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Abstract

The mission of the Encyclopedia of DNA Elements (ENCODE) Project is to enable the scientific and medical communities to
interpret the human genome sequence and apply it to understand human biology and improve health. The ENCODE
Consortium is integrating multiple technologies and approaches in a collective effort to discover and define the functional
elements encoded in the human genome, including genes, transcripts, and transcriptional regulatory regions, together with
their attendant chromatin states and DNA methylation patterns. In the process, standards to ensure high-quality data have
been implemented, and novel algorithms have been developed to facilitate analysis. Data and derived results are made
available through a freely accessible database. Here we provide an overview of the project and the resources it is generating
and illustrate the application of ENCODE data to interpret the human genome.
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I. Introduction and Project Overview

Interpreting the human genome sequence is one of the leading

challenges of 21st century biology [1]. In 2003, the National

Human Genome Research Institute (NHGRI) embarked on an

ambitious project—the Encyclopedia of DNA Elements (EN-

CODE)—aiming to delineate all of the functional elements

encoded in the human genome sequence [2]. To further this

goal, NHGRI organized the ENCODE Consortium, an interna-

tional group of investigators with diverse backgrounds and

expertise in production and analysis of high-throughput functional

genomic data. In a pilot project phase spanning 2003–2007, the

Consortium applied and compared a variety of experimental and

computational methods to annotate functional elements in a

defined 1% of the human genome [3]. Two additional goals of the

pilot ENCODE Project were to develop and advance technologies

for annotating the human genome, with the combined aims of

achieving higher accuracy, completeness, and cost-effective

throughput and establishing a paradigm for sharing functional

genomics data. In 2007, the ENCODE Project was expanded to

study the entire human genome, capitalizing on experimental and

computational technology developments during the pilot project

period. Here we describe this expanded project, which we refer to

throughout as the ENCODE Project, or ENCODE.

The major goal of ENCODE is to provide the scientific

community with high-quality, comprehensive annotations of

candidate functional elements in the human genome. For the

purposes of this article, the term ‘‘functional element’’ is used to

denote a discrete region of the genome that encodes a defined

product (e.g., protein) or a reproducible biochemical signature,

such as transcription or a specific chromatin structure. It is now

widely appreciated that such signatures, either alone or in

combinations, mark genomic sequences with important functions,

including exons, sites of RNA processing, and transcriptional

regulatory elements such as promoters, enhancers, silencers, and

insulators. However, it is also important to recognize that while

certain biochemical signatures may be associated with specific

functions, our present state of knowledge may not yet permit

definitive declaration of the ultimate biological role(s), function(s),

or mechanism(s) of action of any given genomic element.

At present, the proportion of the human genome that encodes

functional elements is unknown. Estimates based on comparative

genomic analyses suggest that 3%–8% of the base pairs in the

human genome are under purifying (or negative) selection [4–7].

However, this likely underestimates the prevalence of functional

features, as current comparative methods may not account for

lineage-specific evolutionary innovations, functional elements that

are very small or fragmented [8], elements that are rapidly

evolving or subject to nearly neutral evolutionary processes, or

elements that lie in repetitive regions of the genome.

The current phase of the ENCODE Project has focused on

completing two major classes of annotations: genes (both

protein-coding and non-coding) and their RNA transcripts,

and transcriptional regulatory regions. To accomplish these
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goals, seven ENCODE Data Production Centers encompassing

27 institutions have been organized to focus on generating

multiple complementary types of genome-wide data (Figure 1

and Figure S1). These data include identification and

quantification of RNA species in whole cells and in sub-cellular

compartments, mapping of protein-coding regions, delineation

of chromatin and DNA accessibility and structure with

nucleases and chemical probes, mapping of histone modifica-

tions and transcription factor (TF) binding sites by chromatin

immunoprecipitation (ChIP), and measurement of DNA

methylation (Figure 2 and Table 1). In parallel with the major

production efforts, several smaller-scale efforts are examining

long-range chromatin interactions, localizing binding proteins

on RNA, identifying transcriptional silencer elements, and

understanding detailed promoter sequence architecture in a

subset of the genome (Figure 1 and Table 1).

ENCODE has placed emphasis on data quality, including

ongoing development and application of standards for data

reproducibility and the collection of associated experimental

information (i.e., metadata). Adoption of state-of-the-art, massively

parallel DNA sequence analysis technologies has greatly facilitated

standardized data processing, comparison, and integration [9,10].

Primary and processed data, as well as relevant experimental

methods and parameters, are collected by a central Data

Coordination Center (DCC) for curation, quality review, visual-

ization, and dissemination (Figure 1). The Consortium releases

data rapidly to the public through a web-accessible database

(http://genome.ucsc.edu/ENCODE/) [11] and provides a visu-

alization framework and analytical tools to facilitate use of the data

[12], which are organized into a web portal (http://encodeproject.

org).

To facilitate comparison and integration of data, ENCODE

data production efforts have prioritized selected sets of cell types

(Table 2). The highest priority set (designated ‘‘Tier 1’’) includes

two widely studied immortalized cell lines—K562 erythroleu-

kemia cells [13]; an EBV-immortalized B-lymphoblastoid line

(GM12878, also being studied by the 1,000 Genomes Project;

http://1000genomes.org) and the H1 human embryonic stem cell

line [14]. A secondary priority set (Tier 2) includes HeLa-S3

cervical carcinoma cells [15], HepG2 hepatoblastoma cells [16],

and primary (non-transformed) human umbilical vein endothelial

cells (HUVEC; [17]), which have limited proliferation potential in

culture. To capture a broader spectrum of human biological

diversity, a third set (Tier 3) currently comprises more than 100

cell types that are being analyzed in selected assays (Table 2).

Standardized growth conditions for all ENCODE cell types have

been established and are available through the ENCODE web

portal (http://encodeproject.org, ‘‘cell types’’ link).

This report is intended to provide a guide to the data and

resources generated by the ENCODE Project to date on Tier 1–3

cell types. We summarize the current state of ENCODE by

describing the experimental and computational approaches used

to generate and analyze data. In addition, we outline how to access

datasets and provide examples of their use.

II. ENCODE Project Data

The following sections describe the different types of data being

produced by the ENCODE Project (Table 1).

Genes and Transcripts
Gene annotation. A major goal of ENCODE is to annotate

all protein-coding genes, pseudogenes, and non-coding transcribed

loci in the human genome and to catalog the products of

transcription including splice isoforms. Although the human

genome contains ,20,000 protein-coding genes [18], accurate

identification of all protein-coding transcripts has not been

straightforward. Annotation of pseudogenes and noncoding

transcripts also remains a considerable challenge. While auto-

matic gene annotation algorithms have been developed, manual

curation remains the approach that delivers the highest level of

accuracy, completeness, and stability [19]. The ENCODE

Consortium has therefore primarily relied on manual curation

with moderate implementation of automated algorithms to produce

gene and transcript models that can be verified by traditional

experimental and analytical methods. This annotation process

involves consolidation of all evidence of transcripts (cDNA, EST

sequences) and proteins from public databases, followed by building

gene structures based on supporting experimental data [20]. More

than 50% of annotated transcripts have no predicted coding

potential and are classified by ENCODE into different transcript

categories. A classification that summarizes the certainty and types

of the annotated structures is provided for each transcript (see

http://www.gencodegenes.org/biotypes.html for details). The

annotation also includes extensive experimental validation by RT-

PCR for novel transcribed loci (i.e., those not previously observed

and deposited into public curated databases such as RefSeq).

Pseudogenes are identified primarily by a combination of similarity

to other protein-coding genes and an obvious functional

disablement such as an in-frame stop codon. Because it is difficult

to validate pseudogenes experimentally, three independent

annotation methods from Yale (‘‘pseudopipe’’) [21], UCSC

(‘‘retrofinder’’; http://users.soe.ucsc.edu/,markd/gene-sets-new/

pseudoGenes/RetroFinder.html, and references therein), and the

Sanger Center [20] are combined to produce a consensus

pseudogene set. Ultimately, each gene or transcript model is

assigned one of three confidence levels. Level 1 includes genes

validated by RT-PCR and sequencing, plus consensus pseudogenes.

Level 2 includes manually annotated coding and long non-coding

loci that have transcriptional evidence in EMBL/GenBank. Level 3

includes Ensembl gene predictions in regions not yet manually

annotated or for which there is new transcriptional evidence.

Author Summary

The Encyclopedia of DNA Elements (ENCODE) Project was
created to enable the scientific and medical communities
to interpret the human genome sequence and to use it to
understand human biology and improve health. The
ENCODE Consortium, a large group of scientists from
around the world, uses a variety of experimental methods
to identify and describe the regions of the 3 billion base-
pair human genome that are important for function. Using
experimental, computational, and statistical analyses, we
aimed to discover and describe genes, transcripts, and
transcriptional regulatory regions, as well as DNA binding
proteins that interact with regulatory regions in the
genome, including transcription factors, different versions
of histones and other markers, and DNA methylation
patterns that define states of the genome in various cell
types. The ENCODE Project has developed standards for
each experiment type to ensure high-quality, reproducible
data and novel algorithms to facilitate analysis. All data
and derived results are made available through a freely
accessible database. This article provides an overview of
the complete project and the resources it is generating, as
well as examples to illustrate the application of ENCODE
data as a user’s guide to facilitate the interpretation of the
human genome.

A User’s Guide to ENCODE
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The result of ENCODE gene annotation (termed ‘‘GENCODE’’)

is a comprehensive catalog of transcripts and gene models. ENCODE

gene and transcript annotations are updated bimonthly and are

available through the UCSC ENCODE browser, distributed

annotation servers (DAS; see http://genome.ucsc.edu/cgi-bin/das/

hg18/features?segment=21:33031597,

33041570;type=wgEncodeGencodeManualV3), and the Ensembl

Browser [22].

RNA transcripts. ENCODE aims to produce a compre-

hensive genome-wide catalog of transcribed loci that characterizes

the size, polyadenylation status, and subcellular compartmen-

talization of all transcripts (Table 1).

Figure 1. The Organization of the ENCODE Consortium. (A) Schematic representation of the major methods that are being used to detect
functional elements (gray boxes), represented on an idealized model of mammalian chromatin and a mammalian gene. (B) The overall data flow from
the production groups after reproducibility assessment to the Data Coordinating Center (UCSC) for public access and to other public databases. Data
analysis is performed by production groups for quality control and research, as well as at a cross-Consortium level for data integration.
doi:10.1371/journal.pbio.1001046.g001
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ENCODE has generated transcript data with high-density

(5 bp) tiling DNA microarrays [23] and massively parallel DNA

sequencing methods [9,10,24], with the latter predominating in

ongoing efforts. Both polyA+ and polyA2 RNAs are being

analyzed. Because subcellular compartmentalization of RNAs is

important in RNA processing and function, such as nuclear

retention of unspliced coding transcripts [25] or snoRNA activity

in the nucleolus [26], ENCODE is analyzing not only total whole

cell RNAs but also those concentrated in the nucleus and cytosol.

Long (.200 nt) and short RNAs (,200 nt) are being sequenced

from each subcellular compartment, providing catalogs of

potential miRNAs, snoRNA, promoter-associated short RNAs

(PASRs) [27], and other short cellular RNAs. Total RNA from

K562 and GM12878 cells has been mapped by hybridization to

high-density tiling arrays and sequenced to a depth of .500

million paired-end 76 bp reads under conditions where the strand

of the RNA transcript is determined, providing considerable depth

of transcript coverage (see below).

These analyses reveal that the human genome encodes a diverse

array of transcripts. For example, in the proto-oncogene TP53

locus, RNA-seq data indicate that, while TP53 transcripts are

accurately assigned to the minus strand, those for the oppositely

transcribed, adjacent gene WRAP53 emanate from the plus strand

(Figure 3). An independent transcript within the first intron of

TP53 is also observed in both GM12878 and K562 cells (Figure 3).

Additional transcript annotations include exonic regions and

splice junctions, transcription start sites (TSSs), transcript 39 ends,

spliced RNA length, locations of polyadenylation sites, and

locations with direct evidence of protein expression. TSSs and 39

ends of transcripts are being determined with two approaches,

Paired-End diTag (PET) [28] and Cap-Analysis of Gene

Expression (CAGE) [29–31] sequencing.

Table 1. Experimental assays used by the ENCODE Consortium.

Gene/Transcript Analysis

Region/Feature Method Group

Gene annotation GENCODE Wellcome Trust

PolyA+ coding regions RNA-seq; tiling DNA microarrays; PET CSHL; Stanford/Yale//Harvard; Caltech

Total RNA coding regions RNA-seq; tiling DNA microarrays; PET CSHL

Coding regions in subcellular RNA fractions
(e.g. nuclear, cytoplasmic)

PET CSHL

Small RNAs short RNA-seq CSHL

Transcription initiation (59-end) and
termination (3-end9) sites

CAGE; diTAGs RIKEN, GIS

Full-length RNAs RACE University of Geneva; University of Lausanne

Protein-bound RNA coding regions RIP; CLIP SUNY-Albany; CSHL

Transcription Factors/Chromatin

Elements/Regions Method(s) Group(s)

Transcription Factor Binding Sites
(TFBS)

ChIP-seq Stanford/Yale/UC-Davis/Harvard; HudsonAlpha/Caltech;
Duke/UT-Austin; UW; U. Chicago/Stanford

Chromatin structure (accessibility, etc.) DNaseI hypersensitivity; FAIRE UW; Duke; UNC

Chromatin modifications (H3K27ac,
H3K27me3, H3K36me3, etc.)

ChIP-seq Broad; UW

DNaseI footprints Digital genomic footprinting UW

Other Elements/Features

Feature Method(s) Group(s)

DNA methylation RRBS; Illumina Methyl27; Methyl-seq HudsonAlpha

Chromatin interactions 5C; CHIA-PET UMass; UW; GIS

Genotyping Illumina 1M Duo HudsonAlpha

doi:10.1371/journal.pbio.1001046.t001

Figure 2. Data available from the ENCODE Consortium. (A) A data matrix representing all ENCODE data types. Each row is a method and each
column is a cell line on which the method could be applied to generate data. Colored cells indicate that data have been generated for that method
on that cell line. The different colors represent data generated from different groups in the Consortium as indicated by the key at the bottom of the
figure. In some cases, more than one group has generated equivalent data; these cases are indicated by subdivision of the cell to accommodate
multiple colors. (B) Data generated by ChIP-seq are split into a second matrix where the cells now represent cell types (rows) split by the factor or
histone modification to which the antibody is raised (columns). The colors again represent the groups as indicated by the key. The upper left corner
of this matrix has been expanded immediately above the panel to better illustrate the data. All data were collected from the ENCODE public
download repository at http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC on September 1, 2010.
doi:10.1371/journal.pbio.1001046.g002
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Transcript annotations throughout the genome are further

corroborated by comparing tiling array data with deep sequencing

data and by the manual curation described above. Additionally,

selected compartment-specific RNA transcripts that cannot be

mapped to the current build of the human genome sequence have

been evaluated by 59/39 Rapid Amplification of cDNA Ends

(RACE) [32], followed by RT-PCR cloning and sequencing. To

assess putative protein products generated from novel RNA

transcripts and isoforms, proteins may be sequenced and

quantified by mass spectrometry and mapped back to their

encoding transcripts [33,34]. ENCODE has recently begun to

study proteins from distinct subcellular compartments of K562

and GM12878 cells by using this complementary approach.

Cis-Regulatory Regions
Cis-regulatory regions include diverse functional elements (e.g.,

promoters, enhancers, silencers, and insulators) that collectively

modulate the magnitude, timing, and cell-specificity of gene

expression [35]. The ENCODE Project is using multiple

approaches to identify cis-regulatory regions, including localizing

their characteristic chromatin signatures and identifying sites of

occupancy of sequence-specific transcription factors. These

approaches are being combined to create a comprehensive map

of human cis-regulatory regions.

Chromatin structure and modification. Human cis-

regulatory regions characteristically exhibit nuclease hyper-

sensitivity [36–39] and may show increased solubility after

chromatin fixation and fragmentation [40,41]. Additionally,

specific patterns of post-translational histone modifications [42,43]

have been connected with distinct classes of regions such as

promoters and enhancers [3,44–47] as well as regions subject to

programmed repression by Polycomb complexes [48,49] or other

mechanisms [46,50,51]. Chromatin accessibility and histone

modifications thus provide independent and complementary

annotations of human regulatory DNA, and massively parallel,

high-throughput DNA sequencing methods are being used by

ENCODE to map these features on a genome-wide scale (Figure 2

and Table 1).

DNaseI hypersensitive sites (DHSs) are being mapped by two

techniques: (i) capture of free DNA ends at in vivo DNaseI

cleavage sites with biotinylated adapters, followed by digestion

with a TypeIIS restriction enzyme to generate ,20 bp DNaseI

Figure 3. ENCODE gene and transcript annotations. The image shows selected ENCODE and other gene and transcript annotations in the
region of the human TP53 gene (region chr17:7,560,001–7,610,000 from the Human February 2009 (GRCh37/hg19) genome assembly). The annotated
isoforms of TP53 RNAs listed from the ENCODE Gene Annotations (GENCODE) are shown in the top tracks of the figure, along with annotation of the
neighboring WRAP53 gene. In black are two mRNA transcripts (U58658/AK097045) from GenBank. The bottom two tracks show the structure of the
TP53 region transcripts detected in nuclear polyadenylated poly A+ RNAs isolated from GM12878 and K562 cells. The RNA is characterized by RNA-
seq and the RNAs detected are displayed according to the strand of origin (i.e. + and 2). Signals are scaled and are present at each of the detected
p53 exons. Signals are also evident at the U58658 [120] and AK097045 [121] regions located in the first 10 kb intron of the p53 gene (D17S2179E). The
U58658/AK097045 transcripts are reported to be induced during differentiation of myeloid leukemia cells but are seen in both GM12878 and K562
cell lines. Finally the p53 isoform observed in K562 cells has a longer 39UTR region than the isoform seen in the GM12878 cell line.
doi:10.1371/journal.pbio.1001046.g003

Table 2. ENCODE cell types.

Cell Type Tier Description Source

GM12878 1 B-Lymphoblastoid cell line Coriell GM12878

K562 1 Chronic Myelogenous/Erythroleukemia cell line ATCC CCL-243

H1-hESC 1 Human Embryonic Stem Cells, line H1 Cellular Dynamics International

HepG2 2 Hepatoblastoma cell line ATCC HB-8065

HeLa-S3 2 Cervical carcinoma cell line ATCC CCL-2.2

HUVEC 2 Human Umbilical Vein Endothelial Cells Lonza CC-2517

Various (Tier 3) 3 Various cell lines, cultured primary cells, and primary tissues Various

doi:10.1371/journal.pbio.1001046.t002
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cleavage site tags [52,53] and (ii) direct sequencing of DNaseI

cleavage sites at the ends of small (,300 bp) DNA fragments

released by limiting treatment with DNaseI [54–56]. Chromatin

structure is also being profiled with the FAIRE technique

[40,57,58], in which chromatin from formaldehyde-crosslinked

cells is sonicated in a fashion similar to ChIP and then extracted

with phenol, followed by sequencing of soluble DNA fragments.

An expanding panel of histone modifications (Figure 2) is being

profiled by ChIP-seq [59–62]. In this method, chromatin from

crosslinked cells is immunoprecipitated with antibodies to

chromatin modifications (or other proteins of interest), the

associated DNA is recovered, and the ends are subjected to

massively parallel DNA sequencing. Control immunoprecipita-

tions with a control IgG antibody or ‘‘input’’ chromatin—

sonicated crosslinked chromatin that is not subjected to immune

enrichment—are also sequenced for each cell type. These provide

critical controls, as shearing of crosslinked chromatin may occur

preferentially within certain regulatory DNA regions, typically

promoters [41]. ENCODE chromatin data types are illustrated for

a typical locus in Figure 4, which depicts the patterns of chromatin

accessibility, DNaseI hypersensitive sites, and selected histone

modifications in GM12878 cells.

For each chromatin data type, the ‘‘raw signal’’ is presented as

the density of uniquely aligning sequence reads within 150 bp

sliding windows in the human genome. In addition, some data are

available as processed signal tracks in which filtering algorithms

have been applied to reduce experimental noise. A variety of

specialized statistical algorithms are applied to generate discrete

high-confidence genomic annotations, including DHSs, broader

regions of increased sensitivity to DNaseI, regions of enrichment

by FAIRE, and regions with significant levels of specific histone

modifications (see Tables 3 and S1). Notably, different histone

modifications exhibit characteristic genomic distributions that may

be either discrete (e.g., H3K4me3 over a promoter) or broad (e.g.,

H3K36me3 over an entire transcribed gene body). Because

statistical false discovery rate (FDR) thresholds are applied to

discrete annotations, the number of regions or elements identified

under each assay type depends upon the threshold chosen.

Optimal thresholds for an assay are typically determined by

comparison to an independent and standard assay method or

through reproducibility measurements (see below). Extensive

validation of the detection of DNaseI hypersensitive sites is being

performed independently with traditional Southern blotting, and

more than 6,000 Southern images covering 224 regions in .12

cell types are available through the UCSC browser.

Transcription factor and RNA polymerase occupancy.

Much of human gene regulation is determined by the binding of

transcriptional regulatory proteins to their cognate sequence

elements in cis-regulatory regions. ChIP-seq enables genome-scale

mapping of transcription factor (TF) occupancy patterns in vivo

[59,60,62] and is being extensively applied by ENCODE to create

an atlas of regulatory factor binding in diverse cell types. ChIP-seq

experiments rely on highly specific antibodies that are extensively

characterized by immunoblot analysis and other criteria according

Figure 4. ENCODE chromatin annotations in the HLA locus. Chromatin features in a human lymphoblastoid cell line, GM12878, are displayed
for a 114 kb region in the HLA locus. The top track shows the structures of the annotated isoforms of the HLA-DRB1, HLA-DQA1, and HLA-DQB1 genes
from the ENCODE Gene Annotations (GENCODE), revealing complex patterns of alternative splicing and several non-protein-coding transcripts
overlapping the protein-coding transcripts. The purple mark on the next line shows that a CpG in the promoter of the HLA-DQB1 gene is partially
methylated (assayed on the Illumina Methylation27 BeadArray platform). The densities of four histone modifications associated with transcriptionally
active loci are plotted next, along with the input control signal (generated by sequencing an aliquot of the sheared chromatin for which no
immunoprecipitation was performed). The last lines plot the accessibility of DNA in chromatin to nucleases (DNaseI) and reduced coverage by
nucleosomes (FAIRE); peaks on these lines are DNaseI hypersensitive sites. Note that the ENCODE Consortium generates DNaseI accessibility data by
two alternative protocols marked by * and #. The magenta track shows DNaseI sensitivity in a different cell line, NHEK, for comparison.
doi:10.1371/journal.pbio.1001046.g004
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to ENCODE experimental standards. High-quality antibodies are

currently available for only a fraction of human TFs, and identifying

suitable immunoreagents has been a major activity of ENCODE

TF mapping groups. Alternative technologies, such as epitope

tagging of TFs in their native genomic context using recom-

bineering [63,64], are also being explored.

ENCODE has applied ChIP-seq to create occupancy maps for

a variety of TFs, RNA polymerase 2 (RNA Pol2) including both

unphosphorylated (initiating) and phosphorylated (elongating)

forms, and RNA polymerase 3 (RNA Pol3). The localization

patterns of five transcription factors and RNA Pol2 in GM12878

lymphoblastoid cells are shown for a typical locus in Figure 5.

Sequence reads are processed as described above for DNaseI,

FAIRE, and histone modification experiments, including the

application of specialized peak-calling algorithms that use input

chromatin or control immunoprecipitation data to identify

potential false-positives introduced by sonication or sequencing

biases (Table 3). Although different peak-callers vary in perfor-

mance, the strongest peaks are generally identified by multiple

algorithms. Most of the sites identified by ChIP-seq are also

detected by traditional ChIP-qPCR [65] or are consistent with

sites reported in the literature. For example, 98% of 112 sites of

CTCF occupancy previously identified by using both ChIP-chip

and ChIP-qPCR [66] are also identified in ENCODE CTCF data.

Whereas the binding of sequence-specific TFs is typically highly

localized resulting in tight sequence tag peaks, signal from

antibodies that recognize the phosphorylated (elongating) form

of RNA Pol2 may detect occupancy over a wide region

encompassing both the site of transcription initiation as well as

the domain of elongation. Comparisons among ENCODE groups

have revealed that TF and RNA Pol2 occupancy maps generated

independently by different groups are highly consistent.

Additional Data Types
ENCODE is also generating additional data types to comple-

ment production projects and benchmark novel technologies. An

overview of these datasets is provided in Table 1.

DNA methylation. In vertebrate genomes, methylation at

position 5 of the cytosine in CpG dinucleotides is a heritable

‘‘epigenetic’’ mark that has been connected with both

transcriptional silencing and imprinting [67,68]. ENCODE is

applying several complementary approaches to measure DNA

methylation. All ENCODE cell types are being assayed using two

direct methods for measuring DNA methylation following sodium

bisulfite conversion, which enables quantitative analysis of

methylcytosines: interrogation of the methylation status of

27,000 CpGs with the Illumina Methyl27 assay [69–72] and

Reduced Representation Bisulfite Sequencing (RRBS) [73], which

couples MspI restriction enzyme digestion, size selection, bisulfite

treatment, and sequencing to interrogate the methylation status of

.1,000,000 CpGs largely concentrated within promoter regions

and CpG islands. Data from an indirect approach using a

methylation-sensitive restriction enzyme (Methyl-seq) [74] are also

available for a subset of cell types. These three approaches

measure DNA methylation in defined (though overlapping) subsets

of the human genome and provide quantitative determinations of

the fraction of CpG methylation at each site.

DNaseI footprints. DNaseI footprinting [75] enables

visualization of regulatory factor occupancy on DNA in vivo at

nucleotide resolution and has been widely applied to delineate the

fine structure of cis-regulatory regions [76]. Deep sampling of

highly enriched libraries of DNaseI-released fragments (see above)

enables digital quantification of per nucleotide DNaseI cleavage,

which in turn enables resolution of DNaseI footprints on a large

scale [55,77,78]. Digital genomic footprinting is being applied on a

large scale within ENCODE to identify millions of DNaseI

footprints across .12 cell types, many of which localize the

specific cognate regulatory motifs for factors profiled by ChIP-seq.

Sequence and structural variation. Genotypic and

structural variations within all ENCODE cell types are being

interrogated at ,1 million positions distributed approximately

every 1.5 kb along the human genome, providing a finely grained

map of allelic variation and sequence copy number gains and

losses. Genotyping data are generated with the Illumina Infinium

Table 3. Analysis tools applied by the ENCODE Consortium.

Class of Software Description of Task Examplesa

Short read alignment Computationally efficient alignment of short reads to the genome sequence Bowtie, BWA, Maq, TopHat, GEM, STAR

Peak calling Converting tag density to defined regions that show statistical
properties consistent with binding activity

SPP, PeakSeq, Fseq, MACS, HotSpot

RNA processing Processing RNA reads into exons and transcripts, with consideration
of alternative splicing

Cufflinks, ERANGE, Fluxcapacitor

Integrative peak calling and
classification

Jointly considering multiple assay signals to both define the location
and character of different genomic regions

ChromHMM, Segway

Statistical tools for specific
genomic tasks

Statistical methods developed for replicate-based thresholding,
genome-wide-based overlap, and genome-based aggregation

IDR, GSC, ACT

Motif finding tools Discovering the presence of sequence motifs in enriched peaks MEME, Weeder

Data analysis frameworks General frameworks to allow manipulation, comparison,
and statistical analysis

R, Bioconductor, MatLab, Galaxy, DART,
Genometools

Assign TFBS peaks to genes Match TFBS to genes they are likely to regulate GREAT

Compare TF binding and
gene expression

Compare binding and expression; compare expressed versus
nonexpressed genes

GenPattern, GSEA, Dchip

Conservation Evaluates conservation of sequences across a range of species phastCons, GERP, SCONE

Gene Ontology Analysis Determine types of genes enriched for a given dataset GO miner, BINGO, AmiGO

Network analysis Examine relationships between genes Cytoscape

aFor full listings and references, see Table S1.
doi:10.1371/journal.pbio.1001046.t003
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Figure 5. Occupancy of transcription factors and RNA polymerase 2 on human chromosome 6p as determined by ChIP-seq. The
upper portion shows the ChIP-seq signal of five sequence-specific transcription factors and RNA Pol2 throughout the 58.5 Mb of the short arm of
human chromosome 6 of the human lymphoblastoid cell line GM12878. Input control signal is shown below the RNA Pol2 data. At this level of
resolution, the sites of strongest signal appear as vertical spikes in blue next to the name of each experiment (‘‘BATF,’’ ‘‘EBF,’’ etc.). More detail can be
seen in the bottom right portion, where a 116 kb segment of the HLA region is expanded; here, individual sites of occupancy can be seen mapping
to specific regions of the three HLA genes shown at the bottom, with asterisks indicating binding sites called by peak calling software. Finally, the
lower left region shows a 3,500 bp region around two tandem histone genes, with RNA Pol2 occupancy at both promoters and two of the five
transcription factors, BATF and cFos, occupying sites nearby. Selected annotations from the ENCODE Gene Annotations are shown in each case.
doi:10.1371/journal.pbio.1001046.g005
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platform [79], and the results are reported as genotypes and as

intensity value ratios for each allele. The genotype and sequence

data from GM12878 generated by the 1,000 Genomes Project are

being integrated with sequence data from ENCODE chromatin,

transcription, TF occupancy, DNA methylation, and other assays

to facilitate recognition of functional allelic variation, a significant

contributor to phenotypic variability in gene expression [80,81].

The data also permit determination of the sequence copy number

gains and losses found in every human genome [82–84], which are

particularly prevalent in cell lines of malignant origin.

Long-range Chromatin interactions. Because cis-regulatory

elements such as enhancers can control genes from distances of tens

to hundreds of kb through looping interactions [85], a major

challenge presented by ENCODE data is to connect distal

regulatory elements with their cognate promoter(s). To map this

connectivity, the Consortium is applying the 5C method [86], an

enhanced version of Chromosome Conformation Capture (3C)

[87], to selected cell lines. 5C has been applied comprehensively to

the ENCODE pilot regions as well as to map the interactions

between distal DNaseI hypersensitive sites and transcriptional start

sites across chromosome 21 and selected domains throughout the

genome. Special interfaces have been developed to visualize these 3-

dimensional genomic data and are publicly available at http://

my5C.umassmed.edu [88].

Protein:RNA interactions. RNA-binding proteins play a

major role in regulating gene expression through control of

mRNA translation, stability, and/or localization. Occupancy of

RNA-binding proteins (RBPs) on RNA can be determined by

using immunoprecipitation-based approaches (RIP-chip and RIP-

seq) [89–92] analogous to those used for measuring TF occupancy.

To generate maps of RBP:RNA associations and binding sites, a

combination of RIP-chip and RIP-seq are being used. These

approaches are currently targeting 4–6 RBPs in five human cell

types (K562, GM12878, H1 ES, HeLa, and HepG2). RBP

associations with non-coding RNA and with mRNA are also being

explored.

Identification of functional elements with integrative

analysis and fine-scale assays of biochemical

elements. ChIP-seq of TFs and chromatin modifications may

identify genomic regions bound by transcription factors in living cells

but do not reveal which segments bound by a given TF are

functionally important for transcription. By applying integrative

approaches that incorporate histone modifications typical of

enhancers (e.g., histone H3, Lysine 4 monomethylation), promoters

(e.g., histone H3, Lysine 4 trimethylation), and silencers (e.g., Histone

H3, Lysine 27, and Lysine 9 trimethylation), ENCODE is

categorizing putative functional elements and testing a subset for

activities in the context of transient transfection/reporter gene assays

[93–97]. To further pinpoint the biological activities associated with

specific regions of TF binding and chromatin modification within

promoters, hundreds of TF binding sites have been mutagenized, and

the mutant promoters are being assayed for effects on reporter gene

transcription by transient transfection assays. This approach is

enabling identification of specific TF binding sites that lead to

activation and others associated with transcriptional repression.

Proteomics. To assess putative protein products generated

from novel RNA transcripts and isoforms, proteins are sequenced

and quantified by mass spectrometry and mapped back to their

encoding transcripts [33,34,98]. ENCODE has recently begun to

study proteins from distinct subcellular compartments of K562

and GM12878 with this complementary approach.

Evolutionary conservation. Evolutionary conservation is an

important indicator of biological function. ENCODE is app-

roaching evolutionary analysis from two directions. Functional

properties are being assigned to conserved sequence elements

identified through multi-species alignments, and conversely, the

evolutionary histories of biochemically defined elements are being

deduced. Multiple alignments of the genomes of 33 mammalian

species have been constructed by using the Enredo, Pecan, Ortheus

approach (EPO) [99,100], and complementary multiple alignments

are available through the UCSC browser (UCSC Lastz/ChainNet/

Multiz). These alignments enable measurement of evolutionary

constraint at single-nucleotide resolution using GERP [101],

SCONE [102], PhyloP [103], and other algorithms. In addition,

conservation of DNA secondary structure based on hydroxyl

radical cleavage patterns is being analyzed with the Chai algorithm

[7].

Data Production Standards and Assessment of Data
Quality

With the aim of ensuring quality and consistency, ENCODE

has defined standards for collecting and processing each data

type. These standards encompass all major experimental

components, including cell growth conditions, antibody charac-

terization, requirements for controls and biological replicates, and

assessment of reproducibility. Standard formats for data submis-

sion are used that capture all relevant data parameters and

experimental conditions, and these are available at the public

ENCODE portal (http://genome.ucsc.edu/ENCODE/dataStan

dards.html). All ENCODE data are reviewed by a dedicated

quality assurance team at the Data Coordination Center before

release to the public. Experiments are considered to be verified

when two highly concordant biological replicates have been

obtained with the same experimental technique. In addition, a

key quality goal of ENCODE is to provide validation at multiple

levels, which can be further buttressed by cross-correlation

between disparate data types. For example, we routinely perform

parallel analysis of the same biological samples with alternate

detection technologies (for example, ChIP-seq versus ChIP-chip

or ChIP-qPCR). We have also compared our genome-wide

results to ‘‘gold-standard’’ data from individual locus studies, such

as DNase-seq versus independently performed conventional

(Southern-based) DNaseI hypersensitivity studies. Cross-correla-

tion of independent but related ENCODE data types with one

another, such as DNaseI hypersensitivity, FAIRE, transcription

factor occupancy, and histone modification patterns, can provide

added confidence in the identification of specific DNA elements.

Similarly, cross-correlation between long RNA-seq, CAGE, and

TAF1 ChIP-seq data can strengthen confidence in a candidate

location for transcription initiation. Finally, ENCODE is

performing pilot tests for the biological activity of DNA elements

to the predictive potential of various ENCODE biochemical

signatures for certain biological functions. Examples include

transfection assays in cultured human cells and injection assays in

fish embryos to test for enhancer, silencer, or insulator activities

in DNA elements identified by binding of specific groups of TFs

or the presence of DNaseI hypersensitive sites or certain

chromatin marks. Ultimately, defining the full biological role of

a DNA element in its native chromosomal location and

organismic context is the greatest challenge. ENCODE is

beginning to approach this by integrating its data with results

from other studies of in situ knockouts and/or knockdowns, or

the identification of specific naturally occurring single base

mutations and small deletions associated with changes in gene

expression. However, we expect that deep insights into the

function of most elements will ultimately come from the

community of biologists who will build on ENCODE data or

use them to complement their own experiments.
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Current Scope and Completeness of ENCODE Data
A catalog of ENCODE datasets is available at http://

encodeproject.org. These data provide evidence that ,1 Gigabase

(Gb; 32%) of the human genome sequence is represented in

steady-state, predominantly processed RNA populations. We have

also delineated more than 2 million potential regulatory DNA

regions through chromatin and TF mapping studies.

The assessment of the completeness of detection of any given

element is challenging. To analyze the detection of transcripts in a

single experiment, we have sequenced to substantial depth and

used a sampling approach to estimate the number of reads needed

to approach complete sampling of the RNA population (Figure 6A)

[104]. For example, analyzing RNA transcripts with about 80

million mapped reads yields robust quantification of more than

80% of the lowest abundance class of genes (2–19 reads per

kilobase per million mapped tags, RPKM) [24]. Measuring RNAs

across multiple cell types, we find that, after the analysis of seven

cell lines, 68% of the GENCODE transcripts can be detected with

RPKM .1.

In the case of regulatory DNA, we have analyzed the detection

of regulatory DNA by using three approaches: 1) the saturation of

occupancy site discovery for a single transcription factor within a

single cell type as a function of sequencing read depth, 2) the

incremental discovery of DNaseI hypersensitive sites or the

occupancy sites for a single TF across multiple cell types, and 3)

the incremental rate of collective TF occupancy site discovery for

all TFs across multiple cell types.

For detecting TF binding sites by ChIP-seq, we have found that

the number of significant binding sites increases as a function of

sequencing depth and that this number varies widely by

transcription factor. For example, as shown in Figure 6B, 90%

of detectable sites for the transcription factor GABP can be

identified by using the MACS peak calling program at a depth of

24 million reads, whereas only 55% of detectable RNA Pol2 sites

are identified at this depth when an antibody that recognizes both

initiating and elongating forms of the enzyme is used. Even at 50

million reads, the number of sites is not saturated for RNA Pol2

with this antibody. It is important to note that determinations of

saturation may vary with the use of different antibodies and

laboratory protocols. For instance, a different RNA Pol2 antibody

that recognizes unphosphorylated, non-elongating RNA Pol2

bound only at promoters requires fewer reads to reach saturation

[105]. For practical purposes, ENCODE currently uses a

minimum sequencing depth of 20 M uniquely mapped reads for

sequence-specific transcription factors. For data generated prior to

June 1, 2010, this figure was 12 M.

To assess the incremental discovery of regulatory DNA across

different cell types, it was necessary to account for the non-uniform

correlation between cell lines and assays (see Figure 6C legend for

details). We therefore examined all possible orderings of either cell

types or assays and calculated the distribution of elements

discovered as the number of cell types or assays increases,

presented as saturation distribution plots (Figure 6C and 6D,

respectively). For DNase hypersensitive sites, we observe a steady

increase in the mean number of sites discovered as additional cell

types are tested up to and including the 62 different cell types

examined to date, indicating that new elements continue to be

identified at a relatively high rate as additional cell types are

sampled (Figure 6C). Analysis of CTCF sites across 28 cell types

using this approach shows similar behavior. Analysis of binding

sites for 42 TFs in the cell line with most data (K562) also shows

that saturation of the binding sites for these factors has not yet

been achieved. These results indicate that additional cell lines need

to be analyzed for DNaseI and many transcription factors, and

that many more transcription factors need to be analyzed within

single cell types to capture all the regulatory information for a

given factor across the genome. The implications of these trends

for defining the extent of regulatory DNA within the human

genome sequence is as yet unclear.

III. Accessing ENCODE Data

ENCODE Data Release and Use Policy
The ENCODE Data Release and Use Policy is described

at http://www.encodeproject.org/ENCODE/terms.html. Briefly,

ENCODE data are released for viewing in a publicly accessible

browser (initially at http://genome-preview.ucsc.edu/ENCODE

and, after additional quality checks, at http://encodeproject.org).

The data are available for download and pre-publication analysis

of any kind, as soon as they are verified (i.e., shown to be

reproducible). However, consistent with the principles stated in the

Toronto Genomic Data Use Agreement [106], the ENCODE

Consortium data producers request that they have the first

publication on genome-wide analyses of ENCODE data, within a

9-month timeline from its submission. The timeline for each

dataset is clearly displayed in the information section for each

dataset. This parallels policies of other large consortia, such as the

HapMap Project (http://www.hapmap.org), that attempt to

balance the goal of rapid data release with the ability of data

producers to publish initial analyses of their work. Once a

producer has published a dataset during this 9-month period,

anyone may publish freely on the data. The embargo applies only

to global analysis, and the ENCODE Consortium expects and

encourages immediate use and publication of information at one

or a few loci, without any consultation or permission. For such

uses, identifying ENCODE as the source of the data by citing this

article is requested.

Public Repositories of ENCODE Data
After curation and review at the Data Coordination Center, all

processed ENCODE data are publicly released to the UCSC

Genome Browser database (http://genome.ucsc.edu). Accession-

ing of ENCODE data at the NCBI Gene Expression Omnibus

(GEO; http://www.ncbi.nlm.nih.gov/geo/info/ENCODE.html)

is underway. Primary DNA sequence reads are stored at UCSC

and the NCBI Sequence Read Archive (SRA; http://www.ncbi.

nlm.nih.gov/Traces/sra/sra.cgi?) and will also be retrievable via

GEO. Primary data derived from DNA microarrays (for example,

for gene expression) are deposited directly to GEO. The processed

data are also formatted for viewing in the UCSC browser.

Metadata, including information on antibodies, cell culture

conditions, and other experimental parameters, are deposited into

the UCSC database, as are results of validation experiments. Easy

retrieval of ENCODE data to a user’s desktop is facilitated by the

UCSC Table Browser tool (http://genome.ucsc.edu/cgi-bin/

hgTables?org=human), which does not require programming

skills. Computationally sophisticated users may gain direct access

to data through application programming interfaces (APIs) at both

the UCSC browser and NCBI and by downloading files from

http://genome.ucsc.edu/ENCODE/downloads.html.

An overview of ENCODE data types and the location of the

data repository for each type is presented in Table 4.

IV. Working with ENCODE Data

Using ENCODE Data in the UCSC Browser
Many users will want to view and interpret the ENCODE data

for particular genes of interest. At the online ENCODE portal
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Figure 6. Incremental discovery of transcribed elements and regulatory DNA. (A) Robustness of gene expression quantification relative to
sequencing depth. PolyA-selected RNA from H1 human embryonic stem cells was sequenced to 214 million mapped reads. The number of reads
(indicated on the x-axis) was sampled from the total, and gene expression (in FPKM) was calculated and compared to the gene expression values
resulting from all the reads (final values). Gene expression levels were split into four abundance classes and the fraction of genes in each class with
RPKM values within 10% of the final values was calculated. At ,80 million mapped reads, more than 80% of the low abundance class of genes is
robustly quantified according to this measure (horizontal dotted line). Abundances for the classes in RPKM are given in the inset box. (B) Effect of
number of reads on fractions of peaks called in ChIP-seq. ChIP-seq experiments for three sequence-specific transcription factors were sequenced to a
depth of 50 million aligned reads. To evaluate the effect of read depth on the number of binding sites identified, peaks were called with the MACS
algorithm at various read depths, and the fraction of the total number of peaks that were identified at each read depth are shown. For sequence-
specific transcription factors that have strong signal with ChIP-seq, such as GABP, approximately 24 million reads (dashed vertical line) are sufficient
to capture 90% of the binding sites. However, for more general sequence-specific factors (e.g., OCT2), additional sequencing continues to yield
additional binding site information. RNA Pol2, which interacts with DNA broadly across genes, maintains a nearly linear gain in binding information
through 50 million aligned reads. (C) Saturation analysis of ENCODE DNaseI hypersensitivity data with increasing numbers of cell lines. The plot shows
the extent of saturation of DNaseI hypersensitivity sites (DHSs) discovered as increasing numbers of cell lines are studied. The plot is generated from
the ENCODE DNaseI elements defined at the end of January 2010 (from http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC) as follows.
We first define a set of DHSs from the overlap of all DHS data across all cell lines. Where overlapping elements are identified in two or more cell lines,
these are determined to represent the same element and fused up to a maximum size of 5 kb. Elements above this limit are split and counted as
distinct. We then calculate the subset of these elements represented by each single cell line experiment. The distribution of element counts for each
single cell line is plotted as a box plot with the median at position 1 on the x-axis. We next calculate the element contributions of all possible pairs of
cell line experiments and plot this distribution at position 2. We continue to do this for all incremental steps up to and including all cell lines (which is
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(http://encodeproject.org), users should follow a ‘‘Genome

Browser’’ link to visualize the data in the context of other genome

annotations. Currently, it is useful for users to examine both the

hg18 and the hg19 genome browsers. The hg18 has the ENCODE

Integrated Regulation Track on by default, which shows a huge

amount of data in a small amount of space. The hg19 browser has

newer datasets, and more ENCODE data than are available on

hg18. Work is in progress to remap the older hg18 datasets to hg19

and generate integrated ENCODE tracks. On either browser,

additional ENCODE tracks are marked by a double helix logo in

the browser track groups for genes, transcripts, and regulatory

features. Users can turn tracks on or off to develop the views most

useful to them (Figure 7). To aid users in navigating the rich

variety of data tracks, the ENCODE portal also provides a

detailed online tutorial that covers data display, data download,

and analysis functions available through the browser. Examples

applying ENCODE data at individual loci to specific biological or

medical issues are a good starting point for exploration and use of

the data. Thus, we also provide a collection of examples at the

‘‘session gallery’’ at the ENCODE portal. Users are encouraged to

submit additional examples; we anticipate that this community-

based sharing of insights will accelerate the use and impact of the

ENCODE data.

An Illustrative Example
Numerous genome-wide association studies (GWAS) that link

human genome sequence variants with the risk of disease or with

common quantitative phenotypes have now become available.

However, in most cases, the molecular consequences of disease- or

trait-associated variants for human physiology are not understood

[107]. In more than 400 studies compiled in the GWAS catalog

[108], only a small minority of the trait/disease-associated SNPs

(TASs) occur in protein-coding regions; the large majority (89%)

are in noncoding regions. We therefore expect that the

accumulating functional annotation of the genome by ENCODE

will contribute substantially to functional interpretation of these

TASs.

For example, common variants within a ,1 Mb region

upstream of the c-Myc proto-oncogene at 8q24 have been

associated with cancers of the colon, prostate, and breast

(Figure 8A) [109–111]. ENCODE data on transcripts, histone

modifications, DNase hypersensitive sites, and TF occupancy show

strong, localized signals in the vicinity of major cancer-associated

SNPs. One variant (rs698327) lies within a DNase hypersensitive

site that is bound by several TFs and the enhancer-associated

protein p300 and contains histone modification patterns typical of

enhancers (high H3K4me1, low H3K4me3; Figure 8B). Recent

studies have shown enhancer activity and allele-specific binding of

TCF7L2 at this site [112], with the risk allele showing greater

binding and activity [113,114]. Moreover, this element appears to

contact the downstream c-Myc gene in vivo, compatible with

enhancer function [114,115]. Similarly, several regions predicted

via ENCODE data to be involved in gene regulation are close to

SNPs in the BCL11A gene associated with persistent expression of

fetal hemoglobin (Figure S2). These examples show that the simple

overlay of ENCODE data with candidate non-coding risk-

associated variants may readily identify specific genomic elements

as leading candidates for investigation as probable effectors of

phenotypic effects via alterations in gene expression or other

genomic regulatory processes. Importantly, even data from cell

types not directly associated with the phenotype of interest may be

of considerable value for hypothesis generation. It is reasonable to

expect that application of current and future ENCODE data will

provide useful information concerning the mechanism(s) whereby

genomic variation influences susceptibility to disease, which then

can then be tested experimentally.

Limitations of ENCODE Annotations
All ENCODE datasets to date are from populations of cells.

Therefore, the resulting data integrate over the entire cell

population, which may be physiologically and genetically

inhomogeneous. Thus, the source cell cultures in the ENCODE

experiments are not typically synchronized with respect to the cell

cycle and, as with all such samples, local micro-environments in

culture may also vary, leading to physiological differences in cell

state within each culture. In addition, one Tier 1 cell line (K562)

and two Tier 2 cell lines (HepG2 and HeLa) are known to have

abnormal genomes and karyotypes, with genome instability.

Finally, some future Tier 3 tissue samples or primary cultures

may be inherently heterogeneous in cell type composition.

Averaging over heterogeneity in physiology and/or genotype

produces an amalgamation of the contributing patterns of gene

Table 4. Overview of ENCODE data types.

Data Description Location

Metadata Experimental parameters (e.g., growth conditions, antibody characterization) UCSC, GEO

Primary data images CCD camera images from sequencers or microarrays Not archived

Sequence reads/microarray signal Minimally processed experimental data; reads and quality information; probe
locations and intensities

UCSC, GEO, SRA

Aligned sequence reads Sequence reads and genomic positions UCSC, GEO

Genomic signal Sequence tag density (sliding window); cumulative base coverage or density by
sequencing or read pseudo-extension; microarray probe intensity

UCSC, GEO

Enriched region calls/scores/p or q values Putative binding or transcribed regions UCSC, GEO

doi:10.1371/journal.pbio.1001046.t004

by definition only a single data point). (D) Saturation of TF ChIP-seq elements in K562 cells. This plot illustrates the saturation of elements identified
by TF ChIP-seq as additional factors are analyzed within the same cell line. The plot is generated by the equivalent approach as described in (C),
except the data are now the set of all elements defined by ChIP-seq analysis of K562 cells with 42 different transcription factors. The data were from
the January 2010 data freeze from http://hgdownload.cse.ucsc.edu/goldenPath/hg18/encodeDCC. For consistency, the peak calls from all ChIP-seq
data were generated by a uniform processing pipeline with the Peakseq peak caller and IDR replicate reconciliation.
doi:10.1371/journal.pbio.1001046.g006
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Figure 7. Accessing ENCODE data at the UCSC Portal. Data and results for the ENCODE Project are accessible at the UCSC portal (http://
genome.ucsc.edu/ENCODE). ‘‘Signal tracks’’ for the different datasets are selected and displayed in the genome browser to generate images such as
those shown in Figures 3–4. The datasets are available from the Track Settings page; an example is shown that illustrates some of the key controls. A
dataset is selected and the Signal display plots the values of an assay for a given feature more or less continuously along a chromosome. The height,
range for the y-axis, windowing function, and many other aspects of the graph are controlled in the Signal Configuration window, accessed by
clicking on ‘‘Signal’’ (red oval #1). ENCODE data are commonly generated on multiple cell lines; information about each can be accessed by clicking
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expression, factor occupancy, and chromatin status that must be

considered when using the data. Future improvements in genome-

wide methodology that allow the use of much smaller amounts of

primary samples, or follow-up experiments in single cells when

possible, may allow us to overcome many of these caveats.

The use of DNA sequencing to annotate functional genomic

features is constrained by the ability to place short sequence reads

accurately within the human genome sequence. Most ENCODE

data types currently represented in the UCSC browser use only

those sequence reads that map uniquely to the genome. Thus,

centromeric and telomeric segments (collectively ,15% of the

genome and enriched in recent transposon insertions and

segmental duplications) as well as sequences not present in the

current genome sequence build [116] are not subject to reliable

annotation by our current techniques. However, such information

can be gleaned through mining of the publicly available raw

sequence read datasets generated by ENCODE.

It is useful to recognize that the confidence with which different

classes of ENCODE elements can be related to a candidate

function varies. For example, ENCODE can identify with high

confidence new internal exons of protein-coding genes, based on

RNA-seq data for long polyA+ RNA. Other features, such as

candidate promoters, can be identified with less, yet still good,

confidence by combining data from RNA-seq, CAGE-tags, and

RNA polymerase 2 (RNA Pol2) and TAF1 occupancy. Still other

ENCODE biochemical signatures come with much lower

confidence about function, such as a candidate transcriptional

enhancer supported by ChIP-seq evidence for binding of a single

transcription factor.

Identification of genomic regions enriched by ENCODE

biochemical assays relies on the application of statistical analyses

and the selection of threshold significance levels, which may vary

between the algorithms used for particular data types. According-

ly, discrete annotations, such as TF occupancy or DNaseI

hypersensitive sites, should be considered in the context of

reported p values, q values, or false discovery rates, which are

conservative in many cases. For data types that lack focal

enrichment, such as certain histone modifications and many

RNA Pol2-bound regions, broad segments of significant enrich-

ment have been delineated that encompass considerable quanti-

tative variation in the signal strength along the genome.

V. ENCODE Data Analysis

Development and implementation of algorithms and pipelines

for processing and analyzing data has been a major activity of the

ENCODE Project. Because massively parallel DNA sequencing

has been the main type of data generated by the Consortium,

much of the algorithmic development and data analysis to date has

been concerned with issues related to producing and interpreting

such data. Software packages and algorithms commonly used in

the ENCODE Consortium are summarized in Tables 3 and S1.

In general, the analysis of sequencing-based measurements of

functional or biochemical genomic parameters proceeds through

three major phases. In the first phase, the short sequences that are

the output of the experimental method are aligned to the reference

genome. Algorithm development for efficient and accurate

alignment of short read sequences to the human genome is a

rapidly developing field, and ENCODE groups employ a variety

of the state-of-the-art software (see Tables 3 and S1). In the second

phase, the initial sequence mapping is processed to identify

significantly enriched regions from the read density. For ChIP-seq

(TFs and histone modification), DNase-seq or FAIRE-seq, both

highly localized peaks or broader enriched regions may be

identified. Within the ENCODE Consortium, each data produc-

tion group provides lists of enriched regions or elements within

their own data, which are available through the ENCODE portal.

It should be noted that, for most data types, the majority of

enriched regions show relatively weak absolute signal, necessitating

the application of conservative statistical thresholds. For some

data, such as those derived from sampling RNA species (e.g.,

RNA-seq), additional algorithms and processing are used to

handle transcript structures and the recognition of splicing events.

The final stage of analysis involves integrating the identified

regions of enriched signal with each other and with other data

types. An important prerequisite to data integration is the

availability of uniformly processed datasets. Therefore, in addition

to the processing pipelines developed by individual production

groups, ENCODE has devoted considerable effort toward

establishing robust uniform processing for phases 1 and 2 to

enable integration. For signal comparison, specific consideration

has been given to deriving a normalized view of the sequence read

density of each experiment. In the case of ChIP-seq for TFs, this

process includes in silico extension of the sequence alignment to

reflect the experimentally determined average lengths of the input

DNA molecules that are sampled by the short sequence tag,

compensation for repetitive sequences that may lead to alignment

with multiple genomic locations, and consideration of the read

density of the relevant control or input chromatin experiment.

ENCODE has adopted a uniform standardized peak-calling

approach for transcription factor ChIP-seq, including a robust

and conservative replicate reconciliation statistic (Irreproducible

Discovery Rate, IDR [117], to yield comparable consensus peak

calls. As the project continues, we expect further standardizations

to be developed.

There are many different ways to analyze and integrate large,

diverse datasets. Some of the basic approaches include assigning

features to existing annotations (e.g., assigning transcribed regions

to annotated genes or Pol2-binding peaks to likely genes),

discovery of correlations among features, and identification of

particular gene classes (e.g., Gene Ontology categories) preferen-

tially highlighted by a given annotation. Many software tools exist

in the community for these purposes, including some developed

within the ENCODE Project, such as the Genome Structure

Correction statistic for assessing overlap significance [3]. Software

tools used for integration by ENCODE are summarized in

Tables 3 and S1.

VI. Future Plans and Challenges

Data Production Plans
The challenge of achieving complete coverage of all functional

elements in the human genome is substantial. The adult human

body contains several hundred distinct cell types, each of which

on the name of the cell line or antibody (e.g., HepG2, red oval #2). Many ENCODE tracks are actually composites of multiple subtracks; these can be
turned on and off by using the boxes in the central matrix or in the subtrack list below. Subtracks can be reordered individually by using drag and
drop in the browser image or the Track Settings page, or in logical groups by using the ‘‘Cell/Antibody/Views’’ (red oval #4) ordering controls.
Additional information about the feature and the assay, such as the antibody used, can be obtained by clicking on the name of the feature. Some
restrictions to the use of ENCODE data apply for a 9-month period after deposit of the data; the end of that 9-month period is given by the
‘‘Restricted Until’’ date. Full data can be downloaded by clicking on the ‘‘Downloads’’ link (red oval #7).
doi:10.1371/journal.pbio.1001046.g007
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Figure 8. ENCODE data indicate non-coding regions in the human chromosome 8q24 loci associated with cancer. (A) A 1 Mb region
including MYC and a gene desert upstream shows the linkage disequilibrium blocks and positions of SNPs associated with breast and prostate cancer,
with both a custom track based on [121] and the resident track from the GWAS catalog. ENCODE tracks include GENCODE gene annotations, results
of mapping RNAs to high-density Affymetrix tiling arrays (cytoplasmic and nuclear polyA+ RNA), mapping of histone modifications (H3K4me3 and
H3K27Ac), DNaseI hypersensitive sites in liver and colon carcinoma cell lines (HepG2 and Caco-2), and occupancy by the transcription factor TCF7L2 in
HCT116 cells. (B) Expanded view of a 9 kb region containing the cancer-associated SNP rs6983267 (shown on the top line). In addition to the histone
modifications, DNaseI hypersensitive sites and factor occupancy described in (A), the ENCODE tracks also show occupancy by the coactivator p300
and the transcription factors RXRA, CEBPB, and HNF4A. Except as otherwise noted in brackets, the ENCODE data shown here are from the liver
carcinoma cell line HepG2.
doi:10.1371/journal.pbio.1001046.g008
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expresses a unique subset of the ,1,500 TFs encoded in the

human genome [118]. Furthermore, the brain alone contains

thousands of types of neurons that are likely to express not only

different sets of TFs but also a larger variety of non-coding RNAs

[119]. In addition, each cell type may exhibit a diverse array of

responses to exogenous stimuli such as environmental conditions

or chemical agents. Broad areas of fundamental chromosome

function, such as meiosis and recombination, remain unexplored.

Furthermore, ENCODE has focused chiefly on definitive cells and

cell lines, bypassing the substantial complexity of development and

differentiation. A truly comprehensive atlas of human functional

elements is not practical with current technologies, motivating our

focus on performing the available assays in a range of cell types

that will provide substantial near-term utility. ENCODE is

currently developing a strategy for addressing this cellular space

in a timely manner that maximizes the value to the scientific

community. Feedback from the user community will be a critical

component of this process.

Integrating ENCODE with Other Projects and the
Scientific Community

To understand better and functionally annotate the human

genome, ENCODE is making efforts to analyze and integrate data

within the project and with other large-scale projects. These efforts

include 1) defining promoter and enhancer regions by combining

transcript mapping and biochemical marks, 2) delineating distinct

classes of regions within the genomic landscape by their specific

combinations of biochemical and functional characteristics, and 3)

defining transcription factor co-associations and regulatory

networks. These efforts aim to extend our understanding of the

functions of the different biochemical elements in gene regulation

and gene expression.

One of the major motivations for the ENCODE Project has

been to aid in the interpretation of human genome variation that is

associated with disease or quantitative phenotypes. The Consor-

tium is therefore working to combine ENCODE data with those

from other large-scale studies, including the 1,000 Genomes

Project, to study, for example, how SNPs and structural variation

may affect transcript, regulatory, and DNA methylation data. We

foresee a time in the near future when the biochemical features

defined by ENCODE are routinely combined with GWAS and

other sequence variation–driven studies of human phenotypes.

Analogously, the systematic profiling of epigenomic features across

ex vivo tissues and stem cells currently being undertaken by the

NIH Roadmap Epigenomics program will provide synergistic data

and the opportunity to observe the state and behavior of

ENCODE-identified elements in human tissues representing

healthy and disease states.

These are but a few of many applications of the ENCODE data.

Investigators focused on one or a few genes should find many new

insights within the ENCODE data. Indeed, these investigators are

in the best position to infer potential functions and mechanisms

from the ENCODE data—ones that will also lead to testable

hypotheses. Thus, we expect that the work of many investigators

will be enhanced by these data and that their results will in turn

inform the development of the project going forward.

Finally, we also expect that comprehensive paradigms for gene

regulation will begin to emerge from our work and similar work

from many laboratories. Deciphering the ‘‘regulatory code’’ within

the genome and its associated epigenetic signals is a grand and

complex challenge. The data contributed by ENCODE in

conjunction with complementary efforts will be foundational to

this effort, but equally important will be novel methods for

genome-wide analysis, model building, and hypothesis testing. We

therefore expect the ENCODE Project to be a major contributor

not only of data but also novel technologies for deciphering the

human genome and those of other organisms.

Supporting Information

Figure S1 The Organization of the ENCODE Consortium. The

geographical distribution of the members of the ENCODE

Consortium, with pin colors indicating the group roles as detailed

in the text below.

(TIF)

Figure S2 Quantitative trait example (BCL11A). Candidates for

gene regulatory features in the vicinity of SNPs at the BCL11A

locus associated with fetal hemoglobin levels. SNPs associated with

fetal hemoglobin levels are marked in red on the top line; those not

associated are marked in blue. The phenotype-associated SNPs are

close to an antisense transcript (AC009970.1, light orange), shown

in the ENCODE gene annotations. This antisense transcript is

within a region (boxed in red) with elevated levels of H3K

4me1 and DNase hypersensitive sites. The phenotype-associated

region is flanked by two regions (boxed in blue) with multiple

strong biochemical signals associated with transcriptional regula-

tion, including transcription factor occupancy. The data are from

the lymphoblastoid cell line GM12878, as BCL11A is expressed in

this cell line (RNA-seq track) but not in K562 (unpublished data).

(TIF)

Table S1 This supplemental table contains additional details of

the computational analysis tools used by the ENCODE Consor-

tium that are listed in Table 3. The name of each software tool

appears in the first column, and subsequent columns contain the

tasks for which the tool is used, the PMID reference number when

available, and a web address where the tool can be accessed.

(DOC)
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