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Human retinoblastoma is a pediatric cancer initiated by

RB gene mutations in the developing retina. We have

examined the origins and progression of retinoblastoma

in mouse models of the disease. Retina-specific inactiva-

tion of Rb on a p130�/� genetic background led to

bilateral retinoblastoma with rapid kinetics, whereas on

a p107�/� background Rb mutation caused predomi-

nantly unilateral tumors that arose with delayed kinetics

and incomplete penetrance. In both models, retinoblasto-

mas arose from cells at the extreme periphery of the

murine retina. Furthermore, late retinoblastomas pro-

gressed to invade the brain and metastasized to the cervi-

cal lymph nodes. Metastatic tumors lacking Rb and p130

exhibited chromosomal changes revealed by representa-

tional oligonucleotide microarray analysis including high-

level amplification of the N-myc oncogene. N-myc was

found amplified in three of 16 metastatic retinoblastomas

lacking Rb and p130 as well as in retinoblastomas lacking

Rb and p107. N-myc amplification ranged from 6- to 400-

fold and correlated with high N-myc-expression levels.

These murine models closely resemble human retinoblas-

toma in their progression and secondary genetic changes,

making them ideal tools for further dissection of steps to

tumorigenesis and for testing novel therapies.
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Introduction

In humans, inherited and somatic mutations in the RB tumor

suppressor gene lead to the development of retinoblastoma, a

childhood malignant tumor of the eye. In contrast, germline

heterozygosity for Rb gene mutations in mice causes predis-

position to pituitary and thyroid tumors, but these animals do

not develop retinoblastoma (Clarke et al, 1992; Jacks et al,

1992). Homozygous Rb mutation results in mid-gestational

embryonic lethality, which has been attributed to defects in

placental and hematopoietic development (Clarke et al, 1992;

Jacks et al, 1992; Lee et al, 1992; Wu et al, 2003). We and

others have specifically deleted Rb in the developing mouse

retina using Cre-lox technology (Chen et al, 2004;

MacPherson et al, 2004; Zhang et al, 2004a). Use of Pax6

a-Cre transgenic mice to delete Rb in early retinal progenitors

led to defects in proliferation, increased levels of cell death

and associated inhibition of differentiation in a cell-type-

specific fashion. The majority of bipolar, ganglion and

many rod photoreceptor cells were selectively lost in the

developing Rb-deficient retina, whereas other cell types

survived (Chen et al, 2004; MacPherson et al, 2004).

Although Rb deletion leads to proliferation defects in the

retina, retinoblastomas did not develop.

Compensation or functional overlap affecting the activity

or levels of the pocket protein family members, p107 and

p130, minimizes the effects of Rb loss, preventing tumorigen-

esis. This was first shown in a chimeric setting, where

retinoblastomas did not emerge in chimeras with retinal

contribution of Rb�/� cells (Maandag et al, 1994; Williams

et al, 1994), but were present in chimeras composed of cells

mutant for both Rb and p107 (Robanus-Maandag et al, 1998).

Breedable models of retinoblastoma involving conditional Rb

mutation on a p107�/� genetic background (with or without

additional p53 inactivation) have now been generated (Chen

et al, 2004; Zhang et al, 2004b). We recently used transgenic

expression of Cre from the nestin promoter to show that

inactivation of Rb in neural progenitors of p130�/� animals

also results in retinoblastoma development (MacPherson

et al, 2004).

The apparent functional compensation among the Rb gene

family may explain the fact that in many human tumors the

RB pathway is disrupted not by RB mutation, but by muta-

tions that act upstream (reviewed in (Sherr, 1996)). Examples

include p16INK4a loss in glioma, melanoma and pancreatic

carcinoma, CDK4 amplification in melanoma, cyclin D1 am-

plification in breast and esophageal cancer or translocations

in B-lineage tumors. Thus, examining tumor formation in a

context of mutation in multiple Rb family members in the

mouse may help us understand the overlapping and unique

roles of these proteins in tumor suppression.

The availability of well-defined mouse models of retino-

blastoma is expected to help answer longstanding questions

concerning the genetic changes that contribute to retinoblas-

toma progression as well as the nature of the cell of origin of

this tumor type. For example, Knudson’s two-hit hypothesis

proposed that mutations in both alleles of the RB gene

represent the rate-limiting steps in retinoblastoma develop-

ment (Knudson, 1971). However, comparative genomic
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hybridization (CGH) analysis has revealed chromosomal

gains at 6p, 1q and 2p as well as losses at 16q in a significant

percentage of human retinoblastomas (Mairal et al, 2000;

Chen et al, 2001; Lillington et al, 2003; Zielinski et al, 2005).

These data suggest that other changes also occur during

tumor progression. In particular, selection for N-myc ampli-

fication has been implicated in the 2p gain, which often

involves high-level gene amplifications (Lee et al, 1984).

Microarray-based CGH platforms in which tumor or

normal DNA is hybridized to bacterial artificial chromosomes

(BAC), cDNA or oligonucleotide arrays are improving the

resolution with which copy number changes can be detected

(reviewed in Pinkel and Albertson, 2005). Representational

oligonucleotide microarray analysis (ROMA) is a compara-

tively new approach for detecting copy number variation that

uses PCR-based genome representations hybridized to oligo-

nucleotide arrays, reducing genome complexity and increas-

ing signal-to-noise ratios (Lucito et al, 2003; Lakshmi et al,

2006). Application of ROMA to mouse models of retinoblas-

toma, where tumor progression can be examined in a more

controlled and less variable manner than possible using

human samples, may aid in the identification of secondary

changes also relevant for tumor progression.

In this study, we use improved mouse models of retino-

blastoma to examine tumor initiation and progression to

metastatic disease. We also show that ROMA analysis can

identify an important secondary oncogenic event that con-

tributes to tumor development in these models, pinpointing

a minimal region of gene amplification that includes a single

known gene.

Results

Mutation of Rb coupled with the absence of either p107 or

p130 in chimeric or in retina-specific knockout models causes

retinoblastoma (Robanus-Maandag et al, 1998; Chen et al,

2004; Dannenberg et al, 2004; MacPherson et al, 2004; Zhang

et al, 2004b). These results may suggest that retinoblastoma

development results from an overall reduction in ‘Rb family’

tumor suppressor function, which can occur equivalently

through loss of pRB plus either of the Rb-related proteins.

However, in some experiments involving compound muta-

tion with Rb, distinct effects of p107 and p130 mutations have

been shown (Dannenberg et al, 2004; Haigis et al, 2006).

Therefore, we directly compared the effects of p107 versus

p130 mutation when combined with retinal-specific deletion

of a conditional allele of Rb (MacPherson et al, 2003; Sage

et al, 2003). For these studies, we used a transgenic strain in

which Cre expression is controlled by the a-enhancer of the

Pax6 promoter. In Pax6 a-enhancer Cre transgenic mice, Cre

expression occurs by embryonic day (E)10.5 in mid- to far-

peripheral neural retina as well as in some peripheral eye

structures (Supplementary Figure 1; Marquardt et al, 2001).

Here, we refer to animals with retinal-specific Rb mutation

on p107�/� or p130�/� genetic backgrounds as Rb/p107

double knockout (DKO) or Rb/p130 DKO mice.

Kinetics of retinoblastoma development in Rb/p107

versus Rb/p130 DKOs

We aged compound mutant mice and followed tumor devel-

opment by visual examination of the mouse eye over time.

Mice were examined for either the presence of tumor or blood

in the anterior chamber, or distortion of the eye caused by the

tumor. Upon initial observation of unilateral retinoblastoma,

the cohort continued to be followed for the appearance of

bilateral retinoblastoma unless tumor burden either in the

eye region or due to metastasis necessitated killing of the

animal. Figure 1 shows the time to first observation of

retinoblastoma upon examination of the eye. Rb/p130 DKOs

developed visible retinoblastoma with rapid and consistent

kinetics, exhibiting an average time to visible bilateral retino-

blastoma of 128718 days (mean7s.d). By contrast, mutation

of Rb and p107 led to tumors that developed with delayed and

variable kinetics: 27/44 (61%) developed unilateral retino-

blastoma, first visible at an average time of 2807107 days.

Bilateral tumors were rare in this Rb/p107 DKO model

(Figure 1). Overall, the tumor kinetic data indicate that the

pattern of tumorigenesis in the Rb/p107 DKO and Rb/p130

DKO models differs significantly.

Rb/p130 DKO tumors emerge from the extreme

periphery of retina

The rapid and consistent kinetics of tumor formation in Rb/

p130 DKOs provided an opportunity to examine the origins of

retinoblastoma development. We examined retinas histologi-

cally at postnatal day (PND)21, a time when retinal histogen-

esis is normally complete. Previous work by us and others

has shown that the absence of Rb alone causes hypocellular-

ity in the retina due to loss of specific cell types, but the three

nuclear layers are still detected (Chen et al, 2004;

MacPherson et al, 2004). In contrast, in the Rb/p130 DKOs,

the three nuclear layers could not be distinguished, except in

central retina, where Cre is not widely expressed (Figure 2A).

The Rb/p130 DKO retinas were very hypocellular and con-

tained apoptotic bodies and many cells exhibiting large and/

or irregular-shaped nuclei (Figure 2A, inset; data not shown).

Strikingly, at the extreme periphery in 9/12 eyes examined,

we observed early dysplastic lesions with histological simila-

rities to retinoblastomas (Figure 2A, right). Such lesions

contained Homer–Wright rosettes, which consist of a radial

arrangement of cells surrounding a central tangle of neuronal

processes and are found in a subset of human retinoblasto-

mas (Yuge et al, 1995) as well as murine retinoblastomas

(Robanus-Maandag et al, 1998; Dannenberg et al, 2004;
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Figure 1 Different kinetics of retinoblastoma emergence in Rb/p107
versus Rb/p130 DKOs. Kaplan–Meier curve showing time to first
observation of externally visible retinoblastoma. Inset: retinoblas-
toma visible in the anterior chamber of an Rb/p130 DKO mouse at 4
months of age.
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MacPherson et al, 2004). The detection of early tumors

specifically at the extreme periphery of the retina points to

a possible niche for the cell of origin of retinoblastoma in this

model. Importantly, these results do not simply reflect the

expression of Cre in the extreme distal retina as Pax6 a-Cre is

expressed much more broadly (Supplementary Figure 1).

Loss of Rb leads to increased proliferation beyond

the normal period of retinogenesis (Chen et al, 2004;

MacPherson et al, 2004). At PND12, we found extensive

BrdU incorporation in Rblox/lox a-Cre retinas, and this pheno-

type was exacerbated in Rb/p130 DKO retinas (Figure 3A

and C). Inappropriate proliferation was accompanied by

increased apoptosis, which was also found at higher levels

in Rb/p130 DKO over single Rb mutant retinas (Figure 3B and

C). By PND21, proliferation could not be detected in Rb

mutants (Chen et al, 2004; data not shown). In contrast,
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Figure 2 Rb/p130 DKO tumors emerge from the extreme periphery of retina. Early retinoblastomas in Rb/p130 DKOs. (A–F) Histology and
immunostaining of PND21 retinas from wild-type (left panel) and Rb/p130 DKO (middle, right panels) animals. The upper inset in the middle
panel shows details of Rb/p130 DKO retina adjacent to tumor. The panel in the right shows details from Rb/p130 DKO early tumor. Scale bars in
the left and middle low-power panels¼ 200 mm, high-magnification insets and right panels, 40mm. (A) Hematoxylin and eosin (HþE) stain
with normal eye structures labeled. Distinct regional phenotypes and early retinoblastoma in the Rb/p130 DKO are noted. (B) BrdU labeling of
proliferating cells. (C) Syntaxin immunostaining. Note the depletion of amacrine cells adjacent to tumor (inset, middle panel) and the positive
staining of early retinoblastoma (right). (D) Calretinin immunostaining labeling an amacrine and ganglion subset. (E) Calbindin immunostain-
ing. Arrows indicate calbindin-positive horizontal cells. (F) GLAST immunostaining labeling Müller glia. (G) Fundus photograph of a p130�/�
control mouse at 6 weeks of age. The ciliary body, peripheral to the neural retina, is indicated (white arrow). (H) Fundus photograph of Rb/
p130 DKO mouse at 6 weeks of age. Peripheral retina is shown and black arrows point to early retinoblastoma at the extreme periphery. Retinal
pigment epithelial changes due to retinal degeneration are present. The ciliary body, adjacent to the neural retina, is indicated (white arrow).
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BrdU-positive cells were found in Rb/p130 DKOs throughout

the PND21 distal retina, and were particularly concentrated at

the extreme periphery, where early tumors were detected

(Figure 2B). BrdU-positive cells were also found away from

the tumor regions (Figure 2B, middle panel inset) where

the retina was hypocellular and were also found in PND21

Rb/p130 DKO retinas that did not yet exhibit histological

evidence of early retinoblastoma formation (data not shown).

These data suggest that the combined loss of Rb and p130

function in the retina causes broad defects in cell-cycle

control, accompanied by cell death.

To characterize the early lesions further, we stained histo-

logical sections of Rb/p130 DKO retinas at PND21 for cell-type

markers. Consistent with previous descriptions of murine

retinoblastomas lacking Rb and p107 or p130, we found

that early tumors expressed syntaxin, which stains amacrine

cells and a subset of progenitor cells (Figure 2C) (Alexiades

and Cepko, 1997). Away from the tumors, the amacrine layer

was significantly reduced (Figure 2C, inset), suggesting that

many amacrine cells do not survive in the absence of Rb and

p130 function. The early tumors also stained for calretinin,

which labels a subset of amacrine and ganglion cells (see

control retina; Figure 2D). Calretinin in the tumors was

expressed in a more focal and heterogeneous fashion that

was variable from animal to animal. In normal retina,

calbindin labels horizontal cells strongly (arrowheads) and

a subset of amacrine cells weakly (Figure 2E). We found

calbindin-positive cells in early tumors, including some in-

tensely stained cells that were reminiscent of horizontal cells.

Interestingly, adjacent to the early tumors, and in contrast to

the overall hypocellularity in this area, Rb/p130 DKO retinas

exhibited a clear increase in horizontal cells (Figure 2E,

middle panel inset). The glial glutamate/aspartate transporter

(GLAST) labels Müller cells, which survived both Rb and

p130 mutation and were present in the early tumor

(Figure 2F). At this stage, some of the cells present in the

early tumors may be non-neoplastic cells derived from nor-

mal retina. A cone subset (stained for M-opsin; Zhu et al,

2003), rod bipolar cells (stained for PKCa) and Tuj1-positive

retinal ganglion cells were either very rare or completely

absent from the Rb/p130 DKO retina and early tumors (data

not shown).

Retinoblastoma progression in Rb/p130 DKOs

Beyond PND21, cells in the periphery of Rb/p130 DKO retinas

continued to proliferate. Larger tumors were found at PND31

(four animals) and PND60 (three animals), and all mice at

PND31 and PND60 had retinoblastomas in each eye. Upon

ophthalmoscopic examination, early tumors could be visua-

lized by 6–8 weeks, and these were adjacent to the ciliary
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body at the extreme periphery of the neural retina

(Figure 2H). By 4 months of age, retinoblastoma seeding

the vitreous and anterior chamber of the eye was detected

upon visual examination of the mouse (Figure 1). To inves-

tigate late-stage tumor progression, mice continued to be

monitored beyond the initial observation of tumor until the

mouse was moribund due to retinal tumor burden or retino-

blastoma presence at sites outside of the eye. Rb/p130 DKOs

were killed at an average age of 183739 days of age. By this

advanced stage, retinoblastomas had grossly distended the

eye, filled the anterior chamber and had often invaded local

tissue outside of the eye (Figure 4A and B). Tumor cells could

also be found infiltrating the optic nerve (Figure 4B). We

found that 11/29 (38%) of these Rb/p130 DKO mice exhibited

enlarged cervical lymph nodes. Histological analysis revealed

that these were retinoblastoma metastases (Figure 4C).

Although the kinetics of tumor development in the Rb/p130

DKO model was consistent at early time points, the properties

and size of the metastatic tumors varied significantly.

Human retinoblastoma is known to invade the brain via

the optic nerve (Shields et al, 1994). Given the presence of

retinoblastoma cells in the optic nerve in the mouse model,

we examined 27 Rb/p130 DKO animals for brain involve-

ment. Seven animals were found to contain retinoblastoma

lesions in the brain (26%, average age 199741 days)

(Figure 4D). To determine whether tumors spread to other

tissues as well, we performed full necropsies on eight Rb/

p130 DKO animals. Tumors were found only locally near the

eye and surrounding tissues, in the brain and in cervical

lymph nodes but not in other distant sites.

Tumor progression in Rb/p107 DKOs

To further assess functional differences between p130 and

p107 mutation, we also carefully examined tumor progression

in the Rb/p107 DKO animals. Although the Rb/p107 DKOs

exhibit slower tumor kinetics and incomplete retinoblastoma

penetrance (Figure 1), the end-stage tumors were histologi-

cally similar to the Rb/p130 DKO tumors (Figure 4B and C,

and Supplementary Figure 2A). Because monitoring exter-

nally visible retinoblastomas may have led to an underesti-

mation of the incidence of bilateral tumors in this model, we

performed histological examination of the second eye in 11

Rb/p107 DKO animals killed due to unilateral retinoblastoma

tumor burden. Retinas from all 11 eyes exhibited disorganiza-

tion and degeneration, and 3/11 retinas contained an early

retinoblastoma. These early lesions had abundant mitotic

figures, high levels of apoptosis and Homer–Wright rosettes

(data not shown).

To determine whether the extreme peripheral localization

of early tumors seen in the Rb/p130 DKO model was also

applicable to the Rb/p107 DKO model, we examined Rb/p107

DKOs at PND31 and PND60 by histological analysis. At

PND60, obvious retinoblastomas were present in four of 14

eyes examined at the level of the optic nerve head, and, in

each case, the tumor was present at the extreme periphery of

the retina (Supplementary Figure 3A). In 6/24 eyes examined

at PND31, dysplastic lesions containing Homer–Wright

rosettes were seen in this location, suggestive of early

retinoblastoma. Moreover, BrdU-labeling studies performed

at PND31 demonstrated proliferation concentrated at the

extreme retina periphery in Rb/p107 DKOs that did not yet

exhibit histological evidence of retinoblastoma (Supple-

mentary Figure 3B and C). These data point to peripheral,

late-proliferating cells as candidates for the cell of origin in

the Rb/p107 DKO model as well.

Consistent with overall tumor progression in this model,

metastatic spread was also delayed in the Rb/p107 DKO

model. In 4/14 Rb/p107 DKO mice examined histologically,

retinoblastoma was observed in the CNS (average age of

296768 days). We also observed metastasis to the cervical

lymph nodes in Rb/p107 DKO mice.

Late-stage retinoblastomas are heterogeneous

To further characterize the cell-type composition of meta-

static tumors, we studied the expression of other retinal cell-

type markers in metastases from Rb/p107 DKO and Rb/p130

DKO mice. We focused on lymph node metastases, which

are less likely than primary tumors to have infiltration of
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non-tumor cells from normal retina. Rb/p107 DKO and Rb/

p130 DKO metastases stained positively for syntaxin

(Figure 4E and Supplementary Figure 2B), whereas calretinin

stained Rb/p130 and Rb/p107 DKO metastatic tumors in a

patchy pattern, variable from animal to animal (Figure 4F and

Supplementary Figure 2B). Calbindin was found to strongly

label tumor cells in late lesions in the Rb/p130 DKOs,

suggestive of a horizontal cell component to the tumors.

This staining was also variable, ranging from only scattered

positive cells in some tumors to others in which the majority

of cells stained strongly (Figure 4G). In Rb/p107 DKOs,

calbindin staining was typically found in a more scattered

pattern (Supplementary Figure 2B) and many tumors were

completely negative, indicative of some difference in the

composition of Rb/p107 versus Rb/p130 DKO tumors. Some

Rb/p130 and Rb/p107 DKO tumors exhibited glial fibrilary

acidic protein (GFAP) and GLAST positivity (Figure 4H and

Supplementary Figure 2B; data not shown). GFAP staining in

retinoblastomas has been observed in murine and human

retinoblastoma, but reactive gliosis from nearby Müller cells

has often been implicated. GFAP and GLAST staining in the

metastatic tumors in cervical lymph nodes is significant as it

suggests that the Müller glial cells may indeed derive from

tumor cells. This population was, however, a minor com-

ponent and not present in all tumors.

Overall, these data show that, although they progress at

different rates, the retinoblastomas arising in Rb/p107 DKO

and Rb/p130 DKO animals share many characteristics,

including site of origin, overall histological appearance and

routes to invasion and metastasis.

ROMA analyses of murine retinoblastomas

Although combined mutation in Rb and either p107 or p130

produced retinoblastomas at high frequency, the tumors were

focal and, presumably, clonal. Thus, it is likely that additional

genetic events contribute to tumor progression. To begin to

catalog these changes, we utilized ROMA, a form of array

CGH that uses PCR-generated genome representation to

measure genomic DNA copy number alterations (Lucito

et al, 2003). To maximize the chances of finding clonal

genomic changes, we focused on metastatic tumors isolated

from Rb/p130 DKO mice; six tumors were tested initially. As

summarized in Table I, recurrent changes were identified in

this tumor collection. For example, whole chromosome gains

were frequently observed for chromosomes 1 and 12. These

chromosomes may harbor one or multiple genes that con-

tribute to tumorigenesis when expression is increased. More

informatively, we also found focal regions of high-level

amplification in a subset of tumors (Table I).

N-myc amplification in a subset of murine

retinoblastomas

In our initial sampling of six tumors, we observed some focal

amplifications, including two amplicons in tumor 9806 at

12qA1.1 and 12qF2 (Table I, and Figure 5A). Interestingly, the

N-myc oncogene resides on 12qA1.1, and this gene has been

reported to be amplified in approximately 10% of human

retinoblastomas (Lee et al, 1984; Squire et al, 1986; Mairal

et al, 2000; Lillington et al, 2002). To confirm the results from

ROMA as well as to examine additional tumors, we per-

formed Southern blot analyses of tumor DNA using N-myc

as a probe. As shown in Figure 5, among metastatic tumors in

the Rb/p130 DKO model, N-myc was found amplified in 3/16

samples, ranging from 6- to 17-fold (Figure 5B). N-myc

amplifications may be more frequent in metastases in this

model, as Southern blot analyses of 17 primary Rb/p130 DKO

tumors did not reveal amplification of the gene (data not

shown). Of note, we did not have the matched primary

tumors for those metastases that did exhibit N-myc amplifica-

tion, and, therefore, we could not assess whether the ampli-

fication was specific to the metastases. Interestingly, from a

series of 21 primary retinoblastomas from the Rb/p107 DKO

model, two tumors exhibited N-myc amplifcation (Figure 5C).

A metastasis from one of these tumors (tumor 4459;

Figure 5C) also exhibited amplification. N-myc amplification

was not detected in seven other metastatic Rb/p107 DKO

tumors (data not shown). Taken together, we observed N-myc

amplification in 2/28 Rb/p107 DKO retinoblastomas.

To determine whether N-myc was expressed in retinoblas-

tomas with gene amplification, we performed Northern blot

analyses. In metastatic Rb/p130 DKO tumors, N-myc was

found highly expressed in the samples that exhibited genomic

amplification (Figure 5D). The primary tumor J643 from the

Rb/p107 DKO model, which exhibited a 400-fold gene ampli-

fication, expressed extremely high levels of N-myc transcript

(Figure 5D). Quantitative RT–PCR confirmed that N-myc was

overexpressed in tumors with genomic amplification, and

demonstrated clearly detectable, but lower levels of N-myc

in samples without amplification (Supplementary Figure 4).

Interestingly, C-myc and L-myc were also found to be ex-

pressed in murine retinoblastomas (Supplementary Figure 5).

Although our initial observation of a 1.9 Mb amplicon in

tumor 9806 implicated N-myc in selection for cells with DNA

copy number increase in 12qA1.1, it remained a possibility

that other co-amplified genes near N-myc were also selected

for during tumor progression. To delineate the size of the

N-myc amplicon and determine the minimal region amplified,

we performed ROMA analyses on two additional samples

positive for N-myc amplification by Southern blot. The N-myc

amplicon from tumor Drb13 was 451 kb. Tumor 4836 exhib-

ited a 3.3 Mb amplicon. Along with the 1.9 Mb amplicon from

tumor 9806, the minimally overlapping region was only

136 kb in length (coordinates 12 937 244–13 073187, UCSC

Table I ROMA analysis of chromosomal changes in metastatic
Rb/p130DKO retinoblastomas

Tumor ID Gain Amplification Loss

9806 1, 12qA1.1qter 12qA1.1,
12qF2

12qa1.1,
11qA1

7217 12
4834 10qA4qter 2, 12, 18,

9qA5.3qter,
4qB3qter

4726 1
4848 1, 12, 19
4827 12qF2, 12qC1
4836a,b 1 12qA1.1, 3qf3,

12qF1-2
3qa3,
17qe2,
17qe1.1

drb13a 12 12qA1.1

Amplicons at 12qA1.1 harboring N-myc gene are in bold.
aSamples selected for ROMA analysis based on the presence of
N-myc amplification detected by Southern blot.
bTail DNA used for ROMA hybridization was not from the tumor-
containing mouse; thus, polymorphisms could contribute to focal
changes.
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genome browser May 2004 build) (Figure 5E). Within

this 136 kb region, N-myc is the only known gene present.

This analysis strongly supports the candidacy of N-myc

as the specific target of gene amplification in the murine

retinoblastomas.

Discussion

Here, we describe novel mouse models of retinoblastoma that

recapitulate important aspects of human retinoblastoma,

both histologically and genetically. Our data address the
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earliest stages of tumor development and implicate regionally

restricted cells in tumor initiation. The fact that the tumors in

these models can progress to the point of brain involvement

and spread to local lymph nodes is also extremely important

as such advanced tumors in humans are associated with very

low survival (Jubran et al, 2004). Thus, these models may

prove useful in testing therapies to improve the treatment of

patients with advanced retinoblastoma. The amplification of

the N-myc oncogene in a subset of tumors from the Rb/p130

DKO and Rb/p107 DKO mice provides further evidence that

these models mirror genetic aspects of human retinoblastoma

development.

The consistent and rapid tumorigenesis observed in the

Rb/p130 DKO model makes it particularly well suited for

preclinical testing of anticancer agents and chemoprevention

studies. Importantly, unlike several other models of retino-

blastoma, this model does not rely on mutation or inactiva-

tion of p53 (Windle et al, 1990; Howes et al, 1994; Zhang

et al, 2004b; Dyer et al, 2005). In fact, p53 loss is rarely

observed in human retinoblastomas (Gallie et al, 1999)

although there is recent evidence that an upstream regulator

of p53, MDMX, is amplified in human retinoblastomas

(Laurie et al, 2006). p53 can be activated in human retino-

blastoma cells (Laurie et al, 2006) and the p53 pathway

clearly influences treatment outcomes in many cancers

(Soussi and Beroud, 2001). Thus, the maintenance of a

potentially intact p53 pathway in the Rb/p130 DKO model

may yield more accurate responses to therapy. Also, p53

mutation might broaden the cell types that are capable of

transformation following disruption of the pRB pathway

function and thus complicate the identification of the cell of

origin for human retinoblastoma.

Retinoblastoma origins

Retinoblastomas in the Rb/p130 DKO model arose from a

specific area in the extreme retina periphery with complete

penetrance in Rb/p130 DKO animals by 1 month of age.

The regional specificity and high tumor frequency was

particularly surprising owing to the degeneration of Rb and

p130 mutant cells away from this part of the retinal region

(see Figure 2). These observations provide insights important

for future identification of the tumor cell of origin. We

observed extensive heterogeneity in expression of cell-type-

specific markers in tumors. The heterogeneity in marker

expression, including positive staining for syntaxin, calretinin

and calbindin as well as some GFAP positivity, suggests that

the cell of origin may be a multipotent cell capable of

producing amacrine and horizontal cells and potentially

Müller cells. Our data are also consistent with a cell of origin

that exhibits restricted potential. For example, some progeni-

tor cells are biased toward horizontal and amacrine fates

(Alexiades and Cepko, 1997). Interestingly, studies from fish

and amphibians have implicated the ciliary marginal zone at

the extreme periphery of retina as a location for adult stem

cells (Reh and Fischer, 2001). In mice and humans, cells

with stem cell properties have been isolated from the pig-

mented cell layer of the ciliary body, a peripheral structure

adjacent to the neural retina (Tropepe et al, 2000). Future

work will differentiate between stem, progenitor and transi-

tion cells as the target for transformation in this mouse model

of retinoblastoma.

Localization of retinoblastomas to the extreme periphery

of retina has not been described in other models of the

disease. Rb/p107 chimeras were reported to exhibit dysplastic

retinas by E17.5, and tumors were proposed to arise

from cells transformed at this time (Robanus-Maandag

et al, 1998). We also previously observed severe disorganiza-

tion throughout the retina at E18.5 in 100% of animals

lacking Rb and p107 (MacPherson et al, 2004). However,

owing to the fact that Rb/p107 DKO mice develop retinoblas-

tomas at a lower frequency than Rb/p130 DKO mice, we

would suggest that this phenotype might be unlinked to

tumor initiation. Chen et al (2004) noted that proliferation

stopped by PND30 in Rb/p107 DKOs. In contrast, our BrdU-

labeling studies indicate that although the vast majority

of Rb/p107 DKO cells exit the cell cycle by PND31, some

cells concentrated at the extreme periphery of retina continue

to proliferate (Supplementary Figure 3B and C). Our finding

of lesions with histological characteristics of retinoblastoma

specifically in this region in a subset of Rb/p107 DKO animals

at PND31 and PND60 implicates a peripheral cell of origin

in the Rb/p107 DKO model as well as in the Rb/p130 DKO

model.

We note that in humans, retinoblastomas can arise

from cells in central or peripheral retina. Interestingly, a

strong correlation between age at tumor detection and

retinal topography has been reported in human bilateral

retinoblastoma patients, with early retinoblastomas more

frequently presenting in central retina and later retinoblasto-

mas arising in the periphery of retina (Abramson and

Gombos, 1996). Other studies have reported peripheral loca-

tions to new retinoblastomas that arise after treatment for

initial retinoblastomas (Salmonsen et al, 1979; Shields et al,

2003). Thus, the murine models we describe may more

resemble a subset of human retinoblastomas that arise from

peripheral retina.

Figure 5 N-Myc amplification and overexpression in retinoblastomas. (A) ROMA moving median plot showing signal intensity plotted for the
whole genome comparing tail (Cy3 labeled) and lymph node metastasis (Cy5 labeled) DNA from tumor 9806. Specific changes from this tumor
detailed in Table I include gains of chromosomes 1 and 12, as well as two focal chromosome 12 amplicons. (B) Southern analysis of DNA from
lymph node Rb/p130 DKO retinoblastoma metastases or normal tail DNA. DNA was digested with EcoR1 and probed with an N-myc cDNA
fragment. Following N-myc detection, blot was rehybridized to an LR8 probe to control for loading. Fold amplification as assessed by
phosphorimager analysis of the same blot is shown. Samples with amplification are highlighted in bold. (C) Southern analysis of Rb/p107 DKO
primary (pri) or metastatic (met) retinoblastomas. Hybridization with LR8 probe was used as a loading control. Samples with amplification are
highlighted in bold. (D) Northern analysis of N-myc expression in retinoblastomas. Samples with N-myc genomic amplification are highlighted
in bold. N-myc levels were extremely high in Rb/p107 DKO tumor J643. A lower exposure of the right side of this blot containing J643 is shown
(right). Quantification of N-myc relative to ARPP P0 loading control shows highest expression in N-myc-amplified samples. (E) A core amplified
region of 136 kb in murine retinoblastomas. The 12qA1.1 amplified regions of three murine retinoblastomas (9806, 4836 and drb13) are shown.
Shaded area (136 kb in size; 12 937 244–13 073187 UCSC May/2004 build) indicates the genomic area that is amplified in all three tumors.
N-myc is the only RefSeq gene inside the core amplicon.
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Rb/p107 versus Rb/p130 DKO retinoblastoma models

p107 and p130 have overlapping functions, but significant

differences also exist (Classon and Dyson, 2001). p130 is

more highly expressed in postmitotic cells and postnatal

stages of retinal development whereas p107 exhibits its high-

est expression in cycling cells and in embryonic stages of

retinal development (Hurford et al, 1997; Spencer et al, 2005;

Donovan et al, 2006). Consistent with these expression

patterns, at E18 (a time of extensive proliferation in the

retina), the combined loss of Rb and p130 is phenotypically

similar to loss of Rb alone. In contrast, the combined loss

of Rb and p107 at this stage led to a much more severe

phenotype (MacPherson et al, 2004). Moreover, chimeras

composed of cells mutant for Rb and p130 or Rb and p107

developed a range of novel tumors, but the tumor spectrum

was different in the two settings (Dannenberg et al, 2004). In

the present study, we directly compared the effects of the

absence of p130 and p107 function on retinoblastoma devel-

opment in the context of Rb mutation. We found that p130 is

a much stronger suppressor of retinoblastoma development

than p107, with 100% of Rb/p130 DKO animals developing

tumors rapidly. The kinetics of tumor development suggests

that loss of Rb and p107 is not sufficient even for an early

retinoblastoma to form. It is possible that Rb/p107 DKO cells

must abrogate a block to tumorigenesis caused by the pre-

sence of the remaining pocket protein family member, p130,

in order to progress further.

Although the kinetics of tumorigenesis was different

between Rb/p130 and Rb/p107 DKO models, the retino-

blastomas that ultimately arose in these models were similar

histologically and with respect to their site of origin. Tumors

in both models also underwent metastatic progression to the

brain and cervical lymph nodes. Strong similarities have also

been reported for earlier models of retinoblastomas of these

different genotypes (Robanus-Maandag et al, 1998; Chen

et al, 2004; Dannenberg et al, 2004; MacPherson et al,

2004). Finally, the fact that both Rb/p107 and Rb/p130 DKO

retinoblastomas exhibit N-myc gene amplification supports

common mechanisms of cell transformation.

ROMA analysis

Based on the focal nature of tumor formation and the

variability in the kinetics of tumor progression, we suspected

that mutation of Rb family members was not sufficient for

tumorigenesis. Therefore, to begin to characterize the tumors

for additional genetic alterations, we used ROMA analysis

(Lucito et al, 2003). We found that chromosome 12 and

chromosome 1 were increased in copy number, each in four

of eight of the total tumors examined (Table I). CGH analyses

of human retinoblastoma have reported frequent chromoso-

mal gains in 6p and 1q (Mairal et al, 2000; Chen et al, 2001;

Lillington et al, 2003; Zielinski et al, 2005). The human 1q31–

32 region undergoes chromosomal gain in over 50% of

human retinoblastomas and is syntenic to murine chromo-

some 1. Possible candidate genes driving selection for 1q31–

1q32 alterations, such as KIF14A (Corson et al, 2005) and

MDMX (Laurie et al, 2006), also exhibit copy number gain in

murine retinoblastomas, suggesting that some selective

events in murine and human retinoblastomas may be iden-

tical. Larger studies comparing secondary alterations in

human and murine retinoblastoma will help to identify the

genes that drive selection for chromosomal alterations in

human retinoblastoma.

We focused our analysis of candidates from our ROMA

data on the 12qA1.1 N-myc-containing amplicon. N-myc is

highly amplified in neuroblastomas and amplification is

associated with tumor progression (Brodeur et al, 1984).

N-myc is also amplified in human retinoblastoma, along

with many other genes on 2p. In our studies, high-resolution

DNA copy number analysis pinpointed a common region of

amplification consisting of just 136 kb. Within this region,

N-myc is the only known gene present. N-myc has been

implicated in many aspects of tumor biology and the specific

reason for selection of cells with amplified N-myc in retino-

blastoma progression is not known. Thus, the critical path-

ways downstream of N-myc in this system will be important

to elucidate. N-myc amplification is likely not critical for the

earliest steps in tumorigenesis in our Rb/p130 DKOs as 100%

of animals exhibit bilateral lesions early. We observed these

amplifications in metastatic tumors lacking Rb and p130 as

well as in primary tumors lacking Rb and p107. It is possible

that the loss of Rb and p107 is not sufficient even for early

tumors, and N-myc amplification may help these cells over-

come a proliferative block. Alternatively, N-myc may have

a primary role later in tumor progression. Although N-myc

amplification occurs only in a subset of retinoblastomas, it is

possible that pathways downstream of N-myc may be acti-

vated following other secondary alterations that occur in

retinoblastomas. Also, small changes in N-myc dosage

through low-level chromosome 12 gain may confer a selec-

tive advantage upon tumor cells. A large-scale analysis of

early and late lesions in both Rb/p107 and Rb/p130 DKO

models will help to determine the nature and order of

changes that occur as retinoblastoma progresses in the

mouse. These data will undoubtedly aid in the understanding

of the molecular genetic events that contribute to retinoblas-

toma development in humans.

Materials and methods

Mice
All mouse protocols were approved by animal care committees at
the Massachusetts Institute of Technology and the Carnegie
Institution. The generation of p107�/� (Lee et al, 1996) and
Rblox/lox (Sage et al, 2003) animals has been described. Pax6
a-enhancer Cre mice (Marquardt et al, 2001) were bred with Rblox/lox;
p130�/� or Rblox/lox; p107�/� animals. The p130 mutant allele
used in this study is a new allele with a deletion of p130 exon 2
obtained after Cre-mediated recombination of a conditional allele
where p130 exon 2 is flanked by loxP sites (Tyler Jacks and Julien
Sage, manuscript in preparation). We used this new allele instead of
the previously described p130 null allele (Cobrinik et al, 1996)
because this deletion of exon 2 minimizes the chances of alternative
splicing events that may produce truncated forms of p130. Mice
were maintained on a mixed C57Bl6; 129SvJ; FvB/N background.
For full necropsy analysis, inner organs were fixed in 3.7%
formaldehyde in PBS, whereas bones and the skull were fixed in
Bouin’s fixative before processing through an ethanol series and
xylene to paraffin. Methods for indirect ophthalmolscopy and
fundus photography are provided in Supplementary Data.

Immunohistochemistry and beta-galactosidase
histochemistry
Eyes were fixed in Bouin’s fixative or 3.7% formaldehyde in PBS
overnight before being processed through to paraffin. Retina
analysis was performed on 4mm thick paraffin-embedded sections
and immunostaining was performed on horizontal sections at the
level of the optic nerve head. Immunohistochemistry and BrdU
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analysis were performed essentially as described (MacPherson et al,
2003). The following antibodies were used: syntaxin (Sigma),
calretinin (SWANT), calbindin (Chemicon), M-opsin (C Craft and
X Xhu, UCLA), PKC-a (Pharmingen), GLAST (Abcam), active
caspase3 (Cell Signaling), Tuj1 (Covance). Beta-galactosidase
histochemistry was performed as described (MacPherson et al,
2004).

Quantitative PCR and Southern and Northern analyses
Methods for real-time RT–PCR and Northern and Southern blot
analyses are included in Supplementary Data.

ROMA
Genomic DNA from murine retinoblastomas and matching tails was
prepared using the conventional protease-K method, followed by
extensive phenol and phenol/chloroform extraction. BglII-derived
genome representations were labeled with Cy5 (tumor) and Cy3
(tail/matched normal) by random - priming. The hybridizations to
84k oligonucleotide-based ROMA arrays (Nimblegen Systems,
Reykjavic, Iceland) were carried out essentially as described (Lucito
et al, 2003). The oligonucleotide sequence design of the murine
ROMA arrays is described elsewhere (Lakshmi et al, 2006). All array
images were acquired with an Axon GenePix 4000B scanner. The
raw array data were globally normalized and a moving window of

five data points was used to smoothen the raw data by assigning the
median value of the moving window to each central data point.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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