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Abstract 

Background: Chromatin contacts are essential for gene-expression regulation; how-
ever, obtaining a high-resolution genome-wide chromatin contact map is still pro-
hibitively expensive owing to large genome sizes and the quadratic scale of pairwise 
data. Chromosome conformation capture (3C)-based methods such as Hi-C have been 
extensively used to obtain chromatin contacts. However, since the sparsity of these 
maps increases with an increase in genomic distance between contacts, long-range or 
trans-chromatin contacts are especially challenging to sample.

Results: Here, we create a high-density reference genome-wide chromatin contact 
map using a meta-analytic approach. We integrate 3600 human, 6700 mouse, and 500 
fly Hi-C experiments to create species-specific meta-Hi-C chromatin contact maps 
with 304 billion, 193 billion, and 19 billion contacts in respective species. We validate 
that meta-Hi-C contact maps are uniquely powered to capture functional chromatin 
contacts in both cis and trans. We find that while individual dataset Hi-C networks are 
largely unable to predict any long-range coexpression (median 0.54 AUC), meta-Hi-C 
networks perform comparably in both cis and trans (0.65 AUC vs 0.64 AUC). Similarly, 
for long-range expression quantitative trait loci (eQTL), meta-Hi-C contacts outperform 
all individual Hi-C experiments, providing an improvement over the conventionally 
used linear genomic distance-based association. Assessing between species, we find 
patterns of chromatin contact conservation in both cis and trans and strong associa-
tions with coexpression even in species for which Hi-C data is lacking.

Conclusions: We have generated an integrated chromatin interaction network which 
complements a large number of methodological and analytic approaches focused on 
improved specificity or interpretation. This high-depth “super-experiment” is surpris-
ingly powerful in capturing long-range functional relationships of chromatin interac-
tions, which are now able to predict coexpression, eQTLs, and cross-species relation-
ships. The meta-Hi-C networks are available at https:// labsh are. cshl. edu/ shares/ gilli 
slab/ resou rce/ HiC/.
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Background
The physical associations generated by chromatin contacts are a critical factor to 
regulate and determine gene-expression patterns [1–4]. Functional chromatin con-
tacts can form across a wide range of genomic distances within a chromosome (cis) 
or across chromosomes (trans). Although trans contacts are non-random [5] and 
there is evidence of trans-regulatory interactions [6, 7], studying the functional role 
of these interactions is difficult due to the high sparsity of available chromatin contact 
maps in trans.

Obtaining high-density chromatin contact maps at all genomic distances and in trans 
is not yet feasible with most existing maps being essentially probabilistic in nature, 
capturing some fraction of likely present contacts in a distance-dependent manner. 
Genome-wide contact maps can be obtained using chromosome conformation capture 
(3C)-based technologies such as Hi-C [8]. From Hi-C experiments, an nxn chromatin 
contact matrix is generated where the genome is divided into n equally sized bins and 
contact frequency between each bin-pair is obtained by summing the pair-ended reads 
spanning between a pair of bins (Fig.  1A). The bin size is also referred to as “resolu-
tion” and is dependent on the sequencing depth of the experiment — at low sequencing 
depth, the matrix is generated using large bin sizes (low resolution) to reduce the spar-
sity of the matrix. The commonly used sizes of these bins can range from 1 KB to 1 MB. 
However, due to large genome sizes and the quadratic scale of pairwise data, obtaining 
these chromatin contact matrices at high resolution would require prohibitively expen-
sive sequencing at even 1X depth in the pairwise space. Capturing long-range and trans 
chromatin contacts is made more difficult since the frequency of contacts decreases with 
an increase in genomic distance between contacting loci in cis [8]. And in trans, the con-
tacts are at least 2 orders of magnitude less frequent [5] while also having a larger search 
space than cis.

To overcome the sequencing-depth barrier, targeted 3C-based techniques such as 
ChiA-PET [11] and Capture-Hi-C [12] are widely used to obtain high-resolution con-
tact maps for specific proteins or selected loci respectively. Alternatively, several in silico 
methods have taken the advantage of existing limited-resolution contact maps to either 
generate higher resolution maps using machine learning approaches [13–16] and/or 
detect statistically significant interactions by background fitting [10, 17]. However, with 
a few exceptions [18, 19], most of the available methods are only tested to enhance cis 
interactions because longer range interactions are essentially unavailable within any 
given data set.

In this work, we propose a meta-analysis approach where we leverage several hun-
dreds of available chromatin contact matrix generated from Hi-C-based experiments to 
create a dense genome-wide chromatin contact matrix for three species: human, mouse, 
and fly. We show that these meta-Hi-C chromatin contact matrices are valuable for cap-
turing long-range and trans-chromosomal interactions. We evaluated the effectiveness 
of contact maps using three criteria; chromatin contact matrix was used to predict (1) 
gene-expression profiles, (2) target genes for eQTLs, and (3) conservation across pairs 
of species (human-mouse, human-fly, and mouse-fly). Our reference networks comple-
ment a very diverse array of efforts in genomics, from those focused on more targeted 
experiments in Hi-C which now have an overall “null” with which to compare individual 
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results, to genome interpretation methods, whether interpreting variants, expression 
patterning, or regulatory sequence.

Results
Meta‑Hi‑C network predicts coexpression at greater resolution and scale than individual 

networks

In brief, for building the meta-Hi-C matrix, we uniformly processed 3619, 6732, and 487 
Hi-C runs for human, mouse, and fly respectively. The runs were obtained after que-
rying sequence read archive (SRA) with field limitations of given species and Hi-C as 

Fig. 1 Creating the meta-Hi-C network. A Genes are co-localized in chromatin 3D structure through frequent 
chromatin contacts. Each chromosome is divided up into “bins” of a specific size referred to as resolution and 
the chromatin contact matrix represents the number of pair-ended reads spanning between a pair of bins. 
The contact matrix can be represented with networks where nodes are genes and edges are interaction 
frequencies. The cis and trans networks consist of intra-chromosome and inter-chromosome edges 
respectively. B Contact maps from individual Hi-C experiments are aggregated to create a meta-Hi-C contact 
map. C Visual comparison of our meta-Hi-C and two individual Hi-C contact matrices: Vian et al. [9] (a typical 
experiment) and Rao et al. [10] (densest experiment in trans) at 100-KB (top) and 25-KB resolutions (bottom). 
The maximum contact frequency is given at the bottom of each map. The high-intensity region observed in 
our meta-Hi-C contact matrix at 25-KB resolution belongs to gene UBEJ2 on Chr1 and ZFP64 on Chr20. Both 
these genes are also strongly coexpressed in our coexpression network with a coexpression strength of 0.98 
on a genome-wide rank-standardized scale of 0 to 1. D Total number of contacts in cis and trans meta-Hi-C 
network of human, mouse, and fly. n and N are the numbers of runs and projects aggregated in each species 
respectively. E Contact density (total contacts/number of 1-bp bins) across individual projects in cis and 
trans for each species. Individual points are individual experiments and the darker shades of points are the 
values for the meta-Hi-C network. Distribution of fold enrichment of contacts among genes in the meta-Hi-C 
network relative to the maximum (F) or median (G) number of contacts for that gene among individual 
network in cis and trans. The total number of genes in F and G are 23,465, 20,672, and 9636 in human, mouse 
and fly respectively
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experiment strategy. A genome-wide chromatin contact matrix at several resolutions 
(1KB, 5KB, 10KB, 25KB, 40KB, 100KB, 250KB, and 500KB) was created for each run 
after mapping the reads to the same reference genome for each species. Within SRA, 
all the runs belonging to a study are grouped together as a project. A project can con-
sist of multiple runs, which can include biological or technical replicates across multi-
ple tissues or cell types. Chromatin contact matrices within a project were aggregated 
to create a project-level Hi-C matrix. There were 119, 33, and 29 projects for human, 
mouse, and fly respectively (Fig. 1D). The meta-Hi-C matrix for each species was cre-
ated after further aggregating all project-level Hi-C matrix within a species (Fig. 1B). For 
subsequent analysis, the genome-wide Hi-C matrix was mapped to genes to create Hi-C 
networks where nodes are genes and edges are the interaction frequency between genes 
(Fig. 1A). To determine contact frequency between each gene pair we use the maximum 
contact frequency between each bin in which genes reside. The genome-wide Hi-C net-
works were divided into cis and trans depending on if the edge connects two genes in 
the same chromosome or different chromosomes respectively. Figure 1D–G highlights 
the comprehensively greater depth of the meta-Hi-C network. To validate the predictive 
power of the meta-Hi-C network, we benchmarked it against Hi-C networks inferred 
from individual projects for each species.

As our first performance test, we assessed the tendency for spatially co-localized 
genes to be coexpressed [20, 21], using previously derived shared patterns of expression 
in independent data [22]. The underlying hypothesis is that spatial proximity may be a 
useful way to organize regulatory relationships, as in the case of linear sequence, thus 
yielding shared spatial relationships for genes that are coexpressed. Thus, while perfect 
performance at predicting coexpression is not expected, the genome-wide scale of the 
assessment makes it useful for assessing cis and trans effects. For each gene, we meas-
ure the ability of interaction frequency to predict the gene’s top 1% coexpression part-
ners. We call this measure “contact coexpression” (Fig. 2A) and is expressed as an AUC 
(area under the ROC curve) with possible values ranging between 0 and 1. A score of 
1 indicates that interaction frequency perfectly predicts coexpression; 0.5 indicates no 
relationship.

We evaluated the contact coexpression as a function of the sequencing depth of the 
Hi-C network in cis (Fig. 2B) and trans (Fig. 2C) for all individual Hi-C networks and 
meta-Hi-C network in human. We find that performance is linearly dependent on the 
log of sequencing depth and meta-analysis provides additional coverage. We find that in 
cis the best powered individual experiments are close to the saturation depth that maxi-
mizes performance (Fig. 2B), although performing substantially worse in trans. In trans, 
the meta-Hi-C network acts like a “super-experiment”, where the additional coverage 
fully converts into substantial additional performance (Fig. 2C). We found similar results 
for mouse (Additional file 1: Fig. S1C and S1D) and fly (Additional file 1: Fig. S2C and 
S2D). Although contact coexpression scores in cis and trans are similar (0.63 AUC cis 
vs 0.64 AUC trans at 10KB resolution), the search space in trans is at least three times 
larger when compared to cis, making a direct comparison of the aggregate “strength” of 
cis and trans relationships non-trivial.

The resolution of the Hi-C matrix is an important parameter for obtaining gene 
networks, and hence, we evaluated the contact coexpression of individual Hi-C and 
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meta-Hi-C networks at several resolutions. We find that for the individual networks per-
formance increases with an increase in resolution, plateaus, and then slightly falls off in 
cis (Fig. 2D). In essence, improved resolution is useful in cis because the coverage is ade-
quate for it to provide a useful signal until the very finest resolution where most experi-
ments begin to decline, although the meta-Hi-C network continues to slightly increase, 
as might be expected. In contrast, in trans (Fig. 2E), the performance monotonically falls 
with an increase in resolution for individual experiments. However, the trans pattern for 
meta-Hi-C networks strongly resembles that of individual experiments in cis, increas-
ing and then plateauing with improvements in resolution. This suggests unlike individual 
networks, meta-Hi-C networks are dense enough to be analyzed at high resolutions even 

Fig. 2 Meta-Hi-C network benchmarking. A Contact coexpression metric schematic. Circles represent 
genes and lines represent edges of that gene in respective networks. For each target gene, we use its 
ranked edges in the Hi-C network to predict the top 1% of its edges in the coexpression network. We 
perform this task for every gene and then report contact coexpression as the average AUC across all genes. 
B Contact coexpression for the individual and meta-Hi-C network in cis as a function of sequencing depth 
at 1-KB resolution C Same as (B) but in trans and at 10-KB resolution. D The boxplot shows the distribution 
of contact coexpression for each project at various resolutions in cis. Circles represent the performance of 
the cis meta-Hi-C network. E Same as (D) but using trans networks. F The boxplot shows the distribution of 
contact coexpression in cis at 1-KB resolution for each project at various distance thresholds. G Comparison 
of contact coexpression score of the meta-Hi-C network and compartment coexpression score at various 
resolutions. We called compartments in each individual network and then aggregated those calls, capturing 
the probability of sharing a compartment across data. The compartment coexpression metric captures the 
ability of aggregated compartment preference to predict coexpression. Subcompartment coexpression is 
defined analogously to compartment coexpression. Compartments were called using either the Liu et al. [23] 
method or the Liberman-Aiden et al. [8] method
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in trans. We found similar results for mouse (Additional file 1: Fig. S1A and S1B) and fly 
(Additional file 1: Fig. S2A and S2B).

The Hi-C matrix in cis has high density of contacts at bins near the diagonal 
and the contact density decreases exponentially as the distance between the bins 
increases so that even Hi-C networks with higher contact density on average will be 
highly sparse at distant bins. This makes it difficult to capture functional contacts 
between distant gene pairs from a Hi-C matrix. Hence, we evaluated the contact 
coexpression of individual Hi-C networks and meta-Hi-C networks at various lin-
ear distance thresholds in cis. We find that for long-range contacts (minimum dis-
tance between gene pairs> 600 KB) the additional sequencing depth of meta-Hi-C 
networks when compared to individual Hi-C networks fully converts into additional 
performance (Fig.  2F). However, for both individual networks and meta-Hi-C net-
work, the performance decreases in the absence of short-range contacts. This could 
be due to a higher number of short-range regulatory interactions or due to the simi-
larity of the chromatin environment for nearby genes.

Chromatin can be folded into structural patterns at different length scales [24]. 
At a large genomic scale, the genome is spatially segregated into two compartments 
[8] and further up to 8 subcompartments [23]. At a shorter genomic scale (< 1 MB), 
chromosomes fold into topologically associated domains (TADs). Since the interac-
tion between genes is partly constrained to occur within the same structural units 
(compartment/subcompartment/TADs), we sought to determine if the contact 
coexpression performance of the meta-Hi-C network can be explained with these 
genomic structures. In each individual network, we identified the compartment of 
each gene and then binarized the compartment preference for each gene pair: so 
each experiment becomes a binary network of gene pairs found in the same com-
partment (1) or a different compartment (0). The binarized individual networks are 
then aggregated, capturing the probability of sharing a compartment across all data. 
For each gene, we measure the ability of aggregated compartment frequency to pre-
dict the gene’s top 1% coexpression partners. We call this measure “compartment 
coexpression” and it is expressed as an AUC with possible values ranging between 
0 and 1. A score of 1 indicates that the same compartment frequency perfectly pre-
dicts coexpression; 0.5 indicates no relationship. We also defined “subcompartment 
coexpression” and “TAD coexpression” analogously to compartment coexpression.

We compared TAD coexpression (defined only in cis), compartment coexpression, 
and subcompartment coexpression with meta-Hi-C contact coexpression at sev-
eral resolutions. We used two different methods for calling compartments: an older 
PCA-based method Liberman-Aiden et  al. [8] and a comparatively recent method 
Calder [23]. In cis, we find that compartment and subcompartment coexpression is 
comparable to or better than contact coexpression while TAD coexpression is lower 
than compartment at up to 10-KB resolution (Additional file  1: Fig. S3). TADs are 
often considered functional genomic units and genes within the same TADs tend to 
be coexpressed [25]. However, unlike compartment and contact coexpression, TAD 
coexpression does not capture long-range interactions (average TAD size is smaller 
than 1 MB). This likely explains the non-random yet low performance of TAD coex-
pression (AUC 0.55). We also evaluated the conservation of TADs and boundaries 
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across all individual Hi-C matrices (Additional file 1: Fig. S4). The number of TADs 
conserved across experiments decreases relatively rapidly and we did not find any 
TAD which was conserved across all the experiments. In trans, we find that com-
partment coexpression and subcompartment coexpression performances are lower 
than contact coexpression performance, suggesting other trans interactions contrib-
ute (Fig. 2G).

Meta‑Hi‑C network effectively captures more eQTL interactions

For our second performance assessment, we tested the hypothesis that genetic variants 
(eVariant) regulate gene expression of the target gene (eGene) via physical contact [26, 
27]. The set of eQTLs was obtained from GTEx (Section Methods). For each eVariant, the 
interaction frequency with all genes falling in unique contact map bins at 1-KB resolution 
was used to predict the eGene (Fig. 3A). This is termed “contact-eQTL” and is expressed 
as an AUC with possible values ranging between 0 and 1, with 1 and 0 meaning that the 
eVariant and target eGenes have the highest and lowest interaction frequency respec-
tively when compared to all eVariant and non-eGene interactions. Similar to the previous 
benchmarking test, we find that performance is linearly dependent on the log of sequenc-
ing depth and meta-analysis provides additional coverage; the meta-Hi-C network has 
higher performance when compared to any of the individual Hi-C networks (Fig. 3B). This 
emphasizes the significance of dense Hi-C networks in identifying eQTLs.

We further evaluated the ability of meta-Hi-C networks to predict target genes for var-
iants by comparing their performance with a linear genomic distance-based predictor, 
the current standard approach. The distance between the variant and gene transcription 
start site (TSS) remains almost the only metric widely used to annotate target genes for 
variants [28]. For each eVariant, the inverse of linear distance (1/TSS) with all genes is 
ranked and then used to predict the eGene (Fig. 3A). This is termed “proximity-eQTL” 
and is expressed as an AUC with possible values ranging between 0 and 1, with 1 and 
0 meaning that eGenes are the closest and farthest from the eVariant respectively. We 
compared contact-eQTL of individual Hi-C networks and meta-Hi-C networks at vari-
ous linear distance thresholds (Fig. 3C). We reassuringly find that the meta-Hi-C net-
work outperforms individual Hi-C networks at all distance thresholds. Interestingly, 
we find that contact-eQTL (meta-Hi-C) outperforms proximity-eQTL for long range 
eQTLs (minimum distance between the eVariant-gene pairs > 200KB). Furthermore, the 
performance for both contact-eQTL and proximity-eQTL decreases in the absence of 
short-range contacts. This is in agreement with our previous observation where we find 
that contact coexpression decreases in the absence of short-range contacts.

Trans‑chromosomal chromatin contacts show evolutionary conservation

Having established that meta-Hi-C networks are well powered to capture meaningful 
contacts, we now use them to study the conservation of genomic contacts between spe-
cies. Since chromatin contacts regulate gene expression, it is reasonable to expect some 
conservation of these contacts across species even in the context of large scale genomic 
alteration and, in the reverse, divergence in contacts across species can help explain reg-
ulatory evolution [29, 30]. We evaluated the conservation of contacts across species in 
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three different ways; we compare the contact coexpression scores for ortholog genes in 
each species pair, and we use the Hi-C network of one species to predict either Hi-C net-
work (“contact conservation”) or coexpression network in another species.

Fig. 3 Meta-Hi-C network captures long-range eQTLs. A Contact-eQTL and proximity-eQTL metric 
schematic. For contact-eQTL and proximity-eQTL, for each variant, the edges are ranked by contact 
frequency or inverse of the genomic distance from the gene respectively. The labels are obtained from eQTL 
associations (Section Methods). We perform this task for every variant and then report the average AUC 
across all variants. B Contact-eQTL for individual Hi-C network and meta-Hi-C network at 1-KB resolution 
as a function of sequencing depth. C The boxplot shows the distribution of contact-eQTL for each project 
at various minimum distance thresholds. Circles represent the contact-eQTL of the meta-Hi-C network and 
proximity-eQTL. D An example comparing contact-eQTL with proximity-eQTL. All genes associated with 
eVariant rs142559680 along with their sequence position on the X axis. The vertical separation between gene 
and variant increases as the distance between the variant and gene TSS increases. The thickness of the variant 
gene edge increases with an increase in the contact frequency in the meta-Hi-C network. Although gene 
RP11-479A21.1 is the closest to the variant, gene RBM20 has the strongest contact with the variant and is also 
the only significantly associated gene with the variant
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Before directly comparing the contact map across species, we first compared the con-
tact coexpression scores for 1:1 orthologous genes across species. We find a strong lin-
ear relationship between human and mouse scores and a somewhat weaker relationship 

Fig. 4 Chromatin contacts are conserved across species in both cis and trans. Contact coexpression in cis (A) 
and trans (B) for 1:1 orthologs in human-mouse and human-fly. C Contact conservation schematic. For each 
gene, ranked edges in human Hi-C network are used to predict the top 10% of mouse Hi-C network edges. 
This task is repeated for each gene and in both directions and the average AUC is reported as human-mouse 
contact conservation. D The distribution of contact conservation score across genes in each direction 
using the meta-Hi-C network for various pairs of species. human-mouse contact conservation for individual 
Hi-C network and meta-Hi-C network as a function of sequencing depth in cis (E) and trans (F). G Contact 
coexpression conservation schematic. For each gene, ranked edges in the human Hi-C network are used 
to predict the top 1% of mouse coexpression network edges. This task is repeated for each gene and we 
report the average AUC as mouse contact coexpression conservation with human. H Contact coexpression 
conservation with human for several species. I Same as (H) but only using the same set of 429 ortholog 
genes across species. The error bars represent a 68% confidence interval. In cis, the Hi-C network is analyzed 
at 1-KB resolution, and in trans, the Hi-C network at 10-KB resolution is used for human and mouse and 1-KB 
resolution for fly. J The dendrogram shows phylogenetic relationships between species used for contact 
coexpression conservation analysis. Million year distance from human and number of 1:1 orthologs with 
human is listed in the parenthesis
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between human and fly scores in both cis (Fig. 4A) and trans (Fig. 4B). This suggests that 
if a gene is spatially co-regulated in one species, it is likely to be spatially co-regulated 
across other species.

We next characterized the degree to which gene contacts are conserved by directly 
comparing the meta-Hi-C network across species. Each gene’s shared neighborhood 
is defined by ranking all edges in the chromatin contact network and then using it to 
predict the gene’s top 10% of edges in another species. We call this “contact conser-
vation” and again treat it as a prediction task with 1 meaning perfect contact conser-
vation, 0.5 consistent with random reordering of neighborhoods, and 0 meaning that 
contacting partners have reversed (Fig. 4C). For the trans conservation score, only 
the trans gene pairs in both species are used, similarly for cis analysis. As expected, 
we find that the contact conservation is higher for human-mouse (AUC> 0.8) when 
compared with human-fly (AUC 0.5) or mouse-fly (AUC 0.51) (Fig. 4D) in both cis 
and trans.

We also re-validated the power of the meta-Hi-C network: we compared the 
contact conservation scores for individual and meta-Hi-C networks at the highest 
available resolution. We reassuringly find that the meta-Hi-C network outperforms 
individual projects in both cis and trans (Fig.  4E, F). This again suggests that the 
meta-Hi-C network is efficient in capturing chromatin contacts when compared to 
individual networks. Although the conservation of cis chromatin structure across 
species is not surprising and is evident in the presence of syntenic regions between 
species, the conservation of trans-chromatin contacts is noteworthy. It suggests 
that the trans-chromatin structure is likely selected for preservation to maintain 
function.

We further investigated the evolution of trans chromatin contacts in human by 
comparing the degree to which the human contacts can predict coexpression across 
several species. This method allowed us to extend our analysis to species for which 
the meta-Hi-C network is not available. Each gene’s neighborhood is defined by 
ranking all edges in the chromatin contact network of one species and then used to 
predict the gene’s top 1% of coexpressed gene pairs in another species. We call this 
“contact coexpression conservation” and calculate the AUC as above (Fig. 4G). When 
contact coexpression conservation is plotted along with the phylogenetic distance 
across species, we find that the performance decreases with an increase in phyloge-
netic distance using trans meta-Hi-C networks (Fig. 4H). This suggests that the con-
tacts diverge as the species pair becomes distant across evolution. As expected, we 
also find that the strongest coexpressed genes have the most contact coexpression 
conservation (Additional file 1: Fig. S5). The number of 1:1 orthologs also decreases 
with an increase in the phylogenetic distance (Fig. 4J), and it seemed possible that 
our observation was dominated by the number of ortholog pairs between species. 
To eliminate this possibility, we redid our analysis but using only the same set of 
ortholog genes (429 genes) in each species and our result persisted (Fig. 4I). Species 
more than 100 million years of distance (mya) from humans have stronger diver-
gence in contacts when compared to species within the Mammalia Class. The spe-
cies included in Fig. 4I were limited to the Chordata phylum to ensure a reasonable 
number of genes in the analysis.
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Data availability and online tool

In order to facilitate the broad adoption of meta-Hi-C by the community, we have made 
data available via an online tool (https:// gilli sweb. cshl. edu/ HiC/). Contact data can be 
obtained in two ways: (a) network download: direct download of the desired resolution 
and species meta-Hi-C contact matrix in cis or trans available at https:// labsh are. cshl. 
edu/ shares/ gilli slab/ resou rce/ HiC in HiCMatrix format (https:// github. com/ deept ools/ 
HiCMa trix) and (b) gene vector download: contact frequency with every genomic loci 
at the chosen resolution and for any desired gene found in the respective species. The 
downloaded file is in a bed file format which can be uploaded to the UCSC genome 
browser for further analysis as desired.

Discussion
In this work, we created a high-depth, genome-wide chromatin contact map using a 
meta-analytic approach, validated it, and further used it to reveal chromatin structure 
to function relationships. We find that for the three species analyzed in this study 
(human, mouse, and fly), chromatin contacts strongly predicted the coexpression of 
genes. We also show that chromatin contacts are better than linear proximity for pre-
dicting eQTLs when high-resolution chromatin contact data is available. Our results 
persist even when only long-range chromatin contacts are analyzed. Additionally, we 
find that trans-chromosomal contacts show evidence of conservation between human 
and mouse. In contrast, we do not find any conservation between these mammalian 
networks and fly (human-fly AUC 0.50, mouse-fly AUC 0.51). This is striking in its 
nearly exact correspondence with the null, but the very large amount of data com-
bined with the dramatically different genomes appears to leave no average signal 
when analyzed across homologs. It remains plausible that a model trained specifically 
to account for the broad cross-species differences would find subtler biological over-
laps our direct assessments miss.

Meta-Hi-C networks are an effective means for capturing otherwise hard to char-
acterize long-range interactions providing potentially uniquely important practical 
applications. One important application for a wide area of genomics is their ability to 
prioritize distant target genes for variants. We expect these networks to be powerful 
training data for future machine learning attempts to predict chromosomal contacts, 
an important area of ongoing research [13–16]. Additionally, meta-Hi-C networks 
can be used with other cell-type-specific ‘omics datasets such as ChIP-Seq to reveal 
cell-type-specific enhancer-promoter contacts. Previously, Nasser et al. [31, 32] used 
averaged Hi-C data across 10 cell types in their ABC model to accurately make cell-
type-specific enhancer-gene predictions. Thus, the continuing evolution of methods 
with improved specificity is likely to complement our better-powered but less condi-
tion-specific meta-analytic approach.

Within the Hi-C analysis, and even outside of it, aggregation of data is well appreci-
ated to be a useful strategy. Reproducible biological replicates within the same study 
are often combined to increase the density of Hi-C data thereby capturing more inter-
actions [10, 33]. Our approach can be thought of as the most extreme version of this 
idea, combining experiments as broadly as possible to capture statistical relationships 
that are common. This is most useful if the depth is a major limitation, as in trans 

https://gillisweb.cshl.edu/HiC/
https://labshare.cshl.edu/shares/gillislab/resource/HiC
https://labshare.cshl.edu/shares/gillislab/resource/HiC
https://github.com/deeptools/HiCMatrix
https://github.com/deeptools/HiCMatrix
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contacts, as it comes with the cost of a loss of condition-specificity. Thus, the route 
forward for the field as a whole will doubtless involve both improved specificity, inte-
gration, and interpretive methods.

In summary, our study sheds new light on the functional role of long-range and 
trans-chromosomal contacts and provides a critical resource for use by a wide range 
of genomics research.

Conclusions
In this study, we leveraged the hundreds of available Hi-C maps by aggregating 
them to build high-depth meta-Hi-C maps for human, mouse, and fly. These maps 
act like a “super-experiment” where additional depth leads to surprising power 
in capturing long-range functional relationships. These maps are able to predict 
coexpression, eQTLs, and cross-species relationships. The availability of the meta-
Hi-C maps complements the ongoing efforts in identifying functional chromatin 
contacts and provides significant evidence for the functionality of trans chromatin 
contacts. The meta-Hi-C networks are available for download via an online tool at 
https:// gilli sweb. cshl. edu/ HiC/.

Methods
Hi‑C data sources

The Hi-C data for each species were obtained from SRA search (https:// www. ncbi. 
nlm. nih. gov/ sra/) with the field limitations of “Organism”: [“Homo sapiens,” “Mus 
musculus,” “Drosophila melanogaster”], “Strategy”: “hi c.” We found 3913, 8431, and 
502 runs for human, mouse, and fly respectively. We also added 268, 17, and 25 runs 
manually that were labeled OTHER in SRA, but were deemed to be valid Hi-C data 
based on publication details. After manual additions, filtering out runs without avail-
able restriction enzyme information, and excluding runs that failed to process, we had 
3621, 6733, and 487 samples for human, mouse, and fly.

SRA projects processed for human are SRP050102 [10], SRP012412 [34], SRP152979 
[35], SRP152879 [36], SRP118999 [37], SRP154953 [38], SRP199098 [39], SRP234115 
[40], SRP094854, SRP149906 [36], SRP165933 [41], SRP212226 [14], SRP117084 [42], 
SRP218691, SRP233368 [43], SRP106040 [44], SRP125488, SRP250432, SRP141473 
[45], ERP107279, SRP224133 [46], SRP184300, SRP168606 [29], SRP216194 
[47], SRP178527 [48], SRP173234 [49], SRP239849 [50], SRP106379, SRP162098 
[51], SRP120957, DRP005280, SRP150259 [52], SRP170743, SRP131003 [53], 
SRP158113, SRP186190, SRP212073 [54], SRP133031 [55], SRP135798, SRP131871 
[56], SRP158276 [57], SRP114754, SRP267107 [58], SRP227918 [59], SRP271101 
[60], SRP186277, SRP115913 [61], SRP157799 [62], SRP110964, SRP194362 [63], 
SRP151075 [64], SRP157894 [65], SRP160101, SRP157048 [66], SRP221518 [67], 
SRP225696 [68], ERP104251, SRP105082 [9], SRP223060 [69], SRP234897 [70], 
SRP250333 [71], SRP113633 [72], SRP186012 [73], SRP199225 [74], SRP107176 [75], 
SRP105181 [76], SRP066852, SRP095110, SRP162056, SRP201909 [77], SRP153415 
[78], SRP127183 [79], ERP118600, SRP274139 [80], SRP115572 [81], SRP099610 

https://gillisweb.cshl.edu/HiC/
https://www.ncbi.nlm.nih.gov/sra/
https://www.ncbi.nlm.nih.gov/sra/
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[82], SRP108500 [83], SRP195614 [84], SRP235557 [85], SRP264796 [86], SRP197114, 
SRP132233 [87], SRP244334, SRP113478, SRP107148, SRP083971, SRP192392 
[88], SRP145420 [89], SRP152361 [90], SRP141229, SRP261300, SRP154986 [91], 
SRP261299, SRP150629 [92], SRP111140, SRP130935 [93], SRP165232, SRP098826, 
SRP102403 [94], SRP154399, SRP090318 [95], DRP005173 [96], SRP107149, 
SRP245657, SRP149124, SRP060755, SRP163366 [97], SRP071243, SRP272124 
[98], SRP103077, SRP163908, SRP170855 [99], SRP217227 [73], SRP132876 [100], 
SRP100408 [101], SRP105086, SRP076397, SRP182670, and SRP109036.

SRA projects processed for mouse are SRP217487 [102], SRP101928 [103], 
SRP075985 [104], SRP105082 [9], SRP165933 [41], SRP261290 [105], SRP118601 
[106], SRP107774 [107, 108], SRP226118, SRP252213 [109], SRP229756, SRP250878, 
SRP131117 [110], SRP247488 [111], SRP223513 [112], SRP119332 [113], SRP268173 
[67], SRP270993 [114], SRP179647 [115], SRP255620 [116], SRP100871 [117], 
SRP192917 [14], SRP156597 [118], SRP227097 [67], ERP114475, SRP249897 [119], 
SRP096571 [120], SRP144391 [121], SRP110616 [122], SRP292639 [119], SRP194410 
[123], SRP200567 [124], and SRP218950 [118].

SRA projects processed for fly are ERP122732 [125], SRP165773 [126], SRP119928 
[127], ERP112882, SRP050096 [128], SRP223221 [129], SRP097891 [130], ERP016479, 
SRP104256 [131], SRP186730 [132], SRP230396 [133], SRP107636 [134], SRP073988 
[135], SRP111713 [136], SRP107637 [134], SRP195621 [84], SRP193880, SRP168946 
[137], SRP107556 [134], SRP158369 [138], SRP110166, SRP165772 [139], ERP112723, 
SRP219433, SRP156199 [140], SRP199618 [141], SRP132075 [142], SRP140881, and 
SRP181908 [143].

In total, we aggregated 119 human projects, 33 mouse projects, and 29 fly projects. 
Additional file 2: Tables S1, S2 and S3 further summarize the number of runs, sequenc-
ing depth, and cell-type information for each project in respective species.

Hi‑C data processing pipeline

All runs were reprocessed from short read sequence data to reduce differential compu-
tational noise across experiments. Restriction enzymes were identified for each sample 
from the literature. SRA files were downloaded using prefetch, then converted to paired 
FASTQ files using fasterq-dump. FASTQ files were processed using the HiCUP tool 
[144], with the alteration that short reads were aligned using the STAR aligner, instead 
of the default Bowtie2 [145]. HiCUP truncates the reads based on restriction site, aligns 
them, and filters artifactual and duplicated data. Reads were aligned to the hg38, mm10, 
and dm6 in human, mouse, and fly respectively. Output SAM files were converted to 
indexed and compressed Pairs files using the bam2pairs tool. Finally, pairwise chromo-
some-chromosome contact matrices were generated at single base-pair resolution.

Building chromatin contact matrix

To obtain a chromatin contact matrix, each chromosome is divided up into “bins” of 
a specific size. The number of base pairs in each bin represents the “resolution” of the 
matrix. The contact frequency for each bin pair is obtained by summing the reads fall-
ing in that bin. The chromatin contact matrix was generated at 8 resolutions (1KB, 5KB, 
10KB, 25KB, 40KB, 100KB, 250KB, and 500KB) in cis for all species and trans for only 
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fly. For human and mouse, trans chromatin contact matrices at 1-KB and 5-KB resolu-
tions were not processed due to high memory requirements (more than 2TB). These files 
were written in HiCMatrix (https:// github. com/ deept ools/ HiCMa trix) h5 format. For 
each species, we excluded sex chromosomes and considered only autosomes (human: 
chr1 to chr22, mouse:chr1 to chr19 and fly: chr2L, chr2R, chr3L, chr3R, chr4). The con-
tact frequency of each genomic pair coordinate was summed across runs to generate 
a project-level chromatin contact matrix. The sequencing depth of a project in cis and 
trans is obtained by summing all the contacts in cis and trans respectively. The contact 
frequency was KR-normalized separately for the cis and trans networks to adjust for 
nonuniformities in coverage introduced due to experimental bias [146] using the hic-
CorrectMatrix tool of HiCexplorerV3.6 [147]. All project-level chromatin contact matri-
ces within each species were further summated to create species-level meta-Hi-C maps. 
Gene transcription start site (TSS) and transcription end site (TES) were used to deter-
mine the bins in which the gene resides. A list of genes, TSS, and TES were obtained 
as GTF files from ENSEMBL (September 2019). To determine the contact frequency 
between each gene pair, we use the maximum contact frequency between each bin in 
which genes reside. This method was previously used by Babaei et al. [21].

Coexpression data

The coexpression network used in this study is a “high confidence gene” aggregated 
coexpression network available at https:// labsh are. cshl. edu/ shares/ gilli slab/ resou rce/ 
CoCoC oNet/ which was generated using the method previously described in CoCo-
CoNet [22]. In brief, several bulk RNA-seq datasets were obtained from NCBI’s SRA 
database (unique SRA Study IDs). Networks for each dataset are built by calculating 
the Spearman correlation between all pairs of genes, then ranking the correlation coef-
ficients for all gene-gene pairs, with NAs assigned the median rank. Each network is 
then rank standardized and normalized by dividing by the maximum rank. Aggregate 
networks are then generated by averaging rank standardized networks from individual 
datasets. There are 23,465, 20,672, and 9636 genes (sex chromosomes are excluded) in 
the coexpression network for human, mouse, and fly.

Compartment, subcompartment, and TAD assignment

Gene compartments were either identified using “hicPCA” (tool of HiCexplor-
erV3.6 [147] which is based on the Lieberman-Aiden et  al. method [8] using each 
chromosome KR-normalized cis-contact matrix or Calder2.0 [23] available at github 
(https:// github. com/ CSOgr oup/ CALDE R2.0). Gene density was used for A or B 
compartment assignment when the “hicPCA” tool was used. TADs and TAD bound-
aries were identified using TopDom [148]. A TAD is overlapping across two Hi-C 
experiments at a given resolution if the TAD’s start and end positions are the same 
in both experiments.

eQTL data source and processing

A list of tissue-specific “significant” variant gene pair associations and “all” variant gene 
pair associations (including non-significant associations) across 54 tissues along with 
the distance between the variant and gene TSS (at bp resolution) were obtained from 

https://github.com/deeptools/HiCMatrix
https://labshare.cshl.edu/shares/gillislab/resource/CoCoCoNet/
https://labshare.cshl.edu/shares/gillislab/resource/CoCoCoNet/
https://github.com/CSOgroup/CALDER2.0
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the GTEx Portal v8 at https:// gtexp ortal. org. Since the meta-Hi-C network is not tissue-
specific, we combined the data across tissues to generate a set of unique “significant” 
and “all” variant gene pair associations. To obtain a list of “non-significant” gene pair 
associations, “significant” variant gene pair associations were removed from “all” variant 
gene pair associations data. All variants in the coding regions and up to 1KB of any gene 
TSS and TES were removed. For performance score, 1-KB cis chromatin contact matrix 
is used, and for each eVariant, only genes in unique bins are tested. The total number 
of variants tested is 1,574,194 at 1-KB resolution. The total number of variant gene pair 
tested is 54,220,988 among which 4,319,205 pairs are significant.

Cross‑species analysis

A list of 1:1 orthologs for a pair of species was obtained from OrthoDB [149]. Species 
divergence time was sourced from Timetree [150].
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