolyPhen server) are not listed here. CNV, copy number variation; SNP, single nucleotide polymorphism; SNV, single nucleotide variation; VCF, variant call 
format.
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Some	  DefiniCons	  …	  
•  The	  words	  “penetrance”	  and	  “expressivity”	  are	  
throwbacks	  to	  the	  era	  of	  Drosophila	  geneCcs,	  defined	  
classically	  as:	  

•  Penetrance:	  whether	  someone	  has	  ANY	  symptoms	  of	  a	  
disease,	  i.e.	  all	  or	  none,	  0%	  or	  100%.	  Nothing	  in	  between.	  

•  Expressivity:	  how	  much	  disease	  (or	  how	  many	  symptoms)	  
someone	  with	  100%	  penetrance	  has.	  

•  This	  has	  led	  to	  endless	  confusion!	  	  
•  Some	  just	  use	  the	  word	  “penetrance”	  to	  mean	  the	  
expressivity	  of	  disease,	  i.e.	  incomplete	  penetrance,	  and	  I	  
agree	  with	  combining	  the	  two	  terms	  into	  ONE	  word	  with	  
the	  full	  expression	  from	  0-‐100%	  of	  phenotypic	  spectrum.	  



Defini7ons.	  It	  is	  unknown	  what	  
porCon	  of	  “complex”	  disease	  will	  be	  

oligogenic	  vs.	  polygenic	  

•  Oligogenic	  –	  mulCple	  mutaCons	  together	  
contribuCng	  to	  aggregate	  disease,	  BUT	  with	  only	  
1-‐2	  mutaCons	  of	  ~	  >10%	  penetrance	  (or	  “effect	  
size)	  in	  EACH	  person	  in	  that	  clan.	  

•  Polygenic	  –	  Dozens	  to	  hundreds	  of	  mutaCons	  in	  
different	  genes	  in	  the	  SAME	  person,	  together	  
contribuCng	  to	  the	  disease	  in	  the	  SAME	  person,	  
hence	  addi7ve	  and/or	  epista7c	  contribuCon	  with	  
~0.01-‐1%	  penetrance	  for	  each	  mutaCon.	  



Results	  from	  Exome	  and	  WGS	  requires	  
both	  AnalyCc	  and	  Clinical	  Validity	  

•  AnalyCcal	  Validity:	  the	  test	  is	  accurate	  with	  
high	  sensiCvity	  and	  specificity.	  

•  Clinical	  Validity:	  Given	  an	  accurate	  test	  result,	  
what	  impact	  and/or	  outcome	  does	  this	  have	  
on	  the	  individual	  person?	  



Penetrance	  Issues	  

•  We	  do	  not	  really	  know	  the	  penetrance	  of	  	  preiy	  much	  
ALL	  mutaCons	  in	  humans,	  as	  we	  have	  not	  
systemaCcally	  sequenced	  or	  karyotyped	  any	  geneCc	  
alteraCon	  in	  Thousands	  to	  Millions	  of	  randomly	  
selected	  people,	  nor	  categorized	  into	  ethnic	  classes,	  
i.e.	  clans.	  

•  There	  is	  a	  MAJOR	  clash	  of	  world-‐views,	  i.e.	  does	  
geneCcs	  drive	  outcome	  predominately,	  or	  are	  the	  
results	  modified	  substanCally	  by	  environment?	  i.e.	  is	  
there	  really	  such	  a	  thing	  as	  geneCc	  determinism	  for	  
MANY	  mutaCons?	  



AnalyCcal	  Validity	  of	  Exome	  and	  WGS?	  
	  
	  
	  
	  

•  Minimal	  Standard:	  exomes	  and	  genomes	  ought	  to	  be	  
performed	  in	  a	  CLIA-‐cerCfied	  environment	  for	  germline	  
genomic	  DNA	  from	  live	  humans	  .	  

•  Easier	  said	  than	  done	  in	  academia,	  but	  some	  companies	  offer	  
this	  now:	  Illumina,	  23andMe,	  Ambry	  GeneCcs,	  and	  some	  
academic	  places	  do	  offer	  this	  now:	  UCLA,	  Baylor,	  Emory	  and	  
WashU	  for	  exomes.	  

•  I	  do	  NOT	  think	  the	  FDA	  should	  get	  involved	  to	  regulate	  this,	  nor	  
do	  the	  results	  have	  to	  go	  through	  a	  physician,	  i.e.	  DTC	  is	  fine	  as	  
long	  as	  CLIA-‐cerCfied.	  This	  is	  geneCc	  INFORMATION,	  not	  
cyanide,	  some	  other	  drug,	  or	  surgery.	  



Autonomy	  vs.	  Privacy	  vs.	  Bureaucracy	  

Privacy	  

Autonomy	  

Bureaucracy	  

Vanderbilt	  	  	  	  	  	  CHOP	  	  	  	  	  ClinSeq-‐NIH	  	  	  	  	  Gene	  Partnership	  	  	  	  	  Personal	  Genome	  Project	  	  	  	  Pa7entsLikeMe	  
	   	   	   	   	   	   	   	   	   	   	  23AndMe	  
	   	   	   	   	   	   	   	   	   	  	  	  	  	  	  	  	  	  Ancestry.com	  

	  



Clinical	  Validity?	  
	  

This	  is	  SO	  complex	  that	  the	  only	  solid	  
way	  forward	  is	  with	  a	  “networking	  of	  
science”	  model,	  i.e.	  online	  database	  

with	  genotype	  and	  phenotype	  
longitudinally	  tracked	  for	  thousands	  of	  

volunteer	  families.	  
Pa7entsLikeMe	  
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The duplication architecture of the human genome predisposes our species to recurrent copy number
variation and disease. Emerging data suggest that this mechanism of mutation contributes to both
common and rare diseases. Two features regarding this form of mutation have emerged. First, common
structural polymorphisms create susceptible and protective chromosomal architectures. These structural
polymorphisms occur at varying frequencies in populations, leading to different susceptibility and ethnic
predilection. Second, a subset of rearrangements shows extreme variability in expressivity. We propose
that two types of genomic disorders may be distinguished: syndromic forms where the phenotypic features
are largely invariant and those where the same molecular lesion associates with a diverse set of diagnoses
including epilepsy, schizophrenia, autism, intellectual disability and congenital malformations. Copy number
variation analyses of patient genomes reveal that disease type and severity may be explained by the occur-
rence of additional rare events and their inheritance within families. We propose that the overall burden of
copy number variants creates differing sensitized backgrounds during development leading to different
thresholds and disease outcomes. We suggest that the accumulation of multiple high-penetrant alleles
of low frequency may serve as a more general model for complex genetic diseases, posing a significant
challenge for diagnostics and disease management.

INTRODUCTION

Genomic disorders were originally described as large deletions
and duplications that are highly penetrant, mostly de novo in
origin, and typically identified in affected individuals with intel-
lectual disability/multiple congenital malformations. Some
examples include Smith–Magenis syndrome (MIM: 182290),
DiGeorge/velocardiofacial syndrome (MIM: 188400, 192430)
and Williams–Beuren syndrome (MIM: 194050). These classi-
cal genomic disorders have been well characterized in the past
two decades with genotype–phenotype correlation studies
implicating causative genes, mouse models recapitulating the
human clinical features, and standardized management proto-
cols and support groups established.

Application of higher definition molecular techniques,
including single-nucleotide polymorphism microarrays or
array comparative genomic hybridization (CGH), has allowed
genotyping of larger disease cohorts and controls. Two major
principles have emerged from these more recent studies: (i)
common copy number polymorphism predisposes certain

chromosomes to recurrent deletions and duplications and
(ii) association of the same recurrent genomic lesion with
apparently very diverse phenotypes. The latter has begun to
illuminate common neurodevelopmental pathways and
helps to explain the comorbidity of diverse neurological
manifestations within the same families. The distinction
between variability of expressivity and reduced penetrance
depending on the diagnosis has become an important consider-
ation for these rare mutational events. We will explore the
mechanisms, models and implications underlying these two
different aspects.

GENOMIC SUSCEPTIBILITY TO RECURRENT
DELETIONS AND DUPLICATIONS

Seminal work on Charcot–Marie–Tooth disease (1,2) and
hereditary neuropathy with liability to pressure palsies
(HNPP) (3) directly implicated low-copy repeats or segmental
duplications as substrates for unequal crossover or non-allelic
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Objective: The authors used a genome-
wide association study (GWAS) of multiply
affected families to investigate the associ-
ation of schizophrenia to common single-
nucleotide polymorphisms (SNPs) and rare
copy number variants (CNVs).

Method: The family sample included
2,461 individuals from 631 pedigrees (581

in the primary European-ancestry analyses).
Association was tested for single SNPs and
genetic pathways. Polygenic scores based
on family study results were used to predict
case-control status in the Schizophrenia
Psychiatric GWAS Consortium (PGC) data
set, and consistency of direction of effect
with the family study was determined for
top SNPs in the PGC GWAS analysis. Within-
family segregation was examined for
schizophrenia-associated rare CNVs.

Results: No genome-wide significant asso-
ciationswereobserved for single SNPs or for
pathways. PGC case and control subjects
had significantly different genome-wide
polygenic scores (computed by weighting
their genotypes by log-odds ratios from the
family study) (best p=10217, explaining
0.4% of the variance). Family study and
PGC analyses had consistent directions for
37 of the 58 independent best PGC SNPs
(p=0.024). The overall frequency of CNVs
in regions with reported associations
with schizophrenia (chromosomes 1q21.1,
15q13.3, 16p11.2, and 22q11.2 and the
neurexin-1 gene [NRXN1]) was similar to
previous case-control studies. NRXN1
deletions and 16p11.2 duplications (both
of which were transmitted from parents)
and 22q11.2 deletions (de novo in four
cases) did not segregate with schizophre-
nia in families.

Conclusions: Many common SNPs are
likely to contribute to schizophrenia risk,
with substantial overlap in genetic risk
factors between multiply affected families
and cases in large case-control studies. Our
findings are consistentwith a role for specific
CNVs in disease pathogenesis, but the partial
segregationof someCNVswith schizophrenia
suggests that researchers should exercise
caution in using them for predictive genetic
testing until their effects in diverse popula-
tions have been fully studied.

Am J Psychiatry Levinson et al.; AiA:1–11

We report here on the first genome-wide associ-
ation study (GWAS) in families with multiple members
with schizophrenia. Significant associations of single-
nucleotide polymorphisms (SNPs) can suggest new

disease susceptibility mechanisms. For schizophrenia,
large GWAS analyses of common SNPs have found
associations in the major histocompatibility complex
(MHC, chromosome 6) (1–3) and several specific genes
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top SNPs in the PGC GWAS analysis. Within-
family segregation was examined for
schizophrenia-associated rare CNVs.

Results: No genome-wide significant asso-
ciationswereobserved for single SNPs or for
pathways. PGC case and control subjects
had significantly different genome-wide
polygenic scores (computed by weighting
their genotypes by log-odds ratios from the
family study) (best p=10217, explaining
0.4% of the variance). Family study and
PGC analyses had consistent directions for
37 of the 58 independent best PGC SNPs
(p=0.024). The overall frequency of CNVs
in regions with reported associations
with schizophrenia (chromosomes 1q21.1,
15q13.3, 16p11.2, and 22q11.2 and the
neurexin-1 gene [NRXN1]) was similar to
previous case-control studies. NRXN1
deletions and 16p11.2 duplications (both
of which were transmitted from parents)
and 22q11.2 deletions (de novo in four
cases) did not segregate with schizophre-
nia in families.

Conclusions: Many common SNPs are
likely to contribute to schizophrenia risk,
with substantial overlap in genetic risk
factors between multiply affected families
and cases in large case-control studies. Our
findings are consistentwith a role for specific
CNVs in disease pathogenesis, but the partial
segregationof someCNVswith schizophrenia
suggests that researchers should exercise
caution in using them for predictive genetic
testing until their effects in diverse popula-
tions have been fully studied.

Am J Psychiatry Levinson et al.; AiA:1–11

We report here on the first genome-wide associ-
ation study (GWAS) in families with multiple members
with schizophrenia. Significant associations of single-
nucleotide polymorphisms (SNPs) can suggest new

disease susceptibility mechanisms. For schizophrenia,
large GWAS analyses of common SNPs have found
associations in the major histocompatibility complex
(MHC, chromosome 6) (1–3) and several specific genes

AJP in Advanced ajp.psychiatryonline.org 1

“Rare	  CNVs	  were	  observed	  in	  regions	  with	  strong	  previously	  documented	  associaCon	  
with	  schizophrenia,	  but	  with	  variable	  paierns	  of	  segregaCon.	  This	  should	  serve	  as	  a	  
reminder	  that	  we	  sCll	  know	  relaCvely	  liile	  about	  the	  distribuCon	  of	  these	  CNVs	  in	  the	  
enCre	  populaCon	  (e.g.,	  in	  individuals	  with	  no	  or	  only	  mild	  cogniCve	  problems)	  or	  about	  
the	  reasons	  for	  the	  emergence	  of	  schizophrenia	  in	  only	  a	  minority	  of	  carriers,	  so	  great	  
cauCon	  is	  required	  in	  geneCc	  counseling	  and	  prediagnosis.”	  	  
	  



VAAST	  shows	  that	  probabilisCc	  ranking	  
will	  be	  very	  useful	  going	  forward	  

•  But,	  VAAST	  is	  currently	  dependent	  on	  the	  variant	  lists	  
provided	  to	  it,	  as	  there	  is	  sCll	  a	  heurisCc	  threshold	  with	  
input	  of	  variant	  data,	  i.e.	  no	  probabilisCc	  weighCng	  of	  
SNV	  or	  indel	  “true	  posiCve	  likelihood”.	  

•  Therefore,	  currently	  need	  to	  opCmize	  variant-‐calling	  to	  
make	  sure	  variants	  provided	  are	  correct.	  Plus,	  VAAST	  
chokes	  if	  background	  genomes	  are	  full	  of	  false	  
posiCves.	  

•  Thus,	  focused	  now	  on	  comprehensive	  comparison	  of	  
NGS	  variant-‐calling	  on	  deep	  exome	  sequencing	  data	  



CLIA-‐cerCfied	  exomes	  and	  WGS	  

•  The	  CLIA-‐cerCfied	  pipelines	  aiempt	  to	  
minimize	  false	  posiCves	  with	  increased	  depth	  
of	  sequencing,	  although	  there	  can	  sCll	  be	  
many	  no-‐calls	  and	  other	  areas	  of	  uncertainty,	  
which	  should	  be	  reported	  as	  No-‐Call	  Regions.	  	  

•  This	  will	  minimize	  false	  posiCves	  and	  also	  tend	  
to	  prevent	  false	  negaCves.	  



Discov	  Med.	  2011	  Jul;12(62):41-‐55.	  



Exome	  sequencing	  of	  one	  pedigree	  in	  
a	  research	  seong.	  

Figure 1. The pedigree structure is shown, with corresponding ID 
numbers. The three subjects in the pedigree affected with ADHD are 
shaded. Only 84060 has the idiopathic hemolytic anemia. The mother, 
father and two sons were sequenced. The two sisters in the family 
declined to participate in the study, thus their phenotype status is 
unknown and marked as “?”. 
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Supplementary Table 1. ADHD measures during a clinical trial of methylphenidate 
transdermal system. 

    92157 84060 84615 

Baseline    
 WRAADDS 16 22 16 
 ODD 1 11 7 
 CAARS 40 55 38 
 CGI-S 4 4 4 
Active Medication    
 WRAADDS 0 4 3 
 ODD 0 1 3 
 CAARS 10 0 13 
 CGI-I 1 1 1 
 CGI-S 1 3 2 
Placebo     
 WRAADDS 15 24 20 
 ODD 6 8 7 
 CAARS 33 51 42 
 CGI-I 4 4 N/A 
 CGI-S 4 5 N/A 

 
 
WRAADDS: Total score on the Wender Reimherr Adult ADD Scale  
ODD: Oppositional Defiant Disorder scaore on the WRAADDS ODD subscale 
CAARS: Total score Connor’s Adult ADHD Rating Scale 
CGI-S: Clinical Global Impression, Severity score.  
!

Phenotyping	  is	  Cri7cally	  Important	  in	  Neuropsychiatric	  Disorders!	  
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Exome	  method	  used	  ~January	  2010	  
with	  BGI	  

  Exome	  capture	  for	  the	  three	  males	  was	  carried	  out	  in	  January	  2010	  
using	  the	  commercially	  available	  Agilent	  SureSelect	  Human	  All	  
Exon	  v1	  38	  MB	  in	  soluCon	  method	  as	  per	  the	  manufacturer	  
guidelines	  (Agilent).	  	  

  The	  DNA	  from	  the	  unaffected	  mother	  was	  obtained	  at	  a	  later	  date,	  
allowing	  us	  to	  use	  the	  newly	  released	  SureSelect	  Human	  All	  Exon	  v.
2	  Kit,	  which	  targets	  approximately	  44	  Mb,	  covering	  98.2%	  of	  the	  
CCDS	  database.	  	  

  Paired	  end	  sequencing	  was	  performed	  using	  the	  Illumina	  Genome	  
Analyzer	  IIx	  plasorm	  with	  read	  lengths	  of	  76	  base	  pairs,	  providing	  
at	  least	  20x	  average	  coverage	  at	  the	  targeted	  region.	  The	  
unaffected	  mother	  was	  sequenced	  with	  read	  lengths	  of	  90	  base	  
pairs	  due	  to	  technological	  advancements	  during	  the	  course	  of	  the	  
study,	  at	  an	  average	  coverage	  of	  30x	  at	  the	  targeted	  region.	  	  

	  
	  



 

 

Supplementary Table 2. Summary of data production and evenness for samples. 
 

Exon Capture 84615 84060 92157 
Initial bases on target 37,806,033 37,806,033 37,806,033 
*Initial bases near target 126,431,894 126,431,894 126,431,894 
Initial bases on or near target 164,237,927 164,237,927 164,237,927 
**Total effective reads 18,578,623 18,978,287 19,437,592 
Total effective yield (Mb) 1,374.80 1,394.45 1,428.19 
Average read length (bp) 74.00 73.48 73.48 
Effective sequence on target(Mb) 831.55 807.17 890.49 
Effective sequence near target(Mb) 259.93 290.95 240.09 
Effective sequence on or near target(Mb) 1,091.48 1,098.12 1,130.57 
Fraction of effective bases on target 60.50% 57.90% 62.4% 
Fraction of effective bases on or near 
target 79.40% 78.70% 79.2% 

Average sequencing depth on target 22.00  21.35  23.55 
Average sequencing depth near target 2.06 2.30 1.90 
Mismatch rate in target region 0.28% 0.27% 0.28% 
Mismatch rate in all effective sequence 0.29% 0.28% 0.30% 
Base covered on target 35,919,196 36,523,196 36,676,340 
Coverage of target region 95.00% 96.60% 97.0% 
Base covered near target 44,578,612 50,837,058 44,482,108 
Coverage of flanking region 35.30% 40.20% 35.2% 
Fraction of target covered with at least 
20X    42.60% 41.80% 46.3% 

Fraction of target covered with at least 
10X    67.20% 68.90% 72.3% 

Fraction of target covered with at least 4X    84.90% 87.90% 89.4% 
Fraction of flanking region covered with at 
least 20X   1.90% 2.10% 1.6% 

Fraction of flanking region covered with at 
least 10X   6.50% 7.20% 5.7% 

Fraction of flanking region covered with at 
least 4X    15.90% 18.10% 14.8% 

 
* The region near target refers to flanking region within 500bp of target regions. 
** Total effective reads is the same meaning as the unique mapped reads. Here the effective reads consist of 
two parts: i) the reads have only one best hit in the alignment. These reads comes from the unique region of 
genome ii) the reads have multiple best hits on the genome (the number of hits between 1 and 20), and they 
were randomly aligned onto the target regions. These reads mainly come from low complex genomic region, 
such as repetitive sequences, and account for about 2% of total effective reads. 
*** Target regions used here refer to capture target regions that the designed probes actually covered. The 
aggregate length of target is about 37.8Mb. 
 

 
 

 
 
 



 

 
 
Supplementary Table 3. Exome sequencing for mother,  
K24510-88962 

Exome Capture Statistics         K24510-88962 

Target region (bp) 46,401,121  
Raw reads 33,218,260  
Raw data yield (Mb) 2,990.00  
Reads mapped to genome 28,985,053  
Reads mapped to target region 21,076,479  
Data mapped to target region (Mb) 1,585.28  
Mean depth of target region 34.16 
Coverage of target region (%) 95.51  
Average read length (bp) 89.57  
Rate of nucleotide mismatch (%) 0.42  
Fraction of target covered >=4X 86.58  
Fraction of target covered >=10X 75.02  
Fraction of target covered >=20X 58.39  
Fraction of target covered >=30X 43.35  
Capture specificity (%) 72.97  
Reads mapped to flanking region 3,915,627  
Mean depth of flanking region 9.29  
Coverage of flanking region (%) 81.53  
Fraction of flanking  covered >=4X 54.69  
Fraction of flanking  covered >=10X 30.11  
Fraction of flanking  covered >=20X 13  
Fraction of flanking  covered >=30X 6.74  
Fraction of unique mapped bases on or near 
target 85.42  

Duplication rate 7.30  
Mean depth of chrX 47.98  
Mean depth of chrY 5.36  
GC rate 48.28  
Gender test result                                F 
Note: 

(1)    Target regions here refer to the regions that are actually covered by the designed probes. 

(2)    Reads mapped to target regions are reads that within or overlap with target region. 
(3)    Capture specificity is defined as the percentage of uniquely mapped reads aligning to target 
region. 

(4)    Flanking region refers to regions +/-200 bp on both sides of each target region. 

(5)   Duplication is defined as pairs of reads that have duplicated start sites for both reads. 
Duplication rate is the fraction of duplicated reads in raw data. 

 

 

 

 



 

 
 

 
 

 
Suppl. Figure 2. Cumulative depth distribution in target regions for three samples. X-axis denotes sequencing 
depth, and y-axis indicated the fraction of bases that achieves at or above a given sequencing depth. From the 
figure above, we can see at least 67% of target region bases obtain at least 10x fold coverage in three exomes 
and more than 85% of target region achieved at least 4x, which shows that the three exomes have similar 
enrichment uniformity. 
 



BioinformaCcs	  Analysis	  for	  ADHD	  
pedigree	  



Poor concordance: Intersection of variants. We show here the 
variants identified by the three main pipelines as being present in 

the three males with ADHD, but not present in the unaffected 
mother.   

	  
	  



Filtering	  Steps	  for	  ADHD	  Shared variants: 13786 
SNPs+ 123 indels 

Gene-‐based	  annotaCon	  to	  idenCfy	  non-‐
synonymous	  or	  frameshiu	  variants	  

 3775 variants 
Conserved	  variants	  from	  44-‐species	  
alignment	  

 1694 variants 
Remove	  variants	  in	  segmental	  
duplicaCon	  regions	  

 1551 variants 
Remove	  variants	  found	  in	  1000	  
Genomes	  Project	  CEU	  populaCon	  

 107 variants 
Remove	  variants	  found	  in	  1000	  
Genomes	  Project	  YRI	  populaCon	  

 105 variants 
Remove	  variants	  found	  in	  1000	  
Genomes	  Project	  CHB+JPT	  
populaCon	  105 variants 

Remove	  variants	  found	  in	  dbSNP	  130	  
Dominant	  model	  

 41 variants 

Literature survey 
identifies 4 candidate 

genes (ATP7B, 
CSTF2T, METTL3, 

ALDH1L1) 

29 
candidate 
variants 

SIFT	  scoring	  

Validation by 
Sanger 

sequencing 

filtering out variants 
with MAF>0.2% in 

~6300 exomes 



 
 
 
Supplementary Table 6. Validated variants for ADHD and their population frequency in 5,680 and ~600 deep-sequenced exomes  
at BGI and Baylor, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. The indels were only measured thus far in 2,360 exomes at BGI, whereas the SNPs were measured in 5,680 exomes. 

# 
Chrom. 

Position 
in HG19 

Reference 
allele 

Mutant 
allele 

Gene 
 

Type of Mutation 
 

Amino acid 
change 

# variants 
in BGI 

exomes1 

% in BGI 
exomes 

# variants in 
~600 Baylor 

exomes 

% in Baylor 
exomes 

chr17 66872692 
 

A G ABCA8 Nonsynonymous C1387R 0 0.0% 0 0.0% 

chr11 68566802 
 

G A CPT1A Nonsynonymous L193F 0 0.0% 0 0.0% 

chr8 100994274 
 

A G RGS22 Nonsynonymous I1084T 0 0.0% 0 0.0% 

chr18 61654247 
 

G T SERPINB8 Nonsynonymous G287V 0 0.0% 0 0.0% 

chr1 207200877 
 

- T C1orf116 frameshift insertion  34 1.4% 0 0.0% 

chr18 29101156 
 

T G DSG2 Nonsynonymous V158G 1 0.0% 1 0.2% 

chr3 125877290 
 

G A ALDH1L1 Nonsynonymous P107L 2 0.0% 0 0.0% 

chr13 52542680 
 

A G ATP7B Nonsynonymous V536A 1 0.0% 1 0.2% 

chr10 53458646 
 

A C CSTF2T Nonsynonymous C222G 4 0.1% 1 0.2% 

chr14 21972019 
 

G A METTL3 Nonsynonymous R36W 9 0.2% 1 0.2% 

chr11 76954790 
 

- A GDPD4 frameshift insertion  36 1.5% 6 1.0% 

chr7 87160618 
 

A T ABCB1 Nonsynonymous S893T 815 14.3%1 9 1.5% 

chr11 134128923 
 

C G ACAD8 Nonsynonymous S171C 112 2.0% 20 3.3% 

chr20 17956347 
 

C T C20orf72 Nonsynonymous R178W 23 0.4% 8 1.3% 

chr8 33318891 
 

T C FUT10 Nonsynonymous Q27R 15 0.3% 3 0.5% 

chr13 20797025 
 

A T GJB6 Nonsynonymous S199T 68 1.2% 4 0.7% 

chr16 71015329 
 

G T HYDIN Nonsynonymous P1491H 77 1.4% dozens >5.0% 

chr10 22019855 
 

G A MLLT10 Nonsynonymous R713H 15 0.3% 6 1.0% 

chr17 10415269 
 

A G MYH1 Nonsynonymous Y435H 99 1.7% 14 2.3% 

chr1 145015877 
 

G T PDE4DIP Nonsynonymous L142I 1256 22.1% hundreds >30.0% 

chr2 98809432 
 

T C VWA3B Nonsynonymous I513T 15 0.3% 16 2.7% 

chr5 115202418 AAGA - AP3S1 frameshift deletion  185 7.8% 19 3.2% 



 
 
 
Supplementary Table 6. Validated variants for ADHD and their population frequency in 5,680 and ~600 deep-sequenced exomes  
at BGI and Baylor, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. The indels were only measured thus far in 2,360 exomes at BGI, whereas the SNPs were measured in 5,680 exomes. 
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OpCmizing	  Variant	  Calling	  in	  Exomes	  at	  
BGI	  in	  2011	  

•  Agilent	  v2	  44	  MB	  exome	  kit	  
•  Illumina	  Hi-‐Seq	  for	  sequencing.	  

•  Average	  coverage	  ~100-‐150x.	  
•  Depth	  of	  sequencing	  of	  >80%	  of	  the	  target	  
region	  with	  >20	  reads	  or	  more	  per	  base	  pair.	  

•  Comparing	  various	  pipelines	  for	  alignment	  and	  
variant-‐calling.	  



2-‐3	  rounds	  of	  sequencing	  at	  BGI	  to	  aVain	  
goal	  of	  >80%	  of	  target	  region	  at	  >20	  reads	  

per	  base	  pair	  
Exome Capture Statistics K24510-84060 K24510-92157-a K24510-84615 K24510-88962 

Target region (bp) 46,401,121  46,401,121  46,401,121  46,257,379  

Raw reads 138,779,950  161,898,170  156,985,870  104,423,704  

Raw data yield (Mb) 12,490  14,571  14,129  9,398  

Reads mapped to genome 110,160,277  135,603,094  135,087,576  83,942,646  

Reads mapped to target region 68,042,793  84,379,239  80,347,146  61,207,116  

Data mapped to target region (Mb) 5,337.69  6,647.18  6,280.01  4,614.47  

Mean depth of target region 115.03 143.25 135.34 99.76 

Coverage of target region (%) 0.9948  0.9947  0.9954  0.9828  

Average read length (bp) 89.91  89.92  89.95  89.75  

Fraction of target covered >=4X 98.17  98.38  98.47  94.25  

Fraction of target covered >=10X 95.18  95.90  95.97  87.90  

Fraction of target covered >=20X 90.12  91.62  91.75  80.70  

Fraction of target covered >=30X 84.98  87.42  87.67  74.69  

Capture specificity (%) 61.52  62.12  59.25  73.16  

Fraction of unique mapped bases on or near target 65.59  65.98  63.69  85.46  

Gender test result M M M F 



Depth	  of	  Coverage	  in	  15	  exomes	  >	  20	  
reads	  per	  bp	  in	  target	  region	  
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Deep	  Exome	  sequencing	  

Fig.1	  CorrelaCon	  between	  the	  percentage	  of	  target	  regions	  covered	  and	  the	  sequencing	  
depth	  in	  human	  exome	  sequencing.	  Take	  >=30X	  series	  (the	  purple	  line)	  for	  example:	  when	  
the	  sequencing	  depth	  is	  30X,	  only	  half	  of	  the	  target	  regions	  (51%)	  are	  covered	  at	  above	  30X.	  
While	  at	  the	  100X	  and	  200X	  sequencing	  depths,	  a	  much	  higher	  percentage	  (81%	  and	  90%,	  
respecCvely)	  of	  the	  target	  regions	  is	  covered	  at	  above	  30X.	  	  	  

Figure	  from	  BGI	  website:	  
hip://bgiamericas.com/
news-‐events/why-‐deep-‐
exome-‐sequencing/	  



GWAS	  has	  staCsCcal	  rigor	  with	  a	  
threshold	  p	  value	  

•  Should	  exome	  sequencing	  also	  have	  a	  
threshold	  level	  of	  rigor,	  such	  as	  >80%	  of	  target	  
region	  with	  20	  reads	  or	  more	  per	  base	  pair?	  

•  This	  is	  accepted	  pracCce	  at	  major	  genome	  
sequencing	  centers	  (Baylor,	  WashU,	  Broad),	  
but	  apparently	  not	  everywhere	  else….	  
Shouldn’t	  this	  be	  required?	  



“Methods”	  should	  really	  mean	  
something	  

•  Papers	  should	  include	  detailed	  methods,	  
allowing	  reproducCon	  of	  analyses.	  

•  Or,	  beier	  yet,	  “papers”	  should	  be	  simply	  
analyses	  published	  online,	  connected	  to	  
datasets,	  updateable	  in	  Wiki	  fashion..	  

•  Data	  should	  be	  made	  available	  as	  well,	  with	  
standardized	  analyses	  in	  place.	  

•  At	  least	  there	  is	  now	  some	  movement	  toward	  
“open	  science”.	  



In	  a	  prior	  project	  on	  a	  new,	  rare	  disorder,	  that	  we	  
named	  Ogden	  Syndrome,	  the	  X-‐chromosome	  

Exon	  Capture	  and	  Coverage	  was	  high	  depth	  with	  
Average	  Base	  Coverage	  of	  214x	  …	  !

Table 2. Coverage Statistics in Family 1. Based on GNUMAP 

Region RefSeq 
Transcripts 

 
Unique 
Exons 
 

Percent 
Exon 
Coverage 
≥1X 

Percent Exon 
Coverage 
≥10X 

Unique 
Genes 

Average Base 
Coverage 

 
VAAST 
Candidate 
SNVs 

 X-chromosome 1,959 7,486  97.8 95.6 913 214.6 
1 

(NAA10) 
chrX: 

10054434- 
40666673 262 1,259  98.1 95.9 134 213.5 

 
 

0 
chrX: 

138927365- 
153331900 263 860  97.1 94.9 132 177.1 

 
1 

(NAA10) 
* On chromosome X, there are 8,222 unique RefSeq exons. Of these exons, 736 were excluded from the SureSelect X-Chromosome Capture 
Kit because they were designated as pseudoautosomal or repetitive sequences (UCSC genome browser). 

Using	  VAAST	  to	  IdenCfy	  an	  X-‐Linked	  Disorder	  ResulCng	  in	  Lethality	  in	  Male	  Infants	  Due	  to	  N-‐Terminal	  
Acetyltransferase	  Deficiency.	  	  Am	  J	  Hum	  Genet.	  2011	  Jul	  15;89(1):28-‐43.	  Epub	  2011	  Jun	  23.	  	  



ReplicaCon	  is	  so	  criCcally	  important:	  
“To	  show	  that	  'A'	  is	  true,	  you	  don't	  do	  

'B'.	  You	  do	  'A'	  again.”	  

•  Gave	  Ogden	  Syndrome	  data	  to	  Omicia,	  Golden	  
Helix	  and	  Synapse	  for	  replicaCon	  and	  data	  
upload.	  

•  Replicated	  already	  by	  Omicia	  and	  Golden	  Helix.	  

•  Anyone	  can	  download	  data	  from	  Synapse	  Portal	  
–	  just	  email	  me	  to	  gain	  access	  to	  the	  data.	  

Ed	  Yong,	  Nature	  485,	  298–300	  (17	  May	  2012)	  



2-‐3	  rounds	  of	  sequencing	  at	  BGI	  to	  aVain	  
goal	  of	  >80%	  of	  target	  region	  at	  >20	  reads	  

per	  base	  pair	  
Exome Capture Statistics K24510-84060 K24510-92157-a K24510-84615 K24510-88962 

Target region (bp) 46,401,121  46,401,121  46,401,121  46,257,379  

Raw reads 138,779,950  161,898,170  156,985,870  104,423,704  

Raw data yield (Mb) 12,490  14,571  14,129  9,398  

Reads mapped to genome 110,160,277  135,603,094  135,087,576  83,942,646  

Reads mapped to target region 68,042,793  84,379,239  80,347,146  61,207,116  

Data mapped to target region (Mb) 5,337.69  6,647.18  6,280.01  4,614.47  

Mean depth of target region 115.03 143.25 135.34 99.76 

Coverage of target region (%) 0.9948  0.9947  0.9954  0.9828  

Average read length (bp) 89.91  89.92  89.95  89.75  

Fraction of target covered >=4X 98.17  98.38  98.47  94.25  

Fraction of target covered >=10X 95.18  95.90  95.97  87.90  

Fraction of target covered >=20X 90.12  91.62  91.75  80.70  

Fraction of target covered >=30X 84.98  87.42  87.67  74.69  

Capture specificity (%) 61.52  62.12  59.25  73.16  

Fraction of unique mapped bases on or near target 65.59  65.98  63.69  85.46  

Gender test result M M M F 



Pipeline	  Used	  on	  Same	  Set	  of	  Seq	  Data	  
by	  Different	  Analysts	  	  

1)  BWA-‐Sam	  format	  to	  Bam	  format-‐Picard	  to	  remove	  duplicates-‐	  GATK	  (version	  
1.5)	  with	  recommended	  parameters	  	  (GATK	  IndelRealigner,	  base	  quality	  scores	  
were	  re-‐calibrated	  by	  GATK	  Table	  RecalibraCon	  tool.	  Genotypes	  called	  by	  GATK	  
UnifiedGenotyper.	  	  

	  
2)  BWA-‐Sam	  format	  to	  Bam	  format-‐Picard	  to	  remove	  duplicates-‐	  SamTools	  

version	  0.1.18	  to	  generate	  genotype	  calls	  	  -‐-‐	  The	  “mpileup”	  command	  in	  
SamTools	  were	  used	  for	  idenCfy	  SNPs	  and	  indels.	  

	  
3)  SOAP-‐Align	  –	  SOAPsnp	  –	  then	  BWA-‐SOAPindel	  (adopts	  local	  assembly	  based	  

on	  an	  extended	  de	  Bruijn	  graph	  )	  
	  
4)  GNUMAP-‐SNP	  (probabilisCc	  Pair-‐Hidden	  Markov	  which	  effecCvely	  accounts	  

for	  uncertainty	  in	  the	  read	  calls	  as	  well	  as	  read	  mapping	  in	  an	  unbiased	  
fashion)	  

	  
5)  BWA-‐Sam	  format	  to	  Bam	  format-‐Picard	  to	  remove	  duplicates-‐	  SNVer	  	  



Total	  SNVs�

Mean	  #	  of	  total	  SNVs	  across	  15	  exomes,	  called	  by	  5	  pipelines.	  The	  percentage	  
in	  the	  center	  of	  the	  the	  Venn	  diagram(Parenthesis)	  is	  the	  percent	  of	  total	  SNVs	  
called	  by	  all	  five	  pipelines.	  	  

A)	  





B)	  Mean	  #	  of	  known	  SNVs	  (present	  in	  dbSNP135)	  found	  by	  5	  pipelines	  across	  
15	  exomes.	  The	  percentage	  in	  the	  center	  of	  the	  the	  Venn	  diagram	  is	  the	  
percent	  of	  known	  SNVs	  called	  by	  all	  five	  pipelines.	  	  

B)	  

Known	  SNVs	  



•  C)	  Mean	  #	  of	  novel	  SNVs	  (not	  present	  in	  dbSNP135)	  found	  by	  5	  pipelines	  across	  15	  
exomes.	  The	  percentage	  in	  the	  center	  of	  the	  Venn	  diagram	  is	  the	  percent	  of	  novel	  
SNVs	  called	  by	  all	  five	  pipelines.	  

C)	  
Novel	  SNVs	  



Total	  mean	  overlap,	  plus	  or	  minus	  one	  standard	  devia7on,	  observed	  between	  three	  
indel	  calling	  pipelines:	  GATK,	  SOAP-‐indel,	  and	  SAMTools.	  	  a)	  Mean	  overlap	  when	  indel	  
posiCon	  was	  the	  only	  necessary	  agreement	  criterion.	  b)	  Mean	  overlap	  when	  indel	  
posiCon,	  base	  length	  and	  base	  composiCon	  were	  the	  necessary	  agreement	  criteria.	  	  	  

Indels-‐	  Overlap	  by	  Base	  	  
PosiCon	  only	  

Indels-‐	  Overlap	  by	  Base	  	  
PosiCon,	  Length	  and	  ComposiCon	  

INDELS	  





OpCmizing	  the	  Variant	  Calling	  Pipeline	  
Using	  Family	  RelaConships	  

We	  looked	  for	  SNVs	  that	  were	  detected	  in	  children	  but	  
not	  in	  parents	  using	  3	  different	  strategies:	  
	  	  
1.	  We	  used	  all	  of	  the	  SNVs	  that	  were	  detected	  by	  all	  5	  
pipelines	  for	  both	  parents	  and	  children	  
2.	  We	  used	  all	  of	  the	  detected	  SNVs	  for	  parents,	  but	  only	  
the	  concordant	  SNVs	  between	  the	  5	  different	  pipelines	  
for	  children.	  
3.	  We	  used	  SNVs	  concordant	  between	  the	  5	  different	  
pipelines	  for	  children	  and	  parents.	  
	  	  



OpCmizing	  pipeline	  based	  on	  literature	  value	  of	  ~1	  
true	  de	  novo	  protein-‐altering	  mutaCon	  per	  exome	  

The	  result	  is	  that	  using	  all	  of	  the	  detected	  SNVs	  for	  both	  parents	  and	  children	  should	  
minimize	  the	  false	  negaCve	  rate	  but	  similarly	  show	  a	  relaCvely	  high	  false	  posiCve	  rate.	  	  
Using	  all	  of	  the	  SNVs	  detected	  for	  parents	  but	  only	  the	  SNVs	  concordant	  among	  the	  five	  
pipelines	  shows	  mutaCon	  rates	  similar	  to	  those	  reported	  by	  the	  literature	  and	  is	  expected	  
to	  have	  moderate	  false	  posiCve	  rates	  and	  moderate	  false	  negaCve	  rates.	  	  Using	  only	  the	  
SNVs	  concordant	  among	  the	  5	  different	  pipelines	  for	  both	  parents	  and	  children	  should	  
minimize	  the	  false	  posiCve	  rate	  but	  similarly	  show	  a	  relaCvely	  high	  false	  negaCve	  rate.	  	  	  
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“Parents”	  



Analysis	  based	  on	  various	  pipelines	  

•  “Parents”	  in	  this	  case	  means	  the	  mother,	  father	  
AND	  grandmother.	  

•  Taking	  the	  Union	  of	  SNVs	  from	  all	  5	  pipelines	  
from	  “Parents”,	  and	  subtract	  that	  from	  the	  Union	  
of	  all	  SNVs	  in	  each	  child.	  

•  Or	  Subtract	  the	  Union	  of	  these	  “Parents”	  from	  
the	  SNVs	  in	  the	  child	  concordant	  between	  5	  
pipelines.	  

•  Or,	  subtract	  the	  concordant	  variants	  from	  5	  
pipelines	  in	  “Parents”	  from	  the	  concordant	  
variants	  for	  5	  pipelines	  in	  each	  child.	  

	  



All#SNVs,#both#for#
parents#and#children,#
were#considered

All#parental#SNVs#that#were#detected#
were#considered.##Only#SNVs#concordant#
between#the#5#pipelines#were#considered#

for#children#

SNVs#concordant#between#5#
pipelines#for#children#and#

parents

Number#of##SNVs#found#in#child#A#
but#not#in#parents

1057 2 637

Number#of##SNVs#found#in#child#B#
but#not#in#parents

1084 1 672

Number#of##SNVs#found#in#child#C#
but#not#in#parents

2363 20 1703

Number#of##SNVs#found#in#child#D#
but#not#in#parents

1518 5 876

Number#of#nonsyn#SNVs#in#child#A#
but#not#in#parents

411 1 150

Number#of#nonsyn#SNVs#in#child#B#
but#not#in#parents

396 0 135

Number#of#nonsyn#SNVs#in#child#C#
but#not#in#parents

911 6 459

Number#of#nonsyn#SNVs#in#child#D#
but#not#in#parents

619 3 225

Number#of#shared#nonsyn#SNVs#in#
the#children,#but#not#in#parents

8 0 9





Preliminary	  Conclusions	  

•  Sequencing	  a	  grandparent	  seems	  to	  help	  
eliminate	  errors	  derived	  from	  the	  current	  depth	  of	  
sequencing	  coverage	  in	  the	  mother	  and	  father.	  	  

•  An	  alternaCve	  might	  be	  just	  deeper	  depth	  of	  
sequencing	  in	  the	  parents,	  although	  sCll	  
invesCgaCng	  errors	  that	  might	  be	  overcome	  by	  
sequencing	  a	  grandparent.	  

•  Need	  to	  decide	  on	  whether	  to	  proceed	  with	  the	  
concordance	  of	  2	  or	  more	  pipelines,	  like	  SOAP	  +	  
GATK,	  or	  just	  accept	  (with	  everybody	  else	  it	  
seems!)	  that	  GATK	  is	  somehow	  the	  “de	  facto	  
standard”.	  



For	  now,	  more	  effort	  should	  be	  placed	  
on	  the	  following:	  

•  ImplemenCng	  Standards	  for	  a	  “clinical-‐grade”	  exome,	  
and	  promoCng	  the	  “networking	  of	  science”	  model.	  

•  Focusing	  on	  rare,	  highly	  penetrant	  mutaCons	  running	  
in	  families,	  with	  cascade	  carrier	  tesCng	  of	  even	  more	  
relaCves	  as	  needed.	  

•  The	  genomic	  background	  is	  much	  more	  constant	  in	  
families.	  

•  The	  environmental	  background	  is	  someCmes	  more	  
constant	  in	  families.	  

•  This	  allows	  one	  to	  figure	  out	  penetrance	  of	  rare	  
variants	  in	  these	  families,	  along	  with	  other	  issues,	  
such	  as	  somaCc	  mosaicism.	  



Please	  Read	  and	  Email	  me	  with	  Any	  Ques7ons	  or	  Comments!	  
Email:	  GholsonJLyon@gmail.com	  



Figure 4.	

	


Figure 4. NAT activity of recombinant hNaa10p WT or p.Ser37Pro 
towards synthetic N-terminal peptides. A) and B) Purified MBP-hNaa10p 
WT or p.Ser37Pro were mixed with the indicated oligopeptide substrates (200 
µM for SESSS and 250 µM for DDDIA) and saturated levels of acetyl-CoA 
(400 µM). Aliquots were collected at indicated time points and the acetylation 
reactions were quantified using reverse phase HPLC peptide separation. 
Error bars indicate the standard deviation based on three independent 
experiments. The five first amino acids in the peptides are indicated, for 
further details see materials and methods. Time dependent acetylation 
reactions were performed to determine initial velocity conditions when 
comparing the WT and Ser37Pro NAT-activities towards different 
oligopeptides. C) Purified MBP-hNaa10p WT or p.Ser37Pro were mixed with 
the indicated oligopeptide substrates (200 µM for SESSS and AVFAD, and 
250 µM for DDDIA and EEEIA) and saturated levels of acetyl-CoA (400 µM) 
and incubated for 15 minutes (DDDIA and EEEIA) or 20 minutes (SESSS and 
AVFAD), at 37°C in acetylation buffer. The acetylation activity was determined 
as above. Error bars indicate the standard deviation based on three 
independent experiments. Black bars indicate the acetylation capacity of the 
MBP-hNaa10p wild type (WT), while white bars indicate the acetylation 
capacity of the MBP-hNaa10p mutant p.Ser37Pro. The five first amino acids 
in the peptides are indicated. 
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Genomic Dark Matter: The reliability of short read
mapping illustrated by the Genome Mappability Score
Hayan Lee1,2∗and Michael C. Schatz 1,2

1Department of Computer Science, Stony Brook University, Stony Brook, NY
2Simons Center for Quantitive Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

ABSTRACT
Motivation: Genome resequencing and short read mapping are two
of the primary tools of genomics and are used for many important
applications. The current state-of-the-art in mapping uses the quality
values and mapping quality scores to evaluate the reliability of the
mapping. These attributes, however, are assigned to individual
reads and don’t directly measure the problematic repeats across
the genome. Here we present the Genome Mappability Score
(GMS) as a novel measure of the complexity of resequencing a
genome. The GMS is a weighted probability that any read could be
unambiguously mapped to a given position, and thus measures the
overall composition of the genome itself.
Results: We have developed the Genome Mappability Analyzer
(GMA) to compute the GMS of every position in a genome. It
leverages the parallelism of cloud computing to analyze large
genomes, and enabled us to identify the 5-14% of the human,
mouse, fly, and yeast genomes that are difficult to analyze with short
reads. We examined the accuracy of the widely used BWA/SAMtools
polymorphism discovery pipeline in the context of the GMS, and
found discovery errors are dominated by false negatives, especially in
regions with poor GMS. These errors are fundamental to the mapping
process and cannot be overcome by increasing coverage. As such,
the GMS should be considered in every resequencing project to
pinpoint the dark matter of the genome, including of known clinically
relevant variations in these regions.
Availability: The source code and profiles of several model
organisms are available at http://gma-bio.sourceforge.net
Contact: hlee@cs.stonybrook.edu

1 INTRODUCTION
1.1 Background
DNA sequencing technology has dramatically improved in the past
decade so that today an individual human genome can be sequenced
for less than $10,000 and in less then two weeks (Drmanac et al.,
2010), compared to years of effort and hundreds of millions
of dollars for the first sequenced human genome (Stein, 2010).
This dramatic improvement has lead to an exponential growth in
sequencing, including several large projects to sequence thousands
of human genomes and exomes, such as the 1000 Genomes Project
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Consortium (2010) or International Cancer Genome Consortium
(2010). Other projects, such as ENCODE Project Consortium
(2004) and modENCODE Consortium (2010) are extensively using
resequencing and read mapping to discover novel genes and binding
sites.
The output of current DNA sequencing instruments consists of

billions of short, 25− 200 base pairs (bp) sequences of DNA called
reads, with an overall per base error rate around 1%-2% (Bentley
et al., 2008). In the case of whole genome resequencing, these
short reads will originate from random locations in the genome,
but nevertheless, entire genomes can be accurately studied by
oversampling the genome, and then aligning or ”mapping” each
read to the reference genome to computationally identify where it
originated. Once the entire collection of reads has been mapped,
variations in the sample can be identified by the pileup of reads that
significantly disagree from the reference genome (Fig. 1).
The leading short read mapping algorithms, including BWA (Li

and Durbin, 2009), Bowtie (Langmead et al., 2009), and SOAP (Li
et al., 2009b), all try to identify the best mapping position for each
read that minimizes the number of differences between the read and
the genome, i.e., the edit distance of the nucleotide strings, possibly
weighted by base quality value. This is made practical through
sophisticated indexing schemes, such as the Burrows-Wheeler
transform (Burrows and Wheeler, 1994), so that many billions of
reads can be efficiently mapped allowing for both sequencing errors
and true variations. The primary complication of short read mapping
is that a read may map equally well or nearly equally well to
multiple positions because of repetitive sequences in the genome.
Notably, nearly 50% of the human genome consists of repetitive
elements, including certain repeats that occur thousands of times
throughout (International Human Genome Sequencing Consortium,
2001).
For resequencing projects, the fraction of repetitive content

depends on read length and allowed error rate. At one extreme, all
single base reads would be repetitive, while chromosome length
reads would not be repetitive at all. Similarly, increasing the
allowed error rate increases the fraction of the genome that is
repetitive. The short read mapping algorithms use edit distance and
other read characteristics to compute a mapping quality score for
each mapped read (Li et al., 2008). The mapping quality score
estimates the probability that the assigned location is the correct
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ABSTRACT
Motivation: Genome resequencing and short read mapping are two
of the primary tools of genomics and are used for many important
applications. The current state-of-the-art in mapping uses the quality
values and mapping quality scores to evaluate the reliability of the
mapping. These attributes, however, are assigned to individual
reads and don’t directly measure the problematic repeats across
the genome. Here we present the Genome Mappability Score
(GMS) as a novel measure of the complexity of resequencing a
genome. The GMS is a weighted probability that any read could be
unambiguously mapped to a given position, and thus measures the
overall composition of the genome itself.
Results: We have developed the Genome Mappability Analyzer
(GMA) to compute the GMS of every position in a genome. It
leverages the parallelism of cloud computing to analyze large
genomes, and enabled us to identify the 5-14% of the human,
mouse, fly, and yeast genomes that are difficult to analyze with short
reads. We examined the accuracy of the widely used BWA/SAMtools
polymorphism discovery pipeline in the context of the GMS, and
found discovery errors are dominated by false negatives, especially in
regions with poor GMS. These errors are fundamental to the mapping
process and cannot be overcome by increasing coverage. As such,
the GMS should be considered in every resequencing project to
pinpoint the dark matter of the genome, including of known clinically
relevant variations in these regions.
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•  Genome	  Mappability	  Score	  (GMS)	  -‐-‐	  measure	  of	  the	  complexity	  of	  resequencing	  a	  
genome	  =	  a	  weighted	  probability	  that	  any	  read	  could	  be	  unambiguously	  mapped	  to	  a	  
given	  posiCon,	  and	  thus	  measures	  the	  overall	  composiCon	  of	  the	  genome	  itself.	  

•  The	  detecCon	  failure	  errors	  are	  dominated	  by	  false	  negaCves,	  which	  means	  the	  SNP	  
calling	  program	  fails	  to	  find	  such	  variaCons.	  In	  parCcular,	  among	  all	  5022	  false	  
negaCves,	  3505	  (70%)	  are	  located	  in	  low	  GMS	  region,	  and	  only	  1517	  (30%)	  are	  in	  high	  
GMS	  region.	  Considering	  only	  13-‐14%	  of	  human	  genome	  is	  low	  GMS	  region,	  
variaCons	  in	  low	  GMS	  regions	  are	  clearly	  and	  substanCally	  overrepresented.	  It	  is	  not	  
surprising	  that	  errors	  are	  dominated	  by	  false	  negaCves,	  as	  the	  SNP-‐calling	  algorithm	  
will	  use	  the	  mapping	  quality	  score	  to	  filter	  out	  low	  confidence	  mapping.	  What	  is	  
surprising	  is	  the	  extent	  of	  false	  negaCves	  and	  the	  concentraCon	  of	  false	  negaCves	  
almost	  enCrely	  within	  low	  GMS	  regions.	  	  

	  

•  The	  GMS	  should	  be	  considered	  in	  every	  resequencing	  project	  to	  pinpoint	  the	  dark	  
maier	  of	  the	  genome,	  including	  of	  known	  clinically	  relevant	  variaCons	  in	  these	  
regions.	  



Genomic	  Dark	  Maier,	  cont….	  
•  That	  means	  that	  unlike	  typical	  false	  negaCves,	  increasing	  coverage	  

will	  not	  help	  idenCfy	  mutaCons	  in	  low	  GMS	  regions,	  even	  with	  0%	  
sequencing	  error.	  	  

•  Instead	  this	  is	  because	  the	  SNP-‐calling	  algorithms	  use	  the	  mapping	  
quality	  scores	  to	  filter	  out	  unreliable	  mapping	  assignments,	  and	  low	  
GMS	  regions	  have	  low	  mapping	  quality	  score	  (by	  definiCon).	  Thus	  
even	  though	  many	  reads	  may	  sample	  these	  variaCons,	  the	  mapping	  
algorithms	  cannot	  ever	  reliably	  map	  to	  them.	  	  

•  Since	  about	  14%	  of	  the	  genome	  has	  low	  GMS	  value	  with	  typical	  
sequencing	  parameters,	  it	  is	  expected	  that	  about	  14%	  of	  all	  
variaCons	  of	  all	  resequencing	  studies	  will	  not	  be	  detected.	  	  

•  To	  demonstrate	  this	  effect,	  we	  characterised	  the	  SNP	  variants	  
idenCfied	  by	  the	  1000	  genomes	  pilot	  project,	  and	  found	  that	  
99.99%	  of	  the	  SNPs	  reported	  were	  in	  high	  GMS	  regions	  of	  the	  
genome,	  and	  in	  fact	  99.95%	  had	  GMS	  over	  90.	  	  


