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Barcelona, Catalonia, Spain

Abstract

The classic organization of a gene structure has followed the Jacob and Monod bacterial gene model proposed more than
50 years ago. Since then, empirical determinations of the complexity of the transcriptomes found in yeast to human has
blurred the definition and physical boundaries of genes. Using multiple analysis approaches we have characterized
individual gene boundaries mapping on human chromosomes 21 and 22. Analyses of the locations of the 59 and 39
transcriptional termini of 492 protein coding genes revealed that for 85% of these genes the boundaries extend beyond the
current annotated termini, most often connecting with exons of transcripts from other well annotated genes. The biological
and evolutionary importance of these chimeric transcripts is underscored by (1) the non-random interconnections of genes
involved, (2) the greater phylogenetic depth of the genes involved in many chimeric interactions, (3) the coordination of the
expression of connected genes and (4) the close in vivo and three dimensional proximity of the genomic regions being
transcribed and contributing to parts of the chimeric RNAs. The non-random nature of the connection of the genes involved
suggest that chimeric transcripts should not be studied in isolation, but together, as an RNA network.
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www.inab.org/). MV (Center for Cancer Systems Biology, CCSB) is a ‘‘Chercheur Qualifié Honoraire’’ from the Fonds de la Recherche Scientifique (FRS-FNRS, French
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Introduction

The complex repertoire of RNAs found in cells from yeast to

human is unexpected and at times seemingly daunting. In part,

this complexity is composed of transcripts whose sequences are

chimeras formed from sequences found in separate genes. The

origins of such chimeric RNAs are derived from multiple

biological mechanisms as well as technical artifacts. The biological

sources of chimeric RNAs have been seen to stem from both DNA

and RNA mediated events. DNA mediated event include such

mechanisms as chromosomal rearrangements, gene duplications,

retrotransposition and retrotransduction [1]. Each of these

mechanisms provide for the construction of novel chimeric

transcriptional units that are composed of sequences that are

distally separated within a genome of a cell type. Reciprocally, the

detection of chimeric RNAs has recently proven to provide an

informative means of identifying potentially novel structural

variations (SV) in genomes [2]. In several specific cases, the

detection of chimeric transcripts has been shown to be unrelated to

the presence of SV such as the formation of the JAZF1-JJAZ1

found in normal endometrial stromma cells and made from 59

exons of transcripts from the JAZF1 gene on chromosome 7p15

and the 39 exons of JJAZ1 (also known as SUZ12) located on

chromosome 17q11. In this case no SV could be detected [3]. This

RNA has been observed to be translated into a chimeric anti-

apoptotic protein. This and other identified chimeric transcripts

expand the coding potential encoded in genomes by joining

together non-contiguous and non-linear regions of genomes [4].

The apparent absence of genomic SVs and the highly specific and

reproducible occurrence of the junction sites joining the chimeric

sequences suggest a RNA-mediated mechanism for the creation of

these transcripts [3,5,6,7,8,9,10,11].

Complicating the identification of chimeric RNAs is the clear

possibility of technical artifacts caused by the template switching

capabilities of reverse trancriptase (RT) in both in vitro [12] and in

vivo [13] conditions. First observed in the replication of retroviruses

[14,15], this property was suggested to be the basis for a copy

choice mechanism of recombination in retroviruses and has been

seen to be operational during in vitro experiments leading to RT-

mediated chimeric products (RT). With the development of high

throughput RNA sequencing (RNAseq) methods that are reliant

on RT for conversion of RNA into double stranded cDNAs, the

template switching activity of RT has been observed in these

sequencing methods by two Drosophila species mixture experi-

ments [16]. These observations prompt a careful verification of

any observed chimeric transcripts.

The focus of the studies presented here was to systematically

analyze the diversity of transcripts found within and extending

from the annotated boundaries of genic loci in the human genome.

These studies follow in the footsteps of a set of earlier works

performed with a limited number of human genes that were

located in the 1% of the human genome selected by the

Encyclopedia of DNA Elements (ENCODE) project [5,17]. In

these earlier studies two main observations were reported. First

was the pervasive transcription across the analyzed 1% of the

genome (93% coverage) and the second was that many of the genic

loci were connected to other genic loci resulting in the formation

of chimeric transcripts. In these current studies we extended our

analyses to genes on chromosomes 21 and 22 and sought to

determine if chimeric transcripts can be detected among the genes

analyzed, if their detection originates because of technical artifacts

and to determine if evidence can be collected that supports the

biological importance of any detected chimeric transcripts.

Results

Discovery of novel chimeric transcripts through RACE
reactions and tiling arrays

Protein coding genes encoded on human chromosomes 21 and

22 were interrogated using a combination of methods including

rapid amplification of cDNA ends (RACE) and tiling arrays [6],

and deep RNA sequencing (RNAseq). Figure 1 describes the

overall experimental design used for the RACE and tiling array

experiments. In summary, we first selected 1,193 exons from 492

annotated gene loci present on chromosomes 21 and 22 for which

we could select highly specific 59 and 39 RACE primers. We

designed 844 59-RACE and 824 39-RACE primers, and carried

out the corresponding RACE reactions using polyadenylated (poly

A+) selected RNA isolated from 11 normal human tissues and five

transformed cell lines In total, 26,688 RACE reactions were

performed (see Material and Methods).

The products of the RACE reactions were then analyzed using

chromosome 21 and 22 tiling arrays interrogating the non-repeat

portions of these chromosomes at 17 nucleotide resolution. RACE

reactions were pooled prior to hybridization to the tiling arrays.

First, RACE reactions for a given primer originating from

different tissues were pooled together (pairing: prostate and testis;

ovary and placenta; brain frontal lobe, brain hippocampus and

brain hypothalamus; and fetal kidney, fetal spleen and fetal

thymus, Figure 1). Second, within a given sample or mixture,

RACE reactions originating from different primers were pooled

together. A pooling strategy was designed to maximize the

genomic distance between primers pooled together, while

minimizing the number of pools required (see Materials and

Methods). The minimum genomic distance between RACE

primers was set to 1.8 Mb when primers were in head to head

orientation, 180 Kb when they were in tail to tail orientation, and

990 Kb when they were in head to tail orientation. A total of 102

primer pools were required (see Figure S1 for the actual

distribution of genomic distances between primers). Each one of

the primer pool-tissue pool combinations was hybridized sepa-

rately into a tiling array. A total of 1,020 array hybridizations were

conducted.

Intensities from the arrays were processed using specially

developed software to determine continuous sites of transcription

(Materials and Methods). This software discarded unspecific

probes (that is, array probes that appear more than once in the

genome, 7% in total) and builds sites of transcription with

parameters optimized to mirror the features of known exons

(Figures S2 and S3). These sites of transcription are referred to as

RACEfrags. In total, 306,368 RACEfrags were initially obtained.

To eliminate RACEfrags coming from unspecific priming and/or

unspecific cross-hybridization, an in silico RACEarray simulator

was used ([6], Materials and Methods, and Figure S4).

Transcript Networks in Human Cells
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Furthermore, to eliminate products originating in very highly

abundant transcripts not targeted by our RACE reactions,

negative controls were utilized in which the RNA samples or

mixtures were hybridized into the arrays without RACE

amplification (Materials and Methods). In total, 262,472 RACE-

frags remained after applying these filters.

RACEfrags typically correspond to detection of exon expression

of the interrogated genes or to unspliced transcripts. The pooling

of primers however does challenge the correct assignment of

RACEfrags to the originating primer. To meet this challenge a

heuristic method was developed that assigns RACEfrags to the

corresponding primers. The heuristic attempts to satisfy several

constraints: genomic proximity (in compatible orientation) to the

primer, consistency of connectivity across multiple samples, and

support of connectivity by multiple primers (see Materials and

Methods and Figure S5). After this analysis a total of 195,982

RACEfrags were assigned to the original RACE primers

The identified and assigned RACEfrags displayed a length

ranging from 47 to 4,493 base pairs, and a median length of 133

base pairs. As expected this is similar to the median length of exons

(128 nt) in the Gencode [18] annotated human transcriptome.

The proportion of annotated exons covered by at least one

RACEfrag is 85.7%. While internal exons and introns of a gene

are equally covered by 59 and 39 RACEfrags assigned to this gene,

most 59 exons/39 exons are covered by 59 RACEfrags/39

RACEfrags respectively, as we expected (Figure 2B). We evaluate

the sensitivity of the RACEarray map in terms of number of

annotated exon connections that could be detected given the

primer configuration (called detectable exon connections), and

that are indeed detected by the (RACEfrag, primer) pairs. Of the

total 19,578 exon connections that could be detected, 15,296 were,

representing a sensitivity of about 78%.

The total 195,982 RACEfrags assigned to primers across all

tissues and mixtures corresponded to 79,560 distinct loci of

transcription. When overlapping RACEfrags found in different

biological samples were melded, a total of 17,450 projected

RACEfrags, covering 5.1 Mb in chromosomes 21 and 22 (15%),

resulted. The distributions of detected RACEfrags both within the

gene from which the RACE reaction started (index gene) and the

genomic domains outside of the index gene are given in Figure 2A.

Although there is a majority of exonic and genic RACEfrags (78%

and 94% respectively) once projected onto the genome, RACE-

frags represent an increase of 11,394 over the set of exons

previously annotated (65% of all projected RACEfrags), and of

2.9 Mb over the bases previously known to reside in transcripts in

chromosome 21 and 22.

Incidence of observations of chimeric RNAs
Interestingly, more than half of the gene anchored RACEfrags

(59%) map outside of the annotated boundaries of the index genes

(Figure 2A). The median distance between the index primer and

the RACEfrags assigned to the primer is 321,600 nucleotides (nts).

Genomic distances as large as 34 Mb (index gene: ICOSLG on

chromosome 21 and a RACEfrag in cell line K562) were

Figure 1. RACEarray experiment flowchart. The successive steps of the RACEarray experiments are represented as a flowchart for both
chromosomes 21 and 22. It should be read from left to right and from top to bottom.
doi:10.1371/journal.pone.0028213.g001
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observed. The frequency distribution of distances between index

exon and assigned RACEfrags can be fitted well to a power law,

with exponent varying across different tissues, but generally in the

range between -1.4 and -1.6 (Figure 3). A circular representation

map [19] of chromosome 22 that depicts the gene locations that

are connected using 59 or 39 RACE analysis on a pool of RNA

obtained from testis and prostate tissues is depicted in Figure 4 (for

RACEfrag maps obtained for chromosomes 21 and 22 using

RNAs from other sources, see Material S1 section 5a and Figures

S6 and S7). It is notable that 72% of all RACEfrags mapping

outside of index genes map to exons of other genes, supporting a

non-random characteristics of the observed chimeric RNAs.

Because of the systematic 59 and 39 RACE interrogations of the

same exons within a gene, we often observe genes that are

reciprocally connected through the RACE reactions. Specifically,

we define this condition in the following way: two genes A and B

are reciprocally connected if and only if, a RACE primer in A

originates a RACEfrag within locus boundaries of B, and a RACE

primer in B originates a RACEfrag in A (Figure 5A: e.g. exon2 of

gene A with exon1 of gene B). Thus, a reciprocal set of RACE

results independently confirm each other and provide a high

confidence set of RACEfrags and RACEfrag to primer connec-

tions. The total number of gene to gene reciprocal connections for

each biological sample tested is summarized in Figure 5B

(illustrated in Figure 5A), and detailed in Table S1. A total of

2,324 reciprocal connections (Figure S8) were observed (corre-

sponding to 14% of the total gene to gene connections), of which

37% are cell type specific (Figure 5B). This number of reciprocal

gene-gene connections is between 2- and 3-fold larger than the

number expected given the underlying primer to RACEfrag

connections (see Material S1 section 5b). The reciprocal gene to

gene connections across all conditions are displayed for both

chromosomes in Figures S9 and S10 respectively. Approximately

50% of these chimeric connections were observed to be originating

from loci annotated on different genomic strands.

Characterization and validation of chimeric transcripts
RT-PCR, cloning and sequencing. The array detected

chimeric transcripts were first characterized and validated by

molecular cloning and sequencing. Starting from the RNA pools

from which they were detected, a total of 200 RACEfrags were

selected for RT-PCR amplification, full-length cloning and

sequencing. These RACEfrags were comprised of 67 reciprocal

gene to gene connections and 133 additional chimeric cases

stratified according to increasing distances from the index gene to

the RACEfrag (Figure 6A–C). A total of 112 chimeric connections

(56%) were confirmed by sequencing, corresponding to 208

distinct transcript sequences (Figure 6D). These sequences were

then analyzed by the HAVANA manual annotation pipeline

(Material and Methods) and two features of note were noticed.

First, while the majority of the transcripts sequences corresponding

to relatively short extensions (less than 150 Kb) mapped to the

genome with introns exhibiting canonical splicing sequences at the

junction sites forming the chimeric regions (57%), the trend was

the opposite for extensions beyond this distance. Of these more

distal connections 85% of the sequences exhibited non-canonical

splicing sequences at the junction sites. (Figure 6D). Second, a

proportion of the non-canonical junction regions (51%) contain

small genomic duplications (between 5 bp and 10 bp) at the

genomic sequences flanking the junction sites of the chimeric

RNAs. The duplicated sequence appears only once within the

sequence of the RT-PCR product (see Figure 6C). Interestingly,

the presence of similar length short repeats have been reported

previously at the junction sites of chimeric RNAs found in fly,

mouse and human [8]. A larger proportion of duplicated

sequences is observed in annotated non-canonical introns (21%)

compared to canonical ones (10%). Among these chimeric

transcripts were the 27 that included sequences from

chromosomes other than the chromosome containing the index

gene. (Figure 6D). Thus, a genome-wide analysis for chimeric

RNAs may reveal substantial extensive gene to gene connections

occurring among all chromosomes and indicating similar

functionally related genes involved in this fashion.

RACEarray RNA chimeras are reproducible across RNA

samples. While many gene to gene connections observed in this

study are specific to a given cell line/tissue type, a majority can

also be detected in more than one sample. Indeed, 9,647 gene to

gene connections were detected in two or more samples (57.9%),

6,264 in three or more (37.6%) and 169 (1.0%) in all of the

samples analyzed. Further the pairwise correlation involving

reciprocal gene to gene connections observed between cell types

was determined. These correlations range from 0.05 to 0.35, and

Figure 3. Distribution of genomic distances between RACE-
frags and their respective index RACE primers. The raw
histogram is shown in purple, the corresponding curve fit in red [25].
doi:10.1371/journal.pone.0028213.g003

Figure 2. RACEfrag transcription map statistics. A- Distribution of RACEfrags among annotated genomic domains. The proportion of
RACEfrags overlapping different annotated genic features is represented in this histogram. Blue: intronic RACEfrags; Light orange: exonic RACEfrags;
Light grey: intergenic RACEfrags. The three categories on the X axis are, from left to right: (1) - external genic RACEfrags (i.e. RACEfrags falling within
the boundaries of a gene not interrogated by RACE, (2) - intergenic RACEfrags, (3) - internal RACEfrags (i.e., RACEfrags detected within the RACE-
primed gene). B- RACEfrag descriptive analysis. The top bar plot represents proportions of genomic domains covered by RACEfrags, and the
bottom bar plot represents proportions of RACEfrags in different genomic domains (refinement of part A). As RACE is carried out in the two possible
directions, 59 and 39, each bar plot is thus sub-divided into two sub-bar plots: proportions relative to 59 RACEfrags in gray, and proportions relative to
39 RACEfrags in blue. As expected: (1) RACEfrag coming from a given gene covers this gene more than any other gene; (2) for a given RACE-
interrogated gene, internal exons and introns are equally covered by 59 and 39 RACEfrags, whereas 59 most exons are more covered by 59 RACEfrags
and 39 most exons by 39 RACEfrags. The bottom bar plot also shows that most RACEfrags are exonic, then intronic and finally intergenic, and that
exonic RACEfrags are first found in internal exons, then in most 39 exons and finally in most 59 exons.
doi:10.1371/journal.pone.0028213.g002
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were all found to be statistically significant (P-values,2.2*10216,

Materials S1 section 5c and Figure S11).

Same chimeric RNA transcripts found in tiling array and

RNAseq experiments. Results observed in this analysis were

compared to those recently published using deep sequencing of

RNA (RNAseq) ([20] and the Human Body Map 2.0 data

generated on Illumina HiSeq 2000). First, comparison of the tiling

array data of total polyA+RNA from K562 cells with the results of

PET ditag sequencing [20] of cytosolic polyA+RNA from the

same cell line. A total of 4,656 gene to gene connections were

detected by RACE-array compared to 412 detected by PET ditag

sequencing. Out of these, a total of 56 (p,0.0001) were found to

be in common to the two datasets (Materials S1 section 4 and

Figure S15).

In a second set of analyses we compared our RACEarray results

with the results of paired end RNAseq analysis of total

polyA+RNA from pooled human testes/prostate and brain tissues

(Human Body Map 2.0 data). A total of 4,485 and 7,448 gene to

gene connections (Figure 5B) were detected by tiling arrays

compared to 2,013 and 1,066 chimeric RNAs detected by

Figure 4. Transcriptional network on chromosome 22 in a pool of testis and prostate tissues. The chromosome is depicted as a circle
[45], and RACEfrag connections as inner links between genomic regions (59 and 39 RACE connections are red and blue, respectively). The circular
tracks are, going inwards: (1) - chromosome scale (in megabases, starting at 14 Mb), (2) - plus-strand annotated genes (green), (3) - plus-strand
annotated pseudogenes (black), (4) - minus-strand annotated genes (purple), (5) - minus-strand annotated pseudogenes (black).
doi:10.1371/journal.pone.0028213.g004
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RNAseq analysis. Of these a total of 150 and 163 gene to gene

connections were found to be in common to the two datasets

(p,0.0001, Materials S1 section 4 and Figure S16).

RT- Independent Validations of RACEarray chimeric

transcripts. As stated earlier, a serious concern is the

potential that these observations are caused by the capability of

RT to switch templates during primer extension leading to

technically created chimeric artifacts. This capability of RT has

been observed during the RNAseq protocol [21] and in vitro RT-

PCR reactions [12]. In addition, the presence of short repeats at

the junction sites of chimeric RNAs has also been shown to be

associated to the event of reverse transcriptase template switching

[12,22].

In order to evaluate further the origin of the observed chimeric

transcripts, two sets of RT-independent validation experiments

were performed.

The first set consisted of RNAse protection assays (RPA).

Although the level of sensitivity of this hybridization-based assay

has conventionally been understood to be considerably lower than

traditional RT-PCR [23,24], 15 chimeric sequences validated by

the RT-PCR and cloning assay were selected to undergo RPA.

Evidence of presence of molecules whose structure is clearly

chimeric in the pools of RNAs tested was found for 3 out of these

15 cases (Figure 7, and Table S2). This confirmation rate is

understandable given the limited sensitivity of the method and the

low copy number of the chimeric transcripts. Interestingly, two out

of the three cases that were validated by RPA exhibit short

duplicated sequences (see Figure 6D), thus indicating that such

duplications are not necessarily confirmatory hallmarks for

template switching of RT.

The second set consisted of estimating the amounts of possible

contribution of technical artifacts to our results. These experiments

are based on the analysis of RNAseq libraries prepared from

mixtures of human GM12878 cell and Drosophila melanogaster

adult female RNAs. This strategy allowed us to analyze in isolation

a control population of chimeric reads consisting exclusively of

technical artifacts (inter-genomic reads), and to compare its

properties to that of our populations of interest (intra-genomic

chimeras).

We first analyzed two libraries prepared from pure total RNA

from either human or fly, and one library prepared from a 1:1 mix

of RNA from both sources. We obtained about 10 M reads per

library that could map uniquely to either of the two reference

genomes. Figure S17 summarizes the results. The values are

normalized for each library, and expressed in reads per 10 million

uniquely mapped reads. Based on at least 25 bases mapping on

each side of a chimeric junction, a very small number of inter-

genomic reads in the pure human library (9 reads), and a

somewhat greater number in the pure fly library (350) were

detected. These populations consist exclusively of sequencing and

mapping artifacts – an interpretation supported by the fact that

their size shrinks dramatically as we increase the stringency of our

mapping criteria, requiring larger portions of the reads to map on

either side of the junctions. In the mixed library, the number of

inter-genomic reads (831) is about 4.6 times the mean of these two

numbers (180), which indicates that roughly 20% of the inter-

genomic reads in this dataset are explained by sequencing/

mapping errors, the other 80% being contributed by library

preparation artifacts. Under a null model that all chimeric reads

are artifactual, the number of intra-genomic chimeric reads for

each species in the 1:1 mix library should be half the number of

inter-genomic reads. The fly population conforms roughly to this

expectation, and therefore seems largely accounted for by

technical factors. The human population, on the other hand,

exceeds the expectations by a factor of 5 (e.g., 2,050 reads instead

of an expected 831/2 = 415) – suggesting that a number of

chimeric sequences may be present in the human transcriptome.

More stringent mapping leads to identical conclusions.

Considering that this simple null model may not accurately

describe the generation of artifactual chimeric reads, and that

some factors – such as sequence similarity, for instance – may

favor the formation of intra-genomic artifacts, we had also

sequenced additional libraries designed specifically to distinguish

between molecules of technical versus biological origin within the

population of human chimeric reads. All were prepared from a

mix of human and fly total RNA, keeping the total amount of

RNA constant but varying the human-to-fly ratio from 1:1 down

to 1:100. In this type of dilution series, molecules of biological

origin and library preparation artifacts are expected to have

drastically different behaviors. The number of the former should

decrease linearly with the dilution factor, whereas that of the latter

should decrease linearly with the square of the dilution factor.

Using the most stringent mapping criteria (min 2625 bases) the

decrease is very close to linear (i.e. 2,050 expected, 2,050/5 = 410

& 2,050/50 = 41 reads, and observed 2,050, 317 & 51. The most

stringent mapping policy shows a slightly faster-than-linear decay,

revealing a minor artifactual component. These results further

support the notion that the human transcriptome does naturally

include some chimeric molecules.

Chimeric RNAs form non-random interconnections
between genes suggesting they should be collectively
studied as RNA networks

The detection of chimeric transcripts connecting distal gene loci

poses a question of whether these gene to gene interactions are

random. Several lines of evidence suggest that these connections

are not random. First, across all tissues and cell lines examined, the

median number of the reciprocal gene-gene RNA connections is 9

and the maximum number observed is 33 (adenosine deaminase,

RNA-specific, B1 gene [ADARB1]). This number of connections

is statistically greater than a median of 2 that is expected in a

random network (Figure S12). More generally, the degree

distribution of the gene to gene connections exhibits a broad tail

indicating that many genes are poorly connected while few are

highly connected (see Materials S1 section 5d.i).

Second, a detailed examination of the gene to gene intercon-

nections indicated that the network was enriched in ‘‘cliques’’, that

is, sets of genes that are all pairwise connected (see Materials S1

section 5e.i) (Figure 8). At total of 368 cliques were observed

Figure 5. Reciprocal gene/gene connections. A - General definition of reciprocal gene/gene connections. Top panel: graphical
illustration of reciprocity. Exons are symbolized by light blue boxes, introns by solid black lines. Dashed arrows, directed from the index exon to the
RACEfrag, correspond to chimeric connections in distinct cell types, which are rendered in different colors. Two reciprocal gene/gene connections can
be observed in this example, between genes A and B, and B and C. The (A–B) reciprocal pair is said to be (i), unique to cell type 2, and (ii), pure (i.e., its
reciprocity is observed at least once in the same condition, cell type 2 in this example), whereas (B–C) is composite (i.e., its reciprocity can only be
deduced from connections observed in different cell types). The counts of each connection type in this example are summarized in the tables in the
bottom panel. B - Observed numbers of reciprocal gene/gene connections across 10 different cell types. This table is based on the
template used in part A.
doi:10.1371/journal.pone.0028213.g005
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Figure 6. Experimental results from RT-PCR cloning and sequencing of chimeric connections. A- Experimental design. The presence
of a chimeric transcript between loci 1 and 2 was tested using a pair of nested primers, depicted as two black arrow heads at the bottom, targeting
the index exon on one side, and the detected RACEfrag on the other side (both in orange). B- Annotation of novel locus-joining canonical
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mapping to either chromosomes 21 or 22 of size 3 (7-fold the

number expected by chance), which included 190 out of the total

2,324 distinct reciprocal gene to gene connections observed across

all cell lines/tissues. Also observed were 460 size 4 cliques (460-

fold the number expected by chance), which included 487 of the

reciprocal gene to gene connections (for the over-representation of

cliques, see Materials S1 section 5e.ii and Table S5). Several of the

cliques were found in multiple cell lines/tissues; among these were

a total of 11 cliques conserved in two cell types, while one clique

was found in three cell types (see Materials S1 section 5e.iii and

Table S6).

Such properties of non-random gene to gene connections and

the structure of these interconnections to form cliques show

characteristic of many biological network [25].

Transcriptional network hubs tend to be highly expressed

and evolutionary conserved. A set of 74 highly connected

genes were identified in this analysis that exhibited a substantially

larger number of interconnections than expected given their

length and the underlying network structure (Materials S1 section

5 d, Figure S13 and Table S3). These genes are referred to as

‘‘hubs’’. To filter out that hubs could correspond to genes

belonging to highly similar paralogous families and to confirm that

the observed enrichment of connections is not the result of cross

hybridization involving gene family members, we identified

RACEfrag sequences that could have potentially been mis-

mapped because of cross-hybridization. No enrichment of

potentially cross-hybridized RACEfrags in hubs versus non hubs

was identified (see Materials S1 section 5 d.iv).

Interestingly, the identified hubs appear to be more highly

expressed than other genes. To measure gene and transcript

expression we performed hybridizations of the 16 RNA samples

onto chromosomes 21 and 22 (see Materials and Methods). From

the hybridization signal, we computed the average expression of

the gene’s coding exons. The expression of an exon is the average

over all intensities of the tiling array probes overlapping the exon.

We finally computed the average expression of a gene over the 10

different samples (see Materials S1 section 5 d.ii). Figure 9A

compares the distribution of average gene expressions in hubs and

non hubs.

Finally, hub genes appear to be evolutionarily older than genes

that are not hubs. ENSEMBL was interrogated using Biomart

(http://www.biomart.org), to identify potential orthologs of all our

RACE interrogated genes. This was done by examining six

different eukaryotic species representing a panel of increasing

evolutionary distances from human species: Saccharomyces cerevisiae,

Caenorhabditis elegans, Drosophila melanogaster, Tetraodon nigroviridis,

Gallus gallus and Mus musculus (Materials S1 section 5 d.iv). The

hub genes display greater numbers of recognizable orthologs in

other species compared to non-hub genes—although the differ-

ences are only statistically significant for non vertebrate species

(figure 9B). To rule out the possibility that the deeper phylogenetic

depth observed for hub genes is an indirect consequence of their

higher expression level (and of older genes being more highly

expressed), a randomization test was performed in which hub

genes were partitioned in four expression classes. The same

number of non-hub genes was randomly picked in each expression

class. The results indicated that hub genes have greater number of

orthologous genes in each of the six species as measured in each of

the expression classes (see Materials S1 section 5 d.iv and Table

S4).

Connected genes tend to exhibit coordination of

expression. We have found that transcriptional connected

genes tend to have coordinated expression. For each gene, we

monitored expression over 16 tissues (Material and Methods); we

therefore computed the correlation of expression profiles for each

gene pair. We found that connected genes exhibit a higher

correlation of expression profile than non-connected genes (0.2 vs.

0.07, see Materials S1 section 6 and Table S7). While such genes

are also closer on the genome (1.6 Mb vs. 6.1 Mb), we found that

genome proximity could not be considered as an indirect cause for

the relation between connectivity and expression coordination

(ANCOVA, p-value = 1.24*10240).

We further examined if this result was reinforced for genes

involved in a greater numbers of connections. We established that

genes within cliques had a higher coordination of expression than

genes simply connected but not belonging to cliques. Furthermore,

we found that genes within cliques of size 4 and larger had a

higher correlation of expression profiles than genes within cliques

of smaller sizes. Overall, the larger the clique, the higher the

correlation of expression profiles (R = 0.122, p = 4.1*1029,

Figure 8). Again, genomic distance was not a confounding factor

for the relation between connectivity and expression (Materials S1

section 6). It is important to note that the levels of expression for

genes involved in cliques varied considerably although remained

coordinated.

Connected genes reside in close physical proximity in the

nucleus. Further underscoring the non-random interconne-

ctions seen involving genes comprising the structure of the

observed chimeric RNAs, results from studies designed to reveal

regions of genomes which in vivo are positioned close to each

other (i.e. using Carbon-Copy Chromatin Conformation Capture

(5C) method [26] indicate that a statistically significant number of

genomic regions encoding genes involved in chimeric RNA

synthesis are close to each other in 3D space. Two cell lines

were used in this topological analysis: GM06990 and K562.

Considering only 785 gene to gene connections (top 10%) with the

strongest evidence for being involved in forming chimeric

transcripts on chromosome 21 in the respective cell lines, a total

of 496 (78%) were also supported by 5C interactions (p-

value,1023) (Figure 10, see Material and Methods and Figure

S18).

RNA Chimeras may contribute to expand the protein
coding capacity of the human genome

Finally, a total of 208 cDNA sequences resulting from our RT-

PCR validation experiments focused on the chimeric junctions

were examined for open reading frames (ORFs) with the result

that 42% (87) such sequences included at least one ORF in at least

splice sites in RT-PCR products. The three types of canonical exon junctions considered are enumerated at the bottom. C- Example of short
genomic duplication around locus-joining exon junctions. Two alignments of such a junction are possible, as depicted in the bottom part of
the figure. Intronic and exonic sequences are represented in lowercase and uppercase letters, respectively. Note that the duplicated sequence (in red
letters) is present only once in the RT-PCR product. D- Results of the mapping of RT-PCR products to the genome. Detailed results for each
genomic distance bin are reported. Statistics for RT-PCR sequences affected by the type of short duplications illustrated in Figureô 6C are noted in
pink, between parentheses. Results of the analysis of the coding potential in each category are presented in the rightmost column. RT-PCR products
mapping ‘‘in trans’’ are products that include sequences from chromosomes other than the chromosome that contained the index gene and the
connected RACEfrag.
doi:10.1371/journal.pone.0028213.g006
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one of the six translational frames (Figure 6D) (p = 0.01, Materials

S1 section 7). These results while preliminary are consistent with

the possibility that chimeric transcripts may be translated into

fusion proteins. To further investigate this hypothesis we focused

in the subset of 61 chimeric sequences which maintained the

annotated CDS sequence and reading frame of the 59 (N-terminal)

Figure 7. RNAse protection assays to validate predicted fusion/chimeric transcripts. Each panel on top shows the autoradiographs of the
probe that covers the predicted chimeric RNA fragment against human RNA from tissue pools detailed in table S2. In each panel, ‘‘+’’ and ‘‘2’’
indicate the tracks with presence and absence of input RNA, respectively. The RNA size ladder is shown on the left of the figure (unit: nucleotides).
The bottom of the figure schematically shows the two components of each predicted chimeric transcript. For example, clone 7556-D12 contains 97
bases of an exon of gene TOP3D (designated A) joined to a 153-base exonic fragment of gene PIK4A (designated B); both fragments are in the same
genome strand orientation (shown by arrows). In the top first panel corresponding to clone 7556-D12, the protected chimeric fragment in the
RNA‘‘+’’ lane is labeled A+B. The protected (non-chimeric) exons B and A are also shown. The other 2 validated chimeric fragments are shown in the
second and third top panels. The fourth panel contains a control exon-exon junction of gene HIRA. The fifth panel contains a control actin gene
fragment. A total of 3 out of 15 predicted and tested chimeric fragments were validated using this method. For more details on these experiments
see Material and Methods, and for the genomic coordinates of the fragments see table S2.
doi:10.1371/journal.pone.0028213.g007
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gene. The characterization of the chimeric isoforms included the

following aspects: domain characterization, binding site mapping,

structure modeling, trans-membrane segment and signal peptide

prediction. Based on the manual curation of this information we

have identified: 5 examples that were previously identified in

protein sequence databases (Uniprot), 4 examples in which the

proteins encode new dual combined functions (Figure S20), and 7

examples where the fusion of the two proteins will likely lead to a

changed localization (Materials S1 section 8 and Figures S18 and

S19).

Discussion

The data from these studies raises several questions concerning

the potential biological function(s) and the mechanism of their

formation. While a definitive answer to these questions is not

available as yet, the significant enrichment of exonic sequences

derived from coordinately expressed genes, which often are part of

multigenic networks, seems striking and suggestive of an

underlying biological function. However, it is important to

emphasize the limitations of this primer pooling approach.

Because the chimeric RNAs cover very large distances in genome

space, unequivocal assignment of a RACEfrag to a primer/gene is

problematic. Thus this approach should contain a non-negligible

number of false positive assignments—artificially favoring proxi-

mal ones. This fact strongly mandates and emphasizes that after

additional filtration (e.g. using reciprocal RACE reactions) and

biochemical validation (non-RT dependent experiments) is carried

out on the candidate chimeric RNAs, the resulting observed

chimeric transcripts should possess non-random and biologically

meaningful characteristics.

Additional experiments such as capturing the chimeric RNAs

by hybridization to junction oligonucleotides followed by high

throughput sequencing could be done, but this approach does not

avoid the problem of RT template switch. The direct, RT-

independent sequencing of RNA molecules, as recently described

[27], is an attractive alternative, but currently this approach is

plagued by the inconvenience and mapping uncertainty of very

short reads from the existing instruments.

The functional attributes of the chimeric transcripts could be in

theory evaluated by disruption or silencing of these RNAs.

However, the phenotypic readouts of these experiments are largely

unknown and unpredicted, and one could use a litany of cellular

assays in order to identify a potential phenotypic signature.

The statistically significant interconnections of genes involved,

the greater phylogenetic depth of the genes involved in many

chimeric interactions, the coordination of the expression of

connected genes and the close in vivo and three dimensional

proximity of the genomic regions being transcribed and contrib-

uting to parts of the chimeric RNAs all point to candidates that are

likely not to be caused by technical artifacts and biologically

important.

Importantly, the synthesis of chimeric RNAs can be envisioned

to provide a molecular record of transcribed regions. Speculative-

ly, functions of such an accounting system or the cellular processes

could be myriad. One such function could be to provide a means

Figure 8. Gene expression coordination within cliques as a function of clique size. The width of the box plots is proportional to the
number of connections involved in cliques of a given size. The number of observed cliques of sizes 2 to 7 is reported, as well as the numbers in
randomized networks (mean, +/2 standard deviation), in the form of a table at the bottom. Randomized networks are generated so that they have
the same degree distribution as the original network (see Materials S1).
doi:10.1371/journal.pone.0028213.g008
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to feedback information to regulate transcription or post-

transcriptional levels of the transcripts involved in chimeric

RNA production. Evidence from the 5C experiments pointing to

co-localization of the genomic regions giving rise to chimeric

RNAs suggests the opportunity that the origin of these RNAs may

be associated with transcription factories [28] and the mechanism

Figure 9. Characteristics of hub genes. A- Expression of hub genes. The distribution of expression of the 74 hubs and of the 362 non hubs is
plotted in blue and orange respectively. The expression of a gene is computed based on tiling array experiments performed on the same 16 cell lines
and tissues as the RACE experiments (see details in the text). As we can see hubs tend to have higher expression values than non hubs. B-
Phylogenetic conservation of hub genes. In each of the three gene network categories (i.e., hubs, non-hubs, and all RACEd genes), the
proportion of genes having a detected ortholog in each eukaryotic species represented on the X axis (ordered by decreasing phylogenetic distance
from human) is reported on the Y axis. Instances where the proportion of orthologs found in the hub category is significantly higher than for non-
hubs (p,0.01, Fisher test) are marked with an asterisk.
doi:10.1371/journal.pone.0028213.g009

Figure 10. Reciprocal gene/gene connections supported by 5C on chromosome 21. The 638 reciprocal gene/gene connections on
chromosome 21 are represented as blue inner links if they are supported by 5C, and as yellow inner links otherwise.
doi:10.1371/journal.pone.0028213.g010
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of their formation may play a part in the establishment or

maintenance of these sub-nuclear compartments [29].

Several features of the characterized chimeric RNAs suggest

that the mechanism(s) involved in their formation is (are) likely not

to be limited to the canonical splicing processes. These features

include: 1) the very long genomic distances separating some of the

exons found in the chimeric transcripts; 2) the presence of chimeric

transcripts containing sequences from different chromosomes

(Figure 6D); 3) the decrease in the utilization of canonical splicing

signals in transcripts with large genomic distances separating

exons; and 4) the occurrence of short repeat sequences bracketing

the junction sites of chimeric transcripts. Additional information

concerning the mechanism(s) underlying the formation of these

RNAs could potentially come from analysis of the proteins found

associated with them in immunoprecipitation experiments.

Finally, observations of the existence of chimeric RNAs in not

novel [5,9,11,30,31]. With these reports there have been studies

published warning of potential technical [22,32] and biological

reasons [3,9] that could be the underlying causes of these earlier

observations. These confounding causes include: template switch-

ing capabilities of RT, mis-mapping of sequence or tiling array

results and cryptic genomic rearrangements present in the samples

analyzed. These confounding issues are real and serious. However,

considerable effort has been taken to evaluate and estimate the

level of the false positive occurrences present in the data presented.

Overall, the presence of chimeric RNAs as molecular events

present in normal tissues and cell lines is strongly supported and

while their biological importance is uncertain, a number of

characteristics of the observed RNAs argue for them to be

functional. The results of pending genetic and biochemical studies

are required to provide a definitive answer to this question.

Materials and Methods

Design of the RACEarray experiments
Selection of genes (annotation). The high-quality

HAVANA annotation [18] was used as a reference for

chromosome 21. Due to its unfinished nature on chromosome

22 at the time of the experimental design (only the first 35 59-most

clones had been thoroughly re-annotated at that time), we merged

it with its VEGA counterpart [33] on this chromosome, removing

redundancy between the two annotation sets. The exhaustiveness

of the HAVANA annotation is reflected by the numbers of

annotated alternative isoforms per gene in both chromosomes:

while in chromosome 21 there is an average of 5.4 annotated

transcripts per gene, this number is as low as 1.34 on chromosome

22. For both chromosomes, only protein-coding transcripts were

targeted in the experiment. The list of manually annotated exons

used in this study is provided at the following address:

ftp://genome.crg.es/pub/Encode/ChimericRNAChr2122/suppl_

materials_manual_annotation.zip

Selection of target exons and RACE primers. RACE

primers were designed within what we call Atomic Coding Exon

Projections (ACEPs), namely, coding exon segments not

interrupted by any annotated exon boundary. This ensured that

all RACE primers would match an actual exon sequence, rather

than a ‘‘collapsed’’ version of many.

In order to limit cross-hybridization of RACE products, all

ACEPs were searched in the entire human genome for possible

repeats with BLAT [34]; gfClient/gfServer version with default

parameters, except: tileSize = 10, stepSize = 5, minScore = 0,

minIdentity = 0). Only those ACEPs having only one genome-

wide match (i.e., a BLAT hit with more than 50% nucleotide

identity over at least 50% of its length) were kept. Surviving

ACEPs were then fed into the primer3 program [35] to design a

maximum of 100 alternative RACE primer sequences per unit

and per RACE type (59 and 39), with the following parameters:

23#primer size#27, optimal size = 25, 68uC#primer Tm#72uC,

optimal Tm = 70uC, 50%#primer GC percentage#70%. Within

each ACEP, 59 and 39- RACE primers obtained were separately

ranked according to primer39s quality score. Then, and for each

type of RACE, only the best unique element of each ACEP (i.e.,

best primer3-ranked element satisfying the following condition:

only one genome match with more than 95% sequence identity

over at least 50% of its length, and at least one of its three 39-most

nucleotides matching) was included in a set of potential RACE

primers.

To achieve an optimal, balanced final distribution of primers

along genes (ref), the following procedure was applied, to both 59-

and 39-RACE potential primer sets:

N for genes whose virtual CDS sequence (i.e., concatenation of

ACEPs) was shorter than 1.2 kb, only one putative RACE

primer per gene was picked, as close as possible to the middle

of it.

N when the virtual CDS sequence of a gene was longer than

1.2 kb, the two most extreme primers were selected. If these

two were separated by more than 1.2 kb of virtual CDS

sequence, a third primer was picked, as close as possible to the

middle of it.

This resulted in a final set of primers, consisting in 844 59-

RACE and 824 39-RACE oligo-nucleotides, targeting 492 genes in

total (see detailed statistics in figure 1). Performing an exhaustive

search of these 1,668 primers along the genome using the GEM

program (http://gemlibrary.sourceforge.net/), we find that all of

them have a unique hit in the genome with no mismatch, 3 of

them have a hit in more than one location with 1 mismatch, and

31 with two mismatches.

The list of primers is provided in gff format at the following

address:

ftp://genome.crg.es/pub/Encode/ChimericRNAChr2122/suppl_

materials_RACE_primer.zip

Pooling of RACE reactions
Ideally, a distinct RACE reaction is realized per primer, and the

corresponding products are hybridized on a single tiling array. In

practice, this is not feasible in large-scale projects (for instance, in

the project here it would have required more than 25,000 tiling

array hybridizations). A cost effective strategy is to pool together

RACE products prior to hybridization. This compounds, however,

the assignment of RACEfrags to the originating primers. To

facilitate the assignment, it is desirable to maximize the genomic

distance between the primed regions of the RACE experiments

that are pooled together, so that each resulting signal from the

array can be assigned to its corresponding primer as unambigu-

ously as possible. The composition of each pool in terms of RACE

primers is thus designed with the aim of simultaneously achieving

two goals: Minimizing the number of pools (and consequently the

cost of the experiment), and maximizing the genomic distance

between the genomic positions of the primers that are pooled

together.

In order to address this optimization problem, the pooling

strategy is organized in two steps. First, i/Given the genomic

positions of the primers, compute the minimum number of pools

required in order to guarantee a minimum distance between two

consecutive primers from the same pool. The longer the distance,

the more the pools. ii/Given this total number of pools, distribute
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the primers within pools, in order to maximize the distance

between each two consecutive primers. The constraint is the

minimum distance between primers. This depends on the

orientation of the primers. Indeed, as primers should only allow

amplification from their 39 ends, the minimum distance from their

59 end can be lower than from the 39. Two minimum distances

can thus be defined: distance L in 39 of the primers, and distance l

in 59 of the primers. In practice, primers boundaries are initially

extended accordingly (i.e., by L base pairs in 39 and by l base pairs

in 59) before being input to the pooling process. The values that we

employed were L = minimum distance from 39: 900,000 bp, and

l = minimum distance from 59: 90,000 bp.

The two steps of the algorithm are described in more details in

Materials S1 section 1.a. The minimum number of pools is

estimated independently on chromosome 21 and 22. The largest

of the two pool number values is used independently in each of the

chromosomes to distribute the primers along the chromosomes.

Note that primers from different chromosomes are pooled

together. We implicitly assume thus that there are not inter-

chromosomal RNA chimeras.

In our case, given the distance constraints above, we ended up

with 102 pools. Figure S1 provides the distance distribution

between consecutive pooled primers according to their relative

position and chromosome.

RACE reactions and RACEarray hybridization
59 and 39 RACE reactions were performed as published

[5,6](refs). Briefly, we performed 59- and 39 RACEs of 1,193

ACEPs corresponding to 492 genes of human chromosome 21 and

22 on polyA+ RNAs from 11 tissues (Brain Frontal Lobe, Brain

Hippocampus, Brain Hypothalamus, Cerebellum, Ovary, Placenta,

Prostate, Testis, Fetal Kidney, Fetal Spleen, Fetal Thymus; all from

BD Clontech) and 5 cell lines (GM06990, HeLaS3, HepG2, K562,

Tert-BJ; all from American Type Culture Collection (ATCC)) using

the BD SMARTTM RACE cDNA amplification kit (BD Clontech

Cat. No. 634914). This combination of 16 cell types was previously

shown to be the optimal combination in a set of 48 tissue/cell lines

[6] allowing to capture about 80% of the transcript diversity.

Double-stranded cDNA synthesis, adaptor ligations to the synthe-

sized cDNA were performed according to the manufacturers’

instructions. The 26,688 RACE reactions were performed in a

12.5 ml final volume, set up in a 384 well plate format using a

Freedom EVO 200 robot (TECAN) and run in a BioRad DNA

Engine Tetrad following the conditions suggested by the provider.

RACE reactions were pooled in two ways. First, between 14 and

19 reactions (mean 16.4) from a single tissue/cell line were pooled

together respecting the greatest possible genomic distance between

the different primers used (see above, ‘‘Pooling of RACE

reactions’’ section) to create a set of 102 pools for each tissue/

cell line. Second, for cost efficiency the same pools from Prostate

and Testis, Ovary and Placenta, Brain Frontal Lobe, Brain

Hippocampus and Brain Hypothalamus, as well as Fetal Kidney,

Fetal Spleen and Fetal Thymus were pooled before being

hybridized to the tiling arrays. Thus this two-step procedure

generated a set of 1,020 pools.

RACE PCR reactions were pooled, purified using QIAquick PCR

purification kit (Qiagen) following the vendor’s instructions, ethanol-

precipitated, labeled and hybridized to Affymetrix Chromosome 21/

22 2.0R arrays (P/N 900936) as previously described [6].

Optimization of RACEfrag calling
RACEfrags are usually called from Affymetrix tiling array probe

intensities using TAS (http://www.affymetrix.com/support/

developer/downloads/TilingArrayTools/index.affx). In order to

address the issues of pool-unspecific RACEfrag (namely, RACE-

frags that repeatedly appear in many different unrelated

experiments) and unspecific probes (we observed that 7% of the

probes in chromosome 21–22 tiling arrays had multiple exact

matches in the genome), we discarded array signals coming from

these two types of unspecific probes and optimized the parameters

of the RACEfrag calling, using a RACEfrag caller developed in-

house (software available upon request). The caller depends on

four parameters: (1) the percentile intensity threshold I above

which we consider a probe to produce a positive signal. Given this

threshold, the set of positive probes can be defined for a given

experiment, (2) the maximum number nucleotides that is allowed

between two consecutive positive probes to be included in the

same RACEfrag, (3) the minimum number of probes that are

needed to call a RACEfrag, and (4), a binary flag that determines

whether RACEfrags are called from the middle of the first probe

to the middle of the last probe, or from the start of the first probe

to the end of the last probe.

The RACEfrag caller is described in detail in Materials S1

section 2.

RACEfrag filtering
In order to eliminate RACEfrags coming from unspecific

priming and/or unspecific cross-hybridization, we used our in-

house in silico RACEarray simulator [6]. This simulator starts from

a known set of transcripts, primers and array probes, and

generates simulated RACEfrag maps from which we can

confidently discriminate between bona fide RACEfrags (i.e.,

originating from specific priming and specific array hybridization)

and artifactual ones (i.e., arising from RACE mis-priming and/or

array cross-hybridization). The RACEarray simulator is described

in detail in Materials S1, see also Figure S4).

On the other hand, transcripts that have not been targeted by

any RACE primer but that are present at high levels in a given

tissue may provide artifactual signals on the corresponding tiling

array, and thus give rise to unspecific RACEfrags in this tissue. In

order to eliminate such RACEfrags, we performed negative

control experiments, i.e., exactly the same RACEarray experi-

ments without any specific RACE primer in the mixture on which

RACE reactions are performed (the mixture only contains Master

mix, buffer, polymerase, unspecific primers, cDNA, dNTP), and

with more sensitive parameters for RACEfrag calling (I = 99%ile,

M = 25 bp, m = 3 probes, c = middle to middle). These negative

control experiments thus provide us with 10 RACEfrag sets, one

for each of the 10 tissue pools, which are then subtracted to the

RACEfrags remaining from the USPP filter in a tissue specific

manner. More precisely, any RACEfrag overlapping a negative

control RACEfrag of the same tissue is eliminated. On the

302,699 RACEfrags remaining from the USPP filter, 40,227 were

eliminated by the negative control filter (14%), and we kept the

remaining 262,472.

RACEfrag assignment
As a given experiment (pool) corresponds to the hybridization

onto a tiling array of a mixture of products obtained from RACE

reactions performed with several different RACE primers, the

information as to which RACEfrag comes from which primer of its

pool is not known a priori. Still, it is crucial to be able to assign an

originating RACE primer to each RACEfrag, in a pool-by-pool

fashion.

RACEfrag assignment is an optimization problem; however we

lack a proper underlying model to solve it as such. We instead use

heuristic rules based on the three following remarks or definitions:

i) a given pool includes primers of different chromosomes and
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pointing in different directions (59 and 39 RACE primers located

on genes on the forward and the reverse strands); ii) within a pool,

a primer is said to be compatible with a RACEfrag if it is located

on the same chromosome as the RACEfrag and is pointing in its

direction; iii) a primer is said to be active in pool p and tissue t, if it

is overlapped by a RACEfrag that appears in p and t.

Given a RACEfrag r of pool p and tissue t, if the closest compatible

primer of pool p is active in p and t, then we assign it to r, else no

primer is assigned to r and r is eliminated from the rest of the study.

The fact that several tissues or/and several primers per gene are

used in the RACEarray strategy can be utilized to attribute a

confidence score to the assignments (i.e., RACEfrag/locus pairs).

More precisely, for any RACEfrag r and locus l, we define the

assignment confidence score of the pair (r,l), ACS(r,l), as:

ACS r,lð Þ~ log
R R{Lð Þz1

LPz1

� �

Where:

– R is the number of times RACEfrag r appears in total (in all

experiments),

– L is the number of times r is assigned to a primer of locus l,

– P is the number of primers of locus l to which RACEfrag r is

assigned.

L is raised in order to favor RACEfrags appearing in multiple

experiments: it is raised to the power of P+1 to favor RACEfrags

assigned to multiple primers from the same locus, while not penalizing

too much RACEfrag-locus pairs co-occurring only in a small number

of pools. Raising R to the power of one plus the number of times

RACEfrag r is not assigned to l greatly penalizes ‘‘ubiquitous’’

(unspecific) RACEfrags, while taking into account the number of times

r appears. As a result, a RACEfrag r is all the more confidently

assigned to a locus l as the corresponding assignment score is low.

Figure S5 illustrates the assignment of primers to RACEfrags as

well as the scoring of these assignments. On the 262,472

RACEfrags that remained from the negative control filter,

195,982 (75%) could be assigned and thus constitute the

RACEarray map used in the rest of the analyses.

The list of these RACEfrags is also provided in gff format at the

following address:

ftp://genome.crg.es/pub/Encode/ChimericRNAChr2122/suppl_

materials_RACEfrags.zip

Tiling array hybridizations
PolyA+RNA from the same 16 cell types as described above

hybridized to Affymetrix Chromosome 21/22.0R arrays (P/N

900936) as previously described [6]. Each probe of the array is thus

associated to a signal or intensity value in each of the 16 cell types,

which is then used to associate an intensity to each projected exon

and gene in the 16 cell types. The intensity of a projected exon is

obtained by taking the mean of the intensities of the probes

overlapping it, and the intensity of a gene is obtained by taking the

mean of the intensities of its projected exons. This data is provided at:

ftp://genome.crg.es/pub/Encode/ChimericRNAChr2122/suppl_

materials_gene_expression_profiles.zip

RT-PCR, cloning and sequencing of RACE connections
Selection of cases for experimental verification. We

performed RT-PCR, cloning and sequencing on 245 RACE

connections (200 of which consisted in gene-gene links, the rest

comprising intergenic RACEfrag connections), so as to validate

them and determine their detailed exon structures. These 245

cases were selected as follows.

All 67 reciprocal gene-gene connections supported by a direct

primer-primer link were included in this part of the experiment,

together with 178 simple (non-reciprocal) primer/RACEfrag

pairs. The latter set underwent the following selection procedure:

first, all 195,982 candidate connections from the complete

RACEarray map were grouped into two primer/RACEfrag

distance bins, (i) 0–350 kb (short) and (ii) more than 350 kb (long).

96 primer/RACEfrag pairs were randomly picked in the short-

distance bin. Pairs from the long-distance bin were ranked

according to their ACS (see above) and the 82 most confident

ones (namely, with a low ACS) were selected for RT-PCR. Within

the 245 test cases, 200 corresponded to chimeric cases, namely,

connections involving two different annotated loci.

Experimental verification. To experimentally verify the

RACE-array defined connections (both ‘‘reciprocal’’ and ‘‘simple’’

cases), nested PCR were carried out to increase sensitivity and

specificity of the reactions. Amplification was done using two

sources of templates: reverse-transcribed RNA from six adult

human tissues (brain, testis, liver, placenta, heart and ovary) and

the relevant set of original reverse-transcribed RNA used in 39 and

59 RACE reactions. Reverse transcription of adult tissue RNAs

was done as previously described [36]. The first set of PCR

reactions were done (in 50 ml reaction volume) for 40 cycles.

Following completion, 0.5 ml of the products were used as

templates for the second round of PCR (for 30 cycles) with the

nested primers. Products from the nested PCRs were visualized by

agarose gel electrophoresis and recombinationally inserted into a

Gateway compatible plasmid (pDONR223) using the BP reaction

[37], and transformed into chemically competent DH5a E. coli.

The transformants were spread on LB-agarose plates containing

100 mg/ml of spectinomycin.

Eight colonies were picked for sequencing from either the

RACE-template reactions or the six-tissue RT-PCR clones with

priority given to the RACE-template reactions. For cases in which

a positive product was not observed in the RACE-templated

reactions but product(s) were present in the adult tissue RT-PCRs,

the latter were chosen for further analyses. In each case, colonies

were grown in deep 96-well plates containing 100 mg/ml

spectinomycin LB. A small volume of these cultures served as

template to amplify the cloned inserts using universal vector

primers. The resulting PCR amplicons were sequenced at

Agencourt Bioscience Corp. (Beverly, MA, USA). Forward and

reverse sequence reads were vector-trimmed with cross_match

(version 0.990329, default options) and assembled using Phrap

[38]. In cases where the end reads did not overlap (i.e., a contig

could not be assembled), internal primers were synthesized and

additional internal sequencing was carried out to generate full-

length contigs.

To monitor RT-PCR and cloning efficiency, we carried out

amplification of canonical open reading frames from four genes

using the six-tissue RNA and RACE templates. These ORFs were

from TP53 (expected size 1,182 bp), CIRH1A (2061 bp), ORC1L

(2,586 bp), and THRAP4 (2,970 bp). Following Gateway recom-

binational cloning, 16 colonies were picked (8 from each of the 6-

tissue RT-PCR and the RACE templated experiments) and end

sequenced. For TP53 and CIRH1A, all colonies (i.e., 16 each)

generated expected sequences. For ORC1L and THRAP4, 5 out

of 16 clones, and 8 out of 16 colonies yielded the expected

sequences, respectively.

Second round of RT-PCR (‘‘primer walking’’ inside cloned

sequences).
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A second round of RT-PCR was performed using the same

procedure as the one described in the above subsection. However,

some clone inserts could not be completely sequenced.
Analysis of the sequences. (i) – Genome mapping and RT-

PCR success rate.

In total, 3,503 RT-PCR clone sequences (both assembled

contigs and singlet reads) were obtained. After trimming off vector

sequences and filtering out sequences of less than 100 nucleotides,

1,572 of them remained and were mapped onto the human

genome (NCBI 35/hg17 version) using BLAT [34] (default

parameters, version 34). 1,551 of them could be mapped. Due

to a hard-coded limit in the maximum intron size allowed (750 kb)

by BLAT, all hits were further processed to chain sequence parts

affected by this issue. The best-in-genome hit was then selected for

each mapped sequence, and only those sequences containing the

sequences of both internal oligonucleotides from the intended

nested PCR were kept – a very stringent filter, since all unfinished

clone sequences are discarded at this step. Surviving RT-PCR

sequences were subsequently clustered based on their mapped

transcript structure, so as to reduce sequence redundancy. This

resulted in a total of 208 distinct transcripts, originating from 112

initial chimeric RT-PCR targets, and 931 different RT-PCR

products. The overall RT-PCR success rate was thus 56% (112

connections validated by RT-PCR, out of 200).

The 208 clusters of RT-PCR products were fed into the

HAVANA manual annotation pipeline [18], using the aforemen-

tioned BLAT genome mapping as a basis. Having identified the

genomic span of an aligned RT-PCR sequence, a session containing

the corresponding region was opened in the Otterlace

annotation interface [39] and potential novel splice variants were

investigated using its integrated Zmap genome viewer. RT-PCR

sequences were aligned to the genomic contig using BLAST [40]

and the resulting alignments were navigated using the Blixem

alignment viewer [41]. Visual inspection of the dot-plot output from

the Dotter tool (ibid.) was used to resolve any alignment with the

genomic sequence that was unclear or absent from Blixem. Where

very short sequences (,15 bases) are missing from an alignment, a

dot-plot is unsuitable due to the difficulty in seeing very short

alignments (particularly at the edges of the display) and the Zmap

DNA Search tool (essentially a pattern matching tool [42]) was used

to try to identify any alignment with the genome.

Where the RT-PCR sequence was shown by any of the

approaches described above to support locus-joining canonical

splice sites (defined as N|GT-AG, G|GC-AG and N|AT-AC), a

novel transcript structure was annotated and tags indicating the

coding potential of the variant were added [43]. Detailed

annotation statistics are presented in Figure 6D.

A large proportion of the RT-PCR confirmed transcript

structures were found to contain small genomic duplications

around the locus-joining exon junction (Figures 6C and 6D), a

tendency that was all the more important for non canonical

introns and for distant locus-joining junctions. More generally we

looked at HAVANA manually annotated introns and found that

some of them also contain such genomic duplications at the exon-

intron and intron-exon boundaries. More precisely out of the

351,490 introns of the July 2008, hg18 HAVANA version, 35,864

(10.2%) contain duplicated sequences $5 nt around the donor

and acceptor sites, and this proportion is 10.0% for the canonical

introns and 20.7% for the non canonical ones.

RNAse protection assays to confirm chimeric connections
found by RACEarray

In order to evaluate the genuineness, RT-PCR independent

nature of the chimeric connections, we randomly picked 15 RT-

PCR clones arising from reciprocal RACE connections to undergo

RNAse protection assays (RPA). Each RT-PCR clone to be tested

was sub-cloned into the pDONR223 vector. DNA fragments

covering each chimeric junction were synthesized by PCR (100–

300 base pairs) using specific primers containing SP6 (forward

primer) and T7 (reverse primer). Using this template, antisense

and sense riboprobes were prepared with SP6 and T7 polymerase

MAXIscript in vitro transcription kit (Ambion). Designed ribop-

robes were checked for uniqueness using BLAT on the hg18

version of the human genome.

RNase protection assays were performed by using the RPA III

kit from Ambion according to the manufacturer’s instructions.

500 ng of each Poly(A+) RNA (Clontech) were used per reaction.

Protected fragments were separated on a 10% denaturing (8 M

Urea) polyacrylamide gel and signals were analyzed by autoradi-

ography. On the 15 chimeric transcripts tested by this method, 3

were found positive, and 2 out of the 3 positive cases were found to

include a small duplicated sequence around the tested junction, as

shown in table S2. Table S2 is available at:

ftp://genome.crg.es/pub/Encode/ChimericRNAChr2122/tabS2.

xlsx

5C data validates RACEarray gene to gene connections
In order to know whether some RACEarray reciprocal gene to

gene connections could be due to the three dimensional proximity

between the two genes involved in the connection, we used 5C

studies (Chromosome Conformation Capture Carbon Copy)

performed on chromosome 21 on cell lines GM06990 and

K562. The 5C technique indeed provides pairs of genomic

regions supposed to physically interact. In the rest of the

paragraph and for simplification purposes, a reciprocal gene to

gene connection will simply be called a gene to gene connection.

Let us first introduce some definitions. A gene to gene

connection g1–g2 is:

– Detectable by RACEarray if there exists a RACE primer in g1

pointing in the direction of g2 and a RACE primer in g2

pointing in the direction of g1;

– Validated by RACEarray if g1–g2 is a reciprocal gene to gene

connection;

– Detectable by 5C if there exists a 5C pair (FW,RV) such that

either g1 overlaps FW and g2 overlaps RV, or g1 overlaps RV

and g2 overlaps FW;

– Validated by 5C if there exists a 5C pair (FW,RV) in the 10%

best 5C pairs, such that either g1 overlaps FW and g2 overlaps

RV, or g1 overlaps RV and g2 overlaps FW.

Among the 785 gene to gene connections validated by

RACEarray on chromosome 21, 638 are detectable by 5C, and

496 are validated by 5C, yielding a proportion of 77.7% gene to

gene connections validated by 5C (496/638). We were thus

interested in testing the following hypothesis: ‘‘from the gene to

gene connections validated by RACEarray (638), is the number of

gene to gene connections validated by 5C (496) higher than

expected by chance?’’ To do this, we sampled 1,000 times 638

gene to gene connections within the 8,852 that we find detectable

by both techniques while keeping the same distributions of

distance between connected genes, and of length of connected

genes as in the 638 connections validated by RACEarray (details

not shown), and for each sample we computed the proportion of

gene to gene connections validated by 5C (see distribution on

Figure S18). From these simulations, we found that the proportion

of RACEarray gene to gene connections validated by 5C (77.7%)

was significantly higher than the proportion one would expect by

Transcript Networks in Human Cells

PLoS ONE | www.plosone.org 18 January 2012 | Volume 7 | Issue 1 | e28213



chance given the distribution of distance and the distribution of

length of connected genes (70.8%61.9%, p-value,1023). Note

that three different thresholds for defining validation by 5C were

tested: 5, 10 and 20%, and although all three thresholds were

providing significant p-values, better results were obtained for

10%ile, which is the reason why this threshold was chosen (details

not shown).

The 5C data used for this analysis is available here:

ftp://genome.crg.es/pub/Encode/ChimericRNAChr2122/suppl_

materials_5C_data.zip

RNA mixture experiment
A series of control experiments were conducted to investigate a

possible contribution of technical artifacts – from library

preparation, sequencing, or mapping – to our sequencing results.

These experiments are based on the analysis of RNAseq libraries

prepared from mixes of RNA from different sources –namely,

human GM12878 cells and D. melanogaster adult females. This

strategy allowed us to analyze in isolation a control population of

chimeric reads consisting exclusively of technical artifacts (inter-

genomic reads), and to compare its properties to that of our

populations of interest (intra-genomic chimeras).

We first analyzed two libraries prepared from pure total RNA

from either human or fly, and one library prepared from a 1:1 mix

of RNA from both sources. We obtained about 10 M reads per

library that our alignment algorithm (STAR, http://gingeraslab.

cshl.edu/STAR/ [44]) could map uniquely to either of the two

reference genomes. We scored the numbers of intra- and inter-

genomic chimeric reads identified in each dataset, under different

mapping policies. The numbers reported in the table below are

normalized for each library, and expressed in reads per 10 million

uniquely mapped reads. If we required a minimum of 20 bases to

be mapped on each side of a chimeric junction, we identified a

very small number of inter-genomic reads in the pure human

library (183 reads), and a slightly greater number in the pure fly

library (1,660). These populations consist exclusively of sequencing

and mapping artifacts – an interpretation supported by the fact

that their size shrinks dramatically as we increase the stringency of

our mapping policy, requiring larger portions of the reads to map

on either side of the junctions. In the mixed library, the number of

inter-genomic reads (1,809) is about twice the mean of these two

numbers (922), which shows that roughly half of the inter-genomic

reads in this dataset are explained by sequencing/mapping errors,

the other half being contributed by library preparation artifacts.

Under the null model that all chimeric reads are artifactual, the

number of intra-genomic chimeric reads for each species in the 1:1

mix library should be half the number of inter-genomic reads. The

fly population conforms roughly to this expectation, and therefore

seems largely accounted for by technical factors. The human

population, on the other hand, exceeds the expectations by a

factor of 5 (e.g., central row: 2,050 reads instead of an expected

831/2 = 415) – suggesting that a number of chimeric sequences

may be present in the human transcriptome. More stringent

mapping leads to identical conclusions.

Bearing in mind that this simple null model may not accurately

describe the generation of artifactual chimeric reads, and that

some factors – such a sequence similarity, for instance – may favor

the formation of intra-genomic artifacts, we had also sequenced

additional libraries designed specifically to distinguish between

molecules of technical versus biological origin within the

population of human chimeric reads. All were prepared from a

mix of human and fly total RNA, keeping the overall amount of

RNA constant but varying the human-to-fly ratio from 1:1 down

to 1:100. In this type of dilution series, molecules of biological

origin and library preparation artifacts are expected to have

drastically different behaviors. The number of the former should

decrease linearly with the dilution factor, whereas that of the latter

should decrease linearly with the square of the dilution factor (as

does the probability of independently picking 2 human transcripts

by random sampling). With our least stringent mapping policy

(minimum mapped length of 2620 bases) the decrease is less than

linear, suggesting that the analysis is confounded by sequencing/

mapping artifacts – which we know not to be filtered efficiently by

this policy, as explained above. With more stringent mapping (min

2625 bases) the decrease is very close to linear: we expected 2,050,

2,050/5 = 410 & 2,050/50 = 41 reads, and observed 2,050, 317 &

51. The most stringent mapping policy shows a slightly faster-

than-linear decay, revealing a minor artifactual component. These

results further support the notion that the human transcriptome

does naturally include some chimeric molecules.

Supporting Information

Materials S1 Supplementary text.

(DOC)

Figure S1 Distance between consecutive pooled prim-
ers. This figure represents the distribution of distances between

consecutive primers of the same pool for each chromosome and

each relative position of primer pairs: head to head (R r), head

to tail (RR) and tail to tail (r R), as a box plot. The gene

density of chromosome 22 being higher than that of chromosome

21, the distance between consecutive pooled primers is smaller for

the latter than for the former. Also, as expected, the distance

between consecutive pooled primers is higher for head to head

than for head to tail configuration, and higher for head to tail than

for tail to tail configuration.

(TIFF)

Figure S2 Two measures to assess RACEfrag sets. This

figure describes the two measures used to assess RACEfrag sets

while optimizing the parameters used for RACEfrag calling: the

exonic accuracy and the splice site score. The exonic accuracy

assesses the RACEfrag set with respect to a reference set: the

projected internal exons. More precisely for each projected

internal exon, considered as a reference, the exonic accuracy

assesses the accuracy with which the RACEfrags overlapping this

reference mimics this reference. This accuracy is measured in

terms of intersection over union of the projected internal exons

and the RACEfrags, i.e., for each projected internal exon with

overlapping RACEfrags, the number of nucleotides in common

between the two sets is divided by the number of nucleotides in

either of the two sets. The exonic accuracy of a RACEfrag set is

then the median of the exonic accuracy of projected internal exons

with overlapping RACEfrags. Unlike the exonic accuracy the

splice site score of a RACEfrag set does not depend on any

reference but is rather intrinsic to the RACEfrag set. More

precisely, the spice site score is divided into two sub-measures: the

acceptor score and the donor score. Both scores involve the

scanning of two windows around the RACEfrag boundaries, W1

around the left boundary and W2 around the right boundary,

where both acceptor and donor sites have previously been found

by the geneid program. The RACEfrag acceptor score is then

defined as the score of the best acceptor site on the 2 windows, and

the RACEfrag donor score as the one of the best donor site on the

2 windows.

(TIFF)

Figure S3 RACEfrag calling. This figure represents the

exonic accuracy of 10 RACEfrag sets coming from 10 randomly
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chosen experiments, as a function of the intensity threshold (I) and

the maxgap (M), for 3 different minrun values (m): 3, 4 and 5. The

blue arrows indicate the maximum exonic accuracy found over all

the possible values of the three parameters, and the red arrows the

minimum exonic accuracy. The maximum is reached for

I = 99.1%ile, M = 59 bp, m = 5 probes.

(TIFF)

Figure S4 USPP filter. This simulation involves two steps: (1)

RACE from a set of primers and a set of known transcripts; (2)

hybridization of the obtained RACE products on tiling arrays.

The RACEarray simulator generates a set of tiling array probes

that are highlighted by the RACE products and that we call

simulated positive probes (SPPs). These SPPs can be further

divided into two categories: (1) bona fide SPPs, i.e. overlapping an

exon of the target locus; (2) unspecific SPPs, also called USPPs, i.e.

mapping outside of the target locus exons. In our model these

USPPs correspond to false positives that originate from RACE

mis-priming and/or from array cross-hybridization (see text for a

more detailed explanation).

(TIFF)

Figure S5 RACEfrag assignment. This figure is divided into

three parts: 1) on the top, the annotations of a given chromosome

are represented, which are here the different alternative transcripts

of three loci: A, B and C; 2) in the middle, the primers and

RACEfrags of three different pools in several tissues are

represented; 3) on the bottom, the formula of the assignment

confidence score is provided again as well as its application on 5

different (RACEfrag, locus) pairs (note that here two RACEfrags

with the same coordinates are given the same identifier). The first

two parts of the figure are thus dedicated to the description of the

assignment method, while the third part shows how the

assignment score behaves on already assigned RACEfrags

associated to their locus. Primers are named and colored after

the locus they are originating from, and RACEfrags after the locus

they have been assigned to. In pool 1, primer C1 is active and

points in the direction of all RACEfrags, so all RACEfrags of pool

1 are assigned to primer C1. In pool 2, it is the same with primer

C2, and in pool 3 the same with primer A1. Then the ACS

formula is applied to 5 different (RACEfrag, locus) pairs, and the

lower the score the more confidence we have in the assignment of

the RACEfrag to the locus. Here the (RACEfrag, locus) pair we

are the most confident in is (3,C) since RACEfrag 3 appears 4

times in total and each time it appears it is assigned to locus C.

Also, the fact that it is assigned to two different primers of locus C,

primers C1 and C2, strengthens the confidence we have in this

pair. The pair (4,C) is similar to the pair (3,C) except that

RACEfrag 4 appears in 2 experiments instead of 4. It thus also has

a good score, although less than the one of (3,C). The pair (2,C) is

like the pair (3,C) except that RACEfrag 2 also appears in pool 3,

tissue 1 where it is assigned to locus A. This makes it more

uncertain we should assign RACEfrags 2 to locus C, as compared

to RACEfrag 3, and this is why the score of (2,C) is lower than the

one of (3,C). The pair (5,C) is similar to the pair (4,C) except that

RACEfrag 5 is only assigned to 1 primer of locus C (primer C1),

compared to two primers of locus C for RACEfrag 4 (primers C1

and C2). This explains the lower score of (5,C) with respect to the

one of (4,C). Finally the pair (2,A) is given a very bad score since

RACEfrag 2 appears 5 times but is assigned only once to locus A.

(TIFF)

Figure S6 Chromosome 21 transcriptional networks.
RACE connection networks in all 10 assayed cell types are

represented. In each plot, the chromosome is depicted as a circle,

and RACEfrag connections as inner links between genomic

regions (59 and 39 RACE connections are red and blue,

respectively). The circular tracks are, going inwards: (1) -

chromosome scale (in megabases, starting at 14 Mb), (2) - plus-

strand annotated genes (green), (3) - plus-strand annotated

pseudogenes, (4) - minus-strand annotated genes, (5) - minus-

strand annotated pseudogenes.

(JPG)

Figure S7 Chromosome 22 transcriptional networks.
See legend of figure S6.

(JPG)

Figure S8 Reciprocal gene to gene connections in
chromosome 21 (A) and 22 (B). All 2,324 pure and composite

gene/gene reciprocal connections observed in the 10 cell types

studied are represented as blue (connection involving two genes on

the same chromosome strand) and orange (connection involving

two genes on different strands) inner ribbons. See Figure 2A for

further legend details. Pseudogene tracks were removed for clarity

purposes (See Figures S9 and S10 for reciprocal gene/gene

connections in each cell type).

(JPG)

Figure S9 Reciprocal gene to gene connections observed
in each cell type on chromosome 21. Networks of reciprocal

gene to gene connections observed in each of the 10 assayed cell

types are represented as blue (connection involving two genes on

the same chromosome strand) and orange (connection involving

two genes on different strands) inner ribbons. See Figures S6 and

S7 for further legend details. Pseudogene tracks were removed for

clarity purposes.

(JPG)

Figure S10 Reciprocal gene to gene connections ob-
served in each cell type on chromosome 22. See legend of

Figure S9.

(JPG)

Figure S11 Pairwise correlations between cell types
based on pure reciprocal gene to gene connections. This

figure represents the pairwise correlations between the cell types

used in the RACEarray experiments as a heatmap: the closer to

the white, the more correlated. More precisely for each pair of cell

types, the Pearson’s product moment correlation between them

was computed based on the number of reciprocal gene to gene

connections commonly observed, in the universe of all possible

reciprocal gene to gene connections. This number is the one

indicated in the corresponding cell of the heatmap. Note that

genes g1 and g2 form a possible reciprocal gene to gene

connection if and only if there is a RACE primer in g1 pointing

in the direction of g2 and a RACE primer in g2 pointing in the

direction of g1.

(PNG)

Figure S12 Number of observed (left) and of expected
(right) gene to gene connections on chromosomes 21
(top) and 22 (bottom). The shape of the observed distributions

is similar for the two chromosomes, as well as the shape of the

expected ones, however the distributions are decreasing much

more rapidly for the expected connections compared to the

observed connections.

(PNG)

Figure S13 Difference between number of observed and
number of expected gene to gene connections on
chromosome 21 (A) and on chromosome 22 (B). These

two histograms (A and B) represent the distributions of the

difference between the number of observed and the number of
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expected gene to gene connections for reciprocally connected

genes on chromosomes 21 and 22 respectively. These distributions

are shifted towards the positive values, and have a mean of 6 and 5

respectively. In our analysis the difference between the number of

observed and the number of expected gene to gene connections of

reciprocally connected genes is used as a score for those genes and

is used to delineate a set of genes much more connected than we

would expect given their length and number of primers: the hubs.

(PNG)

Figure S14 Different categories of genes used in the
RACEarray experiments. Proportional Venn diagram repre-

sentation of inclusion relationships between some of the most used

sets of genes used in this study. The area highlighted in light blue

corresponds to non-hub genes, which are all reciprocally connected.

(PNG)

Figure S15 Expected number of gene to gene connec-
tions found by RACEarray and RNA PET ditags in K562.
(JPG)

Figure S16 Expected number of gene to gene connec-
tions found by RACEarray and Illumina Human Body
Map PE50 RNAseq (A) in Testes+Prostate and in Brain
(B).
(JPG)

Figure S17 Interspecies chimeric RNAs used as a metric
of technical artifacts. The number of reads/10 M total reads

for intra-genomic and inter-genomic chimeric junction sites is

plotted human and fly alone and various ratios of RNAs from

human and fly (mixtures). A total of at least 25 nucleotides on each

side of a chimeric junction site was chosen as a minimum to allow

for unique mapping in each genome.

(JPG)

Figure S18 5C data validates RACEarray gene to gene
connections. This figure represents the distribution of the

proportion of gene to gene connections validated by 5C in 1,000

sets of gene to gene connections detectable by RACEarray and by

5C with the same distributions of distance between connected

genes and of length of connected genes as in the 638 connections

detectable by both techniques that are actually observed. The

mean of this distribution is 70.8 (standard deviation = 1.9), which is

significantly lower than the observed proportion (496/

638 = 77.7%, depicted by the arrow on the right, p-value,1023).

(JPG)

Figure S19 Domain organization for chimera OT-
THUMP00000221101. Chimera OTTHUMP00000221101 re-

sults from the fusion of two receptors involved in immune

response, Interferon-alpha/beta receptor 2 (IFNAR, N-terminal

section) and Interleukin-10 receptor subunit beta (IL10RB, C-

terminal section). The resulting protein will have an extra-cellular

domain that is double the size of the usual extra-cellular receptor

domain and that is composed of a repeat of paired tissue factor

(green) and alpha/beta interferon receptor (red) domains. The

chimeric protein also conserves a signal peptide signal and a single

trams-membrane helix. A similar domain configuration is

recorded in Uniprot for the chicken interferon receptor

(Q5XPI1_CHICK).

(PDF)

Figure S20 Model of possible structure of fused frag-
ments for chimera OTTHUMP00000221101. Models for

the N- and C-terminal sections have been obtained respectively

from structures 2hym and 3g9v by comparative modeling

(Modeller, http://salilab.org/modeller). Linker region (shown as

a gap in the structure) is located in flexible regions for both

templates. Domain folds could then be maintained independently.

(PNG)

Table S1 Number of gene to gene and number of
reciprocal gene to gene connections by distance. This

table is similar to Figure 5B and provides numbers of gene to gene

and of reciprocal gene to gene connections detected in each cell

type, split by distance bins: - ,150 kb -150 kb – 1 Mb -1 Mb –

5 Mb -.5 Mb. This table shows that (1) the number of

connections is similar in cell lines and tissues, (2) the distribution

of connections in distance classes changes if we consider all or only

reciprocal connections, (3) between one third and half of the

reciprocal connections are cell-type specific and (4) all the figures

are quite high meaning that chimeras are far from being

exceptional.

(JPG)

Table S2 Validation results of chimeric transcripts by
RNase protection assays. This table lists the RACE name, the

pool of poly-A+RNA used, description of the probes, a summary

of the RNase Protection Assay screening with a detailed

interpretation of the results based on the autoradiography gel.

(XLSX)

Table S3 Names and characteristics of the hubs. For

each of the 74 hubs the table provides: - the number of observed

connections, - the number of expected connections, - the

difference between the two, which could be seen as their

connectivity score.

(JPG)

Table S4 Hubs have higher phylogenetic depth than non
hubs. We consider four different gene sets (see Figure S14 for a

description): - RACE interrogated (‘‘raced’’) genes - reciprocally

connected genes – hubs - non hubs and for each of them, we

provide the number of genes with an Ensembl gene ID, and the

number and the proportion of this total, that has an ortholog in

the 6 following species, as found using biomart on ensembl51:

N Yeast N C. elegans N Drosophila N Tetraodon N Chicken N Mouse. For

each of these species we then provide the Fisher exact test p-

value obtained while testing the following hypothesis: ‘‘Being a

hub is independent on having an ortholog in a given species’’. A

star above this number on the table means the p-value is

significant (less than 0.01). Note that both the proportions of

genes with an ortholog in each of the 6 species for RACE

interrogated (‘‘raced’’) genes, hubs and non hubs, and the

significance of the Fisher tests mentioned here are provided on

Figure 9B.

(JPG)

Table S5 Over-representation of cliques in chromo-
somes 21 and 22. For each chromosome, we report the number

of cliques observed, as well as the mean and the standard deviation

of the number of cliques expected.

(JPG)

Table S6 Constitutive cliques. For each constitutive clique

(the maximum size is 3), we provide: N the names of the genes

involved in the clique, N the chromosome where the clique is

observed, N the list of cell types in which the clique is observed.

(JPG)

Table S7 Overlap of maximal cliques. For each clique size,

we report: - the number of cliques observed, - the number of

corresponding edges if cliques were not overlapping, - the number

of observed edges.

(JPG)
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