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The sequencing of � amyloid protein (A�) in 1984 led to the
formulation of the “amyloid hypothesis” of Alzheimer’s disease
(AD) (Glenner and Wong, 1984). The hypothesis proposed that
accumulation of A� is responsible for AD-related pathology, in-
cluding A� deposits, neurofibrillary tangles, and eventual neuro-
nal cell death (Tanzi and Bertram, 2005). Within a few years, four
groups cloned the amyloid precursor protein (APP) gene from
which A� is processed (Goldgaber et al., 1987; Kang et al., 1987;
Robakis et al., 1987; Tanzi et al., 1987). Linkage analysis mapped
the gene to chromosome 21, and mutations in APP were found
that led to the inappropriate processing of APP into the A�1– 42

peptide (Goate et al., 1991; Mullan et al., 1992) (for review, see
Tanzi and Bertram, 2005). However, these mutations are respon-
sible for only a small fraction of the early-onset familial AD, and
the search began for other genes that might also influence the
processing of A�. Several novel mutations were identified in the
presenilins (Levy-Lahad et al., 1995; Rogaev et al., 1995; Sher-
rington et al., 1995), and apolipoprotein E4 was identified as a
major risk factor for the most frequent form of AD (Strittmatter
et al., 1993; Mahley et al., 2006).

Two models have emerged to explain the etiology of AD. The
first model, mentioned above, proposes that fibrillary A� depos-
its are responsible for the eventual neuronal degeneration
(Selkoe, 1991; Hardy and Higgins, 1992). A second more recent
model suggests that soluble A� oligomers disrupt glutamatergic
synaptic function, which in turn leads to the characteristic cog-
nitive deficits (Lambert et al., 1998; Hsia et al., 1999; Klein et al.,
2001; Hardy and Selkoe, 2002; Klein, 2002; Kamenetz et al., 2003;
Walsh and Selkoe, 2004).

One difficulty with the original amyloid hypothesis is the fact
that the temporal patterns of amyloid deposits do not correlate

well with the cognitive deficits in affected patients (Katzman et
al., 1988). In fact, the best correlations with cognitive deficits are
the loss of synaptic structure and function (Terry et al., 1991).
Synaptic plasticity [e.g., long-term potentiation (LTP)] is im-
paired before A� deposits are detected in mouse models of AD
(Hsia et al., 1999; Larson et al., 1999). In addition, soluble A�
oligomers selectively block LTP (Walsh et al., 2002) and acutely
disrupt cognitive function after infusion into the CNS (Cleary et
al., 2005; Lesne et al., 2006). They also bind with a punctate
pattern to excitatory pyramidal neurons but not to GABAergic
neurons (Lacor et al., 2004, 2007) and lead to synaptic loss (Hsieh
et al., 2006; Shankar et al., 2007). Together, these results suggest
that impairment in synaptic function is an early event in the
pathogenesis of AD. Uncovering the mechanisms whereby A�
oligomers induce synaptic deficits is still at an early stage, and
currently there is no consensus on the precise molecular path-
ways involved. A number of intracellular signaling pathways have
been implicated in A�-induced synaptic dysfunction, and differ-
ent sources or assembly states of A� oligomers may have different
effects on synaptic function. Moreover, the relative involvements
of intracellular and extracellular A� oligomers remain to be de-
fined.

Striatal-enriched tyrosine phosphatase and glutamate
receptor trafficking
The role of A� in synaptic dysfunction was the subject of a mini-
symposium at the 37th Annual Meeting of the Society for Neu-
roscience. The first presentation by Deepa Venkitaramani dis-
cussed the role of striatal-enriched tyrosine phosphatase (STEP)
in regulating glutamate receptor trafficking. STEP normally op-
poses the development of synaptic plasticity through its ability to
dephosphorylate regulatory tyrosine residues on key signaling
molecules (Lombroso et al., 1991, 1993) (Fig. 1). Thus, the de-
phosphorylation by STEP of extracellular signal-regulated kinase
1/2 (ERK1/2) and Fyn leads to their inactivation, whereas de-
phosphorylation of the NR2B subunit of the NMDA receptor at
Tyr 1472 results in endocytosis of the receptor complex (Nguyen et
al., 2002; Paul et al., 2003; Snyder et al., 2005). A� was recently
shown to activate STEP, which in turn dephosphorylates NR2B
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(Snyder et al., 2005). Moreover, STEP also inactivates Fyn, a ty-
rosine kinase that phosphorylates NR2B at Tyr 1472. Phosphory-
lation at that site promotes exocytosis of the NMDA receptor
complex (Hallett et al., 2006). Thus, STEP decreases the surface
expression of NMDA receptors through two mechanisms (Sny-
der et al., 2005; Braithwaite et al., 2006). These studies were done
with synthetic or oligomeric A� secreted by cultured cells, and,
currently, experiments are underway to determine whether puri-
fied higher-molecular-weight oligomers have varying synaptic
effects (see below). A� was also shown to lead to the endocytosis
of AMPA receptors (Almeida et al., 2005; Hsieh et al., 2006).

These results have led to the hypothesis that reducing STEP
levels may increase glutamate receptors at surface membrane.
Data were presented from STEP knock-out (KO) mice in support
of this hypothesis, because basal phosphorylation levels of
ERK1/2 and their downstream substrates are upregulated in the
KO mice. Moreover, these mice have increased surface expres-
sion of glutamate receptors (both AMPA and NMDA). The re-
sults raise the intriguing possibility that reducing STEP levels may
help alleviate some of the cognitive deficits caused by the synaptic
actions of A�.

� Amyloid and Fyn in neuronal network dysfunction
Jeannie Chin then discussed the role of Fyn kinase and related
pathways in sensitizing neurons to A� (Fig. 1B). Transgenic mice
expressing moderate levels of human APP/A� (hAPP–J9) exhibit
a relatively subtle AD-like phenotype. In contrast, overexpression
of Fyn and A� in FYN/hAPP–J9 double-transgenic mice results
in severe neuronal and cognitive impairments similar to those
otherwise seen only in hAPP mice with much higher levels of A�
production (hAPP–J20 mice) (Palop et al., 2003; Chin et al., 2004,
2005; Palop et al., 2005). In addition, ablation of Fyn prevents
several aspects of A�-induced neurotoxicity (Lambert et al.,
1998; Chin et al., 2004). These findings indicate that A� and Fyn
may act synergistically in vivo.

Fyn increases NMDA receptor-mediated currents, modulates
release of calcium from intracellular stores, and enhances synap-
tic transmission (Kojima et al., 1998; Lu et al., 1999; Cui et al.,
2004; Salter and Kalia, 2004) and hence may cooperate with A� to
sensitize neurons to overexcitation. Consistent with this hypoth-
esis, recent studies from Lennart Mucke’s laboratory demon-
strated that both hAPP–J20 single transgenic mice and FYN/
hAPP–J9 double transgenic mice exhibit spontaneous
nonconvulsive seizure activity in cortical and hippocampal net-
works and increased seizure severity after inhibition of GABAA

receptors (Palop et al., 2007). This increased seizure susceptibility
is associated with prominent sprouting of inhibitory circuit ele-
ments and depletion of calcium- and activity-dependent proteins
in the dentate gyrus (Palop et al., 2007). These cellular alterations
may serve as compensatory inhibitory mechanisms against exci-
totoxicity (Vezzani et al., 1999; Palop et al., 2007). Notably, levels
of active Fyn in the dentate gyrus are lower in hAPP–J20 mice
than in controls. Moreover, levels of STEP, the phosphatase that
inactivates Fyn, are strikingly increased, suggesting that suppres-
sion of Fyn activity may be a protective response in this brain
region. Together, these studies suggest that A� and Fyn synergize
to induce aberrant increases in neuronal activity, triggering in-
hibitory mechanisms that limit network overexcitation but that
may also diminish the capacity for synaptic plasticity.

It is important to note that hAPP–J20 mice also have re-
duced levels of AMPA receptor subunits and LTP impairments
in the dentate gyrus (Palop et al., 2007). Thus, aberrant in-
creases in overall network activity coexist with impairments in
glutamatergic transmission. The relationship between these
two phenomena remains to be defined, but there are several
possibilities that could help explain their coexistence. For ex-
ample, depression of glutamatergic transmission could serve
as a compensatory response or scaling mechanism triggered by
overexcitation, or brain regions that control neuronal excit-
ability on a global scale could be particularly susceptible to this
A�-induced depression.

� Amyloid and Down syndrome
William Netzer next discussed the role of A� in Down syndrome
(DS). DS is the most common, genetic form of mental retarda-
tion (Epstein, 1990) and is typically associated with AD pathology
by the fourth decade (Schupf and Sergievsky, 2002). DS results
from trisomy of chromosome 21, which involves triplication of
�100 genes, including APP and other genes known to affect APP
(Deutsch et al., 2003; Antonarakis et al., 2004). APP levels are
elevated fourfold to fivefold compared with controls (Beyreuther
et al., 1993). APP triplication predicts a 1.5-fold increase in APP
levels and therefore does not explain the magnitude of this eleva-
tion. Additional factors may include triplication of the transcrip-
tion factor ETS2, whereas other triplicated genes in DS, such as

Figure 1. A, Activation of STEP leads to NMDA receptor endocytosis. A� binding to the �7
nicotinic acetylcholine receptor results in Ca 2� influx, calcineurin activation, and the dephos-
phorylation and activation of STEP. A trimer is shown binding to the receptor, although it is not
clear which of the higher molecular weight oligomers is involved. STEP in turn dephosphory-
lates a regulatory tyrosine (Y 1472) on the NR2B subunit of the NMDA receptor, as well as de-
phosphorylates and inactivates Fyn, the tyrosine kinase that phosphorylates NR2B-Y 1472. STEP
thus uses two distinct pathways to promote NMDA receptor internalization. B summarizes
findings that suggest that a net increase in aberrant activity triggers compensatory inhibitory
mechanisms to limit overexcitation but diminish the capacity for synaptic plasticity and lead to
network dysfunction. This model proposes that Fyn kinase exacerbates, whereas tau reduction
ameliorates, A�-induced aberrant neuronal activity. �7nAChR, �7-Nicotinic acetylcholine re-
ceptor; AMPAR, AMPA receptor.
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S100� and superoxide dismutase, have been implicated in amyloid
deposition and metabolism, as has increased BACE1 (�-site APP-
cleaving enzyme) maturation and activity (Griffin et al., 1998;
Wolvetang et al., 2003; Lott et al., 2006).

Several mouse models of DS have been established. Of these,
the Ts65Dn mouse is considered the gold standard because it
displays many phenotypic aspects of human DS (Davisson et al.,
1993). Ts65Dn is the result of a partial trisomy of mouse chro-
mosome 16, containing all the genes within the human DS “crit-
ical region.” The mice display pronounced behavioral and cogni-
tive deficits and disruption of hippocampal LTP (Escorihuela et
al., 1995; Holtzman et al., 1996; Siarey et al., 1997; Kleschevnikov
et al., 2004).

The Ts65Dn mouse also develops a cholinergic pathology
at or slightly before 6 months of age (Holtzman et al., 1991;
Hunter et al., 2003). However, because the behavioral and
electrophysiological deficits in these mice are present at 2– 4
months, the group addressed the possibility that elevated A�
levels contribute to the human DS phenotype at all ages, and
these were detected in Ts65Dn brains compared with litter-
mate controls. Behavioral deficits (Morris water maze) were
consistent with previous reports (Escorihuela et al., 1995), and
preliminary data suggest that some of these deficits can be
rescued by lowering A� levels.

Intraneuronal � amyloid in synaptic dysfunction
Gunnar Gouras then presented how intraneuronal accumulation
of A� peptides contributes to functional alterations at synapses.
Numerous laboratories have reported the intraneuronal accu-
mulation of A� in transgenic mouse models of AD as well as
human AD and DS (Gouras et al., 2005; LaFerla et al., 2007).
Intraneuronal A� accumulation correlates with the onset of syn-
aptic and behavioral abnormalities in transgenic models of AD
(Oddo et al., 2003; Echeverria et al., 2004; Billings et al., 2005;
Knobloch et al., 2007). Marked intraneuronal accumulation of
A� was associated with early ultrastructural pathology, especially
within distal processes and synaptic compartments (Takahashi et
al., 2004).

Cultured neurons derived from AD transgenic mice provide a
cellular model to study the cellular mechanism(s) whereby intra-
neuronal A� accumulation leads to synaptic abnormalities.
Transgenic APP mutant compared with wild-type neurons de-
velop progressive AD-like alterations in presynaptic and postsyn-
aptic proteins, including early reductions in postsynaptic
density-95 and glutamate receptors at synapses. These synaptic
alterations can be prevented by reduction of A� by treatment
with �-secretase inhibitor or A� antibody (Almeida et al., 2005;
Snyder et al., 2005; Tampellini et al., 2007). Evidence supports a
dynamic relationship between the extracellular and intracellular
pools of A� that remains poorly defined and may be critical in
A�-induced synaptic dysfunction (Glabe, 2001; Oddo et al.,
2006).

Role of � amyloid *56 in memory impairment
Sylvain Lesne next discussed the function of the soluble 56 kDa
amyloid-� oligomer (A�*56) in the aging brain of Tg2576 mice
(Fig. 2A). Although the effects of synthetic soluble A� oligomers
and A� oligomers secreted by cultured cells include impairment
of neuronal survival (Lambert et al., 1998; Kayed et al., 2003),
inhibition of LTP (Walsh et al., 2002), disruption of behavior
(Cleary et al., 2005), and endocytosis of NMDA receptors (Sny-
der et al., 2005), those of endogenous soluble A� assemblies have
only recently been studied (Lesne et al., 2006). Data were pre-

sented showing correlations between A�*56 and spatial memory
impairment at an age when there are no amyloid plaques, neuro-
nal loss, or synaptic loss. The disruptive effects of A�*56 on cog-
nitive function in healthy rats were also shown.

Because glutamate receptors are critical elements in synaptic
plasticity and memory, studies are underway to explore the pos-
sibility that A�*56 impairs memory by interacting directly with
glutamate receptors. Preliminary data suggest that A�*56 coim-
munoprecipitates with NR1 and NR2A subunits but not with
AMPA receptor GluR1, GluR2 subunits, or the �7-nicotinic ace-
tylcholine receptor. These results raise the possibility that A�*56
could physically interact with NMDA receptors at plasma mem-
branes to alter neuronal function well before neuronal death oc-
curs and might interfere with memory function in the preclinical
phases of AD.

The levels of A�-derived diffusible ligands (ADDLs) are
significantly higher in the spinal fluid and brain tissue of Alz-
heimer’s disease patients compared with control subjects
(Gong et al., 2003; Georganopoulou et al., 2005). Studies of
ADDLs in the prodromal phase of AD, also known as mild
cognitive impairment (MCI), have not been reported. In
Tg2576 mice, ADDLs increase throughout life, in contrast to
A�*56, whose levels remain stable. Therefore, A�*56 and AD-
DLs may represent different A� species. Experiments have
begun to test the hypothesis that A�*56 levels increase before
the diagnosis of AD by measuring A�*56 levels in brain tissue

Figure 2. A, Potential mechanism of action of A�*56 at neuronal surface. Monomeric forms
of A� assemble into progressively larger oligomers, and these are detected in both intracellular
endosomes and the extracellular space. One of the larger oligomers (A�*56) has been shown to
disrupt learning in healthy rats. It is thought to disrupt synaptic NMDA and AMPA receptor
trafficking. B, Recent work suggests that A� may act as part of a negative feedback signaling
pathway. Enhanced synaptic activity leads to increased APP processing to A�, which leads to
synaptic AMPA receptor endocytosis and reduced synaptic activity. LMW, Low molecular
weight; HMW, high molecular weight; �7nAChR, �7-nicotinic acetylcholine receptor; AMPAR,
AMPA receptor; NMDAR, NMDA receptor; mGluR, metabotropic glutamate receptor.
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from the Religious Orders Study of individuals with MCI, as
well as noncognitively impaired subjects and persons with
probable AD. Initial results are encouraging, showing compa-
rable elevations of A�*56 in MCI and probable AD compared
with lower levels in unimpaired subjects.

� amyloid and neuronal activity
Roberto Malinow reviewed studies that have focused on two
questions: (1) does neuronal activity modulate the formation of
A�, and (2) does A� in turn modulate neuronal activity? His
laboratory has shown that neuronal activity increases the forma-
tion of A� and that increased A� leads to depression of excitatory
synaptic transmission (Kamenetz et al., 2003) (Fig. 2B). These
two findings have led to the hypothesis that A� may normally
serve as a negative feedback signal that maintains neuronal activ-
ity within a normal dynamic range: too much neuronal activity
leads to formation of more A�, which depresses excitatory syn-
apses and reduces neuronal activity. Recent in vivo studies on
wild-type animals (Cirrito et al., 2005) and in vitro studies on
wild-type (Ting et al., 2007) and knock-out (Priller et al., 2006)
animals support this view.

More recently, the laboratory examined the mechanisms by
which A� depresses excitatory synapses (Hsieh et al., 2006).
Several parallels exist between long-term depression (LTD)
and A�-induced synaptic changes. A� overexpression de-
creases spine density, partially occludes metabotropic gluta-
mate receptor-dependent LTD, decreases synaptic AMPA re-
ceptor number, and requires second-messenger pathways
implicated in LTD for its depressive effects. Expression of an
AMPA receptor mutant that prevents its LTD-driven endocy-
tosis blocks the morphological and synaptic depression in-
duced by A�. Furthermore, A� can drive phosphorylation of
AMPA receptor at a site important for AMPA receptor endo-
cytosis during LTD, and mimicking this AMPA receptor phos-
phorylation produces the morphological and synaptic depres-
sion induced by A�. Together, the results show that A�
generates structural and synaptic abnormalities via endocyto-
sis of AMPA receptors. Additional questions to be examined
include whether the release of presynaptic or postsynaptic A�
is responsible for the observed synaptic depression, whether
there is a difference between acute and chronic exposure to
elevated A� levels, and whether different A� oligomeric forms
lead to different synaptic effects.
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