
Background
The laboratory mouse is the premier mammalian model 
organism for the study of human disease, and it has 
played a vital role in both the annotation of the human 
genome and the study of gene function and regulation. 
Similar to humans, mice naturally develop diverse 

diseases that affect the hematologic, nervous, cardiovas­
cular, endocrine, musculoskeletal, renal and other sys­
tems, providing excellent experimental paradigms for 
studying the pathogenesis of cancer, autoimmune disease, 
diabetes, obesity, atherosclerosis, hypertension, gastro­
intestinal disorders and diverse neurodegenerative states. 
Mouse models are currently available for hundreds of 
human disorders [1­4], spanning diverse quantitative and 
behavioral phenotypes and physiological systems. These 
comprise both inbred strains and genetically engineered 
mutants, many of which have been extensively charac­
terized. For these reasons, the mouse has emerged as a 
premier system for translating basic human genetic, 
genomic and physiologic research into paradigms for 
therapeutic development.

The mouse genome has been uniquely useful in 
annotating the human genome and advancing the 
understanding of human gene functions. At 2.7  Gb, the 
mouse genome is of comparable size and structure with 
the human genome, and 99% of mouse genes have human 
orthologs. Because of the availability of inbred strains 
and the facile and rapid features of mouse breeding, the 
mouse has played a vital role in decoding fundamental 
features of gene function and regulation during develop­
mental and differentiation intervals that are either 
difficult or impossible to study systematically in humans. 
An ideal evolutionary distance for human com parative 
genomics (circa 200 million years) has made the mouse 
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genome a standard for comparative genomic analyses 
seeking to illuminate human functional DNA [5­7].

Less than 2% of the mouse genome is currently believed 
to comprise protein­coding regions. Among the vast 
non­coding sequences lie numerous yet­to­be­identified 
functional DNA elements that regulate diverse genomic 
processes, including transcriptional regulation, meiotic 
recombination, and DNA replication and repair. A major 
focus of the Mouse ENCODE project is to identify 
comprehensively transcriptional regulatory elements in 
the mouse genome, providing a valuable resource for 
understanding the genetic circuitry that controls animal 
development and lineage specification. It is expected that 
millions of cis­regulatory elements lie within mouse non­
coding regions, many of which are conserved in human 
DNA. As such, comprehensive illumination of mouse 
elements should greatly facilitate the functional anno­
tation of the human genome.

Hundreds of human­to­mouse transgenic studies 
demon strate the potential of the mouse genome to 
inform studies of human gene regulation; indeed, trans­
genic mice have become a routine part of the repertoire 
of modern molecular and developmental biology. Many 
fundamental aspects of transgenic gene regulation that 
are routinely taken for granted emphasize the great utility 
of the mouse system. Many human genes integrated into 
the mouse germline recapitulate features of human gene 
regulation with striking precision, indicating that the 
trans­acting regulatory environment has remained 
largely stable during an evolutionary interval that 
witnessed marked divergence in the non­coding DNA 
sequences that regulate most genes [7­12]. The apparent 
stability of the trans­acting regulatory environment 
renders the mouse uniquely useful for studies of trans­
criptional regulation by mutagenesis of human DNA that 
is then transferred into mouse. Engineered mutations in 
transgenic mice frequently show phenotypes analogous 
to those of naturally occurring mutations in humans.

the Mouse enCoDe project Consortium
By undertaking a parallel Mouse ENCODE Project that 
utilizes the same technologies and pipelines developed 
for the human ENCODE Project [13­15], the Mouse 
ENCODE Consortium aims to (i) enhance the value of 
the human ENCODE Project through relevant com par a­
tive studies; (ii) access cell types, tissues, and develop­
mental time points that are not addressable by the human 
project; and (iii) provide a general resource to inform and 
accelerate ongoing efforts in mouse genomics and disease 
modeling with human translational potential.

The organization of the Mouse ENCODE Consortium 
includes data production centers and a data coordination 
center (DCC). Production centers generally focus on 
different data types, including transcription factor and 

polymerase occupancy, DNaseI hypersensitivity, histone 
modification and RNA transcription. The DCC is co­
localized with the human ENCODE Project DCC [15] at 
the University of California Santa Cruz (UCSC), USA.

A web­based portal site (MOUSE ENCODE [16]) has 
been established to consolidate and distribute informa­
tion on Mouse ENCODE consortium goals, data, 
protocols and publications.

Mouse enCoDe data types
The Mouse ENCODE Project is analyzing primary mouse 
cells and tissues spanning a range of tissue types, 
developmental time points, as well as model cell lines. To 
ensure consistency, the project is focusing on C57BL/6­
derived cells and tissues, except for the case of certain 
widely used model cell lines. Primary tissues are har­
vested from age­matched mice using standardized 
protocols on mice either bred locally or obtained from 
standard sources (The Jackson Laboratory, Bar Harbor, 
Maine, USA; Charles River Laboratories, Wilmington, 
Massachusetts, USA). Following the practice of the 
human ENCODE Project [14], model cell lines are 
cultured using standard operating procedures that are 
reviewed for consistency and clarity. Among the cell lines 
in use are those selected as analogs to several human 
ENCODE common cell lines [14], including K562 (mouse 
erythroleukemia cell line MEL (ATCC)), GM12878 
(mouse lymphoid cell line CH12 (ATCC)), and H1 
embryonic stem cells (E14 mouse embryonic stem cells).

Accessing Mouse enCoDe data
The Mouse ENCODE Project has already generated and 
released hundreds of data sets through the UCSC 
browser [17,18] (Table  S1 in Additional file  1). All data 
sets are also deposited with the Gene Expression 
Omnibus (GEO) repository after public release through 
the UCSC browser. The data sets shown in Table  S1 in 
Additional file  1 span many high­utility data types 
generated using state­of­the­art approaches, including 
DNaseI hypersensitive sites by DNase­seq [19], DNaseI 
footprints by digital genomic footprinting [20], RNA­seq 
[21], histone modifications by ChIP­seq [22], transcrip­
tion factor and polymerase occupancy sites by ChIP­seq 
[23], and DNA replication timing by Repli­chip [24]. In 
addition, selected chromosomal regions will be interro­
gated for chromatin interactions by 5C [25], including 
the entirety of mouse chromosome 12. All data are 
collected from at least two biological replicates, and all 
replicate data are also available through the Mouse 
ENCODE repository at UCSC. An up­to­date log of 
Mouse ENCODE data releases can be found [16], and it 
is also linked through the home page of the ENCODE 
project [26]. Submissions are ongoing, and an updated 
summary timeline for major data types is available [18].
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To ensure the quality and consistency of experimental 
procedures used at each data production center, the 
Consortium has selected a single reference cell type 
(MEL) on which all experimental approaches are being 
applied. For other cell and tissue types, the data types 
vary, with DNaseI sensitivity, histone modifications and 
RNA­seq focused mainly on primary tissues, and trans­
cription factor binding generally focused on model cell 
lines (Table S1 in Additional file 1). A comprehensive collec­
tion of cell culture and tissue sample preparation proto­
cols utilized by the Consortium is available online [27].

Data production standards and assessment of 
data quality
The Mouse ENCODE Consortium is applying the same 
data generation, quality control, analysis pipelines and data 
standard developed for the human ENCODE Project. 
Working copies of data standard documents are available 
as an appendix to the recently published User’s Guide to 
ENCODE Data [14] and at the home page of the ENCODE 
project [26]. Consortium data undergo quality review at 
the level of the production centers to ensure experimental 
success and generation of high­quality data, and 
subsequently at the DCC (see below) to ensure accurate 
visualization, and links to primary data files and metadata.

Data availability
Mouse ENCODE data are available online through the 
UCSC browser mm9 mouse genome sequence build [17] 
and through a dedicated Mouse ENCODE mirror 
browser linked to the portal site [18]. Data in the UCSC 
browser can be viewed readily in the context of other 
genome annotations available for the mouse genome. An 
online tutorial developed for facilitating the viewing of 
human ENCODE data is also directly applicable to the 
Mouse ENCODE data [28]. Detailed instructions are also 
provided for the data download and analysis functions 
available in the browser. DNA sequence reads from 
Mouse ENCODE ChIP­seq, DNase­seq and RNA­seq are 
available for direct retrieval from the UCSC browser 
archive [29] and the GEO repository [30].

Data release and use policy
The Mouse ENCODE data are rapidly released soon after 
they are verified (that is, shown to be reproducible) to 
facilitate their immediate utility to the broader commu­
nity. A log of data releases is available at the Mouse 
ENCODE portal site [18] and through the main UCSC 
browser [17]. The terms of data use are described under 
the ENCODE Data Release and Use Policy [31]. As with 
human ENCODE, data are made available following 
quality review and standardization of formatting. While 
Mouse ENCODE data are made freely available for 
viewing and pre­publication analysis upon release, data 

use for genome­wide analysis in papers, abstracts or 
public presentations is restricted during the first 
9 months following public release. The expiration of this 
‘embargo’ period for genome­wide analyses is clearly 
marked in the track titles of Mouse ENCODE data in the 
UCSC browser. Mouse ENCODE data are immediately 
available for analysis of individual gene loci.

Data analysis plans
Production groups are engaged in analysis of the indi­
vidual data types generated by each group. In addition, 
the Mouse ENCODE Consortium is currently in the 
planning stages of an integrated analysis. Integration of 
multiple mouse ENCODE data types will be performed 
to assess the extent of annotation of the mouse genome, 
and to illuminate general features of mouse gene and 
chromosomal regulation. Mouse ENCODE data will also 
be extensively integrated with human ENCODE data in 
order to study the evolution of gene regulatory mecha­
nisms, and to cross­validate findings within both the 
human and mouse projects. Integration with data from 
invertebrates (Drosophila melanogaster and Caenorhabditis 
elegans) generated under the ModENCODE project may 
also yield insights into common gene regulatory mecha­
nisms and conserved pathways. While it is expected that 
broad features of regulatory mechanisms will be con­
served across animal phyla, the integrative and com­
parative analyses enabled by the Mouse ENCODE project 
will provide a unique opportunity for systematic study of 
both conservation of function and biochemical activity 
relative to conservation of sequence per se. The 
Consortium expects to conduct global analyses with an 
emphasis on integration with the human ENCODE 
Project, and not to focus on specific genes, genomic 
regions, tissues/cell states or pathways.

Joining the Mouse enCoDe Consortium
Following on the model of the human ENCODE 
Consortium, which currently counts hundreds of 
members worldwide, the Mouse ENCODE Consortium 
is an open scientific venture that welcomes scientists at 
all levels and with all types of relevant expertise. More 
information on joining the human or mouse ENCODE 
Consortia is available [26].

perspective
In summary, the laboratory mouse is a powerful tool for 
the investigation of human gene function and for 
dissecting the genetic and transcriptional regulatory 
circuits controlling development and homeostasis of 
mammals. The Mouse ENCODE Project aims to 
potentiate both the utility of the mouse as a model for 
regulatory genomics and the human ENCODE project 
effort to advance annotation of the human genome.
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