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Abstract

Motivation: Multiple Sequence Alignments (MSAs) of homologous sequences contain information on
structural and functional constraints and their evolutionary histories. Despite their importance for many
downstream tasks, such as structure prediction, MSA generation is often treated as a separate pre-
processing step, without any guidance from the application it will be used for.
Results: Here, we implement a smooth and differentiable version of the Smith-Waterman pairwise
alignment algorithm that enables jointly learning an MSA and a downstream machine learning system
in an end-to-end fashion. To demonstrate its utility, we introduce SMURF (Smooth Markov Unaligned
Random Field), a new method that jointly learns an alignment and the parameters of a Markov Random
Field for unsupervised contact prediction. We find that SMURF learns MSAs that mildly improve contact
prediction on a diverse set of protein and RNA families. As a proof of concept, we demonstrate that by
connecting our differentiable alignment module to AlphaFold2 and maximizing predicted confidence, we
can learn MSAs that improve structure predictions over the initial MSAs. Interestingly, the alignments that
improve AlphaFold predictions are self-inconsistent and can be viewed as adversarial. This work highlights
the potential of differentiable dynamic programming to improve neural network pipelines that rely on an
alignment and the potential dangers of optimizing predictions of protein sequences with methods that are
not fully understood.
Availability: Our code and examples are available at: https://github.com/spetti/SMURF.
Contact: Sergey Ovchinnikov, so@fas.harvard.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Multiple Sequence Alignments (MSAs) are commonly used in biology to
model evolutionary relationships and the structural/functional constraints
within families of proteins and RNA. MSAs are a critical component of the
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2 Petti et al.

latest contact (Balakrishnan et al., 2011; Jones et al., 2012; Morcos et al.,
2011) and protein structure prediction pipelines (Jumper et al., 2021; Baek
et al., 2021). Moreover, they are used for predicting the functional effects of
mutations (Figliuzzi et al., 2016; Hopf et al., 2017; Sundaram et al., 2018;
Frazer et al., 2021), phylogenetic inference (Felsenstein and Felenstein,
2004) and rational protein design (Goldenzweig et al., 2016; Ma et al.,
2016; Tian et al., 2018; Russ et al., 2020). Creating alignments, however,
is a challenging problem. Standard approaches use heuristics for penalizing
substitutions and gaps and do not take into account the effects of contextual
interactions (Steinegger et al., 2019) or long-range dependencies. For
example, these local approaches struggle when aligning large numbers
of diverse sequences, and additional measures (such as the introduction
of external guide Hidden Markov Models, HMMs) must be introduced to
obtain reasonable alignments (Sievers and Higgins, 2014). Finally, each
alignment method has a number of hyperparameters which are often chosen
on an application-specific basis. This suggests that computational methods
that input an MSA could be improved by jointly learning the MSA and
training the method.

Here we introduce the Learned Alignment Module (LAM), which is
a fully differentiable module for constructing MSAs and hence can be
trained in conjunction with another differentiable downstream model.
Building upon the generalized framework for differentiable dynamic
programming developed in Mensch and Blondel (2018), LAM employs
a smooth and differentiable version of the Smith-Waterman algorithm.
Whereas the classic implementation of the Smith-Waterman algorithm
outputs a pairwise alignment between two sequences that maximizes
an alignment score (Smith and Waterman, 1981), the smooth version
outputs a distribution over alignments. This smoothness is crucial to:
(i) make the algorithm differentiable and therefore applicable in end-
to-end neural network pipelines, and (ii) allow the method to consider
multiple hypothesized alignments simultaneously, which we believe to be
a beneficial feature early in training.

We demonstrate the utility of LAM with two differentiable pipelines.
First, we design an unsupervised contact prediction method that jointly
learns an alignment and the parameters of a Markov Random Field
(MRF) for RNA and protein, which we use to infer better structure-based
contact maps. Next, we connect our differentiable alignment method to
AlphaFold2 (here referred to as AlphaFold, as in Jumper et al. (2021))
to jointly infer an alignment that improves its prediction of protein
structures. We find that the alignments that improve structure prediction
are nonsensical, revealing unexpected behavior of AlphaFold. Our main
contributions are as follows:

1. We implemented a smooth and differentiable version of the Smith-
Waterman algorithm for local pairwise alignment in JAX (Bradbury
et al., 2018). Our implementation includes options for an affine gap
penalty, a temperature parameter that controls the relaxation from
the highest scoring path (i.e. smoothness), and both global and local
alignment settings. Our code is freely available and can be applied in
any end-to-end neural network pipeline written in JAX, TensorFlow
(Abadi et al., 2015) or via DLPack in PyTorch (Paszke et al., 2019).
Moreover, we give a self-contained description of our implementation
and its mathematical underpinnings, providing a template for future
implementations in other languages.

2. We introduced the Learned Alignment Module (LAM), a fully
differentiable module for constructing MSAs that is trained in
conjunction with a downstream task. For each input sequence, a
convolutional architecture produces a matrix of match scores between
the sequence and a reference sequence. Unlike a substitution matrix
typically input to Smith-Waterman, these scores account for the local

k-mer context of each residue. Next we apply our smooth Smith-
Waterman implementation to these similarity matrices to align each
sequence to the reference, yielding an MSA (Figure 1).

3. We used contact prediction as a case study to demonstrate that joint
learning with the LAM can recover alignments that have similar (and
sometimes better) performance on contact prediction over traditional
methods that input an MSA, establishing that our module works as
designed. Our method, Smooth Markov Unaligned Random Field
(SMURF), takes as input unaligned sequences and jointly learns an
MSA (via LAM) and MRF parameters. These parameters can then be
used for contact prediction.

4. Finally, we applied the LAM to reveal unexpected behavior of
AlphaFold: some low-quality inconsistent alignments yield better
structure predictions than sensible alignments of the same sequences.
We modify AlphaFold, replacing the input MSA with the output
of LAM. For a given set of unaligned, related protein sequences,
we backprop through AlphaFold to update the parameters of LAM,
maximizing AlphaFold’s predicted confidence. Doing so results in
learned MSAs that improve the structure prediction over our initial
input MSA for 3 out of 4 structures. Despite the improved structure
predictions, we find that the MSAs learned by the LAM may be
adversarial as indicated by their self-inconsistency. This finding raises
questions about how AlphaFold uses the input MSA to make its
predictions.

1.1 Related work

1.1.1 Differentiable Dynamic Programming in Natural Language
Processing (NLP).

Differentiable dynamic programming algorithms are needed in order to
model combinatorial structures in a way that allows backpropagation of
gradients (Mensch and Blondel, 2018; Vlastelica et al., 2019; Berthet
et al., 2020). Such algorithms have been used in NLP to build neural
models for parsing (Durrett and Klein, 2015), grammar induction (Kim
et al., 2019), speech (Cai and Xu, 2019), and more. Smooth relaxations of
argmax and other non-differentiable functions can enable differentiation
through dynamic programs. More generally, Mensch and Blondel leverage
semirings to provide a unified framework for constructing differentiable
operators from a general class of dynamic programming algorithms
(Mensch and Blondel, 2018). This work has been incorporated into the
Torch-Struct library (Rush, 2020) to enable composition of automatic
differentiation and neural network primitives, was recently implemented
in Julia (Stock, 2021), and is the basis for our JAX implementation of
smooth Smith-Waterman.

1.1.2 Smooth and differentiable alignment in computational biology
Before end-to-end learning was common, computational biologists used
pair HMMs to express probability distributions over pairwise alignments
(Miyazawa, 2000; Knudsen and Miyamoto, 2003; Durbin et al., 1998). The
forward algorithm applied to a pair HMM can be viewed as a smoothed
version of Smith-Waterman. Later, a differentiable kernel-based method
for alignment was introduced (Saigo et al., 2006). More recently, Morton
et al. implemented a differentiable version of the Needleman-Wunsch
algorithm for global pairwise alignment (Needleman and Wunsch, 1970;
Morton et al., 2020). Our implementation has several advantages: (i)
vectorization makes our code faster (Supplement Figure 2 and Supplement
Section 4.3), (ii) we implemented local alignment and an affine gap penalty
(Supplement Section 4.4), and (iii) due to the way gaps are parameterized,
the output of Morton et al. (2020) can not be interpreted as an expected
alignment (Supplement Section 4.2). Independent and concurrent work
(Llinares-López et al., 2021) uses a different formulation of differentiable
Smith-Waterman involving Fenchel-Young loss.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btac724/6820925 by C

old Spring H
arbor Laboratory user on 14 N

ovem
ber 2022



End-to-end learning of multiple sequence alignments with differentiable Smith-Waterman 3

1.1.3 Language models, alignments, and MRFs
Previous work combining language model losses with alignment of
biological sequences place the alignment layer at the end of the pipeline.
Bepler and Berger (2018) first pretrain a bidirectional RNN language
model, then freeze this model and train a downstream model using a
pseudo-alignment loss. Similarly, Morton et al. (2020) use a pretrained
language model to parametrize the the alignment scoring function. Their
loss, however, is purely supervised based on ground-truth structural
alignments. Llinares-López et al. (2021) use differentiable Smith-
Waterman with masked language modeling and supervised alignments to
learn a scoring function dervived from transformer embeddings. For RNA,
a transformer embedding has been trained jointly with a masked language
modeling and structural alignment (Akiyama and Sakakibara, 2021). In
contrast to all of these papers, our alignment layer is in the middle of the
pipeline and is trained end-to-end with a task downstream of alignment.

Joint modeling of alignments and Potts models has been explored.
Kinjo (2016) include insertions and deletions into a Potts model using
techniques from statistical physics. Two other works infer HMM and/or
Potts parameters through importance sampling (Wilburn and Eddy, 2020)
and message passing (Muntoni et al., 2020), with the goal of designing
generative classifiers for protein homology search.

2 Methods

2.1 Smooth Smith-Waterman

Pairwise sequence alignment is the task of finding an alignment of two
sequences with the highest score, where the score is the sum of the
“match" scores for each pair of aligned residues and “gap" penalties for
residues that are unmatched. The Smith-Waterman algorithm is a dynamic
programming algorithm that returns a path with the maximal score. A
smooth version instead finds a probability distribution over paths in which
higher scoring paths are more likely. Smoothness and differentiability can
be achieved by replacing the max with logsumexp and argmax with
softmax in the dynamic programming algorithm. We implemented a
Smooth Smith-Waterman (SSW) formulation in which the probability
that any pair of residues is aligned can be formulated as a derivative
(Supplement Sections 1 and 4). We use JAX due to its JIT (‘just in time’)
compilation and automatic differentiation features (Bradbury et al., 2018).

Our speed benchmark indicates that our implementation is faster than
the smooth Needleman-Wunsch implementation in Morton et al. (2020)
for both a forward pass as well as for the combined forward and backward
passes, see Supplement Figure 2. The latter is relevant when using the
method in a neural network pipeline requiring backprogation. Moreover,
comparison between a vectorized and naive version of our code shows
that vectorization substantially reduces the runtime, see Wozniak (1997)
and Supplement Section 4.3. Vectorization in both sequence length and
batch dimension accounts for the speed improvement over the Needleman-
Wunsch implementation in Morton et al. (2020), which is only vectorized
over the batch dimension.

Our SSW has four other features: temperature, affine gap, retrict turns,
and global alignment. A temperature parameter governs the extent to which
the distribution concentrated on the highest scoring alignments. In the
affine gap mode, the first gap in a streak incurs an “open" gap penalty
and all subsequent gaps incur an “extend" gap penalty. A restrict turns
option corrects for the algorithm’s inherent bias towards alignments near
the diagonal. We also implemented Needleman-Wunsch to output global
alignments rather than local alignments. See Supplement Section 4.4 for
additional details of SSW options.
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Fig. 1. Learned alignment module (LAM). The residues of B sequences and a “query"
sequence are mapped to vectors using a convolution. For each sequence k, an alignment
score matrix a is computed by taking the dot products of the vectors representing the
query sequence and the vectors representing sequence k. The similarity tensor is formed by
concatenating these matrices, and then our differentiable implementation of smooth Smith-
Waterman is applied to each similarity matrix in the tensor to produce an alignment. The
resulting B smooth pairwise alignments (all aligned to the query sequence) are illustrated
as the “Alignment Tensor."

2.2 Learned Alignment Module (LAM)

The key to improving a Smith-Waterman alignment is finding the right
input matrix of alignment scores a = (aij)i≤`x,j≤`y . Typically, when
Smith-Waterman is used for pairwise alignment the alignment score
between positions i and j, aij , is given by a BLOSUM or PAM score
for the pair of residues Xi and Yj (Altschul et al., 1997; Dayhoff and Eck,
1972; Henikoff and Henikoff, 1992). This score reflects how likely it is for
one amino acid to be substituted for another, but does not acknowledge
the context of each residue in the sequence. For example, consider serine,
an amino acid that is both small and hydrophilic. In a water-facing part
of a protein, serine is more likely to be substituted for other hydrophilic
amino acids. In other contexts, serine may only be substituted for other
small amino acids due to the geometric constraints of the protein fold.
Employing a scoring function with convolutions allows for local context
to be considered.

Our proposed learned alignment module adaptively learns a context-
dependent alignment score matrix aij , performs an alignment based
on this score matrix, all in conjunction with a downstream machine
learning task. The value aij expresses the similarity between Xi

in the context of Xi−w, . . . Xi, . . . Xi+w and Yj in the context of
Yj−w, . . . Yj , . . . Yj+w . We represent position i in sequence X as a
vector vXi obtained by applying a convolutional layer of window size
2w + 1 to a one-hot encoding of Xi and its neighbors. The dimension of
the vectors is the number of convolutional filters (here 512). The value aij
in the similarity matrix that we input to Smith-Waterman is the dot product
of the corresponding vectors, aij = vXi ·vYj .To construct an MSA from a
reference and B other sequences, the LAM constructs a similarity matrix
between each sequence and the reference, applies differentiable Smith-
Waterman to each similarity matrix, and outputs an alignment of each
sequence to the reference (which can be viewed as an MSA). See Figure
1. Since this process is entirely differentiable, we can plug the alignment
produced by the LAM into a downstream module, compute a loss function,
and train the whole pipeline end-to-end.

We confirmed that the similarity scores learned by LAM are much more
expressive than BLOSUM scores. Supplement Figures 6 and 7 illustrate
the distribution of similarity scores learned by the LAM when trained in the
context of our contact prediction method SMURF. Unlike in the BLOSUM
scoring scheme, the score between a pair of amino acids is not simply
a function of their identities; instead the score can range substantially
depending on the contexts. Moreover, the distribution of scores varies
between families.
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Fig. 2. SMURF often outperforms MLM-GREMLIN on (a) protein and (b) non-coding
RNA. (Top) Scatter plots of the AUC of the top L predicted contacts for SMURF versus
MLM-GREMLIN. (Bottom) Histograms of the difference in AUC between SMURF and
MLM-GREMLIN. (Right) Comparison of contact predictions and the positive predictive
value (PPV) for different numbers of top N predicted contacts, with N ranging from
0 to 2L, for SMURF (red) and MLM-GREMLIN (blue) for Rfam family RF00010
(Ribonuclease P.) and RF00167 (Purine riboswitch). Gray dots represent PDB-derived
contacts, circles represent a true positive prediction, and x represents a false positive
prediction. For contact predictions for RFAM00010, the black circles highlight a
concentration of false positive predictions.

3 Results

3.1 Applying the LAM to contact prediction

GREMLIN is a probabilistic model of protein variation that uses the MSA
of a protein family to estimate parameters of a MRF (see Supplement
Section 2.1), which in turn are used to predict contact maps (Kamisetty
et al., 2013; Ovchinnikov et al., 2014; Ekeberg et al., 2013; Balakrishnan
et al., 2011). Since GREMLIN relies on an input MSA, one would expect
that improved alignments would yield better contact prediction results.
To test this, we designed a pipeline for training a GREMLIN-like model
that inputs unaligned sequences and jointly learns the MSA and MRF
parameters. We call our method Smooth Markov Unaligned Random Field
or SMURF.

SMURF takes as input a family of unaligned sequences and learns
both (i) the LAM convolutions and (ii) the parameters of the MRF that
are, in turn, used to predict contacts. SMURF has two phases, each
beginning with the LAM. First, BasicAlign learns LAM convolutions by
minimizing the squared difference between each aligned sequence and
the corresponding averaged MSA (Supplement Figure 8). This objective
(Supplement Equation 4) encourages alignments where each column is
predominantly composed of one or a few specific residues and allows the
network to learn convolutions that yield a reasonable alignment before
being tasked with deducing pairwise correlations (MRF parameters).
These convolutions are then used to initialize the LAM for the second
training phase, TrainMRF, where a masked language modeling (MLM)
objective is used to learn MRF parameters and update the convolutions,
allowing the network to adjust the alignment (Supplement Figure 9). In
MLM, random residues in the input are masked and the network uses the
energy function described by the MRF parameters to compute a guess
(represented as a distribution over residues) for each masked residue.
The objective function (Supplement Equation 6) is a combination of the
cross entropy loss of these guesses and regularization terms for the MRF
parameters. For further details, see Supplement Section 2.3.

We compare SMURF to GREMLIN trained with masked language
modeling (MLM-GREMLIN) as in Bhattacharya et al. (2020). The
architecture of MLM-GREMLIN is similar to TrainMRF step of SMURF,
except that a fixed alignment is input instead of a learned alignment
computed by LAM.

We trained and evaluated our model on a diverse set of protein families,
as described in Supplement Section 2.2. Our model was trained separately
on each family (i.e. different convolutions are learned for each family), and
the families in the training set were used to select the hyper-parameters
and network architecture. To evaluate the accuracy of downstream contact
prediction, we computed a standard metric used to summarize contact
prediction accuracy, i.e. the area under the curve (AUC) for a plot of
fraction of top t predicted contacts that are correct for t equals 1 up to
L, where L is the length of the protein. Figure 2a illustrates that SMURF
mildly outperforms MLM-GREMLIN with a median AUC improvement
of 0.007 across 193 protein families in the test set. To test whether SMURF
requires a deep alignment with many sequences, we ran SMURF on protein
families at most 128 sequences. The performance of SMURF and MLM-
GREMLIN are comparable even for these families with relatively few
sequences, with a median AUC improvement of0.002 (Supplement Figure
11).

Next we sought to compare qualities of the MSAs learned through
SMURF and MSAs fed into GREMLIN, which were generated with
HHblits (Steinegger et al., 2019). To quantify the consistency of the MSAs,
we compared the BLOSUM scores (Henikoff and Henikoff, 1992) of all
pairwise alignments extracted from our learned MSA to those extracted
from the HHblits MSA. By this metric, we found that alignments learned
by SMURF were more consistent than those from HHblits. Moreover,
we observed a slightly positive correlation between increased consistency
and contact prediction improvement (Supplement Figure 10, left). We also
found that SMURF alignments tend to have more positions aligned to the
query (Supplement Figure 10, right). We hypothesize that this is because
our MRF does not have a mechanism to intelligently guess the identity of
residues that are insertions with respect to the query sequence (the guess
is uniform, see Supplement Section 2.3).

Next, we applied SMURF to 17 non-coding RNA families from Rfam
(Kalvari et al., 2021) that had a corresponding structure in PDB (see
Supplement Section 2.2). Due to the relatively small number of RNAs with
known 3D structures, we employed SMURF using the hyperparameters
optimized for proteins; fine-tuning SMURF for RNA could improve
performance. Overall, we observe that SMURF outperforms MLM-
GREMLIN with a median AUC improvement of 0.02 (Figure 2b). Despite
choosing hyperparameters for our network based on protein examples, we
see comparatively stronger improvement in RNA. Since our alignments
are trained in conjunction with an MRF, covariation patterns inform the
alignments. Our observation suggests that there is more to be gained from
incorporating covariation into RNA alignment methods as compared to
proteins.

In Supplement Section 5, we further discuss the RNA contact
predictions illustrated in Figure 2b and the SMURF predictions for the
three most and least improved protein families (Supplement Figures 12
and 13). We hypothesize that SMURF generates fewer false positive
predictions in seemingly random locations because the LAM finds better
alignments.

Finally, we performed an ablation study on SMURF (Supplement
Figure 14). We found that replacing smooth Smith-Waterman with a
differentiable “pseudo-alignment" procedure, similar to Bepler and Berger
(2018), degraded performance substantially. Skipping BasicAlign also
degraded performance, thus indicating the importance of the initial
convolutions found in BasicAlign.

3.2 Using backprop through AlphaFold to learn alignments
with LAM

Next we tested whether jointly learning an alignment with AlphaFold
could improve structure prediction. While our experiment found this
to be possible, the more interesting takeaway was our finding that
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Fig. 3. Learned MSA results in improved structure prediction, but a worse alignment for
T1039-D1. (a) The scatter plot shows the pLDDT and RMSD for the most confident point in
each trajectory. The marker color indicates the learning rate (10−2 , 10−3 , 10−4 , lighest
to darkest) and the shape indicates whether cooling was used (circle = no cooling, square
= cooling). The dotted lines show the pLDDT and RMSD of the prediction using the MSA
from MMseqs2. We selected the circled point maximizing the confidence (pLDDT) as our
“Learned MSA." The native structure is rainbow colored, and the predictions are overlaid
in grey. The view of our Learned MSA illustrates the inconsistent alignment of a conserved
motif (green) that is aligned accurately in the MMSeqs2 MSA. The scatter plot shows that
the pairwise alignment scores for pairs extracted from the Learned MSA are much lower
than the scores for pairs extracted from the MMSeqs2 MSA. (b) Change in RMSD when
individual sequences are removed from the MSA (left) or a group of distant sequences is
removed (right).

AlphaFold sometimes makes better predictions from strikingly low-quality
alignments as compared to sensible alignments of the same sequences. For
our experiment, we selected four CASP14 domains where the structure
prediction quality from AlphaFold was especially sensitive to how the
MSA was constructed (see Supplement Section 3.1). We reasoned that the
quality was poor due to issues in the MSA and by realigning the sequences
using AlphaFold’s confidence metrics we may be able to improve on the
prediction quality.

For each of the four selected CASP targets, separate LAM parameters
were fit to maximize AlphaFold’s predicted confidence metrics (see
Supplement Section 3.2). We repeated this 180 times for each target
(varying the learning rates, random seeds, and smoothness of the
alignment), and then selected the learned MSA corresponding to the most
confident AlphaFold (AF) prediction as measured by AF’s predicted local
Distance Difference Test (pLDDT). For all targets, AF reported higher
confidence in the prediction from our learned MSA as compared to the
prediction from an MSA with the same sequences generated by MMSeqs2
as implemented in ColabFold (Mirdita et al., 2021). However only 3 of the 4
targets showed an improvement in the structure prediction, as measured by
the RMSD (root-mean-squared-distance) to native structure (see Figures
3 and 4).

Next we compared the learned MSAs that led to better structure
predictions to the MMSeqs2 MSAs. Evaluating the learned MSAs by
eye, we found our learned MSAs to be strikingly low-quality. We saw
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Fig. 4. Learned MSA and structure predictions for three additional targets. The plots are
analogous to those in Figure 3. An improved structure was found for T1064-D1 and T1070-
D1, but not T1043-D1. The MSAs learned for each target were less consistent than their
MMSeqs2 counterparts.

many examples of inconsistently aligned motifs and even pairs of nearly
identical sequences exhibiting completely different alignments with the
query. Figure 3a illustrates a conserved motif that is consistently aligned in
the MMSeqs2 MSA yet completely scattered in our learned MSA. Next we
designed a method to quantify the quality issues in our learned alignments.
We compared the BLOSUM scores (Henikoff and Henikoff, 1992) of all
pairwise alignments extracted from our learned MSAs to those extracted
from the MMSeqs2 MSA. Indeed, the learned MSAs contain much lower
scoring pairwise alignments than those of MMSeqs2 MSAs, indicating
far less consistency (Figures 3a and 4), which is the opposite trend we
observed for MSAs learned by SMURF. Thus, unlike optimizing the MRF
in SMURF, optimizing the confidence of AF predictions does not yield
consistent alignments with LAM.

We explored a simple explanation for how low-quality alignments
could yield improved structure predictions; perhaps AF uses its axial-like
attention to consider only a subset of sequences, and the poor alignments
by the other sequences isn’t important or could further disqualify those
sequences from being attended to. To investigate this, we evaluated how
sensitive the AF predictions are to the inclusion of each individual sequence
(Figures 3b and 4). Surprisingly, the prediction accuracy can be incredibly
sensitive to the removal of a single sequence, especially for MMSeqs2
MSAs.

Next, we considered the effect of removing subsets of more distant
sequences. The MMSeqs2 MSAs were constructed with a lenient E-value
threshold of 10, which may introduce sequences in the MSA that are
not true homologs. For targets T1064-D1 and T1070-D1, we removed
all sequences with an E-value smaller than 10−3. The target T1064-
D1 has two sequences above this threshold (E-values 1.4 and 0.16) that
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almost certainly are not homologs of the query. (E-value, defined as P-
value multiplied by the size of database, indicates the how many matches
with detected similarity are expected to occur by chance alone.) While
removing either individually does not substantially change the accuracy of
the prediction, removing both worsens the prediction with the MMSeqs2
MSA significantly (RMSD 3.46 to 12.11) and worsens the prediction with
our learned MSA mildly (RMSD 1.47 to 2.48). In T1070-D1 we realized
the opposite outcome; removing the sequences with E-value at least 10−3

greatly improved the prediction with the MMSeqs2 MSA (RMSD 9.91
to 4.51) and slightly improved the prediction with our learned MSA
(RMSD 2.75 to 2.70). Noting the influence of the closest homolog (E-
value 6.1×10−30) on predictions for T1039-D1, we defined most distant
sequences for this target as those with E-value greater than 10−15, leaving
only the closest homolog. Restricting to the query and this single homolog
improved the MMSeqs2 prediction substantially (RMSD 7.62 to 2.79),
bringing it on on par with the prediction from our learned MSA on the full
set of sequences (RMSD 2.66). The inclusion of this single close homolog
is vital; the RMSD of the prediction for the query sequence alone is 11.56.

Finally, we repeated our optimization experiment after removing the
distant sequences (Supplement Figure 16a). We found that the most
confident MSAs learned without the distant sequences tended to yield
predictions with similar RMSD to the predictions from the most confident
MSAs learned on the full set of sequences. (See orange and purple bars
in Supplement Figure 16b). We also investigated whether it was easier or
harder to obtain “near optimal" structure prediction (having an RMSD of
1.25 times the RMSD of the prediction of the learned MSA on the full
set) with the restricted set of sequences as compared to the full set. For
T1064-D1 our optimization scheme found “near optimal" structures more
often with the set of sequences that includes the distant sequences. The
opposite was the case for T1039-D1, and there was no strong difference
for T1070-D1 (Supplement Figure 16b).

4 Discussion
In this work we explored the composition of alignment in a pipeline that
can be trained end-to-end without usage of any existing alignment software
or ground-truth alignments. With SMURF, we trained alignments jointly
with a well-understood MRF contact prediction approach and found mild
improvement in accuracy using learned MSAs that were consistent and
reasonable. When we instead optimized with AlphaFold’s confidence
metrics, we found low-quality MSAs that yielded improved structure
predictions for three out of four examples. Our result establishes that
in some cases AlphaFold can make accurate structure predictions from
very low-quality alignments. Therefore, the task of optimizing AlphaFold
structure predictions does not force the LAM to learn high-quality
alignments. Perhaps by changing our objective function to also penalize
self-inconsistent alignments, we could learn more reasonable MSAs while
still improving AlphaFold predictions. Our work both establishes the
feasibility of pipelines which jointly learn alignments in conjunction with
downstream machine learning systems and highlights the possibility of
unexpectedly learning odd alignments when it is not well-understood how
exactly the downstream task uses alignments.

While our findings that low-quality, self-inconsistent MSAs can
yield improved AlphaFold predictions and that AlphaFold predictions
may be quite sensitive to the inclusion of particular sequences may
seem paradoxical, these observations reflect behaviors found across deep
learning systems. It is well-known that deep neural networks are not robust
to adversarial noise (Szegedy et al., 2013). Experiments that use an image
recognition neural network to optimize an input image so that the image
is confidently classified into a particular category will not necessarily
yield a human recognizable image of the category (Nguyen et al., 2015;

Mordvintsev et al., 2015). Likewise, when we optimize an input alignment
to maximize the confidence of the corresponding AlphaFold prediction,
we end up with alignments that are nonsensical (e.g. fail to consistently
align a clearly conserved motif, as illustrated in Figure 3a). Studying
adversarial examples has been one approach to trying to understand how
neural networks form predictions (Gu and Rigazio, 2014; Mordvintsev
et al., 2015; Heo et al., 2019). Our differentiable alignment module could
be used with AlphaFold to identify a range of alignments that yield a
particular prediction. Studying these alignments could provide insight
on which aspects of an alignment are used by AlphaFold to make its
prediction.

Our smooth Smith-Waterman implementation is designed to be usable
and efficient, and we hope it will enable experimentation with alignment
modules in other applications of machine learning to biological sequences.
There is ample opportunity for future work to systematically compare
architectures for the scoring function in smooth Smith-Waterman. The
use of convolutions led to relatively simple training dynamics, but other
inductive biases induced by recurrent networks, attention mechanisms,
or hand-crafted architectures could capture other signal important for
alignment scoring. Moreover, training one network across protein families
(rather than training a separate network for each family) to produce vector
encodings of residues and their contexts could be a promising strategy for
aligning arbitrary pairs of protein sequences. We also hope that the use of
these more powerful and general scoring functions enables applications
in remote homology search, structure prediction, or studies of protein
evolution.

Besides MSAs, there are numerous other discrete structures essential
to analysis of biological sequences. These include Probabilistic Context
Free Grammars used to model RNA Secondary Structure (Nawrocki and
Eddy, 2013) and Phylogenetic Trees used to model evolution. Designing
differentiable layers that model meaningful combinatorial latent structure
in evolution and biophysics is an exciting avenue for further work in
machine learning and biology.
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