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53BP1 promotes non-homologous end joining of
telomeres by increasing chromatin mobility
Nadya Dimitrova1, Yi-Chun M. Chen2, David L. Spector2 & Titia de Lange1

Double-strand breaks activate the ataxia telangiectasia mutated
(ATM) kinase, which promotes the accumulation of DNA damage
factors in the chromatin surrounding the break. The functional
significance of the resulting DNA damage foci is poorly under-
stood. Here we show that 53BP1 (also known as TRP53BP1), a
component of DNA damage foci, changes the dynamic behaviour
of chromatin to promote DNA repair. We used conditional dele-
tion of the shelterin component TRF2 (also known as TERF2) from
mouse cells (TRF2fl/2) to deprotect telomeres, which, like double-
strand breaks, activate the ATM kinase, accumulate 53BP1 and are
processed by non-homologous end joining (NHEJ)1,2. Deletion of
TRF2 from 53BP1-deficient cells established that NHEJ of dys-
functional telomeres is strongly dependent on the binding of
53BP1 to damaged chromosome ends. To address the mechanism
by which 53BP1 promotes NHEJ, we used time-lapse microscopy
to measure telomere dynamics before and after their deprotection.
Imaging showed that deprotected telomeres are more mobile and
sample larger territories within the nucleus. This change in chro-
matin dynamics was dependent on 53BP1 and ATM but did not
require a functional NHEJ pathway. We propose that the binding
of 53BP1 near DNA breaks changes the dynamic behaviour of the
local chromatin, thereby facilitating NHEJ repair reactions that
involve distant sites, including joining of dysfunctional telomeres
and AID (also known as AICDA)-induced breaks in immuno-
globulin class-switch recombination.

Previous work has shown that mouse telomeres lacking TRF2 are
processed by a KU70- and DNA-ligase-IV-dependent NHEJ reac-
tion1,2 that requires ATM kinase signalling and is stimulated by the
ATM targets H2AX (also known as H2AFX) and MDC1 (refs 3 and
4). Here we focus on 53BP1, a third ATM target, which accumulates
at double-strand breaks (DSBs) and deprotected telomeres5–8. The
interaction of 53BP1 with chromatin involves the binding of its tudor
domains to H4K20me2 and an MDC1-dependent interaction with
c-H2AX9–14. Although 53BP1 is not strictly required for DNA
damage signalling, homology-directed repair or NHEJ in the context
of V(D)J recombination, NHEJ of DSBs in class-switch recombina-
tion (CSR) is severely affected by 53BP1 deficiency15,16. In the absence
of 53BP1, DSBs in different switch regions fail to join successfully,
resulting in a predominance of intra-switch recombination events17.
It has been proposed that 53BP1 might either facilitate synapsis of
DNA ends17,18 or ‘shepherd’ NHEJ factors to the break19.

We generated SV40 LT immortalized TRF2fl/253BP12/2 and
TRF2fl/253BP11/2 mouse embryonic fibroblasts (MEFs)1,20

(Supplementary Fig. 1a, b) and assayed the frequency of telomere
fusions in metaphase spreads collected 120 h after Cre-mediated
deletion of TRF2 (Fig. 1a). Whereas 53BP1-proficient cells showed
the expected level of telomere fusions (33% of telomeres fused after
four population doublings), the rate of NHEJ in 53BP12/2 cells was
at least 50-fold lower, nearly as low as that in DNA-ligase-IV-defi-

cient cells1,2. The effect of 53BP1 on telomere fusions was also obvious
when assayed by an in-gel hybridization assay (Fig. 1b). Cells defi-
cient for 53BP1 failed to accumulate high-molecular-weight fusion
products after deletion of TRF2 and showed no loss of the telomeric
39 overhang, a second index for telomere fusion (Fig. 1b, c). In fact,
the overhang signal increased, similar to what is observed when TRF2
is deleted from KU70- or DNA-ligase-IV-deficient cells1,2. In contrast
to NHEJ, DNA damage signalling was not affected by the absence of
53BP1 (Fig. 1d, e). Deficiency of 53BP1 affected neither the phos-
phorylation of ATM and its target CHK2 (also known as CHEK2) nor
the presence of c-H2AX, MDC1 and NBS1 (also known as NBN) at
dysfunctional telomeres (Fig. 1d, e and Supplementary Fig. 2a, b).
The NHEJ defect was also not due to a change in cell cycle progres-
sion. After deletion of TRF2, the cells underwent the same number of
cell divisions regardless of their 53BP1 status (Fig. 1f), and their
S-phase index was not affected by 53BP1 deficiency
(Supplementary Fig. 1c).

We next tested whether the tudor-domain-mediated recognition
of H4K20me2 contributed to the promotion of NHEJ.
TRF2fl/253BP12/2 cells were complemented with wild-type human
53BP1 or with a tudor domain mutant (53BP1(D1521A)) with
impaired binding to H4K20me2 (ref. 14; Fig. 2a). Although the
two forms of 53BP1 were expressed at levels comparable to endogen-
ous 53BP1 (Fig. 2b and data not shown), the recruitment of
53BP1(D1521A) to deprotected telomeres was diminished
(Supplementary Fig. 3). In contrast to wild-type 53BP1, which recon-
stituted the NHEJ of dysfunctional telomeres, cells expressing the
tudor mutant of 53BP1 showed a considerable delay in the fusion
of telomeres lacking TRF2 (Fig. 2c, d).

The finding that the tudor domain mutation in 53BP1 did not
abrogate NHEJ suggested that a second, H4K20me2-independent,
interaction of 53BP1 with chromatin contributes to NHEJ. Because
MDC1 is required for the stable association of 53BP1 with DSBs9–14,
we generated TRF2fl/flMdc12/2 MEFs18 and determined their ability
to execute the telomere fusion reaction. As expected, the binding of
53BP1 near deprotected telomeres was impaired by MDC1 defi-
ciency, despite normal levels of H2AX phosphorylation
(Supplementary Fig. 4a, b). MDC1 deficiency resulted in a delay in
the NHEJ of telomeres but did not abrogate this process
(Supplementary Fig. 5a, b), confirming our previous findings with
MDC1 short hairpin RNAs (shRNAs)3. Furthermore, inhibition of
MDC1 with shRNAs affected the residual NHEJ of telomeres in
the context of the 53BP1 tudor domain mutant (Supplementary
Fig. 5c–e).

These data establish an important role for chromatin-bound
53BP1 in the NHEJ of deprotected telomeres. Previous data showed
that 53BP1 contributes to NHEJ in CSR15,16, but not in other settings
such as V(D)J recombination. We argued that the crucial difference
between the 53BP1-dependent and-independent NHEJ reactions
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might be the distance between the DNA ends involved. Whereas the
two ends generated by RAG1/2 or chromosome-internal DNA
damage are close together, the DNA ends generated by AID in CSR
are often far apart, as are dysfunctional telomeres in G1 when they are
processed by NHEJ (ref. 21).

We used time-lapse microscopy to address whether 53BP1 altered
the synapsis and/or dynamics of deprotected telomeres. To image
telomeres, we used enhanced-green-fluorescent-protein-tagged ver-
sion of the shelterin component TRF1 (eGFP–TRF1), which remains
associated with telomeres when TRF2 is removed (Fig. 3a–c and
Supplementary Fig. 6). Overexpression of this and other forms of
TRF1 does not affect the protective function of telomeres22 (data not
shown). To mark sites of DNA damage signalling, we fused mCherry
to amino acids 1220–1711 of 53BP1 (mCherry–BP1-2, see Figs 2a and
3a, b), creating a fusion protein that lacks most of the functional
domains of 53BP1. On deletion of TRF2, mCherry–BP1-2 re-
localized to telomeric sites containing eGFP–TRF1 (Fig. 3c). The
mCherry–BP1-2 allele did not affect the frequency of telomere
fusions in 53BP1-proficient cells nor did it restore the NHEJ defect
in 53BP1-deficient cells (Supplementary Fig. 7a), establishing that it
is a neutral marker for DNA damage in this context. Furthermore,

imaging experiments repeated in cells lacking mCherry–BP1-2 gave
the same outcome (Supplementary Fig. 7b, c and see below).

To analyse the effect of 53BP1 on the movement of dysfunctional
telomeres, time-lapse microscopy was performed at an early stage
after deletion of TRF2 (72–84 h post-Cre) when most TRF1-marked
sites still represent free chromosome ends3. Initial analysis of eGFP
and mCherry signals indicated that dysfunctional telomeres became
more mobile but only when 53BP1 was present (Supplementary
Videos 1 and 2). We observed occasional apparent fusion events in
53BP1-proficient cells (Supplementary Video 3), but no potential
fusions were observed in 53BP1-deficient cells, even for telomeres
that were closely apposed (Supplementary Video 4).

To obtain a quantitative measure of telomere mobility, individual
eGFP–TRF1/mCherry–BP1-2-labelled dysfunctional telomeres were
traced in deconvolved and projected images (Fig. 3a, d and
Supplementary Fig. 8a, b). In parallel, eGFP–TRF1-marked func-
tional telomeres were analysed in cells not treated with Cre.
Functional telomeres in 53BP1-proficient and -deficient cells trav-
elled in a constrained random walk over a total path of approximately
3.7–3.9 6 0.7 mm at a median speed of 180–190 nm min21, which is
comparable to the movement of human telomeres (Fig. 3e, f and
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Figure 1 | Requirement for 53BP1 in NHEJ of dysfunctional telomeres, but
not in DNA damage signalling. a, Metaphase chromosomes after deletion of
TRF2 from the indicated cells (top). Telomeric fluorescence in situ
hybridization (FISH), green; 4,6-diamidino-2-phenylindole (DAPI), red.
Summary of the effect of 53BP1 on telomere fusions 120 h after TRF2
deletion (bottom). b, In-gel assay for the 39 overhang (left) and total
telomeric DNA (right) after deletion of TRF2 from 53BP1-proficient

and -deficient cells. c, Quantification of overhang signals in b (mean 6 s.d.;
n 5 3). d, Immunofluorescence (IF) for the presence of c-H2AX at telomeres
after deletion of TRF2 from 53BP1-proficent and -deficient cells.
e, Immunoblots for phosphorylated (P-) ATM and CHK2 after TRF2
deletion. f, Proliferation of MEFs of the indicated genotype and treatment
(mean 6 s.d.; n 5 3).
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Supplementary Figs 7b and 9a)23. In contrast, dysfunctional telo-
meres were significantly more mobile, travelling at a speed of 270–
360 nm min–1 over a cumulative distance ranging from 5.4 mm to
7.2 mm (Fig. 3e, f and Supplementary Figs 7b and 9a). The mobility
increase associated with telomere dysfunction was significantly atte-
nuated in cells lacking 53BP1 (Fig. 3e), resulting in a median cumu-
lative distance travelled of 4.4 6 0.2 mm. The presence of the
mCherry–BP1-2 DNA damage marker did not affect the outcome;
the same results were obtained after deletion of TRF2 from 53BP11/2

or 53BP12/2 cells that only contained the eGFP–TRF1 marker
(Supplementary Fig. 7b, c). Importantly, in both settings the
dysfunctional telomeres in 53BP1-proficient cells sampled larger

territories than functional telomeres (maximal displacement
1.2 6 0.3 mm versus 0.51 6 0.29 mm; Fig. 3g and Supplementary
Figs 7c and 9b). Assuming that telomeres sample spheres within
the nucleus, a twofold change in the radius of the two-dimensional
territory will increase the volume sampled by a dysfunctional telo-
mere by a factor of eight. Furthermore, a substantial fraction (.10%)
of the dysfunctional telomeres roamed well beyond 2 mm, whereas
none of the 115 functional telomeres analysed moved beyond that
distance (Fig. 3g and Supplementary Fig. 7c). When 53BP1 was not
present, the median maximal displacement of the dysfunctional tel-
omeres was only 0.8 6 0.2 mm, indicating movement within a signifi-
cantly smaller territory, and only one out of 115 dysfunctional
telomeres sampled an area beyond 2mm (Fig. 3g and
Supplementary Fig. 7c). These data establish that telomeres become
more mobile and sample larger territories when they are deprived of
their normal protection and that this change in their dynamic beha-
viour is promoted by 53BP1. Assuming that the rate of NHEJ corre-
lates with the probability of an encounter between two telomeres,
the ability of 53BP1 to expand the three-dimensional space visited
by dysfunctional telomeres is a probable explanation for its effect on
telomere fusion. We confirmed that the absence of the NHEJ
reaction itself could not account for the slower movement because
telomeres in DNA-ligase-IV-deficient cells still showed a consid-
erable increase in their mobility on TRF2 deletion (Fig. 3h and
Supplementary Fig. 9c, d).

The ability of 53BP1 to promote the mobility of dysfunctional
telomeres could explain why ATM kinase, its upstream regulator, is
required for telomere fusions4. Indeed, similar to 53BP1-deficient
cells, dysfunctional telomeres failed to gain their maximal mobility
in ATM-deficient cells (Fig. 3i and Supplementary Fig. 9c, d).

Next we tested whether 53BP1 caused global chromatin mobility
in response to DNA damage. We tracked functional telomeres in
wild-type or Lig42/2 cells immediately after treatment with c-irra-
diation or after allowing the cells to recover. In all cases, we found
that the mobility of the telomeres was unaffected by the induction of
damage elsewhere in the genome (Supplementary Fig. 10), arguing
that increased mobility is a local event, taking place at the site of
damage where 53BP1 accumulates.

Because 53BP1 is the first DNA damage factor to be implicated in
the movement of sites of DNA damage, it will be important to deter-
mine the mechanism by which it affects chromatin mobility.
Latrunculin A did not alter the gain in mobility of deprotected telo-
meres (Supplementary Fig. 11a), arguing against an actin-driven
process. Similarly, the histone deacetylase (HDAC) inhibitor trichos-
tatin A had no effect on the mobility of the deprotected telomeres,
making it unlikely that 53BP1 acts through its interaction with
HDAC4 (ref. 24; Supplementary Fig. 11b). We imagine that 53BP1
dislodges a factor that restricts chromatin mobility or that 53BP1
endows the chromatin with dynamic features, for instance by altering
higher order interactions that affect the length of thermal persistence.

These data reveal that the DNA damage factor 53BP1 is crucial for
the NHEJ reaction at dysfunctional telomeres and suggest a mech-
anism by which 53BP1 promotes telomere fusions. Telomeres, like
other chromosomal sites, have a limited range of motion, showing
constrained diffusion within a territory with a radius of #0.5 mm
(this work and refs 23 and 25). When telomeres become damaged,
their mobility increases significantly, which is expected to increase
the chance that two dysfunctional telomeres become closely apposed,
thereby allowing the NHEJ machinery to engage the two DNA ends.
Given that 53BP1 is also important for CSR, we suggest that the
change in chromatin dynamics also promotes the joining of AID-
induced breaks. In an accompanying paper26, this paradigm is further
extended to distant DSBs in V(D)J recombination. We therefore
suggest that 53BP1 is a facilitator of NHEJ at all distant DNA ends,
acting by increasing the mobility of the local chromatin. Because
joining of distant DNA ends promotes chromosome rearrangements,
we consider it unlikely that the main role of 53BP1 is to promote
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NHEJ at DNA ends that are far apart. It seems more likely that the
increased chromatin mobility we observe reflects an attribute of
53BP1-containing chromatin that is important for DNA repair at
all DSBs, including those that are closely apposed and breaks that
are processed by homology-directed repair. We imagine that at tel-
omeres this chromatin change leads to increased mobility, whereas at
chromosome-internal DSBs the same change in the chromatin may
facilitate their repair in other ways.

METHODS SUMMARY

MEFs from embryonic day (E)13.5 embryos obtained from crosses between

TRF2fl/2 and 53BP11/2 mice1,20 were isolated and immortalized at passage 2

with pBabeSV40LT (a gift from G. Hannon). Cre was introduced by retroviral

infection with pMMP Hit&Run Cre27. For time-lapse microscopy,

TRF2fl/253BP11/2 and TRF2fl253BP12/2 cells expressing eGFP2TRF1 and

mCherry2BP1-2, or TRF2fl/2Lig42/2p532/2 (ref. 1) and TRF2fl/2Atm2/2

(ref. 4) cells expressing eGFP2TRF1 only, were imaged untreated or 72 h after

Cre-mediated deletion of TRF2. Time-lapse images were acquired using a

DeltaVision RT microscope system (Applied Precision) in three dimensions in

both eGFP and mCherry channels using SoftWoRx software every 30 s for

20 min. Images were deconvolved, projected in two dimensions, and tracking

analysis was performed with ImageJ. Data were collected from three independent

experiments (n $ 50) and Mann–Whitney statistical analysis was performed

using Prism software.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Generation of MEFs and deletion of TRF2. MEFs from E13.5 embryos obtained

from crosses between TRF2fl/2 and 53BP11/2 mice1,20 and between TRF2fl/fl and

Mdc11/2 mice18 were isolated and immortalized at passage 2 with

pBabeSV40LT. To delete TRF2, Cre was introduced by retroviral infection using

the pMMP Hit&Run Cre retroviral construct27. In brief, Hit&Run Cre was

expressed in ecotrophic Phoenix cells. Virus-containing supernatant was col-

lected at 36, 48 and 60 h post-transfection and MEFs were infected consecutively

three times every 12 h. The medium was changed 12 h after the last infection, and

cells were analysed at the indicated time points after the second infection.

Constructs. Full-length human 53BP1 was cloned by PCR into a N-Myc-pLPC-

puro retroviral expression vector. The D1521A mutation was introduced by a

PCR-based mutagenesis strategy using the following mutagenesis primers: 59-

AAATTGCTCTTTGATGCTGGGTACGAATGTGAT-39 and 59-

ATCACATTCGTACCCAGCATCAAAGAGCAATTT-39. The mutation was

confirmed by sequencing. Wild-type and D1521A rescue alleles were introduced

into TRF2fl/253BP12/2 cells by five consecutive retroviral infections, delivered at

12-h intervals with virus-containing supernatants from Phoenix cells.

Puromycin selection was applied. Infection with the empty vector was used as

a negative control.

Fluorescently amino-terminally tagged mCherry2BP1-2 and eGFP2TRF1

were cloned by PCR into pLPC-puro and pWzl-hygro, respectively. In-frame

fusions were confirmed by sequencing. mCherry2BP1-2 and eGFP2TRF1 con-

structs were consecutively introduced into TRF2fl/253BP11/2 and

TRF2fl/253BP12/2 cells by retroviral infections, followed by puromycin (4 days)

and hygromycin (7 days) selection, respectively.

MDC1 shRNAs. MDC1 was stably reduced in TRF2fl/253BP12/2 cells expres-

sing the 53BP1(D1521A) mutant using shRNAs expressed from the pSUPERIOR

retroviral vector (OligoEngine). Retrovirus was produced in ecotrophic Phoenix

cells and used to infect cells four times at 12-h intervals. No selection was applied.

The following target sequences3 were cloned into pSUPERIOR and confirmed by

DNA sequencing: mouse Mdc1 sh4, 59-ACAGCATGCAGTAATTGAA-39;

mouse Mdc1 sh5, 59-ACACAGCCGTTCTGTCTAA-39. Infections with the

empty vector were used as a negative control. Efficient knockdown of Mdc1

was verified by immunoblotting.

Telomere fluorescence in situ hybridization. Cells were collected at the indi-

cated time points after Cre infection and fixed as described previously28.

Metaphase spreads were aged overnight and peptide nucleic acid (PNA)

FISH29 was performed. In brief, slides were washed in PBS once and fixed in

4% formaldehyde for 2 min at room temperature (24–25 uC). After extensive

PBS washes, spreads were digested for 10 min at 37 uC with 1 mg ml21 pepsin

dissolved in 10 mM glycine, pH 2.2. Slides were then washed in PBS, fixed again

in 4% formaldehyde for 2 min at room temperature, and washed in PBS before

dehydration by consecutive 5-min incubations in 70%, 95% and 100% ethanol.

After air-drying, Hybridizing Solution (70% formamide, 1 mg ml21 blocking

reagent (Roche), 10 mM Tris-HCl, pH 7.2) containing FIu-OO-(AATCCC)3

PNA probe (Applied Biosystems) was added and spreads were denatured by

heating for 3 min at 80 uC on a heat block. Spreads were then allowed to hybridize

in the dark for 2 h at room temperature. Two 15-min washes were performed in a

mixture containing 70% formamide, 10 mM Tris-HCl, pH 7.0, and 0.1% BSA,

followed by three washes in a mixture containing 0.1 M Tris-HCl, pH 7.0, 0.15 M

NaCl and 0.08% Tween-20, with DAPI added to the second wash to counter-

stain the chromosomal DNA. Slides were mounted in antifade reagent (ProLong

Gold, Invitrogen), and digital images were captured with a Zeiss Axioplan II

microscope with a Hamamatsu C4742-95 camera using Improvision OpenLab

software.

In-gel analysis of telomeric DNA. Pulse-field gel electrophoresis and in-gel

detection of mouse telomeric DNA were performed as described previously1.

Cells were resuspended in PBS and mixed 1:1 (v/v) with 2% agarose (SeaKem

agarose) to obtain 5 3 105 cells per agarose plug. Plugs were digested overnight

with 1 mg ml21 Proteinase K (in buffer containing 100 mM EDTA, 0.2% sodium

deoxycolate, 1% sodium lauryl sarcosine), washed extensively with TE buffer

(10 mM Tris-HCl, pH 8.0, 1 mM EDTA) and incubated overnight at 37 uC with

60 U MboI. The following day, the plugs were washed once in TE and once in

water, and were equilibrated in 0.5 3 TBE. Plugs were loaded on a 1% agarose/

0.5 3 TBE gel and run for 24 h using CHEF-DRII PFGE apparatus (BioRad) in

0.5 3 TBE running buffer. The settings were as follows: initial pulse, 5 min; final

pulse, 5 min; 6 V cm21; 14 uC. In-gel hybridization of the native gel with 32P-

cATP end-labelled (CCCTAA)4 oligonucleotides and subsequent denaturation

and hybridization steps were performed as described30. Gels were exposed onto a

PhosphoImager screen overnight, and the single-stranded G-overhang signal

was quantified with ImageQuant software and normalized to the total telomeric

DNA quantified after denaturation. The percentage overhang value given repre-

sents the percentage of overhang signal detectable at different time points com-

pared to the overhang signal for the same cells not treated with Cre.

Immunoblotting. Cells were lysed in 2 3 Laemmli buffer (100 mM Tris-HCl,

pH 6.8, 200 mM DTT, 3% SDS, 20% glycerol, 0.05% bromophenol blue) at 104

cells per microlitre, denatured for 7 min at 100 uC, and sheared with an insulin

needle before loading the equivalent of 2 3 105 cells per lane. After immunoblot-

ting, membranes were blocked in PBS with 5% milk and 0.1% Tween, and

incubated with the following primary antibodies in 5% milk and 0.1% Tween:

53BP1 (rabbit polyclonal; 100-305, Novus Biologicals; detects endogenous

mouse 53BP1, full-length wild-type and mutant human 53BP1 rescue alleles,

and mCherry2BP1-2 fusion protein); MDC1 (rabbit polyclonal; 300-757,

Bethyl); TRF2 (rabbit polyclonal; 647 (ref. 31)); TRF1 (1449, rabbit polyclonal;

A. Sfeir and T.d.L., unpublished); CHK2 (mouse monoclonal, BD Biosciences);

ATM S1981-P (mouse monoclonal; 10H11.E12, Cell Signaling); or ATM (mouse

monoclonal; clone MAT3, Sigma). c-Tubulin (mouse monoclonal, clone GTU

488, Sigma) or a non-specific band in the TRF2 western blot were used as a

loading control. Blots were developed with enhanced chemiluminescence

(Amersham).

Immunofluorescence-FISH. Cells were grown on coverslips and fixed for

10 min in 2% paraformaldehyde at room temperature followed by PBS washes

(IF for c-H2AX, MDC1 and 53BP1) or fixed for 10 min in methanol:acetone

(1:1) at 220 uC followed by rehydration in PBS for 5 min (IF for NBS1).

Coverslips were blocked for 30 min in blocking solution (1 mg ml21 BSA, 3%

goat serum, 0.1% Triton X-100, 1 mM EDTA in PBS). Next, the cells were

incubated with the following primary antibodies diluted in blocking solution

for 1 h at room temperature: 53BP1 (rabbit polyclonal; 100-304A, Novus

Biologicals); c-H2AX-S139-P (mouse monoclonal; Upstate Biotechnology);

MDC1 (mouse monoclonal, a gift from J. Chen); and NBS1 (rabbit polyclonal,

a gift from J. Petrini). After PBS washes, coverslips were incubated with

Rhodamine-Red-X-labelled secondary antibody raised against mouse or rabbit

(RRX, Jackson ImmunoResearch) for 30 min and washed in PBS. At this point,

coverslips were fixed with 2% paraformaldehyde for 10 min at room temper-

ature, washed extensively in PBS, dehydrated consecutively in 70%, 95% and

100% ethanol for 5 min each, and allowed to dry completely. Hybridizing solu-

tion (70% formamide, 1 mg ml21 blocking reagent (Roche), 10 mM Tris-HCl,

pH 7.2, containing PNA probe FITC-OO-(AATCCC)3 (Applied Biosystems))

was added to each coverslip and the cells were denatured by heating for 10 min at

80 uC on a heat block. After 2 h incubation at room temperature in the dark, cells

were washed twice with washing solution (70% formamide, 10 mM Tris-HCl,

pH 7.2) and twice in PBS. DNA was counterstained with DAPI and slides were

mounted in antifade reagent (ProLong Gold, Invitrogen). Digital images were

captured with a Zeiss Axioplan II microscope with a Hamamatsu C4742-95

camera using Improvision OpenLab software.

To detect expression and localization of fluorescently marked proteins, cells

were fixed for 10 min in 2% paraformadehyde at room temperature. Digital

images of fluorescent eGFP and mCherry signals were captured as described

previously.

Live-cell imaging. TRF2fl/253BP11/2 and TRF2fl/253BP12/2 cells expressing

eGFP2TRF1 (to visualize telomeres) and mCherry2BP1-2 (human 53BP1,

amino acids 122021711, to mark dysfunctional telomeres), or

TRF2fl/253BP11/2, TRF2fl/253BP12/2, TRF2fl/2Lig42/2p532/2 (ref. 1) and

TRF2fl/2Atm2/2 (ref. 4) cells expressing eGFP2TRF1 only, untreated or treated

with Cre, were seeded onto MatTek glass bottom plates and grown for 2 days

before imaging. Imaging was performed 72284 h after Cre-mediated deletion of

TRF2. Right before imaging, cells were changed into Leibovitz’s L-15 medium

(Gibco) supplemented with 30% FBS and allowed to equilibrate for 30 min.

During the imaging session, the temperature was maintained at 37 uC with an

environmental chamber. Cells were monitored using a DeltaVision RT micro-

scope system (Applied Precision) with a PlanApo 360 1.40 n.a. objective lens

(Olympus America, Inc.). 5-mm Z-stacks at 0.5-mm steps in both eGFP and

mCherry channels were acquired using SoftWoRx software with 50 ms and

30 ms exposure time, respectively, every 30 s over 20 min (t 5 40 frames) at

2 3 2 binning with 512 3 512 pixels in final size. Images were deconvolved

and projected in two dimensions using SoftWoRx software.

The tracking analysis of eGFP–TRF1-marked telomeres was performed with

ImageJ software for at least ten cells for each genotype. Cells were registered by

StackReg plugin using both ‘Translation’ and ‘Scaled rotation’ options. Next,

particles were tracked using Particle Detector and Tracker plugin32 with the

following parameters for particle detection and tracking: radius 5 2 pixels; cut-

off 5 2 pixels; percentile 5 1; link range 5 1; displacement 5 5 pixels. The x and

y coordinates of each trajectory were output for further calculation.

For each cell, 5 telomeres were chosen for analysis based on two criteria: first,

they were continuously tracked for at least 35 out of 40 frames and, second, they

co-localized with the mCherry–BP1-2 dysfunctional telomere marker for the
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entire imaging session (20 min). To correct for cell mobility, the average x and y
values of the 5 telomeres were calculated in each frame and this was used as a

reference point. All data output in pixels (standard ImageJ output) were con-

verted to metres by the formula 1 pixel 5 0.2156mm based on the characteristics

of the objective.

The following formulas were used to calculate the distance travelled between

two time points, cumulative distance travelled and average speed of an individual

telomere T (xT
t 5 n, yT

t 5 n) relative to the reference point R (xR
t 5 n, yR

t 5 n): dis-

placement, Dn, between two time points t 5 n 2 1 and t 5 n (measured in mm) is

Dn 5 sqrt(((xT
t 5 n 2 xR

t 5 n) 2 (xT
t 5 n 2 1 2 xR

t 5 n 2 1))2

1 ((yT
t 5 n 2 yR

t 5 n) 2 (yT
t 5 n 2 1 2 yR

t 5 n 2 1))2)

Cumulative distance travelled in 20 min (t 5 40) Dcum (measured in mm) is

Dcum 5 sum(D1, D2, …, D40)

Average speed S (measured in nm min21) is

S 5 Dcum/20

To calculate the displacement from the starting point (t 5 0) for a given
telomere T (xT

t 5 n, yT
t 5 n) at t 5 n, the following calculation was performed

based on a reference point, R, defined as above: displacement from origin

Dori,t is

Dori,t 5 sqrt(((xT
t 5 n 2 xR

t 5 n) 2 (xT
t 5 0 2 xR

t 5 0))2

1 ((yT
t 5 n 2 yR

t 5 n) 2 (yT
t 5 0 2 yR

t 5 0))2)

Maximum displacement from starting point, Dori MAX, for a given telomere
recorded during an imaging session was used as a measure of the territory that

the telomere has sampled during the imaging session and calculated as shown

below:

Dori MAX 5 max(Dori, 1, Dori, 2, …, Dori, 40)

Data were collected from three independent experiments (independent Cre

infections): experiment 1 (n 5 55; Fig. 3e–g), experiment 2 (n 5 55) and experi-

ment 3 (n 5 65; Supplementary Fig. 9). It is important to note that experiment 1

and experiment 3 were done with cell lines A (TRF2fl/253BP11/2) and B

(TRF2fl/253BP12/2), whereas experiment 2 was performed with cell lines C

(TRF2fl/253BP11/2) and D (TRF2fl/253BP12/2). A/B and C/D were infected

with eGFP–TRF1/mCherry–BP1-2 fluorescent markers independently, which

might account for the minor variation in the quantitative data on telomere

mobility after deprotection.

Statistical analysis was performed using Prism Software. Mann–Whitney test

(also referred to as rank sum test), which compares two unpaired groups without

assuming Gaussian distribution, was applied to calculate the statistical signifi-

cance values.

Treatment with drugs. Cells were treated with the following drugs diluted in

imaging medium: actin inhibitor Latrunculin A, 0.1 mg ml21, for 1 h before

imaging and HDAC inhibitor trichostatin A, 10 ng ml21 and 50 ng ml21, for

18 h before imaging. TRF2fl/2 or TRF2fl/2Lig42/2p532/2 cells plated on imaging

plates were irradiated with 1 Gy c-irradiation and imaged immediately (with

10 min delay to set up the imaging) or allowed to recover for 2 h.
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