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Background. Obtaining a complete phenotypic characterization of a freely moving organism is a difficult task, yet such
a description is desired in many neuroethological studies. Many metrics currently used in the literature to describe locomotor
and exploratory behavior are typically based on average quantities or subjectively chosen spatial and temporal thresholds. All
of these measures are relatively coarse-grained in the time domain. It is advantageous, however, to employ metrics based on
the entire trajectory that an organism takes while exploring its environment. Methodology/Principal Findings. To
characterize the locomotor behavior of Drosophila melanogaster, we used a video tracking system to record the trajectory of
a single fly walking in a circular open field arena. The fly was tracked for two hours. Here, we present techniques with which to
analyze the motion of the fly in this paradigm, and we discuss the methods of calculation. The measures we introduce are
based on spatial and temporal probability distributions and utilize the entire time-series trajectory of the fly, thus emphasizing
the dynamic nature of locomotor behavior. Marginal and joint probability distributions of speed, position, segment duration,
path curvature, and reorientation angle are examined and related to the observed behavior. Conclusions/Significance. The
measures discussed in this paper provide a detailed profile of the behavior of a single fly and highlight the interaction of the
fly with the environment. Such measures may serve as useful tools in any behavioral study in which the movement of a fly is an
important variable and can be incorporated easily into many setups, facilitating high-throughput phenotypic characterization.
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INTRODUCTION
Characterizing the locomotor behavior of animals is essential to

any study of the genotype-phenotype interaction. This is especially

true for Drosophila melanogaster—genetic models of complex

behaviors such as memory [1–4], drug addiction [5–7], and sleep

[8–11], for example, are all based on measures that depend upon

some observable movement of the flies. These observations

typically take the form of general activity measures, based on

the average speed of flies in some environment [6,12,13] or

a simple line-crossing assay [8–11,14,15] (see the review by Martin

[16] for a comprehensive discussion of locomotor studies in

Drosophila). Because these methods can measure relative activities

of populations, they lend themselves well to high-throughput

assays and have been essential in uncovering genes involved and

mechanisms behind some of these more complex behaviors.

The importance of locomotor activity, however, is often

overlooked in and of itself as an important characteristic of the

phenotype. Establishing a quantitative description of such

behavior can help overcome any anthropomorphic bias of the

investigator in inferring levels of fear, stress, anxiety, or attention.

For this, however, it is advantageous to define measures that take

into consideration the entire time series of movement of the fly—

the trajectory that the fly takes during a given behavioral test.

Because locomotor activity is a dynamic process, not only can

analysis of such a trajectory provide measures of activity, but it can

also shed light into the neurological and biochemical processes

involved as the behavior unfolds over time. Such a study of the

trajectory is best done in the Open Field, an environment which

serves to approximate how animals would move in a natural

setting.

Open-field behavior has been studied in mammals for some

time [17–20] and in flies under other contexts (such as Buridan’s

paradigm [12,21]), but has only recently been utilized as a valid

assay for determining fly locomotor behavior [6,7,13,16]. In this

paper, we supplement the current metrics present in the literature

for quantification of locomotor activity (see, for example, [18]

and[13]) by presenting methods and metrics for analyzing the

time-series trajectory of a fly walking in a circular, open-field

arena. As an example of these methods, we analyze the trajectory

of a single wild-type fly. While such single fly assays are open to the

criticism of being time-consuming and tedious, it should be

possible to improve throughput by studying multiple arenas at the

same time, and multi-fly generalizations are clearly possible,

though we will not address them in the current paper. Because

only a single fly is studied in this paper, it should be noted that the

results are not meant as generalizations of fly behavior. The

emphasis in this paper, rather, is on the methods used for analysis

of the trajectory.

The measures we introduce attempt to completely characterize

the trajectory of a fly in the experimental environment, and can

thus serve as the basis for a complete behavioral model of a walking

fly. Performing such an analysis on multiple flies can refine such

a model, and elucidate the individuality of phenotype under the

control of constant genotype. The methods presented here utilize
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the entire time series obtained from tracking the fly over a long

period of time, and can allow the experimenter to infer the

influence of the environment on the resulting behavior—a point

rarely considered in many behavioral assays.

METHODS

Setup
The experimental setup for observing a fly in the Open Field is

relatively straightforward, and is shown in Figure 1. A single fly was

placed in a circular arena 15 cm in diameter. A thin, transparent

plastic ceiling was placed over the arena so that the fly did not escape

during testing. Although this may influence the behavioral state, it

eliminates any need for physical alteration of the fly, such as wing-

clipping. The behavior of the fly was videotaped for a specified

length of time at a frame rate of 25 Hz (40 ms time step). This

sampling rate ensured that fast movements of the fly were sufficiently

captured and allowed for a fine-grained analysis of the trajectory, yet

was small enough for manageable file sizes. We have not yet

established the ideal frame rate to capture fly movements, but it

appears to be beneficial to go as high as 40 Hz. A region of interest in

the captured video of size 7206560 pixels was saved directly to

a computer for later analysis. For the example shown in this paper,

two hours of behavior were videotaped and analyzed.

Tracking
Following acquisition of the video, the position of the fly was

tracked in each frame. For this study, the tracking was performed

in the computing environment Matlab (http://www.mathworks.

com/products/matlab/) using FTrack, a suite of functions and

corresponding user interface written specifically for this research

by one of the authors (DV). FTrack is available by request from

the authors.

The tracking algorithm proceeds as follows [22]: In the videos

acquired with the setup described above, the fly was a single

ellipsoidal dot moving on a relatively constant background.

Therefore, it was sufficient to find the fly in a frame obtained by

subtracting the current frame I[n] from an averaged background

IB[n] and squaring the result

ID½n�~ I½n�{IB½n�ð Þ2,

where n is the current frame index. The background image is

calculated from a running average, following the rule

IB½nz1�~aIB½n�z(1{a)I½n�:

Here, 0.9,a,1 is a parameter that sets the (exponential) low pass

temporal filter effectively used to compute the background. To

further reduce false tracks, the area around the fly is excluded from

the update, which prevents a motionless fly from becoming part of

the background.

To determine the location of the fly, the pixel of maximum

intensity is found in each frame, and a subset image IDsub around

this pixel is extracted. The center of intensity of the subset image is

calculated and used to calculate the object’s x and y locations
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Here i and j correspond to row and column indices respectively; Lx

and Ly are the dimensions of the subset image (in pixels); and Imax
D

is the pixel of maximum intensity in the subset image. A caveat to

the method is finding the fly in the first frame (n = 1). For this,

a static background is calculated from a small number of initial

frames. We have found that at a frame rate of 25 Hz, 100 frames is

sufficient to calculate the background for a reasonably active fly.

Correcting for Camera Tilt
Although it is recommended to manually calibrate the orientation of

the camera during the setup of the experiment, it is difficult to

measure and completely eliminate any tilt that the camera plane may

have. Unfortunately, such a tilt causes slight errors in measurement

of positions and velocities from the video, since the video is capturing

events projected onto a titled (as opposed to a parallel) plane. In the

case of a circular arena, a tilt causes the arena to appear slightly

elliptical. The deviation from circularity is measured by the

eccentricity of the ellipse e~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{b2=a2

q
, where b is the length of

the semiminor axis of the ellipse and a is the length of the semimajor

axis. Thus, positions and velocities are stretched along the major axis

of the ellipse. This becomes apparent upon examination of the

spatial probability distribution in the case of a fly walking along the

boundary walls (refer to Fig. 2 below); in polar coordinates, the

location of the boundary will appear to oscillate around the arena

radius instead of maintaining a constant value (figure not shown).

Rotation of the camera confounds the issue.

Tilt and rotation of the camera can be corrected during post-

processing. It can be shown that the eccentricity e of the projected

ellipse and the angle of tilt Q of the camera plane are related by the

equation e = sin Q. Therefore, to correct the trajectory data, points

were selected manually around the arena boundary and an ellipse

was fit to these points. The eccentricity and orientation (rotation) y
of this ellipse were calculated and used to transform the data and

back to a horizontal plane. This was done through the trans-

formation equation
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The trajectory projected into the (x9,y9) plane was taken as the

transformed data. To confirm that the transformation was successful,

points were selected around the boundary of the transformed

Figure 1. Experimental setup for characterization of locomotor
behavior of Drosophila in the Open Field.
doi:10.1371/journal.pone.0001083.g001
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trajectory and an ellipse was again fit. The eccentricity of this ellipse

was zero, as to be expected for a circular arena.

Trajectory Smoothing and Velocity Calculation
Due to noise and errors in tracking that occur for numerous

reasons [22,23], it is advantageous to smooth the resulting

trajectory. This can be accomplished using standard moving-

window polynomial regression techniques [23–25]. For this study,

trajectories were smoothed using a running line regression with

a window of 5 data points (0.2 s) and a 1 point step size (0.04 s)

between windows. This step size corresponds to maximum overlap

of the smoothing windows. The line regression was performed

with the function ‘runline’ that is contained in the Chronux data

analysis software package (currently implemented as a Matlab

toolbox and available at http://www.chronux.org).

From smooth position trajectories, the velocity can then be

calculated. There are two methods by which to do this. First,

polynomial regression not only provides a smooth estimate of the

position, but also allows a direct estimate of the velocity. The

coefficient of the linear term of the local polynomial fit provides

the velocity at that time step. An alternative, yet somewhat

simpler, calculation of the velocity can be done by taking

a numerical derivative of the position trajectory; however, one

must ensure the trajectory has been properly smoothed if this

method is chosen—the derivative of noise is undefined and can

provide the researcher with meaningless velocity estimates. For

this paper, the latter method was used. In any case, one should

take care that both the position and velocity obtained after

smoothing is physically plausible and corresponds to the actual

movement seen in the video.

Histograms and Density estimates
The trajectory of the fly, regarded as a spatial stochastic process

x(t), would be fully characterized if the joint distributions

P(x(t1),x(t2),…,x(tn)) were specified for all choices of time points

(t1,t2,…,tn). Such probability functionals are widely used in

statistical physics. The most general such process cannot be easily

characterized, and one often resorts to simplified models such as

Gaussian stochastic processes or Levy laws. Neither is particularly

appropriate here: the position distributions are strongly non-

Gaussian due to the influence of the arena, and the speed

distributions are not consistent with Gaussian distributions.

Furthermore, the departure from Gaussian behavior cannot be

simply characterized by long tailed processes such as a Levy flight.

One approach would be to describe the trajectory using

a Langevin style equation, commonly used to describe random

walkers in statistical physics, and incorporate effects of the

environment through boundary conditions. This is not a particu-

larly useful approach, however, since the trajectories are smooth

and proceed in smoothly curved segments, punctuated by stops.

Instead, we adopt another tool from statistical physics for

characterizing processes by providing the joint distribution of the

position and velocity at a given time, P(x,v). This is a marginal

distribution of the full trajectory process, and therefore does not fully

characterize the trajectory. However, it provides a convenient

summary, and has the important advantage that it includes the

effects of the environment explicitly. A less refined characterization

would be to provide only the position distribution P(x), but it is

clearly of interest to simultaneously consider the velocity distribution.

In previous work, these two distributions have been considered

separately. To our knowledge, this appears to be the first application

of the joint position-velocity distribution for characterizing the

trajectory. This characterization in terms of the joint position-

velocity distribution also provides an alternative to arbitrary

segmentations of the arena into center and wall zones for the arena.

We estimated the joint position-velocity distributions using

a variety of histogram estimates. When examining histogram

estimates of these probability distributions, one needs to exercise

care about phase space factors in order to obtain accurate

estimates. For example, because the fly is moving in two

dimensions, the probability density for the speed v along with

the phase space factors is given by p(v)vdvdQ (where Q is polar angle

of the point (vx,vy) in velocity space). Therefore, binning data in

bins of size DvDQ would yield an estimate for p(v)v. In our estimates

of p(v), we eliminate the need to divide by v (which could be an

unstable calculation for small v) by binning in v2, since

Figure 2. Position and speed characteristics of a fly moving in a circular Open Field arena. (a) The trajectory obtained from tracking a fly for two
hours using the setup shown in Fig. 1. (b) The speed of the fly between 1150 and 1200 s, calculated by taking a numerical derivative of the smoothed
position data. The stop-start behavior characteristic of fly locomotor activity is evident.
doi:10.1371/journal.pone.0001083.g002
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p(v)vdvdh,p(v2/2)d(v2/2)dh. Similar arguments can be made for

the radial spatial distribution p(r). One should take note of the non-

constant bin widths on these histograms. For one-dimensional

motion, such as movement along the arena boundary, there are no

phase space factors and it is sufficient to bin the data in v.

Segmentation of Velocity
Similar to many other animals [23], the locomotor behavior of

flies is typically segmented into two (or more) regions of motion.

Flies typically walk in a staccato manner, marked by bouts of fast

walking episodes interspersed among brief stops or slowed speed

[6,13]. In the fly literature, these segments of differing speed are

typically referred to as activity and inactivity and are defined by

setting hard thresholds on the movement.

In the rodent literature, by contrast, much work has been done

on this segmentation procedure to ensure reproducibility of tests

across labs and across animals [26,27]. Studies of the exploratory

behavior of rodents have demonstrated that speed distributions

provide a natural way to segment the motion. Instead of activity

and inactivity bouts, mammalian locomotor studies define slow

speed segments as lingering episodes and high speed segments as

progression episodes. Complete stops are defined as arrests. In

these studies, progression and lingering are defined through an

examination of the average maximal speed distribution in

segments between arrests. A threshold between progression and

lingering is then determined by fitting Gaussian peaks to the

resulting multimodal distribution.

For this paper, speed distributions are used to segment the

motion where applicable; however, in contrast to [26] we do not

plot the distribution of maximal speeds between arrests. Instead,

the distribution p(v) is created from the entire speed time-series,

which provides an alternative to what is typically seen in both the

fly and rodent literatures. Using this measure, we define near-zero

speed and finite speed motion, which do not necessarily correspond to

activity, inactivity, progression, or lingering; it is merely a objective

statement about the speed of the fly as it moves about the arena.

Stops are defined as points in which the speed falls below the noise

threshold of the tracking, which was determined from visual

inspection of the velocity plots to be 0.1 cm/s. This threshold was

chosen by noting the maximum measured velocity in segments of

the video where the fly remained stationary to the eye of an

observer. These points were then assigned zero velocity. While the

method of segmentation based on a visual inspection of p(v) used

here offers simplicity, it has yet to be examined in comparison to

the more elaborate method of segmentation described in [26].

RESULTS

Spatial Preference Distributions
Figure 2a shows a smoothed trajectory obtained from approxi-

mately two hours of video of a wild-type fly in the open field;

a short section of the corresponding speed profile is presented in

Fig. 2b. (Here, the characteristic staccato motion of the walking

fly, described above, is evident.) The trajectory data exemplified in

these two plots serve as a complete set from which all other

locomotor parameters are inferred.

It is evident that the fly explored nearly the entire arena over the

course of the two hours (Fig. 2a), and one immediately questions

whether the fly displayed any spatial preference for one part of the

arena. This can be determined by looking at the joint distribution

of the fly’s spatial location, p(r,h), over the entire two hours

(Fig. 3a). A transformation is made from Cartesian coordinates

(x,y) to polar coordinates (r,h) since polar coordinates are more

natural to the geometry of this environment. The origin is defined

as the center of the arena. It is immediately clear that the fly

prefers locations near the arena wall, spending 42% of its time

within 1 cm of the wall, and the rest of the two hours distributed

approximately equally throughout the arena. This conclusion is

supported by examining the marginal distribution p(r) (Fig. 3b).

Velocity Distributions and Segmentation of

Behavior
The segmentation of the arena into spatial zones based on the

trajectory data is clearly possible, but we have yet to determine if the

Figure 3. Spatial preference for a fly in the circular Open Field arena. (a) The joint probability distribution p(r,h) obtained using a bin size of 1u in h,
0.05 cm in r. There appeared to be little angular preference, but the preference for the arena wall (r = 7.5 cm) is evident. (b) Marginal radial probability
distribution p(r). The histogram was obtained by binning r2 in bins of size 1.13 cm2 (50 total bins). This estimate suggests defining a boundary
between a Rim Zone and Central Zone at approximately r = 7.3 cm.
doi:10.1371/journal.pone.0001083.g003
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fly moves differently in these two zones. To answer this question, we

next examined the speed distribution p(v) in each zone (Fig. 4a and

4b). Note that the scales are different on each plot.

Comparison of these distributions is not an entirely trivial exercise,

since comparing motions of different dimensionality can lead to

misleading conclusions about the distributions’ shapes. We estab-

lished above that in the Rim Zone, the fly walks mainly along the wall

of the arena. When this is the case, the motion is approximately one-

dimensional—the velocity of the fly should always be tangent to the

wall. Examination of the velocity distributions for velocities tangent to

and normal to the wall shows a normal velocity distribution that is

narrowly peaked around zero, whereas the tangent velocity

distribution is much broader (Fig. 5). Because of this, we do not

need to account for the phase factor that arises in two dimensions and

therefore bin the data in v instead of v2 (See the section ‘Histograms

and Density Estimates’). Note, therefore, that the estimates in Fig. 4a

and 4b were obtained using different bin sizes.

Unfortunately, the differing bin sizes obfuscates the comparison of

the distributions at low speeds. In Figure 4a, the distribution appears

to fall exponentially from the noise threshold (0.1 cm/s), whereas in

Fig. 4b, the low-speed distribution is essentially flat. It was difficult to

determine whether these differences are inherent to the distributions

or were an artifact from the binning procedure, and will be the

subject of further study. Nonetheless, the speed distributions show

similar behavior in that there are arguably two regions of motion,

low-speed motion and finite-speed motion. Visual inspection

suggests a speed threshold for the Central Zone at vth = 0.75 cm/s

and for the Rim Zone at vth = 0.4 cm/s The segments with speeds

below vth are defined as the near-zero speed segments; those above are the

finite speed segments. The finite speed segments are marked by the peak

in the distribution at a finite speed, approximately 1.48 cm/s in the

Central Zone and 1.14 cm/s in the Rim Zone.

It is not trivial that these distributions show non-zero peaks.

This suggests flies have a preferred walking speed, and this

preferred speed depends on distance from the boundary in the

environment. If the fly were a random-walker (Gaussian speed

distribution), the only peak would occur at zero and nowhere else;

a plot of log(p(v2)) would appear as a straight line of negative slope.

Clearly, the trajectory cannot be described by a Gaussian

stochastic process. Although this is not particularly surprising, it

should be taken as a cautionary note before attempting to apply

Gaussian autoregressive process models to such trajectory data.

While the distributions are similar, the fly’s speed behavior is

quite different in the two zones. Figure 6 shows that more time is

spent in motion in the Rim Zone than in the Central Zone (both in

near-zero segments and finite speed segments); however, when in

the Central Zone, the fly spends the majority of its time stationary.

Figure 4. Speed distributions in each spatial ‘zone.’ (a) Speed distribution in the Central Zone, obtained using a bin size of 0.1 cm2 in v2. Two visible
behavioral components are seen in the plot, near-zero speed segments, marked by the tail descending from the zero speed bin, and finite speed
segments, marked by the peak in the distribution at a non-zero, finite velocity (,1.48 cm/s). A transition between these two segments can be
estimated at about 0.75 cm/s. The first bin, which contains stops, is not shown in the figure. (b) Speed distribution in the Rim Zone, obtained using
a bin size of 0.033 cm in v. Bins containing stops are not shown in the figure. Similar to the Central Zone distribution, this distribution has a peak at
finite velocity (,1.14 cm/s), but the near-zero segments do not show the large tail descending from zero seen in (a). A transition between the two
segments in this zone can be estimated at about 0.4 cm/s.
doi:10.1371/journal.pone.0001083.g004

Figure 5. The probability distributions of velocities tangential to and
normal to the wall in the Rim Zone. The fact that the normal (radial)
velocity is concentrated near zero suggests that the Rim Zone motion
should be treated as one-dimensional. The peak at zero for the normal
velocity distribution reaches up to p = 5.93, and is eliminated for clarity.
doi:10.1371/journal.pone.0001083.g005
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On the other hand, examination of the finite speed peaks (Fig. 4)

shows that movement in the Central Zone occurs at a much faster

preferred speed than does movement in the Rim Zone. There also

appears to be several higher velocity bumps in the distribution of

speed in the Central Zone that may correspond to different

‘‘gears’’ of progression that have been reported in rodent

locomotion [26]. It is difficult to draw this conclusion, however,

with only an N of one, and we present these data only to stress that

the behavior does appear to be different in each zone. From these

plots, in conjunction with Fig. 2, one may conclude that the fly

spent the majority of its time exploring the rim of the arena at

a slower typical speed, stopping infrequently. When it did venture

away from the rim, the incursions through the Central Zone were

at a faster typical speed. Clearly, the arena size and boundaries

significantly influenced the animal’s behavior.

The influence of the geometry on the behavior is best illustrated

by the joint distribution p(r,v) (Fig. 7), which gives a measure of the

speed of the fly in each radial portion of the arena. This

distribution more clearly depicts the fine structure of the transition

from Rim Zone to Central Zone behavior, as well as the fine

structure of behaviors within the Central Zone. For example, one

may argue that between r = 0 cm and 3.5 cm, the finite speed peak

in the speed distribution is narrower compared to r in the range

3.5 cm to 7 cm. In words, the fly’s speed is more stereotypical in

the center of the arena than towards the edges of the arena.

Clearly, marginal distributions obtained from the entire time-series

trajectory can be used effectively to describe the behavior of a wild-

type fly in the open field.

Duration Distributions
The results of Figure 6 establish that the fly spends more time in

motion in the Rim Zone and more time stopped in the Central

Zone. This leads to the question of how long these behavioral

segments typically last and whether the segment duration

distributions differ between zones. The next trajectory measures

examine this, and further characterize the behavior of the fly in the

arena. These are the duration distributions for finite speed

segments, near-zero speed segments, and stops (Fig. 8), and the

distribution of entrance/exit times from the different zones (Fig. 9).

Each of these distributions can be used to attach relevant time

scales to the behavioral segments described above.

For both finite speed and near-zero speed segments, the duration

distributions appear to exponentially decay (Figs. 8a and 8b, log

scale). The majority of motion segments are fairly short; rarely did

the fly spend more than 10 s in any behavioral segment (although

there are a few instances when this did occur, and they mainly

occurred in the Central Zone). In addition, behavior in the Central

Zone and Rim Zone is similar for both types of motion, although the

Rim Zone distributions have a slightly steeper decay (finite speed

segments decay rates: 2.1 s in CZ and 1.37 s in RZ; near-zero speed

segments: 0.14 s in CZ and 0.17 s in RZ). This suggests that Rim

Zone motion segments are typically shorter than those in the Central

Zone. Figure 8c shows the stop duration distribution for both zones.

Stops in the Rim Zone are very short. Nearly 76% of the stops are

less than 0.3 s, whereas stops in the Central Zone have a finite

probability of being much longer (.5 s).

As seen in the figures, the main difference between finite speed

segments and near-zero speed segments is that the near-zero speed

segments occur on a much shorter time scale than the finite speed

segments. This result may be attributed more to the fact that a finite

speed segment is always proceeded and followed by a near-zero speed

segment than to any outright behavioral aspect. That is to say: these

data do not suggest that the fly is ‘‘choosing’’ to walk slowly for shorter

lengths of time, but show the physical nature of the locomotor

behavior. In fact, the near-zero segments provide one with a profile of

the acceleration/deceleration ability of the fly. This acceleration and

deceleration occurs on very vast time scales (,1 s)—the fly does not

slowly work its way up to full speed, nor to a stop.

One can also examine the distribution of the events marked by

the entrance into and the exit from each zone, which can yield

a measure of likelihood that the fly remains in that particular zone.

These are shown in Fig. 9. The distributions for the events are

quite similar for both zones, showing that the fly rarely stays in

a particular zone for longer than a minute. Although Fig. 2 implies

that the fly prefers the Rim Zone, Fig. 9 implies that the length of

stay in each zone is relatively the same. This is not a contradic-

tion—note that the area of the Central Zone is larger than that of

the Rim Zone, and so segments of equal duration (both stop and

Figure 6. Percent time spent in different speed segments in each
spatial zone. NZS – near-zero speed segments; FSS – finite speed
segments; RZ – Rim Zone; CZ – Central Zone.
doi:10.1371/journal.pone.0001083.g006

Figure 7. The joint probability distribution p(r,v) describing how fast
the fly tends to walk in different parts of the arena. There is a slight
increase in the finite speed peak location and narrowing of the
distribution as the fly gets closer to the center of the arena (r = 0 cm).
doi:10.1371/journal.pone.0001083.g007
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motion segments) are distributed over a larger area. In fact, the fly

spends more total time distributed throughout the Central Zone

(see Fig. 2), but the Rim Zone is a more confined area, and the

probability density is higher for finding the fly at a location in the

Rim Zone compared to a location in the Central Zone .

The data presented above imply behavior in which the fly is

more likely to linger, yet takes longer, faster excursions when it

chooses to walk in the Central Zone. In contrast, the fly has

a slower, more staccato-type walk in the Rim Zone, perhaps

suggesting a behavior more exploratory in nature.

Path Curvature and Reorientation Angle
Two more quantities can be used to characterize the locomotor

behavior of the fly in the open field: path curvature and

reorientation angle. The curvature of a path is defined as

k~
dw=dt

v
,

where w is angle of the velocity vector and v is the speed. The

distribution of k for each zone is shown in Fig. 10 for finite speed

segments and Fig. 11 for near-zero speed segments; k = 0

corresponds to a straight-line trajectory. For both zones and

speed behaviors, the distributions are peaked at zero curvature and

have relatively symmetric distributions, the exception being near-

zero motion in the Central Zone, which shows a slight skewness

towards counter-clockwise motion (k.0). It is interesting to note

that the wall does not appear to affect the path curvature; there are

no visible peaks at 60.13 cm21, the curvature of the arena.

However, this is close to the bin size in our computation, and

a more tightly curved arena might produce corresponding peaks in

the curvature distribution in the rim zone.

Finally, one can examine the tendency of the fly to change

direction after stops, a similar measure to those defined for

chemotaxis and thermotaxis in E. coli [29] and C. elegans [30,31].

We define this as the reorientation angle b; it is shown in Fig. 12. After

these segments, the fly appears to move in the same direction as the

last frame before the arrest in the majority of instances (zero

reorientation). In the cases where the fly does change its direction, the

choice of direction appears to be uniformly distributed throughout

angular space. Whether this is the influence of the environment or

hallmark of some internal motivation is not entirely evident.

Figure 8. Comparison of duration distributions for (a) finite speed segments (FSS) (b) near-zero speed segments (NZS) and (c) stops in the
Central Zone (black lines) and the Rim Zone (red lines). Note the different scales on the plots. Bin sizes are: (a) 0.48 s, (b) 0.12 s, and (c) 0.55 s.
doi:10.1371/journal.pone.0001083.g008
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DISCUSSION
In order to complement the metrics that are currently used to

describe the locomotor behavior of Drosophila (average activity and

inactivity, bout length, distance moved, turning angle, etc.) [6,12–

15], we have presented measures that utilize the entire trajectory

of the walking fly in a circular arena. The insight that can be

obtained by a time-series analysis is often underappreciated,

perhaps due to the lack of methods with which to handle the large

amounts of data that a trajectory provides. However, metrics

obtained using time-series analysis methods have already been

highly beneficial in the field of neuroethology [32].

It is clear that locomotor activity is greatly influenced by the

environment within which the behavior occurs. Such an in-

teraction can in general be difficult to characterize, and one

quickly realizes that by observing an animal in an environment, as

much is learned about the structure of the environment as is

learned about the behavior of the animal. Given Fig. 2, one does

not have to know any details of the setup to infer that the fly was

restricted to a circular arena. By examining the joint probability

distributions p(r,h) and p(r,v), the curvature of the path, and the

reorientation angle, we obtain measures that directly account for

the effects of the geometry of the arena on the locomotor

trajectory. Along with the duration distributions, these measures

should allow for the construction of realistic trajectory models in

the open field. They also promise to provide quantitative

phenotypic measures for Drosophila locomotion under circum-

stances which exhibit greater ethological realism.

Figure 9. Distribution of the time between entrance into and exit
from the Central Zone and the Rim Zone (bottom). This can also been
interpreted as the ‘‘length of stay.’’ A bin size of 4 seconds has been
used to bin the data.
doi:10.1371/journal.pone.0001083.g009

Figure 10. Distribution of path curvature during finite speed
segments in the Central Zone (black line) and the Rim Zone (red
line). Bin size: 0.1 cm21. Both distributions are peaked around k = 0,
which corresponds to movement in a straight line.
doi:10.1371/journal.pone.0001083.g010

Figure 11. Distribution of path curvature during near-zero speed
segments in the Central Zone (black line) and the Rim Zone (red
line). Bin size: 0.2 cm21.
doi:10.1371/journal.pone.0001083.g011

Figure 12. Distribution of reorientation angle, b, in the Central Zone
(black line) and the Rim Zone (red line). In both zones, the fly prefers
to walk in the same direction after a stop as it was heading before the
stop. Because the peak at zero is so large for both zones (.0.1), the plot
has been truncated to better display the characteristics of the
distribution. Bin size: 5 degrees.
doi:10.1371/journal.pone.0001083.g012
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