
APPENDIX 1CUnix Survival Guide

For a mixture of historical and practical reasons, much of the bioinformatics software
discussed in this series runs on Linux, MacOS X, Solaris, or one of the many other Unix
variants. This appendix provides the minimum information needed to survive in a Unix
environment.

LOGGING IN AND OUT

Unix dates from the time when computers were very expensive, necessitating that multiple
users share the same computer hardware. For this reason, a session on a Unix system
begins with a login prompt. You provide the system with a username and password in
order to gain access to the system’s resources. If your Unix system is managed by a
system administrator from your institution’s Information Technology (IT) department,
the username and password will have been assigned to you. If you have installed Unix
yourself, you will have been prompted for a username-password pair at the time of
installation.

There are two common login scenarios. In the first, you are sitting in front of the Unix
computer itself and are using its monitor and keyboard directly (a situation sentimentally
called “logged in at the console”). In the second, you use a conventional Windows or
Macintosh desktop machine to connect via the network to a Unix server located at some
remote location.

Logging in at the Console

In the first scenario, you will be presented with a login window. A typical login window
is shown in Figure A.1C.1, but because of the great variability in Unix distributions yours
will almost certainly look a bit different; however, all login windows have a field for
Username and another for Password. Type yours in and press the appropriate button (Go!
in the example shown in the figure).

If the username and password are recognized, the system will log you in and display
a graphical desktop (Fig. A.1C.2). Like the login prompt, Unix systems vary widely in
the appearance and behavior of the desktop. Some, such as the KDE desktop shown in
the Figure A.1C.2, do a good job of reproducing the familiar experience of a windows
or Macintosh desktop. Others are frustratingly alien. All require some getting used to.
Popular Unix desktop systems that you may encounter include the aforementioned K
Desktop Environment (KDE), Gnome, and the Common Desktop Environment (CDE).

It would be impractical to give a full tutorial on navigating all the Unix desktop variants
here, but a few hints will help you get started. First, many desktops make extensive use
of the right mouse button. If in doubt about what to do next, pressing the right mouse
button on the desktop, within a window, or in a window title bar often brings up a menu
of possible commands. Some desktops also make use of the middle mouse button, which
is a standard feature of Unix workstations but is not found on many PC mice. To emulate
the middle mouse button, try pressing the left and right buttons simultaneously. Finally,
most desktops have a built-in tutorial and help system which can usually be activated
without too much flailing.

To log out of the desktop, look for menu items with names like “Log out,” buttons with
the power on/off icon found on some electronic appliances, or icons that show a moon
and stars.

Contributed by Lincoln D. Stein
Current Protocols in Bioinformatics (2006) A.1C.1-A.1C.24
Copyright C© 2006 by John Wiley & Sons, Inc.

User
Fundamentals

A.1C.1

Supplement 16

Unix Survival
Guide

A.1C.2

Supplement 16 Current Protocols in Bioinformatics

Figure A.1C.1 A typical login window for “logging in at the console.”

Figure A.1C.2 K Desktop Environment (KDE) at point of successful login.

Logging in Remotely

If the Unix system you wish to access is located remotely, you will use one of several
remote access programs to log into it from your desktop machine. These programs range
from extremely bare-bones terminal emulators that provide you with a 24-line by 80-
character text-only window to sophisticated graphical emulators that will display the
Unix graphical desktop on your PC or Macintosh.

User
Fundamentals

A.1C.3

Current Protocols in Bioinformatics Supplement 16

Which terminal emulation program you use depends on the capabilities of your desktop
machine, the configuration of your local area network, and what software is installed on
the Unix machine. Typically, your system administrator or IT department will tell you
what remote access software to use. Common remote login packages are listed below
(see Internet Resources).

More information on using the graphical remote access protocols based on VNC and
the X windows systems are given in APPENDIX 1D. Here we will assume that you will be
logging in using a text-only terminal emulator.

Logging into a remote system from a PC
If you are on a Microsoft Windows 95 or higher system, a simple terminal emulator is
already installed on your system; however, it is a bit hidden. Select Run Command. . .

from the Start menu, and when prompted type in telnet. This starts up the Telnet
program which displays a plain white window and simple menu bar. From the Telnet
window’s Connect menu, select Remote System. . . to bring up a dialogue box that
prompts you for the name of the host with which to connect and the connection settings
you wish to use. By and large, the default connection settings will work, so don’t change
them. Just enter the name of the Unix machine to which you wish to connect (using its
dotted internet name or address) and press Connect.

Telnet will now attempt to connect to the indicated machine. If successful, the terminal
window will display a login prompt (Fig. A.1C.3). Type your login name and password,
pressing Enter each time. If you successfully log in, the remote host will print a greeting,
a status message, and possibly a pithy quote of the day as shown in the figure. The
remote host will start the command-line shell, and print an input prompt, which is shown
in Figure A.1C.3 as the cryptic series of characters (∼) 51%.

Since Unix is a multiuser operating system, you can log into the same system multiple
times. Simply repeat the login procedure described above as many times as you wish.

Figure A.1C.3 Successful remote login using Telnet.

Unix Survival
Guide

A.1C.4

Supplement 16 Current Protocols in Bioinformatics

Logging into a remote system from a Unix system
If you are using a Unix system and wish to log into another system remotely, open up
the command line window. Depending on how your system is configured, this may be
called a “shell window,” “command window,” or “terminal window.” Now, use one of the
terminal emulators Telnet or SSH to connect to the remote machine. Telnet uses an older
communication protocol that sends all text across the network in unencrypted form. Ssh
uses a newer protocol that encrypts all outgoing and incoming communication. Because
of security concerns, we highly recommend SSH if it is available, but using it requires
that it be supported by both the local and the remote machines, which is usually, but not
always, the case.

To connect to the remote machine named host.example.com using Telnet, type
telnet host.example.com at the command line and press return. As described
earlier, Telnet will attempt to contact the named machine, and, if successful, will
prompt you for your username and password. SSH works similarly; imply type ssh
host.example.com.

Logging into a remote system from a Macintosh
Recent versions of the Macintosh run Mac OSX. Mac OSX is itself a Unix system, and
most, if not all of the bioinformatics tools described in Current Protocols in Bioinfor-
matics will run on a Macintosh under this platform. However, some of the tools that have
graphical user interfaces will require installation of X Window server software. This is
described in APPENDIX 1D, X Window Survival Guide.

In order to log into a remote Unix machine (e.g., Linux or even another Macintosh
running under OSX), you will use the command line tool that comes standard with Mac
OSX. Using the Finder, look for the Terminal application in the Applications area in the
Utilities folder. Double-click the Terminal to launch it, then proceed as described for the
Unix login. SSH is standard in Mac OSX, and we highly recommend that you use that
application if the remote host supports it.

Logging out
To quit a terminal emulator session, you may either close its window or type logout
at the command line prompt. You can also quit the emulator application entirely, but this
will have the effect of closing all open sessions.

USING THE COMMAND SHELL

Despite the graphical desktop environments now becoming prevalent, Unix is still very
much a command-line oriented system. You issue instructions to the system by typing
cryptic commands in a terminal window, and the output of programs are displayed as
text inside the same window. Most bioinformatics packages are command-line oriented,
and even for those few that use windows, menus, and mouse clicks, you will still have to
install and possibly invoke them from the command line.

The Unix program that accepts and processes commands is called the “shell.” It is a
simple program that prints out a command-line prompt, waits for you to type a command
and press the Enter key, and then runs the command. After the command is complete,
the shell again prints the command line prompt, awaiting further instructions.

If you have logged into the system using a terminal emulator, you are already running a
shell. Otherwise, if you are using a graphical desktop, you will need to launch a terminal
emulator within the desktop environment in order to interact with the shell. To do this,
look for a menu command called Shell, Terminal, Console Xterm, or some variant of

User
Fundamentals

A.1C.5

Current Protocols in Bioinformatics Supplement 16

Figure A.1C.4 Some shell command-line prompts.

the above. Icons that launch terminal emulators take the form of stylized shells or little
desktop PCs. Running one of the emulators creates a terminal window similar to those
used by the Windows and Macintosh emulator programs. One advantage provided by the
desktop environment terminal emulators is that you can resize them at will. You can also
launch multiple emulators, and each one will run a different shell session.

Regardless of whether you have logged in graphically or remotely, the terminal emulator
will be displaying a command-line prompt. The exact appearance of this prompt depends
on the variant of Unix you are using, which shell program (there are several), and how
the system has been configured. A few common command-line prompts are shown in
Figure A.1C.4. Prompts typically contain a short amount of status information (e.g., the
time of day, your login name, the hostname, or the number of commands you have typed)
followed by one of the characters “%”, “>”, or “$”.

Working at the command line will be a foreign experience to many readers. Although it
will never be completely painless, a few features do make working at the command line
easier. First, most command-line shells offer in-place editing. You can use the left and
right cursor keys to move the text insertion point back and forth on the command line in
order to insert and delete characters. The backspace key will delete characters to the left
of the insertion point, and the delete key, or sometimes Control-D, will delete characters
to the right of the insertion point.

If you find yourself repeating many commands with minor variations, the up (↑) and
down (↓) cursor keys will activate the shell’s “command history” feature. Pressing the
up-cursor key will insert the last-issued command at the prompt. Pressing ↑ again will
fetch the command previous to that, and so forth. You can press Enter to reissue the
command, or use the cursor keys to edit the command prior to issuing it again.

Most shells also offer a “command completion” feature. With this feature, you can type
the first few letters of a command or file name and then press the Tab key. The shell will
complete the command for you, or, if what you typed was ambiguous, display a number
of alternatives from which to make a selection

Command Syntax

Unix commands are case-sensitive, meaning that the commands mkdir and Mkdir are
not the same. The first command will create a new directory. The second is not recognized
on typical Unix systems and will result in a Command not found warning. Unix
commands typically take arguments that are separated from the command name by one
or more spaces called “whitespace.” As a concrete example, the mkdir command takes
a series of arguments giving the names of the directories to create. This command will
create three directories named “docs,” “toy,” and “experiments”:

(∼) 51% mkdir docs toy experiments

Unix Survival
Guide

A.1C.6

Supplement 16 Current Protocols in Bioinformatics

To pass an argument that contains whitespace, surround it with double or single quotes. In
contrast to the previous example, this one will create two directories, one named “docs”
and one named “toy experiments”:

(∼) 51% mkdir docs ‘‘toy experiments’’

Options
Many Unix commands accept “options” which modify their behavior. Depending on the
command, its options may be single-letter codes preceded by a hyphen, as in -v, or fully
spelled-out words preceded by two hyphens, as in --verbose. Options come after the
command name and before any arguments. For example, to have the mkdir command
print out what it is doing, use the --verbose option:

(∼) 51% mkdir --verbose docs toy experiments
mkdir: created directory ‘docs’
mkdir: created directory ‘toy’
mkdir: created directory ‘experiments’

Getting Information on Commands

When given the -h or --help options, most commands will print out a brief usage
summary. Try -h first, and if that doesn’t work try --help as shown in Figure A.1C.5.

Manual command
For more detailed help the man (manual) command is extremely useful. Invoke it with
the name of the command you wish help on (e.g., man mkdir). This will display a
page of detailed information on how to use the command. If you don’t know the name
of the command for which you are looking, try the apropos command (e.g., “apropos
directory”) to generate a list of commands that might have something to do with the
function for which you’re looking.

The man command may use a “pager” to display a manual page that is longer than will
fit comfortably into a terminal window. The pager is very simple. It displays a single

Figure A.1C.5 To get help on the use of the mkdir command, the (A) -h option is used (unsuccessfully),
followed by the longer (B) --help (successful).

User
Fundamentals

A.1C.7

Current Protocols in Bioinformatics Supplement 16

page for your perusal. When you are ready for the next page, hit the Space Bar. When
you are done reading, press “q” to quit. Some systems have more sophisticated pagers
that will allow you to page up and down a line at a time using the cursor keys, or a page
at a time using the Page Up and Page Down keys. Experiment a bit to see if your system
supports this.

Suspending and Killing Commands

At some point while working with the command shell you will issue a command that
either produces large amounts of output, takes a long time to run, or does something
unexpected. In this case, you can interrupt a command in either of two ways.

To interrupt a command before it has finished running press Control-C. This means to
press the Control key (marked Ctrl on most PC keyboards) and simultaneously press the
(lowercase) “c” key. In most cases this will interrupt the command and return you to the
command prompt. In rare cases you may need a more emphatic type of interruption. Try
Control-\ (i.e., backslash while holding down the Control key).

To temporarily suspend a command without killing it entirely, press Control-Z. This will
put the command into suspended animation and return you to the command prompt. To
resume the command, type fg (foreground). You can suspend and resume a command
as many times as you like.

All the Unix commands we have seen so far are short lived. For example, the mkdir
command does its work and returns almost instantly. However, other commands are
long lived. This is particularly true of commands that launch graphical programs such
as Web browsers or text editors. In such cases you will not be able to use the com-
mand line until the program has finished executing and the command-line prompt has
reappeared.

To avoid losing the use of the command line, you can place an ampersand “&” after the
name of a program that will take a long time to execute. This will place the program in the
“background” and return you to the command-line prompt immediately. For example,
the command netscape & will launch the Netscape Web browser in the background.
The Netscape window will appear, and you will be returned to the command-line prompt
in the terminal window.

If you forget to add the ampersand and lose your command line, you can temporarily
suspend the running program by typing Control-Z in the terminal window. The command-
line prompt will reappear. Type bg (background), and the suspended program will be
restarted in background mode.

MANAGING FILES AND DIRECTORIES

Like other operating systems, a fundamental part of Unix is its support for files and
directories. A file can contain text, computer code, word processing data, images or
sounds, or any other data. A directory, equivalent to the Macintosh and Windows “folder,”
contains files and/or other directories.

If you are logging in via a terminal emulator, you will have to learn to work with files via
the command line. If you have a graphical login, chances are that the desktop environment
provides a file browser. With the browser, you can view the contents of directories, peek
into files, create new directories, move existing files and directories around, and so forth.
Even so, you will need to learn the basic shell commands for manipulating files and
directories.

Unix Survival
Guide

A.1C.8

Supplement 16 Current Protocols in Bioinformatics

Unix has the concept of the “current working directory,” the default directory that the
various file manipulation commands operate on if not otherwise specified. When you
first log in, the current working directory is set to your “home directory,” a directory to
which you have full access and where you will normally store your personal files and
other data.

List Command

To see the contents of your home directory, issue the ls (list) command (Fig. A.1C.6).

Fancy option
The ls command shows a formatted list of files and directories, but doesn’t provide
any indication about which is which. For a more informative display, use the -F (fancy)
option (Fig. A.1C.7). The ls -F command shows a marked-up version of the directory
listing. Directories end in the slash character “/”, executable files (those that contain
computer code) end in an asterisk “∗”, symbolic links (a type of alias or shortcut) end in
the “at” character “@” while regular files have no special character at the end.

Some of the files shown in Figure A.1C.7 are text files. An example is INBOX, which
contains a list of recent E-mail messages to the author. Others contain image data
such as chloroplast.png and plastid.png, which are both images of genomic
annotations of the rice chloroplast. Unix distinguishes file types by using distinctive file
name extensions. For example, .png is used for a file that contains portable network
graphics image data. Unlike some systems, where file extensions are limited to three
characters, Unix extensions can be of any length.

Long version option
Another useful variant of ls is the long version, invoked with ls -lF. This adds
detailed information to the listing. This form will tell you how large the file or directory
is, which user owns it, and what its access permissions are (Fig. A.1C.8).

The first column of the long listing indicates the file permissions and its interpretation is
beyond the scope of this appendix; however, it is handy to know that the d that some-
times appears at the beginning of the column indicates that the corresponding item is a
directory.

Figure A.1C.6 Example output of the ls (list) command.

Figure A.1C.7 Example output of the ls (list) command with -F (fancy) option.

User
Fundamentals

A.1C.9

Current Protocols in Bioinformatics Supplement 16

Figure A.1C.8 Example output of the ls (list) command with -lF (long version) option.

All option
By convention, Unix uses files whose names begin with a period (.) to hold software
configuration information. Since there are many of these in your home directory, the ls
command skips over these hidden files by default. To force ls to show all files, including
those that are ordinarily hidden, use the -a option:

(∼) 68% ls -a
.ptksh history .qtella
.DCOPserver pesto@ .qtella.hosts
.FVWM2-errors .registry*
.FVWM95-errors .rhmapper
.ICEauthority .rhosts
.MCOP-random-seed .rnd
. . .

Directory Paths

To view the contents of a directory, you have several options. One is to use the directory
name (e.g., docs) as the argument of the ls command (Fig. A.1C.9). The contents
of the docs directory is mostly other directories. We can peek down even further by
providing ls with a directory “path.” A path is simply a list of directories separated by
slashes (Fig. A.1C.10).

If Unix paths remind you of Web URLs in any way, that isn’t a total coincidence. The
Web was originally built on top of Unix.

Unix Survival
Guide

A.1C.10

Supplement 16 Current Protocols in Bioinformatics

Figure A.1C.9 Viewing the contents of the docs directory using the ls command.

Figure A.1C.10 Viewing the contents of the (A) talks subdirectory of docs (path: docs/talks) and the
(B) networking1 subdirectory of talks (path: docs/talks/networking1) using the ls command. Also
see Figure A.1C.8.

Figure A.1C.11 Viewing the contents of the docs directory by first changing the current working directory with the
cd command, and then listing the contents with the fancy option using the ls -F command.

Change directory command
Another way of exploring a directory is to make it the current working directory so
that ls operates on it by default. You do this with the cd (change directory) command
(Fig. A.1C.11).

Thecd command takes a single argument, the directory path, to make the current working
directory. The indicated directory then becomes the default directory for ls and other
file utilities.

Sometimes the shell prompt will indicate the current working directory. By convention,
the home directory is indicated using a tilde (∼) symbol, so the prompt (∼/docs)
indicates that the current working directory is the docs directory inside the home
directory.

User
Fundamentals

A.1C.11

Current Protocols in Bioinformatics Supplement 16

Print working directory command
If your prompt doesn’t have a working directory indicator, you can find out the current
directory with the pwd (print working directory) command:

(∼/docs) 72% pwd
/home/lstein/docs

Unlike the shell prompt, pwd doesn’t indicate the home directory with a tilde (∼), but
prints out the complete path, which in this case is /home/lstein/docs.

Common Commands and Shortcuts

Move/rename command
To move a file or directory from one location to another use the mv (move) command.
It takes two arguments: the file or directory to move and the location to move it to. For
example, the following command will move the directory networking tutorial
and all its contents into the directory talks:

(∼/docs) 72% mv networking tutorial talks

The mv command can also be used to rename an existing file or directory. This example
will rename the file mod perl book.tar.gz to modperl book.tgz:

(∼/docs) 73% mv mod perl book.tar.gz modperl book.tgz

The difference between the two commands is that in the first case the second argument
was an existing directory, and so was interpreted by the mv command as an instruction to
move the first argument into that directory. In the second case, the second argument was
not a directory, and so was interpreted by mv as a command to rename the indicated file.

Copy command
The cp command will make a copy of a file (but not a directory). It is simple to use:

(∼) 74% cp INBOX INBOX.bak

This creates an identical copy of the file INBOX named INBOX.bak.

Make and remove directory commands
To create a new directory, use the mkdir (make directory) command. This takes a list
of one or more directory names and creates them in the current working directory. To
remove an empty directory, use rmdir (remove directory). This command will fail if
the directory is not empty.

Remove command
To delete a file, use the rm (remove) command. It takes a list of files and deletes them.
The deletion is irrevocable—i.e., unlike Windows and Macintosh systems there is no
recycle bin or trashcan from which to retrieve deleted files. A useful variant of rm is rm
-r, which will delete a directory and all its contents; however, be careful with this, as it
is easy to delete more than you intend.

Wild cards
The shell provides several convenient shortcuts. One is wild cards which allow you to
refer to several files or directories at once. An asterisk “∗” appearing in a command line
argument is treated as a wild card that can match any series of zero or more characters,
while a question mark “?” can match any single character.

Unix Survival
Guide

A.1C.12

Supplement 16 Current Protocols in Bioinformatics

Figure A.1C.12 Using wildcards with the ls command (fancy option, -F) to display all (A) PNG
files and (B) files containing the text “plastid.”

Figure A.1C.13 Listing the contents of a directory using the double dot “..” abbreviation for the
root directory.

Using wild cards, you can refer to all PNG files as shown in Figure A.1C.12A, or to all
files that contain the text “plastid” as shown in Figure A.1C.12B.

Directory abbreviations
If you are in a nested subdirectory and you want to refer to the directory above the current
one, you can refer to this directory with the special name “..” (two dots). For example,
the following command, when executed from your home directory, will list the contents
of the directory that contains it:

(∼) 85% ls -F..
ftp/ lost+found/ lstein/ siao/ testuser/ todd/ www/

The “..” can be used in a directory path just like any other directory name as shown in
Figure A.1C.13.

The symbol “.” stands for the current working directory.

The shell also lets you use the tilde symbol “∼” (found in the upper left-hand corner of
most keyboards) to refer to your home directory. You can obtain a listing of your home
directory like this:

(∼/docs) 88% ls -F ∼
and return to your home directory from wherever you are by typing:

(∼/docs) 89: cd ∼
For your convenience, typing cd alone will also return you to your home directory,
making it the current working directory.

WORKING WITH TEXT FILES

Creating and manipulating files of text is central to most bioinformatics activities. Unix
gives you a large number of ways to manipulate text files.

User
Fundamentals

A.1C.13

Current Protocols in Bioinformatics Supplement 16

Figure A.1C.14 Viewing the first 1% of the text file genomic-seq.fasta, located in the directory
projects/data, using the more command. Note that some of the screen has been deleted to conserve
space.

The fastest and easiest way to view the contents of a text file is with the more command.
It takes a list of one or more text file names, and displays them on the screen one page at
a time. This works even with very large files. See Figure A.1C.14 for example.

The --More-- prompt at the bottom of the screen indicates that there is more of the file
to display and gives the approximate position of the region that is being displayed, in this
case the top 1%. As described earlier, you can page through the file from top to bottom
by pressing the Space Bar. Press “q” to stop viewing the file.

If your system has it, the less command is recommended as an improved version of
more. It works just like more, but allows you to page upwards as well as downwards
by pressing the Page Up and Page Down keys. It also allows you to navigate a line at a
time using the up (↑) and down (↓) cursor keys, and to search through the file for words
and phrases.

Redirecting Output to a File

Much of the software used in bioinformatics produces large amounts of text data. This
information is often written directly to the terminal, and it can be frustrating to see
something interesting scroll by into the irretrievable oblivion beyond the top of the
terminal window.

One way to deal with this situation is to use the output redirection feature of the Unix
shell. The output of any command can be redirected into a file by following the command
with a “>” sign followed by the name of the file you wish to create. For example, the
blastn command (see UNIT 3.3) will write the results of its search to the terminal window.
To redirect this to a file named blastn.out, issue the command as shown in Figure
A.1C.15A. After the command completes, you will find its output in blastn.out,
which you can then inspect with more, less, or a text editor.

If the file indicated with “>” already exists, it will be overwritten, erasing whatever was
there before. If you prefer to append the command output to the file, leaving its previous
contents intact, use “�”, as shown in Figure A.1C.15B.

Redirecting Output to More

Another handy alternative, useful for those cases when there is more output from a
command than will fit onto a terminal screen, but you don’t need to save the information
to a file, is to redirect output directly to the more program. You can do this using the
“pipe” or vertical bar symbol “|”:

(∼) 107% blastn humseq202 data/genomic-seq.fasta | more

Unix Survival
Guide

A.1C.14

Supplement 16 Current Protocols in Bioinformatics

Figure A.1C.15 Redirecting the results of the blastn command to the file blastn.out. Note
that (A) using a single greater than sign “>” sign causes any previous copy of blastn.out to
be overwritten, while (B) using a double greater-than sign “�” will cause the current output to be
appended to the existing blastn.out file.

Table A.1C.1 Graphical Text Editors

Desktop environment Editor

Gnome gedit

KDE kedit

CDE dtpad

Blastn’s output will now be captured by more and displayed a screen at a time for easy
viewing.

Unix Text Editors

To work effectively with Unix-based bioinformatics software you will need to be able to
create and modify text files from scratch. This means becoming proficient with one or
more of the Unix text editors.

Unlike the more familiar word processors, Unix text editors produce files that are devoid
of any fancy fonts or formatting. They also have a reputation for being unfriendly to
novice users. This is only partly true. The graphical desktop environments are each
equipped with user-friendly text editors similar in style to the Windows Notepad desk
accessory. Table A.1C.1 lists the names of the graphical text editors in each of the three
most popular Unix desktop environments. Each one is easily reachable via a menu item
or icon.

If you have access to one of the graphical editors, you should have no problem creating and
editing text files since everything can be done using mouse clicks and menu commands. If
you must interact with Unix via a text-only terminal, life will be slightly more interesting.

pico
If you have never used a Unix text editor before, it is suggested that you begin with the
pico text editor. This editor is installed on most (but not all) Unix systems, and has a
relatively straightforward user interface. To launch it, type pico at the command line.
This will replace the contents of the terminal window with the editor screen shown in
Figure A.1C.16. The middle of the screen is the current contents of the text file. Use the
cursor keys to move around in the file, the Backspace key to delete text to the left of the
insertion point, and the Delete key to delete text to the right of the insertion point.

Various Control key combinations allow you to read files, save files, and exit the program.
The currently available commands are listed at the bottom of the pico window using
notation in which a caret “ˆ” means the Control key. So ˆX Exit means to press
Control-X in order to exit the program.

User
Fundamentals

A.1C.15

Current Protocols in Bioinformatics Supplement 16

Figure A.1C.16 Pico editor screen.

To create a text file from scratch, launch pico, type the text, and then press Control-O
to write out (i.e., output) the file. You will be prompted to type in the name of the file.
To read in an existing file, press Control-R. You will be prompted for a file name, which
will then be appended to the bottom of whatever is currently on display. Another way to
edit an existing file is to give its name to pico on the command line. For example, for the
file test.txt, the following will cause pico to open and edit the file:

(∼) 108% pico test.txt

Other text editors
Pico has relatively limited abilities. Much more powerful Unix text editors are the
aforementioned vi editor, as well as Emacs. Using vi requires learning a set of cryptic
keyboard-based commands. Emacs is slightly easier to use in the graphical X Window
environment because it provides menus for most common commands, but it is not nearly
as straightforward as more familiar word processors. However, if you plan to work heavily
in the Unix environment, it is worth investing some time learning one of these editors.
Good introductions to vi and Emacs can be found in most general-audience Unix books.

CHANGING THE ENVIRONMENT

Various Unix commands, and several bioinformatics programs, are dependent on “envi-
ronment variables,” a set of configuration variables that are set up for you each time you
log into the system. In this section, we walk through a practical example of changing an
environment variable.

VISUAL and SHELL variables
Various Unix commands will automatically invoke a text editor for you when needed
(e.g., when examining a configuration file). The default text editor is vi, a powerful but
extremely cryptic text-based editor. To make pico your default editor, you must alter the
value of an environment variable named VISUAL.

Unix Survival
Guide

A.1C.16

Supplement 16 Current Protocols in Bioinformatics

To change the VISUAL environment variable you must edit one of the hidden “dot” files
located in your home directory. Which file you edit depends on which shell interpreter
you are using. To discover which shell you are using, you will examine the contents of
another environment variable named SHELL. Run the command echo $SHELL:

(∼) 51% echo $SHELL
/bin/tcsh

The echo command simply echoes back its arguments, which in this case is the con-
tents of the SHELL environment variable. The command will print out the path to the
shell program that is currently running, which will most likely be one of /bin/tcsh,
/bin/csh, /bin/ksh, /bin/bash, or /bin/sh. If the shell is either tcsh or
csh, then the configuration file you will edit is .cshrc. For any other shell, you will
instead edit the file .profile.

We will first assume that you are running tcsh or csh, and therefore need to edit the file
.cshrc in your home directory. First, make a copy of the current version of .cshrc,
using the cp (copy) command. Name the copy cshrc.orig:

(∼) 52% cp ∼/.cshrc ∼/cshrc.orig
Now using pico, edit .cshrc:

(∼) 52% pico ∼/.cshrc
If the file does not already exist, create it. Scroll to the bottom of the file and add this ine:

setenv VISUAL pico

Save the file, and then log out of the shell. Log in again and confirm that VISUAL is now
set to pico:

(∼) 56% echo $VISUAL
pico

The procedure is slightly different for the bash, ksh, or sh shells. In this case, the file
to change is .profile, also located at the top level of your home directory. Create a
copy of .profile as described earlier for .cshrc. Using pico (or another text editor),
open or create this file, and then add the following two lines:

VISUAL=pico
export VISUAL

Log out and in again, and run echo $VISUAL to confirm that the environment variable
has indeed been set.

Other variables
You can follow this procedure to add or modify any number of environment variables.
Just be sure to put each setenv or export command on a separate line. If you make a
mistake, your shell may start misbehaving. Don’t panic. Just copy the original back into
place:

(∼) 56% cp cshrc.orig.cshrc

User
Fundamentals

A.1C.17

Current Protocols in Bioinformatics Supplement 16

INSTALLING SOFTWARE

The last topic that we’ll cover in this survival guide is installing and upgrading software.
This is a task that is usually best left to a system administrator, but for many readers this
is not a viable option.

Most Unix software, bioinformatics included, is distributed in source code form as
tar.gz files. The tar program is first applied to the software to archive its many files
and directories into a single file, and then the gzip compression program is used to
compress the archive for easy transmission over the Internet.

Although there are an infinite number of variations, downloading and installing Unix
software follows this general theme:

1. Identify a Web or FTP site that has the desired software and download it to the
Unix system.

2. Uncompress and unarchive the package.

3. Read the README and/or INSTALL documentation.

4. Configure the package.

5. Compile the software.

6. Install the software.

As an ordinary user of the system you can perform all but the very last step of this
process; however, the final install of software requires that you have write permission
to portions of the Unix system that are usually off-limits to ordinary users. To install
software in its usual place requires that you log in as the privileged user known as “root,”
using the password for the root account; however, if you do not know the root password,
you can still install software in your home directory. In the example that follows we will
install a new software package as root, and then as an unprivileged user.

The example we will use is the MySQL package, a popular open source relational
database that is used as the exemplar of database management systems in Chapter 9.

Downloading (FTP)

The first step is to download the software archive onto the Unix system. You will
eventually generate quite a collection of these archives, so create a directory named src
under your home directory, and make it your current working directory:

(∼) 101% mkdir src
(∼) 102% cd src

If the software is located on an FTP site, you will use the ftp command to download it.
If the software is located on a Web site, you can use Mozilla Firefox (with the firefox
command) if you have a graphical login, or the text-only Web browser lynx if you are
using a terminal emulation program. Both applications are self-explanatory.

In the case of MySQL, we will connect to the FTP site ftp.mysql.com using the
ftp command. When prompted for a username, we enter the name anonymous, and
give our E-mail address when prompted for a password (Fig. A.1C.17).

Unix Survival
Guide

A.1C.18

Supplement 16 Current Protocols in Bioinformatics

Figure A.1C.17 Login screen of the MySQL FTP site using anonymous as the login name and the user’s
e-mail address as the password.

Figure A.1C.18 (A) Changing the working directory using the cd command, (B) listing files using the ls command,
and (C) retrieving the mysql-3.23.46.tar.gz file using the get command, all within the FTP program shell. We
chose the mysql-3.23.46.tar.gz file after determining that is was the most recent version of the MySQL
distribution. Note that some of the listing has been omitted to conserve space.

Get command
After logging into the remote site, the prompt changes to ftp>, indicating that the
command line is now under control of the FTP program. The FTP program contains
a miniature shell that recognizes the Unix cd and ls commands, with the difference
that these commands operate on the remote FTP site rather than on the local machine.
Using these commands we navigate to the desired directory and use the get command to
download the file containing the MySQL source distribution (Fig. A.1C.18). We choose
the .tar.gz file with the most recent date. Other files in this subdirectory end with the
Microsoft Windows extension .zip.

User
Fundamentals

A.1C.19

Current Protocols in Bioinformatics Supplement 16

Quit command
When the download is finished, we issue the quit command, and the FTP program
exits, returning us to the Unix shell:

ftp> quit
221 Goodbye.
(∼/src) 104%

Uncompressing and unarchiving
The next step is to unpack the MySQL distribution. Return to the home directory and
create a new directory named build. This will be used as a temporary place in which
to build new software prior to installing it:

(∼/src) 105% cd ∼
(∼) 106% mkdir build
(∼) 107% cd build

We will now uncompress and unarchive the MySQL distribution in a single step. This
uses a trick in which the output of the gunzip program, which uncompresses the archive,
is fed directly into the input of the tar program, which unarchives the software. The
magical incantation and its results are shown in Figure A.1C.19. Notice how the “∼”
symbol is used as a shortcut to indicate the home directory. This will create a directory
named mysql-3.23.46 containing the unpacked MySQL source code distribution.
As each file is unpacked, its name is printed on the terminal.

Reading Documentation

We enter this new directory and look for a file named README, INSTALL, or something
similar. In this case there is a README file, which contains a general description of
MySQL, and a more specific file named INSTALL-SOURCE which contains step-by-
step instructions on building and installing the software.

Configure Package

MySQL is typical of software that is written in the C programming language. You first run
a script contained within the distribution directory called configure. This checks that
any libraries or other software on which the package depends are installed, and configures
the package with values that are appropriate for the variant of Unix that the machine is
running. After configure successfully completes, run the make program, which compiles
the source code into machine-readable computer code. Finally, you give the command
make install to move the compiled code into the appropriate locations for installed
software.

Figure A.1C.19 Uncompressing and unarchiving the MySQL distribution in a single step. Note
that the file listing, which runs to hundreds of lines, has been truncated in the interest of space.

Unix Survival
Guide

A.1C.20

Supplement 16 Current Protocols in Bioinformatics

Figure A.1C.20 Invocation and results of the configure script in the mysql-3.23.46 directory. Note that
the middle portion of the output has been omitted.

Figure A.1C.21 Running the make command. Note that most of the output has been omitted.

Configure script
We will step through this process. First, we run the configure script located in the
mysql-3.23.46 directory. Since there might be other configure programs installed on
your machine, we take care to run the particular one that MySQL comes with by using
a path starting with “.” to indicate the configure script located in the current working
directory as shown in Figure A.1C.20.

Thankfully the configure script ran to completion. If it had detected that some software
package that MySQL depends on was missing from the system, it would have failed part
way through and notified us of the problem.

Compile

Make program
We now run make. The make program is a standard part of Unix rather than a MySQL-
specific script, so we do not need to specify the current directory in its path (Fig. A.1C.21).
Making the package is an involved process that takes several minutes to complete. If
any errors are encountered during the process, make will terminate with any obvious
∗∗error∗∗ message (you can safely ignore any warnings that are issued). If make does
fail, your best option is to refer the problem to someone more knowledgeable. Otherwise,
you can proceed to make test and make install (see below).

Make test
Some software packages come with a set of tests that you can run to ensure that they have
compiled correctly. If such tests are defined, you can invoke them with the command
make test as shown in Figure A.1C.22.

User
Fundamentals

A.1C.21

Current Protocols in Bioinformatics Supplement 16

Figure A.1C.22 Using the software-included make test command. Note that most of the output has been
omitted for brevity.

All tests passed, so we can feel confident that MySQL will function properly. For
packages that do not have any tests defined, the make test command will produce an
error message similar to Don’t know how to make test. Stop. In this case
just skip the step.

Install

Su command
The last step is to make install. The catch here is that you will have to log in as the
root user in order to run this command. Assuming that you know the root password, you
can use the su command to temporarily assume the identity of root without having to
log out and in again:

(∼/build/mysql-3.23.46) 124% su
Password: ∗∗∗∗∗∗∗∗
bash-2.05#

After issuing the su command, the system prompts us for the root password. After
entering it, the shell prompt changes, telling us that we are now logged in as the root user
(the prompt character “#” is usually, but not necessarily, reserved for root). You can skip
this step if the Sudo program is installed and configured, as described later.

Make install command
We then run make install, and wait while the system copies the MySQL software
into its installed locations as shown in Figure A.1C.23.

Exit command
After make install completes, we issue the exit command to return to our normal
user privileges.

bash-2.05# exit
(∼/build/mysql-3.23.46) 125%

You do not want to remain logged in as root longer than you need to, because as root you
have access to commands that can seriously damage the system if issued inadvertently.

Unix Survival
Guide

A.1C.22

Supplement 16 Current Protocols in Bioinformatics

Figure A.1C.23 Copying the MySQL software into its installed locations using the make install command.
Note that most of the output has been omitted for brevity.

There are now several steps that are specific to MySQL, including setting up databases
and user accounts. These steps are described in the INSTALL-SOURCE file. Since they
are not applicable to the general case, we won’t cover them here.

Make install with Sudo
On many shared Unix systems you will not have access to the root password. On such
systems, the system administrator may be able to give you limited root privileges using
the Sudo system. On such systems you may be able to skip the su step entirely and
run the privileged install step by issuing the command sudo make install. The
system will prompt you for your password, become the root user temporarily, run make
install, and then return you to your normal user status. Please see your system
administrator for help with this. If you are the system administrator, you can read about
how to configure Sudo by consulting the sudo and visudo manual pages (see The
Manual Command, above).

Installing Software into your Home Directory

What if you don’t have the root password or Sudo privileges? With a little additional
effort, you can install the software package in your home directory, something that you
don’t need root access to perform.

The key is to pass the optional--prefix= option to the configure script, specifying a lo-
cation in your home directory after the equal sign. My home directory is/home/lstein
and I would like MySQL to install itself in a subdirectory named mysql, so I pass the
option --prefix=/home/lstein/mysql, as shown in Figure A.1C.24.

Be sure to use the full path to your home directory here. If you are unsure of the correct
value, cd to your home directory and then issue the pwd command.

Now run the make and make test commands as described earlier. If all goes well, run
make install. Since you are installing into your home directory, there is no reason
to become root.

MySQL has been installed in your home directory. What now? If you inspect the contents
of the ∼/mysql directory, you will discover that the installation process created a
number of subdirectories (see Managing Files and Directories; Fig. A.1C.25).

By convention the bin subdirectory contains executable files (commands), man contains
documentation, and include and lib together contain packages of code for use
by software developers. The other directories contain mysql-specific components. The
mysql program lives in ∼/mysql/bin, and you can run it by typing its complete
path:

User
Fundamentals

A.1C.23

Current Protocols in Bioinformatics Supplement 16

Figure A.1C.24 Providing a directory into which MySQL can install itself.

Figure A.1C.25 Subdirectories of ∼ created during installation.

(∼/build/mysql-3.23.46) 141% ∼/mysql/bin/mysql
If you like, you can set up your environment so that ∼/mysql/bin is searched auto-
matically whenever you type a command. This involves setting the environment variable
PATH, which contains a list of directories to be searched for executables (see List Com-
mand).

As described earlier, the procedure to follow depends on which shell you are using. If
you are using tcsh or csh, open the file .cshrc and add the following to the bottom:

setenv PATH ∼/mysql/bin:$PATH
This will set the PATH environment variable to contain ∼/mysql/bin, followed by
whatever was on the PATH before. Log out and in again. You should now be able type
mysql without qualifying it with a path.

If you are using the bash, ksh, or sh shells, open .profile and add the following
to the bottom:

export PATH=∼/mysql/bin:$PATH
Again check that when you log out and in again, mysql is found automatically.

As before, you are advised to make copies of .cshrc or .profile before you do this.
If you mess up PATH, the system may not be able to find any commands, including the
cp command required to restore the original version of .cshrc or .profile. This
isn’t a cataclysm. Simply refer to cp using its explicit path, /bin/cp:

(∼) 142% /bin/cp cshrc.orig.cshrc

This will put .cshrc back the way it was before you modified it.

If you install a program and later move it to another location on your PATH, the system
may not be able to find it until you log off and in again. With the csh and tchs shells,
the command rehash may help the system find the command without doing this.

CONCLUSION

Unix will feel alien and intimidating at first. Do not be inhibited, but feel free to explore
and experiment with the Unix environment. With experience, you may eventually come
to tolerate, if not appreciate, Unix’s alternative take on the world.

Unix Survival
Guide

A.1C.24

Supplement 16 Current Protocols in Bioinformatics

KEY REFERENCES

Frisch, A. 1996. Essential System Administration, 2nd Edition. O’Reilly and Associates, Sebastopol, Calif.
A slightly more advanced book that emphasizes troubleshooting.

Nemeth, E., Snyder, G., and Seebass, S. 1995. Unix System Administration Handbook. Prentice-Hall,
Engelwood Cliffs, NJ.

This is a user friendly and comprehensive guide to working on Unix systems. Although aimed at system
administrators, it is highly recommended for newcomers to the Unix environment.

Raymond, E.S. (ed.) 1996. The New Hacker’s Dictionary, Third Edition. MIT Press, Cambridge, Mass.
An introduction to the Unix culture.

Sobel, M.G. 1998. Hands-On Linux. Addison-Wesley, Reading, Mass.
An introduction to Linux.

Welsh, M. 1999. Tunning Linux, Third Edition. O’Reilly and Associates, Sebastopol, Calif.
A user-level guide to the Linux operating system

INTERNET RESOURCES

Login Packages for Windows

http://www.microsoft.com
Microsoft Web site for downloading Telnet. Bare-bones terminal emulator using the Telnet protocol and
text-only login. Built into Windows 95 & higher.

http://www.securenetterm.com
NetTerm Web site. More configurable terminal emulator using Telnet and Secure Shell protocols using
text-only Web site.

http://www.vandyke.com/products/crt
CRT Web site. Full-featured terminal emulator using Telnet and rlogin protocols using text-only login.

http://www.chiark.greenend.org.uk/˜sgtatham/putty/
PuTTY Web site. Bare-bones terminal emulator using Telnet and Secure Shell protocols using text-only login
(freeware).

http://www.uk.research.att.com/vnc
VNCviewer Web site. Graphical login using the lightweight VNC protocol (freeware).

http://www.hummingbird.com/products/nc/exceed/
eXceed Web site. Graphical login using the network- intensive X Windows protocol.

http://www.powerlan-usa.com
WebTermX Web site. Graphical login using the network- intensive X Windows protocol

http://www.starnet.com/products
X-Win32 Web site. Graphical login using the network- intensive X Windows protocol.

Contributed by Lincoln D. Stein
Cold Spring Harbor Laboratory
Cold Spring Harbor, New York

