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Abstract

The “Organizational-Activational Hypothesis”, the central dogma of neuroendocrinology, states that 

early-life (“organizational”) and adult (“activational”) gonadal hormone signaling drives sex 

differences in the mammalian brain. Early-life hormones irreversibly sculpt the development of the 

same neural circuits that adult hormones act upon to promote the display of sex-typical behaviors. 

Gonadal hormones bind nuclear hormone receptors, which principally act as transcription factors (TFs). 

Hence, the regulation of gene expression by hormone receptors in the brain comprises the molecular 

basis of the “Organizational-Activational Hypothesis”, and, accordingly, ensures the survival and 

propagation of most mammalian species. However, the genomic targets of gonadal hormone receptors 

in the brain, and their regulation during “organizational” and “activational” windows, have not been 

identified. Here, I utilize low-input and single-cell chromatin and transcriptomic profiling approaches 

to identify the genomic mechanisms specifying sex differences in the developing and adult mouse bed 

nucleus of the stria terminalis (BNST) – a central brain region in the limbic circuitry controlling sex-

typical behaviors. I find that male-specific activation of estrogen receptor α (ERα) on the day of birth 

drives sustained sex differences in gene regulation in the developing brain. Subsequently, testosterone 

(T) largely controls sex differences in gene regulation following puberty. Of note, adult gonadectomy 

ablates sex differences in chromatin accessibility, while estradiol (E2) replacement after gonadectomy 

leads to sex-shared genomic responses, revealing brain “organization” by early-life hormone signaling 

is reversible at the level of gene regulation. Together, I reveal the first genomic targets of a gonadal 

hormone receptor in the brain and define the molecular principles of the “Organizational-Activational 

Hypothesis”. I provide a compendia of sex-biased enhancers, genes, and neuron types across life stages 

that serve the basis for future functional investigation into the genomic encoding of social behavior. 
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Chapter 1 
 
 
Introduction to sex differences in the brain 
 
Sections of this chapter were previously published in Genes (2019) under the title “Sex Differences in 

the Epigenome: A Cause or Consequence of Sexual Differentiation of the Brain?” by Bruno 

Gegenhuber and Jessica Tollkuhn and in WIREs Developmental Biology (2020) under the title 

“Signatures of sex: Sex differences in gene expression in the vertebrate brain” by Bruno Gegenhuber 

and Jessica Tollkuhn. 

 

1.1 Introduction 

Sex differences in the brain arise from contributions of gonadal steroid hormones. The classic 

“Organization and Activation Hypothesis”, first articulated sixty years ago, states that early-life 

hormone signaling specifies sex differences in the brain, which are later activated by adult hormones 

to regulate sex-typical reproductive and territorial behaviors (McCarthy, Wright, et al., 2009; Phoenix 

et al., 1959). At birth, the testes briefly activate, releasing a surge of testosterone that undergoes local 

conversion to E2 in the brain by aromatase, a P450 enzyme (Balthazart & Ball, 1998; Clarkson & 

Herbison, 2016). E2 binds its canonical receptors estrogen receptor alpha and beta (ERα/β), which are 

nuclear receptor TFs that bind DNA in response to ligand (McKenna & O’Malley, 2002). E2, and other 

estrogens, can also act rapidly at the neuronal membrane to increase firing (Heimovics et al., 2015; 

Micevych & Kelly, 2012; Stincic et al., 2018; Woolley, 2007), potentially initiating activity-dependent 

transcriptional programs that differ from those directed by nuclear ERα.  

ERα is considered the master regulator of sexual differentiation of the rodent brain. In mice, 

genetic deletion of this receptor attenuates male-typical sexual and territorial behaviors and feminizes 
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the expression of ERβ and AR, the receptor for testosterone (Ogawa et al., 1997; Rissman et al., 1999; 

Scordalakes & Rissman, 2003; Wersinger et al., 1997; M. V. Wu & Tollkuhn, 2017a). Treating female 

mice or rats at birth with E2 effectively masculinizes the brain, affecting cell number and neuronal 

wiring days after the hormone surge has subsided (McCarthy, 2008a; Turano et al., 2018). For instance, 

in males, neonatal E2 production induces neurite outgrowth and promotes cell survival in certain brain 

areas, such as the medial amygdala (MeA) and BNST (Forger et al., 2004b; M. V. Wu et al., 2009a), 

while simultaneously initiating apoptosis in the anteroventral periventricular hypothalamus (AVPV), a 

region that regulates ovulation in females (Forger et al., 2004b; Kelly et al., 2013). These 

neurodevelopmental events contribute to sex differences in the display of innate behaviors. For 

instance, males and females engage in different mating routines, and only males urine-mark their 

territory and aggressively defend it, although lactating females also attack intruding conspecifics to 

defend their offspring (Beach, 1981; Hashikawa et al., 2018; Ishii & Touhara, 2019; Lonstein & 

Gammie, 2002). Aside from mating and aggression, there are extensive sex differences in stress 

responses and motivated behaviors, for which the underlying molecular and cellular mechanisms 

remain poorly understood (Bangasser & Wicks, 2017; Becker & Chartoff, 2019; Laman-Maharg & 

Trainor, 2017).  

 A parallel logic exists for sexual differentiation of the primate brain, although less is known 

about this process. Testosterone is considered to be the principal regulator of sexual differentiation of 

the primate brain (Hines, 2008). The testes become active around week 7 of human gestation and secrete 

testosterone until around week 24, after which they become largely quiescent until birth (Figure 1.1) 

(Hines, 2006b; Reyes et al., 1974). Similar to rodents, there is no hormonal activity of the ovaries at 

this time, although fetuses of both sexes are exposed to estrogens and progesterone through the maternal 

circulation. Testosterone level sharply rises again during infancy then drops until the onset of puberty. 

Behavioral studies in children demonstrate an association between mid-gestation testosterone level and 

male-typical toy preferences and social behaviors (Hines, 2006a; Hines et al., 2016). Both testosterone 
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surges coincide with major developmental events in the brain: the prolonged fetal bolus overlaps with 

the peak of neurogenesis and onset of neuronal migration, whereas the infant testosterone surge occurs 

during synaptogenesis and myelination (Figure 1.1). Similar to the rodent brain, it remains unclear how 

testosterone intersects with these developmental processes to direct male-typical brain development, 

although advancements in human brain organoid culture systems may lead to mechanistic insights 

(Kelava et al., 2022). 

Here, I review neural circuits and molecular mechanisms that define sex differences in the 

rodent brain. I then discuss mechanisms by which steroid hormone receptors regulate gene expression, 

primarily informed by non-neuronal in vitro systems, and highlight prior studies examining sex 

differences in the neuronal epigenome. Lastly, I introduce fundamental principles of 

neuroendocrinology, with a focus on understanding molecular, cellular, and transcriptomic sex 

differences during early life, puberty, and adulthood.  
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Figure 1.1: Intersection of testosterone surges with neurodevelopmental events. 
Male humans (A) and mice (B) experience developmental T surges that delineate critical periods 
for sexual differentiation of the brain. Human testes secrete T at approximately week 8 of gestation, 
peaking around week 16, and then declining until week 24. Fetal T levels are nearly as high as 
those during puberty. There is also elevated T during months 1-3 of infancy. Mouse testes produce 
a T surge on the day of birth. The testes are then inactive until puberty, which begins around 
postnatal week 4. At birth, the mouse brain is still undergoing neuronal migration, particularly of 
inhibitory interneurons, while gliogenesis and synaptogenesis are also increasing. Human brain 
development occurs on a much longer timescale with the bulk of neuronal proliferation occurring 
during the fetal T surge. Events that occur during T surges are thought to give rise to sex differences 
in brain function, as female ovaries do not undergo significant hormone release until puberty. 
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1.2 Hormone receptor expression in the brain 

To understand how sex differences in the brain arise, it is essential to know which brain regions and 

cell types express gonadal hormone receptors. Hormone receptors are nuclear transcription factors 

(TFs) that directly bind DNA to regulate gene expression: progesterone binds to progesterone receptor 

(PR/Pgr), testosterone to androgen receptor (AR/Ar) and estrogens to estrogen receptors alpha and beta 

(ERα/Esr1, ERβ/Esr2). Steroid hormones travel via blood circulation and diffuse through cell 

membranes to bind their receptors, which upon activation, undergo conformational changes to enable 

DNA binding. Therefore, differential gonadal hormone levels between sexes may lead to sex 

differences in gene regulation within the brain and other tissues. Importantly, while analysis of 

postmortem human brain tissue has revealed the expression of hormone receptors and aromatase in 

adulthood (Azcoitia et al., 2011; Yague et al., 2006), it is still not known when and where the genes 

encoding these factors are expressed during brain development. The BrainSpan database reports almost 

undetectable levels (RPKM <1) for the four gonadal hormone receptors; however, this is likely due to 

their low and sparse expression pattern in the brain.  

In contrast, hormone receptor expression is well-characterized in the developing and adult 

rodent brain (Manoli & Tollkuhn, 2018b; Stincic et al., 2018). In vertebrates, all four receptors are 

highly expressed in limbic brain regions, such as the MeA, BNST, medial pre-optic area of the 

hypothalamus (MPOA) and the ventromedial hypothalamus (VMH) (Fig. 1.2). These regions comprise 

an interconnected network that responds to chemosensory cues from conspecifics to regulate innate 

reproductive and territorial behaviors, often referred to as the vomeronasal network or social behavior 

network (Y. Li & Dulac, 2018; Newman, 1999; O’Connell & Hofmann, 2011). These receptors are also 

sparsely expressed in the hippocampus as well as areas that mediate motivated behaviors (Manoli & 

Tollkuhn, 2018a), in addition to specific cortical layers and subregions (M. V. Wu & Tollkuhn, 2017a; 

Zuloaga et al., 2014b). While ERα expression is most abundant in the hypothalamus, ERβ is the primary 

estrogen receptor expressed in cortex (Clemens et al., 2019; González et al., 2007; Kritzer, 2002; 
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Shughrue et al., 1997). ERβ mutant animals have deficits in cortical development, consistent with a 

role for ERβ in cell survival and migration (Fan et al., 2010; Panda et al., 2018; L. Wang et al., 2003). 
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Figure 1.2: Sex differences in steroid hormone receptor expression in the mouse brain. 
Sex differences in steroid hormone receptor expression have been reported in several brain 
areas involved in innate social behaviors. These areas include the AVPV, MeA posterior 
dorsal (MeApd) and posterior ventral (MeApv) regions, MPOA, BNST posterior (BNSTp) 
region, and VMHvl. AR androgen receptor; ERα estrogen receptor α; ERβ estrogen receptor 
β; PR progesterone receptor. 
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1.3 Mechanisms of hormone receptor gene regulation 

Prior to this thesis, the genomic targets of gonadal hormone receptors in the brain had not been 

determined, due largely to their low and sparse expression. Thus, our knowledge of hormone receptor 

gene regulatory mechanisms in the brain derives from human cancer cell lines and peripheral mouse 

tissues, such as liver and uterus, from which sufficient material can be collected for chromatin 

immunoprecipitation sequencing (ChIP-seq) (Carroll et al., 2005; Droog et al., 2016; Gertz et al., 2013; 

Gordon et al., 2014; Hewitt et al., 2012; Holding et al., 2018; Hurtado et al., 2011; Métivier et al., 2003; 

Palierne et al., 2016; Swinstead et al., 2016). In this section, I discuss mechanisms of ERα, as this 

receptor has been studied extensively in multiple biological contexts and is the master regulator of brain 

sexual differentiation. 

Nuclear hormone receptors are activated by hormone binding to their ligand-binding domain 

(LBD), which facilitates receptor dimerization, followed by either tethering to other transcription 

factors or direct DNA binding to a consensus motif sequence (Brzozowski et al., 1997; Maggi, 2011). 

Extracellular molecules, such as growth factors, cytokines, and peptide hormones, have also been 

shown to activate hormone receptors through ligand-independent signaling pathways (Bennesch & 

Picard, 2015). For instance, dopamine activates ERα in certain in vitro systems (Gangolli et al., 1997; 

Power et al., 1991). Typically, ligand-independent signaling involves activation of intracellular kinases, 

such as ERK, AKT, or PKA, which subsequently phosphorylate serine or tyrosine residues in the ERα 

activation function 1 (AF1) domain and release the receptor from its inhibitory complex with heat shock 

protein 90 (HSP90). 

Following ligand-binding, hormone receptors associate with coactivators and core 

transcriptional machinery and bind directly to specific sequence motifs at gene regulatory elements – 

ERs bind the estrogen response element (ERE) and AR binds the androgen response element (ARE) 

(Fig. 1.3). Historically, investigators wishing to identify hormone-responsive genes performed 

bioinformatic searches for EREs/AREs in the vicinity of gene promoters. However, more recently, 
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genome-wide approaches have revealed that fewer than 10% of receptor binding sites in the genome 

are at promoters and that receptors are often recruited to DNA that is co-bound by other transcription 

factors associating with their own canonical binding motifs at distal or intronic enhancers (Fig. 1.3). 

Specificity protein 1 (SP1) and activator protein-1 (AP-1), which consists of a FOS/JUN heterodimer, 

can also tether nuclear hormone receptors to the genome (Safe & Kim, 2008). Hormone receptors may 

also regulate transcription independent of direct DNA binding by controlling the phosphorylation of 

cAMP binding protein (CREB) – a factor that regulates Fos and other genes in response to neural 

activity (Boulware et al., 2005; Fix et al., 2004; Nguyen et al., 2009; Shaywitz & Greenberg, 1999). In 

primary hippocampal culture and striatal neurons, ERα localized to the postsynaptic membrane signals 

through group 1 or 2 metabotropic glutamate receptors (mGluRs) to promote or inhibit CREB 

phosphorylation, respectively (Figure 1.3) (Boulware et al., 2005; Grove-Strawser et al., 2010). 
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Figure 1.3: Mechanisms of ERα-mediated gene regulation. 
ERα acts through different binding partners and intracellular signaling pathways to regulate gene 
expression in a tissue- and cell type-specific manner. (A) Following ligand binding, ERα can directly 
influence transcription by binding canonical EREs, activator protein 1 AP-1 transcription factor 
complex, or pioneer factors (PFs), which infiltrate heterochromatin and impart cell type-specificity to 
ERα genomic binding. ERα also receives PTMs from diverse signaling pathways independently of 
ligand. Many extracellular molecules, such as growth factors, cytokines, and peptide hormones, can 
initiate ligand-independent activation of ERα. (B) ERα can also indirectly regulate gene expression by 
controlling the phosphorylation of CREB. Phosphorylated CREB binds CREB-binding protein (CBP), 
a transcriptional coactivator that serves a dual function in gene regulation as a histone acetyltransferase 
and scaffold for transcriptional machinery. 
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1.4 Organization of neural circuits by steroid hormones 

Although there are few examples of direct genomic targets of gonadal hormone receptors in the brain, 

there is ample evidence that neonatal estradiol establishes sex differences in the brain (Forger et al., 

2016). Four regions of the rodent brain are consistently described as sexually dimorphic in cell number, 

and each are all involved in reproductive behaviors. The AVPV, MPOA, BNSTp, and MeApd all 

contain more cells, occupy a larger volume, and exhibit more neural projections in males than in 

females. In contrast, the AVPV controls the release of luteinizing hormone (LH) from the pituitary, 

which promotes ovulation in females, and has more cells in females than in males as a result of the 

neonatal surge. Many of these neurons express tyrosine hydroxylase (TH), an enzyme that is necessary 

for dopamine synthesis, and the number of TH+ neurons is also higher in mothers than in virgin females 

or males (Scott et al., 2015; Simerly et al., 1985). Conversely, the MPOA is larger in males, and male 

rats, in particular, have a pronounced sexually dimorphic nucleus (SDN) of the POA (SDN-POA) – the 

first sexually dimorphic brain region to be identified in mammals (Gorski et al., 1978). The  MeApd 

and BNSTp are also larger in males (Hines et al., 1992a; Raznahan et al., 2015), and a male-bias in 

BNSTp volume has been described in humans (Allen & Gorski, 1990a). A post-mortem study of 

cisgender men, cisgender women, and transgender women found that BNSTp volume is similar in 

cisgender and transgender women, which is approximately 50% of the volume in cisgender men (J. N. 

Zhou et al., 1995). BNSTp size was not influenced by adult hormone status or sexual preference. 

Although this study was performed with small sample sizes (42 total subjects), this result suggests 

gender identity may be influenced by the organizational effects of developmental hormone signaling 

(Bao & Swaab, 2011; Hines, 2010). 

The role of steroid hormones in promoting postnatal neuronal survival was first observed in 

the spinal nucleus of the bulbocavernosus (SNB), which innervates penile muscles and contains more 

motor neurons in males than in females (Forger et al., 1992). Females typically lose up to 70% of SNB 

motor neurons, and females treated with testosterone during the perinatal period showed a reduction in 
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cell death and male-typical cell numbers at P10 (Nordeen et al., 1985). The BNSTp, MPOA and MeApd 

all contain higher numbers of dying cells in postnatal females compared to males, and perinatal E2 

masculinizes cell number in these regions (M. V. Wu et al., 2009a). Abolishing programmed cell death 

by deletion of the pro-apoptotic gene Bax leads to similar cell numbers in the BNSTp of females and 

males (Forger et al., 2004a). Some of these cells express aromatase, as adult females have fewer 

aromatase-expressing neurons in the BNSTp than males (M. V. Wu et al., 2009a). Conversely, in the 

AVPV, there is increased cell death in males, accompanied by reduced expression of the cell survival 

signal Bcl-2 (Tsukahara et al., 2006), revealing region-specific responses to neonatal estradiol signaling 

(Krishnan et al., 2009). Intriguingly, similar patterns of sex-specific cell death occur in the developing 

brains of female Drosophila and hermaphroditic C. elegans, suggesting conserved logic controlling the 

specification of sex-typical neural circuitry across certain branches of the animal kingdom (Conradt & 

Horvitz, 1999; Kimura et al., 2005; Peden et al., 2007; Sanders & Arbeitman, 2008; Schwartz & 

Horvitz, 2007). 

What is the identity of surviving neurons that give rise to sexual dimorphism in the mammalian 

brain? In 2018, the Dulac lab made unprecedented progress toward characterizing the cellular repertoire 

of the POA. By combining single-cell RNA-sequencing (scRNA-seq) with multiplexed error-robust 

fluorescent in situ hybridization (MERFISH), Moffit, Bambah-Mukku and colleagues created a 

molecular and functional cell atlas of the POA (Moffitt et al., 2018a). The authors obtained single-cell 

gene expression profiles for ~31,000 POA cells and integrated these data with the spatial expression of 

155 marker genes across ~1 million POA cells to identify 70 neuronal populations. Moreover, by co-

labeling for Fos in the MERFISH assay, the authors determined which of these populations are active 

during mating, aggression, and parenting behaviors. In particular, one aromatase-expressing inhibitory 

neuron type in the SDN-POA was activated in males, but not in females, during all three behaviors. 

This type expressed marker genes Moxd1 (Tsuneoka et al., 2017) and Cplx3, a complexin family 

member that regulates phasic exocytosis of neurotransmitters (Mortensen et al., 2016). Taken together, 
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these results suggest that sexual dimorphism in the SDN-POA is defined by the co-expression of these 

two markers, gonadal hormone receptors, and aromatase. In the future, it will be important to determine 

how this population arises during development and whether it plays a causal role in the display of male-

typical behaviors.  

In addition to controlling cell number, early-life gonadal hormones organize neural circuits by 

regulating axon guidance and outgrowth throughout the social behavior network, giving rise to sex 

differences in neuronal connectivity. For instance, neurons projecting from the BNSTp to the AVPV 

have more fibers in males than in females; this connection develops prior to postnatal day 10 (P10) 

(Hutton et al., 1998) and requires neonatal E2 (G. Gu et al., 2003). Co-culturing neonatal BNSTp and 

AVPV explants demonstrated that the male, but not female, AVPV drives BNSTp axon outgrowth, 

suggesting regulation by target-secreted axon guidance molecules (Ibanez et al., 2001). Male BNSTp 

neurons also have more fibers projecting to the ventral premammillary nucleus (PMV) and MeA than 

female neurons (G. Gu et al., 2003). Unlike the BNSTp, the MPOA has few sex differences in the 

strength of its projections, as determined from classic fiber tract-tracing or modern viral approaches 

(Kohl et al., 2018; Simerly & Swanson, 1988); however, it is possible that targeting specific neuron 

types within the MPOA may reveal populations with sexually dimorphic projections. 

1.5 Sex differences in the epigenome 

I begin this section by defining and distinguishing between the terms “epigenetic” and “epigenomic”, 

in line with the writings of Mark Ptashne (Ptashne, 2007, 2013), Steven Henikoff and John Greally 

(Henikoff & Greally, 2016). The “epigenome” refers to chemical and/or structural modifications to the 

genome that influence gene expression, such as DNA methylation, post-translational modifications 

(PTMs) to histone proteins, and higher-order chromatin organization, such as topologically associating 

domains (TADs) (Gibcus & Dekker, 2013; Jaenisch & Bird, 2003; Shilatifard, 2006). “Epigenetic”, as 

coined by C.H. Waddington in 1942, refers to any self-perpetuating mechanism by which a cell retains 
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a memory of a transient event. While many, but not all, epigenetic processes involve the epigenome, it 

is not always the case that epigenomic modifications will persist following a transient signal, and under 

circumstances in which these features do persist, often the epigenome, in itself, is not self-perpetuating. 

Rather, the regulators that maintain persistent epigenomic modifications, principally TFs and their 

cofactors, drive epigenetic processes. Henceforth I use the term “epigenetic” sparingly and only to 

describe gene regulatory mechanisms that persist following a transient signal.  

While hormone receptors have been shown to regulate epigenomic features in cell culture, 

particularly breast (ERα) and prostate (AR) cancer lines, few studies have examined how hormone 

receptors modify chromatin in the brain. Moreover, the longevity and maintenance of epigenomic 

modifications in neurons, which are post-mitotic, remains an open area of research. In this section, I 

review studies on sex differences in the neuronal epigenome in the context of fundamental principles 

of neuronal gene regulation.  

Whole genome bisulfite sequencing (WGBS) of neurons has revealed a striking degree of DNA 

methylation on cytosine residues that are not followed by a guanine but rather an adenine (mCA) (Lister 

et al., 2013). This modification is found in other tissues, but it increases in the brains of mice and 

humans during postnatal development, concomitant with synaptogenesis and experience-dependent 

neural activity (He & Ecker, 2015; Lister et al., 2013; Stroud et al., 2017). In contrast, mCG patterns 

are established prenatally and appear stable over time; although it is possible their dynamics across 

individual cell types have been masked in analyses of bulk tissue. WGBS of genetically-defined neuron 

types, along with Dnmt3a ChIP-seq, revealed that Dnmt3a deposits mCA over gene bodies during 

postnatal development to maintain cell type-specific gene repression (Stroud et al., 2017), suggesting 

mCA contributes to neuronal maturation.  

Can neonatal E2 alter DNA methylation state and expression of associated genes? Prior reports 

of sex differences in DNA methylation in the brain have assessed either individual methylated cytosines 

at promoters (Kurian et al., 2010; Schwarz et al., 2010; Westberry et al., 2010) or reported percent 



25                Chapter 1. Introduction to sex differences in the brain 
 

 
methylation across the entire genome (Ghahramani et al., 2014; Nugent et al., 2015). There remain no 

examples of differentially-methylated regions causally linked to sex differences in gene expression. To 

date, the best example of the epigenetic effects of neonatal E2 comes from Esr1 itself. Esr1 is expressed 

in the brains of both sexes beginning in mid-gestation (Tobet et al., 1999) and is persistently 

downregulated by neonatal E2 via an unknown mechanism (DonCarlos et al., 1995), resulting in 

female-biased expression in certain brain areas (DonCarlos & Handa, 1994; X. Xu et al., 2012). 

There are many reports of sex differences in DNA methylation at the Esr1 promoter (Edelmann 

& Auger, 2011; Kurian et al., 2010; Schwarz et al., 2010; Westberry et al., 2008, 2010; Westberry & 

Wilson, 2012; Wilson et al., 2008, 2011), although the residues identified as differentially hypo- or 

hyper-methylated vary across studies. In humans, the proximal promoter of human ESR1 is 

hypomethylated across tissues, suggesting that variation in methylation at individual promoter CpGs is 

not causal for Esr1 expression. In fact, across the genome, most CpGs at promoters are hypomethylated, 

regardless of the expression level of the associated gene (He & Ecker, 2015). However, CpG 

methylation at upstream, alternative Esr1 promoters is tissue-specific, consistent with prior work 

demonstrating that Esr1 is expressed from alternate promoters in distinct tissues and tumor types (Kos 

et al., 2001; Maekawa et al., 2016; Westberry et al., 2010; Wilson et al., 2008). WGBS across multiple 

developmental time points may reveal distal regulatory elements that maintain sex-biased expression 

of Esr1, and other estradiol-regulated genes, in the brain (Hon et al., 2013). While there is little evidence 

of an interaction between ERα and DNMT enzymes, TET2, a member of the ten-eleven translocation 

(TET) family of enzymes that catalyzes hydroxylation of 5mC, has recently been shown to be recruited 

to the genome by ERα in vitro (Broome et al., 2021).   

In addition to DNA methylation, chemical modification of amino acid residues within the N-

terminal tail of histone proteins has long been linked to epigenetic regulation of gene expression 

(Jenuwein & Allis, 2001). Such modifications physically alter chromatin structure via biophysical 
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interactions as well as attract histone “reader” proteins, such as BRD4, that remodel chromatin and 

recruit transcriptional machinery (Yun et al., 2011).  

The neonatal hormone surge has been hypothesized to impart such histone PTMs, resulting in 

chromatin states that maintain sex-specific gene expression programs (Gagnidze et al., 2010; McCarthy 

& Nugent, 2015). Although such chromatin states have not been described, ERα has been found to bind 

histone acetyltransferases (HATs), methyltransferases, and deacetylases (HDACs), the SWI/SNF 

nucleosome remodeling complex, and Mediator protein in cancer cell lines (Perissi & Rosenfeld, 2005). 

ERα also binds steroid receptor coactivators (SRCs), such as p160 coactivator, as well as p300, which 

is a HAT that occupies active enhancers (Foulds et al., 2013; McKenna & O’Malley, 2002; Yi et al., 

2015). Broad manipulation of coregulator or HDAC function disrupts brain development (Apostolakis 

et al., 2002; Matsuda et al., 2011; Molenda et al., 2002; Murray et al., 2009), but as with DNA 

methylation, there are little to no examples of persistent sex differences in histone modifications or 

transcription factor occupancy at specific loci in the brain (Ratnu et al., 2017).  

1.6 Activation of neural circuits by steroid hormones following puberty 

Puberty is considered a second critical period for sexual differentiation of the brain, in which 

developmentally-programmed circuits undergo refinement and maturation (Schulz & Sisk, 2016). 

Puberty refers to hormonal changes required for reproduction, while adolescence, in humans, is defined 

as the maturation of social and cognitive skills that can occur independently of gonadal hormones. 

Although many sex differences are established during the early postnatal critical period, behaviors 

regulated by the social behavior network (mating, aggression, social preference, parental care) are not 

displayed until after adult patterns of circulating hormones are established during puberty. Accordingly, 

sex-specific neuronal firing in the MeA in response to opposite-sex odors does not occur in pre-pubertal 

animals (Bergan et al., 2014). 
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During adolescence, the brain undergoes major synaptic pruning, which extends into the 

twenties in humans and P35-45 in rodents (Fig. 1.1). Connectivity within the mesolimbic reward 

pathway continues to develop during this time and is modulated by gonadal hormone signaling 

(reviewed in (Delevich et al., 2019; Walker et al., 2017)). This pathway intersects with social behavior 

circuitry to modulate sex differences in motivated behaviors such as parenting, sexual behavior, threat 

avoidance, and intake of drugs of abuse (Becker, 2009; Gee et al., 2018; O’Connell & Hofmann, 2011). 

During this time, the brain is uniquely vulnerable to stress, and many psychiatric diseases first show 

symptoms (Kessler et al., 2007; Paus et al., 2008). Early puberty can exacerbate the onset and symptoms 

of these conditions. Indeed, there are sex differences in the trajectory of puberty itself, with puberty 

onset occurring in girls before boys and at increasingly earlier ages in recent years (Piekarski, Johnson, 

et al., 2017; Sisk & Foster, 2004). 

It is thought that pubertal hormones end the plasticity of the juvenile brain, locking-in learned 

skills and impeding the ability to acquire new ones. Songbird research has demonstrated a direct 

relationship between testosterone level and plasticity associated with vocal learning. Many male 

songbirds acquire their unique song during a juvenile critical period, in which both sensory experience 

and sensorimotor learning must occur (Brainard & Doupe, 2002). Similar to the role of neonatal E2 in 

rodent territorial behaviors, testosterone in early life is required for the appropriate onset of singing, 

whereas high levels of pubertal testosterone are required to crystallize song structure into a permanent 

stereotyped adult song. Exogenous administration of testosterone during the quiescent period between 

these two developmental windows impairs song learning, resulting in abnormal songs with altered 

syntax and decreased complexity (Korsia & Bottjer, 1991; Whaling et al., 1995). Electrophysiological 

data also demonstrate that early testosterone accelerates the maturation of neuronal firing patterns in 

song-related brain areas (Sizemore & Perkel, 2011; White et al., 1999). Taken together, this work 

suggests pubertal hormones reduce plasticity, and early puberty may lead to the premature closure of 

developmental critical periods. 
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In support of this idea, Piekarski and colleagues found that inhibition onto excitatory neurons 

in the cingulate cortex increases in female mice following puberty (Piekarski, Boivin, et al., 2017). This 

increase in inhibition was associated with a decrease in behavioral flexibility, as pre-pubertal animals 

demonstrated better performance on a reversal learning task compared to post-pubertal animals. 

Moreover, early puberty induction by treatment with ovarian hormones resulted in adult-like task 

performance. Parallel conclusions drawn from male songbirds and female mice point strongly to a 

conserved role for pubertal hormones in establishing adult-typical patterns of neural activity. 

What are the gene expression programs that drive neuronal maturation during puberty? Do the 

genomic targets of gonadal hormones differ between birth and puberty? These questions remain open. 

Although there has been extensive investigation into both behavioral transitions and anatomical 

correlates of cortical maturation during puberty (reviewed in (Gee et al., 2018)), there are relatively 

few studies on the dynamic changes in gene expression that underlie these events. Walker et al. assessed 

gene expression in the POA and medial-basal hypothalamus (MBH) from birth to adulthood and 

identified Tac2 as a novel female-biased gene in the MBH, beginning at P15 (Walker et al., 2012). Shi 

et al. extensively analyzed the BrainSpan database, which includes up to 15 brain regions staged from 

8pcw to 40 years of age (Shi et al., 2016); the authors found that although sex differences in expression 

first arose during the second trimester, when the fetal testosterone surge occurs, most sex differences 

were not detected until puberty (8-19 years). However, the results from this study were highly variable 

due to low sample size, and only 3 sex-biased autosomal genes showed a consistent bias across 

developmental stages. Transcriptomic analyses of the maturing mesolimbic circuitry in rodents may 

reveal candidate factors that alter neuronal firing or synaptic maturation, such as cell adhesion 

molecules, ion channels, and vesicle release machinery (Favuzzi et al., 2019; Paul et al., 2017a). 
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1.7 Conclusion 

Given the many sex differences in the brain that emerge during early-life and adulthood, there is a clear 

need to characterize sex differences in gene regulation that occur during these life stages. In this thesis, 

I describe experiments that I performed to address this question. In Chapter 2, I introduce the low-input 

TF profiling method, Cleavage Under Targets & Release Under Nuclease (CUT&RUN), and describe 

how I used this technology to profile ERα genomic binding in the mouse social behavior network. In 

Chapter 3, I demonstrate how activation of a single ERα genomic target, melanocortin receptor 4 

(Mc4r), in the ventrolateral VMH (VMHvl) drives female physical activity. In Chapter 4, I characterize 

the activational effects of gonadal hormones by examining sex differences in gene expression and 

chromatin state in the adult BNST. In Chapter 5, I describe how the neonatal hormone surge influences 

ERα activation, resulting in a male-typical gene regulatory program that persists throughout neonatal 

BNST development. In Chapter 6, I demonstrate that single-nucleus multiome sequencing, which 

captures both gene expression and chromatin accessibility from the same individual cell, improves the 

prediction of TFs regulating neuron identity. In Chapter 7, I review the primary conclusions from this 

work and explore future directions. Lastly, in the Appendix, I include a manuscript on a novel, single-

cell sequencing method, called Balls of Acrylamide Gel sequencing (BAG-seq), which has the potential 

to reduce the cost and increase the throughput of single-cell transcriptomic and epigenomic experiments 

relative to current commercial options. 
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Chapter 2 
 
 
Genomic targets of ERα in the social behavior network  
 
Sections of this chapter were previously uploaded to bioRxiv (2020) under the title “Regulation of 

neural gene expression by estrogen receptor alpha” by Bruno Gegenhuber, Melody V. Wu, Robert 

Bronstein, and Jessica Tollkuhn. This manuscript is now in press at Nature (2022) under the title “Gene 

regulation by gonadal hormone receptors defines neuronal sex differences” by Bruno Gegenhuber, 

Melody V. Wu, Robert Bronstein, and Jessica Tollkuhn. I thank Melody V. Wu for collecting the RNA-

seq and in situ hybridization data shown in this chapter.  

 

2.1 Abstract 

Many actions of E2 are exerted through its canonical nuclear receptor, which is rapidly recruited to 

DNA upon activation. To date, the genomic targets of ERα in the brain remain unknown, due largely 

to its low and sparse expression. Here I apply the low-input TF profiling method CUT&RUN to 

characterize ERα genomic binding within three brain regions of the social behavior network in which 

ERα expression is required for male-typical behaviors: the BNSTp, MeA, and MPOA. In addition, I 

use genetic targeting approaches to study how E2 influences chromatin accessibility and ribosome-

bound transcript levels in BNSTp Esr1+ neurons. Together, these experiments reveal ERα binds unique 

genomic targets in the brain important for synaptic communication, and can drive rapid changes in 

chromatin state and gene expression across both sexes, independently of prior exposure to gonadal 

hormone signaling.  
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2.2 Introduction 

Over the last 40 years, mechanisms of transcriptional control by ERα have been extensively 

characterized in the context of breast cancer, leading to diagnostic and therapeutic breakthroughs 

(Carroll, 2016; Evans, 1988; Ross-Innes et al., 2012). However, the genes regulated by ERα in neurons 

remain obscure, due largely to technical challenges posed by the heterogeneity of the mammalian brain. 

For many years, ChIP-seq has been considered the gold standard method for profiling TF genomic 

binding. However, one limitation of ChIP-seq is that it typically requires a large number of cells (>1 

million) to achieve high-quality data, because of signal loss arising from epitope masking and 

destruction during fixation and sonication, respectively. Given that ERα, and other gonadal hormone 

receptors (AR, PR), are expressed only in a few thousand cells across the entire mouse brain, ChIP-seq 

has not been considered a suitable approach for identifying neural genomic targets of gonadal hormone 

receptors.  

 To bypass the input requirement of ChIP-seq, the Henikoff lab developed a modified approach 

to TF profiling, called CUT&RUN (Skene et al., 2018; Skene & Henikoff, 2017). CUT&RUN achieves 

near-quantitative recovery of TF-bound DNA fragments at single-nucleotide resolution by deviating 

from ChIP-seq at two critical stages:  

1) rather than chromatin fixation and solubilization, which masks and/or damages the epitope, 

CUT&RUN is performed on unfixed, permeabilized cells or nuclei attached covalently to 

magnetic beads and  

2) rather than TF immunoprecipitation, which often pulls down non-specific DNA fragments, 

CUT&RUN uses a protein A-micrococcal nuclease (pA-MNase) fusion enzyme to bind and 

cleave DNA selectively around primary antibodies targeted to the TF of interest. Cleaved DNA 

fragments diffuse out of the nuclear and/or plasma membrane, and these fragments are isolated 

from bead-bound nuclei/cells by centrifugation or magnetic separation.  
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 Here I use CUT&RUN to characterize ERα genomic binding in the brain, after first optimizing 

the method in MCF-7 breast cancer cells. I then examine the effects of E2 on chromatin accessibility 

and gene expression in BNSTp Esr1+ cells, by performing Assay for Transposase-Accessible 

Chromatin using Sequencing (ATAC-seq) on Esr1Cre; Sun1-GFPlx mice and Translating Ribosome 

Affinity Purification (TRAP), followed by RNA-seq, on Esr1Cre/+; Rpl22HA/+ mice, respectively. Lastly, 

we validate ERα regulation of specific genes within the BNSTp using in situ hybridization. 

Collectively, these experiments reveal the first genomic targets of a gonadal hormone receptor in the 

brain and demonstrate mechanisms of E2-dependent gene regulation in the BNSTp.  

2.3 Results 

2.3.1 ERα CUT&RUN validation in MCF-7 breast cancer cells 

As CUT&RUN has not yet been applied to ERα, I first validated the approach in MCF-7 breast cancer 

cells, which are a model system for studying ERα genomic regulation (Carroll et al., 2005). I performed 

ERα CUT&RUN on 25,000 MCF-7 cells, using 2 different antibodies, and compared to a published 

ERα ChIP-seq dataset (Franco et al., 2015) generated from ~2.5 million MCF-7 cells that underwent a 

similar E2 treatment paradigm. Despite using ~1% of the input material, CUT&RUN detected robust 

and reproducible recruitment of ERα to peaks identified in the ChIP-seq dataset, as well as a clear 

MNase footprint surrounding EREs within these peaks (Fig. 2.1a-b). Differential peak-calling of ERα 

CUT&RUN data revealed significant ERα binding to 6363 (antibody #1) or 7530 (antibody #2) 

genomic regions (Fig. 2.1c-d). Comparison of individual genomic loci between CUT&RUN and ChIP-

seq revealed near-identical ERα binding at canonical MCF-7 targets, TFF1 and GREB1 (Fig. 2.1e). 

Moreover, ERα CUT&RUN and ChIP-seq peaks shared near-identical enriched and de novo motifs, 

including not only the ERE, but also motifs of known ERα binding partners, such as forkhead box 

(FOX) and homeodomain (HD) proteins (Fig. 2.1f). 
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Figure 2.1. Validation of ERα CUT&RUN in MCF-7 cells. (a) Heatmap of mean MCF-7 ERα 
CUT&RUN CPM ±1Kb around 12,995 17β-estradiol (E2)-induced MCF-7 ERα ChIP-seq peaks 
(DiffBind, DESeq2, padj<0.01) for individual replicates (n=2 per condition and antibody). (b) pA-
MNase-cut footprint (CUT&RUNTools) around ESR1 motif sites (FIMO) detected in ERα ChIP-seq 
peaks. (c) MA plots of differential ERα CUT&RUN peaks (DiffBind, DESeq2, padj<0.1) for ERα 
antibody #1 (Santa Cruz sc-8002) and ERα antibody #2 (EMD Millipore Sigma 06-935). (d) Pearson 
correlation coefficient of CPM-normalized CUT&RUN signal within the consensus peak matrix across 
ERα CUT&RUN samples. Red text indicates E2 treatment group. (e) ERα CUT&RUN (both 
antibodies) and ChIP-seq tracks at canonical MCF-7 ERα target genes (TFF1, GREB1). (f) (left) Top 
enriched motifs (AME) and (right) top de novo motifs (DREME) within ERα ChIP-seq peaks, Ab #1 
ERα CUT&RUN peaks, and Ab #2 ERα CUT&RUN peaks. % TP=% of peaks called as positive for 
the indicated motif. De novo motifs were classified into motif families using TomTom. 
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2.3.2 ERα CUT&RUN in the brain 

To determine the genomic targets of ERα in the brain, I used an established hormone starvation and 

replacement paradigm that reproducibly elicits sex-typical behaviors (McEwen, 1981) and replicates 

the media conditions required to detect ERα genomic binding in cell lines (Hurtado et al., 2011). Four 

hours after treatment with estradiol benzoate (E2) or vehicle control, I profiled ERα binding within 

three interconnected limbic brain regions in which ERα is genetically required for sex-typical 

behaviors: the BNSTp, MPOA, and MeA (Y. Li & Dulac, 2018; Simerly, 2002b; M. V. Wu & Tollkuhn, 

2017b) (Fig. 2.2a). With this approach, I detected 1930 E2-induced ERα-bound loci in the brain (Fig. 

2.2b, Fig 2.3a-e). The most enriched TF binding motif in these peaks was the ERE, validating the 

specificity of the method (Fig. 2.3d). Prior ChIP-seq studies in vivo have examined ERα genomic 

binding in mouse uterus (Gertz et al., 2013; Hewitt et al., 2012), liver (Gertz et al., 2013; Gordon et al., 

2014), aorta (Gordon et al., 2014), efferent ductules (G. Yao et al., 2017), and mammary gland 

(Palaniappan et al., 2019). Comparison of brain ERα binding sites to those previously detected in these 

tissues revealed that the majority are specific to the brain (Fig. 2.2c, Fig. 2.3f). Brain-specific ERα 

binding events were uniquely enriched for synaptic and neurodevelopmental disease gene ontology 

(GO) terms, including neurotransmitter receptors, ion channels, neurotrophin receptors, and 

extracellular matrix genes (Fig. 2.2d, Fig. 2.3h-j). I also found evidence supporting direct crosstalk 

between estradiol and neuroprotection, as ERα directly binds loci for neurotrophin receptors TrkB 

(Ntrk2) and Ntrk3 (Fig. 2.3k).  
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Figure 2.2. Genomic targets of ERα in sexually dimorphic neuronal populations. 
(a) Coronal sections containing sexually dimorphic brain areas used for ERα CUT&RUN. (b) Heatmap 
of mean IgG and ERα CUT&RUN CPM ±1Kb around E2-induced ERα CUT&RUN peaks (DiffBind 
edgeR, padj<0.1). Heatmap sorted by E2 ERα CUT&RUN signal. (c) Proportion of ERα peaks detected 
specifically in brain. (d) Top GO Biological Process terms associated with genes nearest to brain-
specific or shared (≥4 other tissues) ERα peaks (clusterProfiler, padj<0.1). (e) Combined sex E2 vs. 
Veh RNA-seq in BNSTp Esr1+ cells; light grey and red dots (DESeq2, padj<0.1), dark grey and red 
dots (DESeq2, p<0.01), purple dots (ISH-validated). (f) ISH of select genes induced by E2 in both 
sexes. Boxplot center=median, box boundaries=1st and 3rd quartile, whiskers=1.5*IQR from 
boundaries. 2-way ANOVA: Brinp2 p=0.0373, Rcn1 p=0.0307, Enah p=0.0003, Tle3 p=0.0001; n=4 
per condition, scale=200um. (g) MA plot of E2-regulated ATAC-seq peaks in BNSTp Esr1+ cells; red 
dots (DiffBind edgeR, log2FC>1, padj<0.05), grey dots (DiffBind edgeR, log2FC<-1, padj<0.05). (h) 
Example ERα peaks at E2-induced genes. 
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Figure 2.3. Additional analysis of adult brain ERα CUT&RUN dataset. (a) MA plot of differential 
ERα CUT&RUN peaks (DiffBind, edgeR, padj<0.1) in adult mouse brain. red dots=E2-induced peaks, 
grey dots=E2-down peaks. (b) Heatmap of mean brain ERα CUT&RUN CPM ±1Kb around 1930 E2-
induced ERα CUT&RUN peaks (see also Fig. 1b) for individual replicates (n=2 per condition). (c) 
ESR1 motif footprint in ERα peaks (CUT&RUNTools). (d) Top enriched motifs (AME) in (left) E2-
induced ERα peaks and (right) E2-down ERα peaks. (e) Heatmap of mean brain IgG and ERα 
CUT&RUN CPM ±1Kb around 185 E2-down ERα peaks. (f) Number of overlaps between E2-induced 
ERα peaks and 7 external ERα ChIP-seq peaksets: intersected peaks of uterus 1 and uterus 2, intersected 
peaks of liver 1 and liver 2, aorta, efferent ductules, and mammary gland. Red indicates brain-specific 
ERα peaks. (g) Log-odds motif scores (FIMO) for the ESR1 motif (MA0112.3, left) and ESR2 motif 
(MA0258.2, right) in brain-specific (red) and shared (pink) ERα peaks. Boxplot center=median, box 
boundaries=1st and 3rd quartile, whiskers=1.5*IQR from boundaries. n=1304 brain-specific ESR1, 139 
shared ESR1, 1276 brain-specific ESR2, 157 shared ESR2. p-values from two-sided, Wilcoxon rank-
sum test. (h) Top Hugo Gene Nomenclature Committee (HGNC) gene families (clusterProfiler, 
padj<0.1) enriched within brain-specific ERα peak-associated genes. (i) Top Disease Ontology terms 
associated with genes nearest to brain-specific ERα peaks (DOSE, padj<0.1). (j) Brain-specific ERα 
peak-associated genes within each enriched Disease Ontology (DO) term (clusterProfiler, padj<0.1), 
colored by term (k) Example brain-specific (Cntnap2, Ntrk2), shared (Rybp, Myrip), and disease-
associated (Drd3, Htr1a, Grin2b) ERα peaks.  



37        Chapter 2. Genomic targets of ERα in the social behavior network  
 

 
2.3.3 Estradiol regulation of chromatin accessibility and gene expression in the BNSTp  

To identify the functional consequences of ERα genomic binding, I focused on a single brain region, 

the BNSTp, which is a central node in the regulation of sex-typical behaviors. The BNSTp sends 

projections to the POA, MeA, and hypothalamus and is 40% larger in rodent and human males 

compared to females (Allen & Gorski, 1990a; Hines et al., 1992a; Simerly, 2002a; Welch et al., 2019; 

J. N. Zhou et al., 1995). In mice, this dimorphism requires neonatal ERα activation, which promotes 

survival of BNSTp neurons (Tsukahara et al., 2011; M. V. Wu et al., 2009b). Our group performed 

translating ribosome affinity purification (TRAP) in microdissected BNSTp from Esr1Cre/+; Rpl22HA/+ 

females and males using the same treatment paradigm as above, followed by RNA-seq. I identified 358 

genes with differential expression between E2 and Veh treatment groups, including known estradiol-

induced genes, such as Pgr and Nrip1 (Fig. 2.2e).  

We validated several of the top estradiol-induced genes by in situ hybridization (ISH) (Fig. 

2.2f). Genes involved in neuron wiring (Brinp2, Unc5b, Enah) and synaptic plasticity (Rcn1, Irs2) are 

robustly induced in the BNSTp, illustrating how estradiol signaling may sculpt sexual differentiation 

of BNSTp circuitry. ERα co-repressors Tle3 and Nrip1 increase expression, while the co-activator 

Nr2f1 decreases expression, suggesting a negative transcriptional feedback mechanism.  

In addition to direct genomic binding by ERα, E2 can regulate gene expression via cell 

membrane-initiated signaling cascades, tethering of ERα to AP-1 sites via Fos/Jun heterodimers, and 

activation of estrogen receptor beta (ERβ), which is also expressed in the BNSTp (Micevych & Kelly, 

2012; Srivastava et al., 2013; Zuloaga et al., 2014b). To detect additional E2-responsive genomic 

regions in the BNSTp, I performed ATAC-seq on FACS-purified BNSTp Esr1+ cells collected from 

Esr1Cre/+; Sun1-GFP-lx/+ mice using the same treatment paradigm. This approach revealed robust 

chromatin opening in response to E2. Across sexes, 7,293 chromatin regions increased accessibility 

(E2-open) and 123 regions decreased accessibility (E2-close) (Fig. 2.2g, Fig. 2.4a-b, d). While the 

number of E2-open loci far exceeded the number of E2-regulated genes, E2-open loci were similarly 
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enriched at genes involved in neuronal connectivity, including regulation of membrane potential and 

synapse organization (Fig. 2.4e-g). Motif enrichment analysis of these E2-open regions, which occurred 

primarily at distal enhancer elements (Fig. 2.4c), showed that 89% contain an ERE (Fig. 2.4h-i), 

consistent with the observation that nearly all ERα binding sites overlapped an E2-open region (Fig. 

2.4j). Collectively, these results indicate direct estrogen receptor binding, rather than indirect or 

membrane-initiated signaling pathways, drives the majority of E2-responsive chromatin regions in the 

BNSTp.  

After examining the relationship between estradiol-regulated chromatin loci and gene 

expression, I found that E2-open regions localized at both E2-upregulated and -downregulated genes 

(Fig. 2.5a). E2-open regions at downregulated genes contained EREs yet lacked widespread ERα 

binding (Fig. 2.5b-d), suggesting transient ERα recruitment may contribute to gene repression (Guertin 

et al., 2014). E2-upregulated genes with corresponding E2-responsive chromatin loci include Brinp2, 

Rcn1, Enah, and Tle3 (Fig. 2.2f, h); E2-downregulated genes include Astn2, a regulator of synaptic 

trafficking, and Nr2f1 (Fig. 2.5d). 

While most estradiol regulation events were shared between sexes in our treatment paradigm, 

I noted certain sex-dependent effects. Pairwise comparison by sex revealed nearly 300 differential 

genes between females and males in our TRAP RNA-seq data (data not shown). Moreover, I observed 

306 genes with a differential response to estradiol between sexes (Fig. 2.5e-f). These sex-dependent, 

E2-responsive genes lacked enrichment of E2-responsive chromatin regions (Fig. 2.5g), which may 

indicate additional estradiol regulation at the translational level, consistent with the recent discovery of 

ERα as an RNA-binding protein (Y. Xu et al., 2021). Likewise, across ERα CUT&RUN and ATAC-

seq modalities, I observed negligible sex differences and sex-dependent, E2-responsive loci  (Fig. 2.5h-

j), demonstrating females and males mount a similar genomic response to exogenous estradiol upon 

removal of the hormonal milieu.  
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Figure 2.4. Additional analysis of adult BNSTp ATAC-seq. (a) GFP immunofluorescence staining 
in an adult male Esr1Cre/+; Sun-GFPlx/+ mouse, scale=1mm. Inset shows Sun1-GFP signal at nuclear 
membrane, scale=10um. (b) Fluorescence-activated cell sorting (FACS) gating strategy for isolating 
BNSTp GFP+ nuclei for ATAC-seq. (c) Proportion of E2-open ATAC peaks (red), total E2 ATAC 
peaks (black), and total Veh ATAC peaks (black) annotated to promoters (±1Kb around TSS), exons, 
introns, and intergenic regions. E2-open ATAC peaks have a significantly lower proportion of`peaks 
annotated to gene promoters than total vehicle (11% vs 1% , Fisher’s Exact Test, p=4.6x10-260) and 
total E2 (11% vs 1%, Fisher’s Exact Test, p=4.3x10-267) peaks. ***p<0.001. (d) Heatmap of mean 
BNSTp Esr1+ ATAC CPM ±1Kb around 7293 E2-open ATAC peaks for individual female and male 
replicates (n=3 per condition) (see also Fig. 1g). (e-g), Top Gene Ontology (GO) Biological Process 
terms (e), HGNC gene families (f), and DO terms (g) enriched within E2-open ATAC peak-associated 
genes (clusterProfiler, padj<0.1). (h) Top motifs enriched in E2-open ATAC-seq peaks (AME). % of 
peaks containing motifs determined with FIMO. (i) Overlap in E2-open ATAC peaks containing the 
ESR1 motif (blue) and the ESR2 motif (red), identified using FIMO. The majority of peaks (4434/6479) 
containing either motif are the same. (j) (left) Overlap between brain ERα CUT&RUN peaks and E2-
open ATAC peaks (log2FC>1). (right) Overlap between remaining 777 brain ERα CUT&RUN peaks 
and log2FC>0 E2-open ATAC peaks.  
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Figure 2.5. Integration of adult RNA-seq, ATAC-seq, and CUT&RUN datasets. (a-b) BETA 
enrichment of E2-open ATAC peaks (a) and brain ERα CUT&RUN peaks (b) at E2-induced and E2-
down genes identified by RNA-seq (DESeq2, p<0.01) relative to a background of non-differential, 
expressed genes. (c) Top enriched motifs (AME) in E2-open ATAC peaks ±350Kb around E2-down 
genes (identified with BETA). (d) Example E2-open ATAC peaks/ERα peaks at E2-repressed genes, 
Nr2f1 and Astn2. (e) Normalized counts for example genes (Ccdc134, Zfp804b) with a sex-dependent 
response to E2 treatment. Boxplot center=median, box boundaries=1st and 3rd quartile, 
whiskers=1.5*IQR from boundaries. n=4. (f) (Left) Volcano plot of sex-dependent, E2-responsive 
genes; light blue and red dots (DESeq2, padj<0.1), dark blue and red dots (DESeq2, padj<0.1). (Right) 
Mean, normalized expression of sex-dependent, E2-responsive genes (DESeq2, padj<0.1), grouped by 
k-means clustering. (g) Lack of significant enrichment of E2-open ATAC peaks (top) and ERα peaks 
(bottom) at sex-dependent, E2-reponsive genes relative to a background of non-differential, expressed 
genes (BETA). (h) Volcano plots of sex-dependent, E2-responsive ERα CUT&RUN peaks (edgeR, 
padj<0.1) (left) and ATAC peaks (edgeR, padj<0.1). (i) MA plot of male E2 vs. female E2 ERα 
CUT&RUN peaks (DiffBind, edgeR, padj<0.1); red dots=male E2-biased peaks, grey dots=female E2-
biased peaks. (j) Heatmap of mean ATAC CPM, split by sex and treatment, ±1Kb around E2-induced 
ERα peaks.  
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2.4 Discussion 

Here I characterize the genomic and transcriptomic response to estradiol in the adult mouse brain. 

Within BNSTp Esr1+ neurons, estradiol largely activates chromatin loci, primarily at distal or intronic 

enhancer elements, via direct ERα binding. This finding suggests that membrane-initiated ERα 

signaling, culminating in CREB phosphorylation, or modulation of BNSTp Esr1+ neuron activity via 

long-range Esr1+ projection neurons from other brain regions do not contribute to the genomic 

response. Surprisingly, I found minimal sex differences in the genomic response to estradiol, whereas 

the transcriptome, specifically levels of ribosome-bound mRNAs, deviated between sexes following 

treatment. These data reveal that prior history of hormone signaling (i.e. neonatal surge in males, post-

pubertal hormones in both sexes) do not restrict the chromatin to respond to later hormones, meaning 

perturbation of adult hormone levels effectively alters genomic sex – a concept I return to in Chapter 

5. However, as the TRAP data still showed sex differences in the response to estradiol, I suspect 

additional regulation occurs at the translational level. In support of this hypothesis, ERα has recently 

been found to act as an RNA-binding protein (Y. Xu et al., 2021). Direct comparison of BNSTp Esr1+ 

nuclear vs. ribosome-bound transcripts following estradiol treatment would be critical in distinguishing 

between these layers of regulation.  

Consistent with one prior in vivo study (Gertz et al., 2013), ERα displays tissue-specific 

genomic binding. It is possible that such tissue-specific binding enables ERα to mediate estradiol-

dependent biological processes critical for the function of each tissue, such as bone growth in 

osteoclasts, lipid metabolism in the liver, and cardioprotection in the heart. As the majority of ERα 

binding events were accessible in the BNSTp prior to treatment, tissue-specific recruitment may be 

driven by the pre-existing chromatin landscape specified by tissue-specific expression, and/or 

combinatorial expression, of PFs. Additional ERα CUT&RUN and ATAC-seq experiments across 

tissues, followed by comparison and motif analysis, would provide mechanistic insight into how ERα 

regulates diverse biological processes throughout the body.  
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 Importantly, the experiments performed here establish a methodological framework for 

studying gonadal hormone receptor function in the brain. I return to this methodology in Chapters 5 

and 6 to define gene regulatory mechanisms controlling sex differences in the adult (“activational”) and 

developing (“organizational”) BNSTp.  

2.5 Materials and Methods 
Animals. All animals were maintained on a 12:12 light cycle and provided food and water ad libitum. 

All mouse experiments were performed under strict guidelines set forth by the CSHL Institutional 

Animal Care and Use Committee (IACUC). Esr1Cre (H. Lee et al., 2014), Rpl22HA (Sanz et al., 2009), 

ROSA26CAG-Sun1-sfGFP-Myc (Mo et al., 2015) (abbreviated as Sun1-GFP), and C57Bl6/J wildtype mice 

were obtained from Jackson labs. Adult male and female mice were used between 8-12 weeks of age. 

For adult hormone treatment experiments, animals were sacrificed for tissue collection four hours after 

subcutaneous administration of 5μg estradiol benzoate (E2) (Sigma E8515) suspended in corn oil 

(Sigma C8267) or vehicle three weeks post-gonadectomy.  

 

Cell lines. Cells were maintained in standard DMEM supplemented with 10% FBS and 

penicillin/streptomycin. Prior to CUT&RUN, MCF-7 cells were grown in phenol-red free DMEM 

media containing 10% charcoal-stripped FBS and penicillin/streptomycin for 48 hours then treated with 

20 nM 17-β-estradiol or vehicle (0.002% EtOH) for 45 minutes.  

 

Adult RNA-seq and in situ hybridization. Experiments were performed as previously described 

(Ahrens et al., 2018). Briefly, the BNSTp was microdissected following rapid decapitation of deeply 

anesthetized adult Esr1Cre/+; Rpl22HA/+ mice. Tissue homogenization, immunoprecipitation, and RNA 

extraction was performed, and libraries were prepared from four biological replicates samples (each 

consisting of 8-9 pooled animals) using NuGEN Ovation RNA-Seq kits (7102 and 0344). Multiplexed 

libraries were sequenced with 76bp single end reads on the Illumina NextSeq. Validation by in-situ 
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hybridization staining and quantification was performed as previously described (Ahrens et al., 2018; 

M. V. Wu & Tollkuhn, 2017b). 

 

Adult ATAC-seq nuclei isolation. Adult Esr1Cre/+; Sun1-GFPlx/+ mice (4 pooled per condition) were 

deeply anesthetized with ketamine/dexmedetomidine. 500-μm sections spanning the BNSTp were 

collected in an adult mouse brain matrix (Kent Scientific) on ice. The BNSTp was microdissected and 

collected in 1 ml of cold supplemented homogenization buffer (250 mM sucrose, 25 mM KCl, 5 mM 

MgCl2, 120 mM tricine-KOH, pH 7.8), containing 1 mM DTT, 0.15 mM spermine, 0.5 mM 

spermidine, and 1X EDTA-free PIC (Sigma Aldrich 11873580001). The tissue was dounce-

homogenized 15x in a 1 ml glass tissue grinder (Wheaton) with a loose pestle. 0.3% IGEPAL CA-630 

was added, and the suspension was homogenized 5x with a tight pestle. The homogenate was filtered 

through a 40-μm strainer then centrifuged at 500 x g for 15 min at 4oC. The pellet was resuspended in 

0.5 ml homogenization buffer containing 1 mM DTT, 0.15 mM spermine, 0.5 mM spermidine, and 1X 

EDTA-free PIC. 30,000 GFP+ nuclei were collected into cold ATAC-RSB (10 mM Tris-HCl pH 7.5, 

10 mM NaCl, 3 mM MgCl2) using the Sony SH800S Cell Sorter (purity mode) with a 100-μm sorting 

chip. After sorting, 0.1% Tween-20 was added, and the nuclei were centrifuged at 500 x g for 5 min at 

4oC. The nuclei pellet was directly resuspended in transposition reaction mix.  

 

ATAC-seq library preparation. Tn5 transposition was performed using the OMNI-ATAC protocol 

(Corces et al., 2017). 2.5 μl of Tn5 enzyme (Illumina 20034197) were used in the transposition reaction. 

Libraries were prepared with NEBNext High-Fidelity 2X PCR Master Mix (NEB M0541L), following 

standard protocol. After the initial 5 cycles of amplification, an additional 4 cycles were added, based 

on qPCR optimization. Following amplification, libraries were size-selected (0.5x-1.8x) twice with 

AMPure XP beads (Beckman Coulter A63880) to remove residual primers and large genomic DNA. 
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Individually barcoded libraries were multiplexed and sequenced with paired-end 76bp reads on an 

Illumina NextSeq, using either the Mid or High Output Kit. 

 

Cell line CUT&RUN. To harvest cells for CUT&RUN, cells were washed twice with Hank’s Buffered 

Salt Solution (HBSS) and incubated for five minutes with pre-warmed 0.5% Trypsin-EDTA (10X) at 

37oC/5% CO2. Trypsin was inactivated with phenol-red free DMEM supplemented with 10% charcoal-

stripped FBS and penicillin/streptomycin. After trypsinizing, cells were centrifuged at 500 x g in a 15ml 

conical tube and resuspended in fresh media. CUT&RUN was performed as previously described 

(Skene et al., 2018), with minor modifications. Cells were washed twice in Wash Buffer (20 mM 

HEPES, pH 7.5, 150 mM NaCl, 0.5 mM spermidine, 1X PIC, 0.02% digitonin). Cell concentration was 

measured on a Countess II FL Automated Cell Counter (Thermo Fisher). 25,000 cells were used per 

sample. Cells were bound to 20 μl concanavalin A beads (Bangs Laboratories, BP531), washed 2x in 

Wash Buffer, and incubated overnight with primary antibody (ERα antibody #1: Santa Cruz sc-8002 

or antibody #2: EMD Millipore 06-935) diluted 1:100 in Antibody Buffer (Wash Buffer containing 2 

mM EDTA). The following day, cells were washed 2x in Wash Buffer, and 700 ng/ml protein A-MNase 

(pA-MNase, prepared in-house) was added. After 1 hr incubation at 4oC, cells were washed 2x in Wash 

Buffer and placed in a metal heat block on ice. pA-MNase digestion was initiated with 2 mM CaCl2. 

After 90 min, digestion was stopped by mixing 1:1 with 2X Stop Buffer (340 mM NaCl, 20 mM EDTA, 

4 mM EGTA, 50 μg/ml RNase A, 50 μg/ml glycogen, 0.02% digitonin). Digested fragments were 

released by incubating at 37oC for 10 min, followed by centrifuging at 16,000 x g for 5 min at 4oC. 

DNA was purified from the supernatant by phenol-chloroform extraction, as previously described 

(Skene et al., 2018). 

 

Adult brain CUT&RUN. Nuclei were isolated from microdissected POA, BNSTp, and MeAp from  

gonadectomized C57Bl6/J mice, following anatomic designations (Paxinos & Franklin, 2019), as 
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described previously (Mo et al., 2015). Following tissue douncing, brain homogenate was mixed with 

a 50% OptiPrep solution and underlaid with 4.8 ml of 30% then 40% OptiPrep solutions, in 38.5 ml 

Ultra-clear tubes (Beckman-Coulter C14292). Ultracentrifugation was performed with a Beckman SW-

28 swinging bucket rotor at 9200 RPM for 18 minutes at 4oC. Following ultracentrifugation, ~1.5 ml 

of nuclei suspension was collected from the 30/40% OptiPrep interface by direct tube puncture with a 

3 ml syringe connected to an 18-gauge needle. Nuclei concentration was measured on a Countess II FL 

Automated Cell Counter. For ERα CUT&RUN (1:100,  EMD Millipore Sigma 06-935), 400,000 nuclei 

were isolated from BNST, MPOA, and MeA of 5 animals. 400,000 cortical nuclei were used for the 

CUT&RUN IgG control (1:100, Antibodies-Online ABIN101961). Prior to bead binding, 0.4% 

IGEPAL CA-630 was added to the nuclei suspension to increase affinity for concanavalin A magnetic 

beads. All subsequent steps were performed as described above, with a modified Wash Buffer (20 mM 

HEPES, pH 7.5, 150 mM NaCl, 0.1% BSA, 0.5 mM spermidine, 1X PIC). 

 

CUT&RUN library preparation. Cell line CUT&RUN libraries were prepared using the SMARTer 

ThruPLEX DNA-seq Kit (Takara Bio R400676), with the following PCR conditions: 72oC for 3 min, 

85oC for 2 min, 98oC for 2 min, (98oC for 20 sec, 67oC for 20 sec, 72oC for 30 sec) x 4 cycles, (98oC 

for 20 sec, 72oC for 15 sec) x 14 cycles (MCF-7). Brain CUT&RUN libraries were prepared using the 

same kit with 10 PCR cycles. All samples were size-selected with AMPure XP beads (0.5x-1.7x) to 

remove residual adapters and large genomic DNA. Individually barcoded libraries were multiplexed 

and sequenced with paired-end 76bp reads on an Illumina NextSeq, using either the Mid or High Output 

Kit.  

 

CUT&RUN data processing. Paired-end reads were trimmed to remove Illumina adapters and low-

quality basecalls (cutadapt -q 30) (Martin, 2011). Trimmed reads were aligned to mm10 using Bowtie2 

(Langmead & Salzberg, 2012) with the following flags: --dovetail --very-sensitive-local --no-unal --
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no-mixed --no-discordant --phred33. Duplicate reads were removed using Picard 

(http://broadinstitute.github.io/picard/) MarkDuplicates (REMOVE_DUPLICATES=true). Reads were 

filtered by mapping quality (H. Li et al., 2009) (samtools view -q 40) and fragment length (Ramírez et 

al., 2016) (deepTools alignmentSieve --maxFragmentLength 120). Reads aligning to the mitochondrial 

chromosome and incomplete assemblies were also removed using SAMtools. After filtering, peaks 

were called on individual replicate BAM files using MACS2 callpeak (--min-length 25 -q 0.01) (Zhang 

et al., 2008). To identify consensus Nfix peaks across samples, MACS2 callpeak was performed on 

BAM files merged across biological replicates (n=2) and subsequently intersected across treatment and 

sex. TF peaks that overlapped peaks called in the IgG control were removed using bedtools intersect (-

v) (Quinlan & Hall, 2010) prior to downstream analysis.  

 

CUT&RUN data analysis. CUT&RUN differential peak calling was performed with DiffBind (Stark 

et al., 2011). A count matrix was created from individual replicate BAM and MACS2 narrowpeak files 

(n=2 per condition). Consensus peaks were re-centered to ±100 bp around the point of highest read 

density (summits=100). Contrasts between sex and treatment were established (categories = 

c(DBA_TREATMENT, DBA_CONDITION)), and edgeR (Robinson et al., 2010) was used for 

differential peak calling. Differential ERα peaks with padj<0.1 were used for downstream analysis. To 

identify sex-dependent, estradiol-responsive peaks for adult brain ERα CUT&RUN, the DiffBind 

consensus peakset count matrix was used as input to edgeR, and an interaction between sex and 

treatment was tested with glmQLFTest. 

Brain E2-induced ERα CUT&RUN peaks were annotated to NCBI RefSeq mm10 genes using 

ChIPseeker (Yu, Wang, & He, 2015). DeepTools plotHeatmap was used to plot ERα CUT&RUN, 

representing CPM-normalized bigwig files pooled across replicate and sex per condition, at E2-induced 

ERα peaks. CUT&RUNTools (Q. Zhu et al., 2019) was used to plot ERα CUT&RUN fragment ends 

surrounding ESR1 motifs (JASPAR MA0112.3) within E2-induced ERα ChIP-seq peaks. BETA (basic 
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mode, -d 500000) (S. Wang et al., 2013) was used to determine whether ERα peaks were significantly 

overrepresented at E2-regulated RNA-seq genes (p<0.01), as well as sex-dependent E2-regulated genes 

(p<0.01), compared to non-differential, expressed genes. Motif enrichment analysis of ERα peaks was 

performed with AME (Bailey et al., 2009) using the 2020 JASPAR core non-redundant vertebrate 

database. Motif enrichment analysis was performed using a control file consisting of shuffled primary 

sequences that preserves the frequency of k-mers  (--control --shuffle--). The following 7 ERα ChIP-

seq files were lifted over to mm10 using UCSC liftOver and intersected with E2-induced ERα peaks 

to identify brain-specific and shared (≥4 intersections) ERα binding sites: uterus  [intersection of 

GEO:GSE36455 (uterus 1) (Hewitt et al., 2012) & GEO:GSE49993 (uterus 2) (Gertz et al., 2013)], 

liver [intersection of GEO:GSE49993 (liver 1) (Gertz et al., 2013) & GEO:GSE52351(liver 2) (Gordon 

et al., 2014)], aorta [(Gordon et al., 2014), GEO: GSE52351], efferent ductules [(G. Yao et al., 2017), 

Supplementary information], and mammary gland [(Palaniappan et al., 2019), GEO: GSE130032]. 

ClusterProfiler (Yu et al., 2012) was used to identify associations between brain-specific and shared 

ERα peak-annotated genes and Gene Ontology (GO) Biological Process terms (enrichGO, ont=“BP”, 

padj<0.1).  For Disease Ontology (DO) and HUGO Gene Nomenclature Committee (HGNC) gene 

family enrichment, brain-specific ERα peak-associated gene symbols were converted from mouse to 

human using bioMart (Durinck et al., 2009) then analyzed with DOSE (Yu, Wang, Yan, et al., 2015) 

(enrichDO, padj<0.1) and enricher (padj<0.1). Log-odds ESR1 and ESR2 motif scores in brain-specific 

and shared ERα peaks were calculated with FIMO (Grant et al., 2011), using default parameters.  

MCF-7 ERα CUT&RUN data were compared to MCF-7 ERα ChIP-seq data from [(Franco et 

al., 2015); GEO: GSE59530]. Single-end ChIP-seq fastq files for 2 vehicle-treated and 2 17β-estradiol 

(E2)-treated IP and input samples were accessed from Sequence Read Archive and processed 

identically as ERα CUT&RUN data, with the exception of fragment size filtering. Differential ERα 

ChIP-seq peak calling was performed using DiffBind DESeq2 (padj<0.01). DeepTools was used to plot 

CPM-normalized ERα CUT&RUN signal at E2-induced ERα ChIP-seq binding sites. DREME (Bailey, 
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2011) and AME were used to compare de novo and enriched motifs between E2-induced MCF-7 ERα 

CUT&RUN and ChIP-seq peaks.  

 

Adult RNA-seq data processing and analysis. Reads were adapter-trimmed and quality-filtered 

(q>30) (http://hannonlab.cshl.edu/fastx_toolkit/), then mapped to the mm10 reference genome using 

STAR (Dobin et al., 2013). The number of reads mapping to the exons of each gene was counted with 

featureCounts (Liao et al., 2014), using the NCBI RefSeq mm10 gene annotation. Differential gene 

expression analysis was performed using DESeq2 (Love et al., 2014) with the following designs: effect 

of treatment (design = ~ batch + hormone), effect of sex (design = ~ batch + sex), two-way comparison 

of treatment and sex (design = ~ batch + hormone_sex), four-way comparison (design = ~ 0 + 

hormone_sex), and sex-treatment interaction (design = ~ batch + sex + hormone + sex:hormone). 

 

ATAC-seq data processing. ATAC-seq data were processed using the ENCODE ATAC-seq pipeline 

(https://github.com/ENCODE-DCC/atac-seq-pipeline) with default parameters. To generate CPM-

normalized bigwig tracks, quality-filtered, Tn5-shifted BAM files were converted to CPM-normalized 

bigwig files using DeepTools bamCoverage (--binSize 1 --normalizeUsing CPM). 

 

Adult ATAC-seq data analysis. ATAC-seq differential peak calling was performed with DiffBind. A 

DiffBind dba object was created from individual replicate BAM and MACS2 narrowPeak files (n=3 

per condition). A count matrix was created with dba.count, and consensus peaks were re-centered to 

±250 bp around the point of highest read density (summits=250). Contrasts between sex and treatment 

were established (categories = c(DBA_TREATMENT, DBA_CONDITION)), and edgeR was used for 

differential peak calling. Differential peaks with an FDR<0.05 and abs(log2FC)>1 or abs(log2FC)>0 

were used for downstream analysis. DeepTools computeMatrix and plotHeatmap were used to plot 

mean ATAC CPM at E2-open ATAC peaks. To identify sex-dependent, estradiol-responsive peaks, the 
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DiffBind consensus peakset count matrix was used as input to edgeR, and an interaction between sex 

and treatment was tested with glmQLFTest. E2-open ATAC peaks and total Veh or E2 ATAC peaks 

(intersected across replicate and sex for each treatment condition) were annotated to NCBI RefSeq 

mm10 genes using ChIPseeker. ClusterProfiler was used to calculate the enrichment of GO Biological 

Process terms. DO and HGNC gene family enrichment was performed on E2-open ATAC peak-

associated genes, as described above for ERα CUT&RUN analysis. BETA (basic mode, -d 500000) (S. 

Wang et al., 2013) was used to determine whether E2-open ATAC peaks were significantly 

overrepresented at E2-regulated RNA-seq genes (p<0.01), as well as sex-dependent E2-regulated genes 

(p<0.01), compared to non-differential, expressed genes. Motif enrichment analysis of E2-open ATAC 

peaks was performed with AME, using the 2020 JASPAR core non-redundant vertebrate database.  
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Chapter 3 
 
 
Estrogen engages brain MC4R signaling to drive physical activity 
in female mice 
 
Sections of this chapter were previously published in Nature (2021) under the title “Oestrogen engages 

brain MC4R signalling to drive physical activity in female mice” by William C. Krause,  Ruben 

Rodriguez, Bruno Gegenhuber, Navneet Matharu, Andreas N. Rodriguez, Adriana M. Padilla-Roger, 

Kenichi Toma, Candice B. Herber, Stephanie M. Correa, Xin Duan, Nadav Ahituv, Jessica Tollkuhn, 

and Holly A. Ingraham. W.C.K. designed experiments, analysed data and wrote the manuscript. R.R. 

performed thermal and glucose homeostasis analyses in mice. B.G. optimized, performed and analysed 

the CUT&RUN method for ERα binding in neurons. N.M. provided CRISPRa viral vectors and expert 

advice. A.N.R. performed histology experiments and quantification of expression data. A.M.P.-R. aided 

with chemogenetic data acquisition and analyses. C.B.H. analysed bone and plasma lipid data. S.M.C. 

designed experiments, provided animal models and analysed data. K.T. and X.D. provided the AAV-

DIO-mYFP vector. N.A. provided key unpublished reagents related to CRISPRa constructs and helped 

to guide studies. J.T. optimized CUT&RUN method for ERα binding in neurons, performed analyses 

and wrote the manuscript. H.A.I. designed experiments, analysed data and wrote the manuscript. 

3.1 Abstract 

In Chapter 2, I identified the first genomic targets of ERα in the adult brain and found that the majority 

are unique to this tissue. As these prior experiments only examined the transcriptomic and chromatin 

accessibility response to estradiol, it remains unclear whether and how the genomic targets of ERα 

regulate the display of sex-typical behaviors. Here, in collaboration with Holly Ingraham’s lab, we 

found that one particular ERα target, melanocortin receptor 4 (Mc4r), is upregulated by estradiol across 
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the estrous cycle in the VMHvl – a brain region that regulates maternal and male-typical aggression 

(Hashikawa et al., 2017; Lin et al., 2011) as well as energy expenditure (Krause & Ingraham, 2017). In 

particular, ERα binds Mc4r at a downstream ERE-containing locus as well as a half-ERE site within 

the promoter, in addition to other estradiol-regulated genes within this region, such as Pgr, Greb1, and 

Nmur2. Genetic deletion of Mc4r increased body weight and sedentary behavior in both sexes, whereas 

reinstating Mc4r selectively within the VMHvl rescued this phenotype in females but not in males. 

Moreover, VMHvl delivery of a CRISPR-based activator (CRISPRa) directed to the Mc4r promoter 

half ERE site increased physical activity and, in response to the additional mechanical loading, cortical 

bone volume and thickness. Together, these results reveal estradiol regulation of VMHvl Mc4r 

signaling drives female activity and provide a model for how genomic recruitment of ERα activates the 

sex-specific display of an innate behavior.  

3.2 Introduction 

While decades of studies have revealed the rapid effects of estradiol on spatial memory and neuronal 

physiology, particularly in hippocampal CA1 pyramidal neurons (Woolley, 2007), the genomic targets 

of ERα in the brain have only now been defined. The next logical question is to determine whether 

these targets influence the properties of neurons or circuits in which they are regulated and, ultimately, 

modify behavior. However, rather than examine each individual ERα target gene, of which several 

presumably do not result in a functional change at the protein level, it is first critical to examine genes 

implicated in the regulation of behaviors known to be influenced by estradiol. For instance, GDX 

followed by estradiol and progesterone replacement has been used for decades to model female-typical 

reproductive behaviors that occur naturally throughout the estrous cycle (McEwen, 1981). These 

behaviors span not only the display of lordosis but also underlying changes in food intake, physical 

activity, and thermogenesis that facilitate reproductive success (Krause & Ingraham, 2017).  
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Accordingly, a number of the ERα genomic targets identified in Chapter 2 have been implicated 

in the regulation of sexual receptivity and metabolism. Among these are Pgr, the gene encoding PR, as 

well as a number of neuropeptides and/or their receptors, such as Cartpt (S. J. Lee et al., 2020); Cck 

and Cckar (Cooper & Dourish, 1990);  Npy, Npy2r, and Npy4r (Sohn et al., 2013), Nmur2 (Howard et 

al., 2000); and Mc4r (Huszar et al., 1997). Mc4r is of particular interest, as it was first associated with 

monogenic human obesity in 1998 (Yeo et al., 1998) and is considered the most common known genetic 

cause of this disease (Farooqi et al., 2000; Wade et al., 2021). Consistent with the estradiol-dependent 

recruitment of ERα to the Mc4r locus, women are more susceptible to loss-of-function (LOF) mutations 

in this gene than men (Horstmann et al., 2013; Qi et al., 2008). Mechanistically, Mc4r encodes a G-

protein coupled seven-transmembrane receptor expressed in discrete populations of neurons throughout 

the brain (Gantz et al., 1993; Mountjoy et al., 1994). α- and β-melanocyte-stimulating hormones 

(MSH), which derive from the neuropeptide pro-opiomelanocortin (POMC),  bind to Mc4r and 

suppress food intake (Cowley et al., 1999). Leptin, a satiety hormone, acts upstream of this pathway by 

stimulating the production of POMC from neurons in the arcuate nucleus of the hypothalamus (ARC) 

(Cowley et al., 2001). 

In this Chapter, I collaborated with the Ingraham lab to examine how ERα regulation of Mc4r 

regulates energy expenditure in mice. We found that Mc4r expression is induced within the VMHvl 

during proestrus and in response to estradiol replacement. Moreover, Mc4r upregulation is controlled 

by the genomic action of ERα, rather than indirect signaling, as ERα bound Mc4r at a downstream 

ERE-containing locus as well as a half-ERE site within the promoter. Reinstating Mc4r expression 

within the VMHvl of Mc4r KO animals rescued body weight and sedentary behavior in females but not 

in males. Finally, bypassing estradiol-ERα signaling by co-delivering dCas9-VP64 activator and a 

sgRNA targeting the Mc4r promoter half ERE site into the VMHvl increased physical activity and 

cortical bone volume and thickness. Together, these experiments shed light on the sex-specific role of 
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Mc4r in energy expenditure and provide physiological and behavioral relevance for a genomic target 

of ERα.  

3.3 Results 

3.3.1 Estradiol regulation of Mc4r within the VMHvl  

We first tested whether ERα signaling within the VMHvl is required for the display of physical activity 

by stereotactically delivering AAV-Cre-GFP (ERα KO) or AAV-GFP (control) into the VMHvl or 

ARC of female Esr1fl/fl mice (Fig. 3.1a). VMHvlERαKO, but not ARCERαKO, females displayed increased 

body weight and reduced ambulatory activity (Fig. 3.1a), demonstrating ERα acts in a region-specific 

manner to influence female energy expenditure (Fig. 3.1a). 

The activity of female mice naturally changes across the estrous cycle, peaking in proestrus, 

presumably as a means to enhance sexual receptivity (Della Torre & Maggi, 2017). To examine whether 

the activity of VMHvl ERα+ neurons changes across estrous, we stained for ERα and phosphorylated 

ribosomal protein S6 (pS6) – a known marker of neural activity (Fig. 3.1b). The number of VMHvl 

ERα+/pS6+ neurons peaked at proestrus (high estradiol state), or following injection of estradiol 

benzoate (EB) into GDX mice (Fig. 3.1b-c). Consistent with the lack of a role of ARC ERα+ neurons 

in female activity, estradiol did not influence the number of ARC ERα+/pS6+ neurons (Fig. 3.1c). 

Together, these findings reveal VMHvl ERα+ neurons increase activity at proestrus as a result of 

estradiol signaling.  

To determine whether estradiol influences gene expression within the VMHvl, we performed 

RNA-seq in GDX females treated acutely with vehicle or EB (Fig. 3.1d). This approach revealed many 

estradiol-regulated genes shared across the VMHvl and BNSTp (Chapter 2), such as Greb1, Pgr, Irs2, 

and Myrip, as well as VMHvl-specific, estradiol-responsive genes, such as Phf21b, Mad2l1, Gadd45a, 

and Gpr6 (Fig. 3.1d). Importantly, estradiol influenced the expression of several neuropeptide receptors 

involved in metabolism (Mc4r, Nmur2, Npy1r) (Fig. 3.1d). Among these, Mc4r stood out as a potential 
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mediator by which VMHvl ERα signaling promotes female activity, as sex differences have previously 

been observed for Mc4r LOF mutations in mice (Huszar et al., 1997; Ste Marie et al., 2000) and humans 

(Sina et al., 1999). Moreover, Mc4r increased expression in the VMHvl during proestrus compared to 

estrus and gonadally intact males (Fig. 3.1e-f), validating its regulation by physiological estradiol 

production.  

To identify whether estradiol-responsive genes within the VMHvl are direct targets of ERα, I 

examined ERα binding sites identified using CUT&RUN and found ERα recruitment at Mc4r, in 

addition to highly-conserved loci at other estradiol target genes Greb1, Pgr, and Nmur2 (Fig 3.1g, 3.2a-

b, 3.2e). In particular, ERα bound Mc4r -210 kb downstream of the gene at a region containing a full 

ERE and at a promoter site containing a half ERE adjacent to a Sp1 motif, consistent with ERα genomic 

tethering (Fig. 3.1g, 3.2c-d). Together these data demonstrate a genomic pathway by which ERα 

upregulates Mc4r expression within the VMHvl and suggests dynamic induction of this pathway across 

estrous may play a role in promoting female physical activity. 
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Figure 3.1. VMHvl neurons are sensitive to estradiol and maintain energy expenditure in adult 
female mice. (a) Body weight (*P = 0.0310) at 12 weeks after infection, x-ambulatory activity during 
the dark period (**P = 0.0080) and food intake during the dark period in VMHvlERαKO (n = 10), 
ARCERαKO (n = 12) and control (grey, n = 7 and 5) female mice. NS, not significant. (b) ERα and 
pS6(S244/S247) co-expression (arrows) in proestrus and oestrus (representative of five mice). Scale 
bars, 100 μm. (c) Number of pS6(S244/S247)-labelled VMHvl (***P = 0.0005) and ARC cells in 
vehicle-treated (Veh.) (n = 4) or oestradiol-benzoate-treated (EB) (n = 5) female mice. (d) Enrichment 
of peptide ligand-binding receptors (red). Dashed line, Benjamini–Hochberg-adjusted P < 0.05. (e) 
VMHvl Mc4r expression in proestrus (P; n = 5), male (n = 6, *P = 0.0189) and oestrus (O; n = 5, 
*P = 0.0163) mice. (f) Mc4r and Esr1 expression in oestrus and proestrus (representative of five mice). 
Scale bars, 100 μm. (g) Counts-per-million (CPM)-normalized coverage tracks of ERE-containing 
ERα-binding sites (pink boxes) within Mc4r and Nmur2 loci in sub-cortical nuclei of vehicle- and 
oestradiol-benzoate-treated gonadectomized mice (n = 3; MACS2, q < 0.01). phyloP60wayPlacental 
track from UCSC shows sequence conservation (Cons.) of ERα-binding sites in placental mammals. 
Data are mean ± s.e.m., scatter plots or box plots. In box plots, whiskers indicate the minimum and 
maximum values, the edges of the box are 25th and 75th percentiles, and the centre line indicates the 
mean. (a, c) Unpaired two-tailed Student’s t-test. (e) One-way ANOVA with Holm–Šidák multiple 
comparisons test. 
 
 
 
 



56           Chapter 3. Estrogen engages brain MC4R signaling to drive physical activity in female mice 

 
 

 
 
Figure 3.2. ERα-binding sites in estradiol-sensitive target genes contain conserved ERE consensus 
sequences. CUT&RUN CPM-normalized coverage track showing oestradiol-benzoate-specific ERα 
binding sites containing EREs (pink boxes) within the Greb1 locus (a; 3/3 replicates) and Pgr locus (b; 
3/3 replicates), and in the Mc4r promoter (c; 1 of 3 replicates) in 400,000 sub-cortical brain nuclei 
collected from vehicle and oestradiol benzoate (5 µg) treated gonadectomized mice. Below each track 
the location and sequence conservation of full (a, b) ERE and half (c) SP1/ERE consensus sites in target 
gene loci indicated by pink and green boxes. (d, e) Location and sequence conservation of ERE 
consensus sites within Mc4r and Nmur2 loci corresponding to ERα binding sites presented in Fig. 3.1g.  
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3.3.2 Mc4r signaling in the VMHvl regulates physical activity 
To examine whether Mc4r signaling in the VMHvl regulates physical activity, we crossed Cre-

dependent Mc4rloxTB animals, which normally are obese (Balthasar et al., 2005), to the Sf1Cre line 

(Dhillon et al., 2006), which selectively restores Mc4r expression in the VMHvl (Fig. 3.3a). Mc4rloxTB 

and Sf1Cre; Mc4rloxTB mice of both sexes developed obesity, as Sf1Cre does not reinstate Mc4r in the 

paraventricular hypothalamus (PVH) – a critical node in the regulation of food intake (Balthasar et al., 

2005). However, rescue of Mc4r within the VMHvl reduced weight gain and sedentary behavior in 

females but not in males (Fig. 3.3b-e), demonstrating Mc4r signaling within the VMHvl regulates 

female physical activity. 

To determine whether Mc4r induction is sufficient to drive this behavior, we bypassed 

hormonal regulation of Mc4r by co-injecting a dual-AAV CRISPRa system, consisting of a sgRNA 

targeting the ERE half-site in the Mc4r promoter and a dCas9-VP64 activator, into the VMHvl of 

wildtype animals (Fig. 3.3f). We validated CRISPRa induction of Mc4r relative to control animals 

receiving only dCas9-VP64 and no sgRNA by FISH (Fig. 3.3g). Mc4rCRISPRa animals of both sexes 

traveled longer distances during the dark (active) phase for weeks post-injection compared to controls 

(Fig. 3.3h-i). Mc4rCRISPRa females did not lose weight (data not shown), yet this may be attributed to a 

modest increase in daily food intake by these animals. After weeks of elevated physical activity, and 

consequently mechanical loading, Mc4rCRISPRa females increased cortical bone thickness and volume 

(Fig. 3.3j) Together, these results demonstrate that Mc4r acts within VMHvl neurons to promote 

physical activity in female mice and provide a model for how estradiol influences energy expenditure 

via ERα genomic recruitment.  
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Figure 3.3. Sex-specific role for MC4R signalling in the VMHvl can be bypassed using CRISPRa. 
(a) Esr1 and Mc4r expression in Mc4r+/+, Mc4rloxTB and Mc4rSf1-cre female mice. Scale bars, 200  µm 
(left) and 100 µm (right). (b) Body weights of 8-week-old female (**P = 0.0026) and male Mc4r+/+, 
Mc4rloxTB and Mc4rSf1-cre mice. (c) Food intake in 8-week-old female mouse cohorts. (d) Body length in 
8-week-old female mouse cohorts. (e) x-ambulatory activity of female mice during the light and dark 
periods (****P < 0.0001, *P = 0.0153). (f) Mc4rCRISPRa targets the Mc4r promoter. (g) Esr1 and Mc4r 
expression in control and Mc4rCRISPRa female and male mice. Scale bar, 200  µm. (h) Home-cage activity 
in Mc4rCRISPRa (n = 6) and control (n = 5) female mice. (i) Distances for the three most active runs of 
Mc4rCRISPRa and control female (n = 6 and 5, respectively, ****P < 0.0001) and male (n = 4 and 3, 
respectively) mice. (j) Fraction of cortical bone volume of female mice 4 months after infection 
(P = 0.0129). CBV, cortical bone volume; TV, tissue volume. (k) VMHvlERα/MC4R neurons integrate 
oestrogen and melanocortin signalling to generate a specialized hormone-dependent activity node in 
female mice. Data are mean ± s.e.m. or box plots, and number of mice analysed are indicated on or 
above each bar. (b, c, d) One-way ANOVA with Holm–Šidák multiple comparison test. (e, i) Repeated-
measures two-way ANOVA with Holm–Šidák multiple comparison test. (j) Unpaired two-tailed 
Student’s t-tests. 
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3.4 Discussion 

Prior studies have identified Mc4r signaling as a cause of monogenic human obesity (Farooqi et al., 

2000; Yeo et al., 1998). Moreover, sex differences in Mc4r LOF mutation phenotypes have been 

observed in mice (Huszar et al., 1997; Ste Marie et al., 2000) and humans (Sina et al., 1999), indicating 

Mc4r undergoes differential regulation between sexes, possibly as a result of gonadal hormonal 

signaling. In this Chapter, we found that estradiol-responsive VMHvl ERα+/Mc4r+ neurons promote 

the display of physical activity in females. Mc4r increases expression during proestrus, a period of high 

estradiol production and energy expenditure. As the genomic regions bound by ERα at the Mc4r locus 

are highly conserved across vertebrate species, it is possible that a similar mechanism also regulates 

MC4R expression in the human VMHvl. Along these lines, loss of estradiol-dependent MC4R 

expression may contribute to the rise in sedentary behavior observed in post-menopausal women. 

This study focused on the role of Mc4r in the regulation of female physical activity. However, 

ERα binds many other genes throughout the social behavior network (Chapter 2), several of which may 

also influence energy expenditure, such as Nmur2. In addition, the genomic targets of ERα may 

coordinate other estradiol-dependent processes, such as sexual differentiation of the mouse brain, which 

I examine in closer detail in Chapter 5. Future studies will reveal how the genes regulated by ERα, 

either singly or combinatorially, mediate the effects of estradiol on neural circuit function and behavior. 

For instance, with multiplexed CRISPRa (Savell et al., 2020), it is now possible to perturb combinations 

of ERα target genes and assess their collective influence on the display of sex-typical behaviors.  

Besides Mc4r, how do physiological sex differences in gonadal hormone levels give rise to sex 

differences in gene regulation in the brain? In the next Chapter, I examine this question by profiling the 

chromatin of gonadally intact and GDX animals of both sexes.  
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3.5 Materials and Methods 
Mice. All experiments were conducted in accordance with institutional guidelines and approved 

protocols for animal care and use at the University of California San Francisco (UCSF) and Cold Spring 

Harbor Laboratory. Mice were housed on a 12 h:12 h light:dark cycle (lights on, 06:00; lights off, 18:00) 

and had ad libitum access to standard chow (LabDiet, 5058) or high-fat diet (Research Diets, D12492). 

Mc4rloxTB mice and the Ai14fl/fl reporter mice were purchased from Jackson Laboratories and maintained 

on a C57BL/6J background. Mc4r-t2a-cre mice (Garfield et al., 2015) were a gift from B. Lowell and 

were maintained on a C57BL/6J background. Esr1fl/fl mice were maintained on a mixed background, 

and Sf1-cre mice (Vong et al., 2011) were maintained on a C57BL/6N in the laboratory as previously 

described (Correa et al., 2015; Herber et al., 2019). Wild-type mice used for CRISPRa studies were on 

a pure C57BL/6J background. For Mc4r rescue experiments, Sf1-cre was contributed through female 

mice. CUT&RUN experiments were performed on adult male (8–12 weeks of age) gonadectomized 

C57Bl6/J wild-type mice obtained from Jackson Laboratories. Three weeks after gonadectomy, animals 

were injected subcutaneously with either corn oil (vehicle) or 5 µg of oestradiol benzoate and 

euthanized after 4 h. For each biological replicate, brain dissections were pooled from five animals. 

 

Stereotaxic injections. AAV2-Cre-GFP and AAV2-GFP were purchased from the Vector Core at the 

University of North Carolina at Chapel Hill. AAV2-hM3Dq-mCherry and AAV2-hM4Di-mCherry 

were gifts from B. Roth and viral preparations were purchased from Addgene (viral prep no. 44361-

AAV2, http://n2t.net/addgene:44361, RRID: Addgene_44361; and viral prep no. 44362-AAV2, 

http://n2t.net/addgene:44362, RRID: Addgene_44362; Addgene) (Krashes et al., 2011). For axonal 

tracing, AAV2-CAGs-FLEX-membrane-YFP-WPRE.hGH was re-engineered to fuse YFP with a C-

terminal farnesylation tag to enhance the membrane labelling (Cai et al., 2013). AAV2 was prepared 

using a standard polyethylene-glycol gradient followed by a caesium-chloride density-gradient 

centrifugation protocol (Y. Hu et al., 2012) to reach a titre of (1 × 1013 genome copies per ml). AAVdj-
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dCas9-VP64 and AAVdj-Prm-Mc4r-sgRNA were generated by the Stanford Gene Vector and Virus 

Core and details of vector constructs are as previously described (Matharu et al., 2019). Adult mice 

were secured in a Model 1900 stereotaxic frame (David Kopff Instruments) and 250–600 nl of virus 

was injected bilaterally at the following coordinates. For the VMHvl, anterior–posterior: bregma 

−1.48 mm, mediolateral: bregma ±0.85 mm, dorsoventral: skull −5.9 mm. For the ARC, anterior–

posterior: bregma −1.58 mm, mediolateral: bregma ±0.25 mm, dorsoventral: skull −5.8 mm. For all 

surgeries regardless of viral vectors used, mice recovered for at least 2 weeks before any metabolic or 

behavioral assays.  

 

Estrous cycle staging and oestradiol benzoate treatment. Reproductive stages in female mice were 

determined by comparing relative amounts of leukocytes, epithelial cells and cornified epithelial cells 

collected by vaginal lavage. Stage assessments were made daily between ZT3 and ZT5. Brains from 

oestrus or proestrus female mice were collected between ZT7 and ZT10 and processed for 

immunofluorescence, in situ hybridization (ISH) or qPCR. 

Adult female mice (>8 weeks old) were ovariectomized. Oestradiol benzoate (Cayman 

Chemical, 10006487) was dissolved in DMSO and diluted in sesame oil (Sigma, S3547). Mice received 

a subcutaneous injection of either 1 ug oestradiol benzoate in 150 µl sesame oil or 150 µl of sesame oil 

with an equivalent amount of DMSO. Control mice received a subcutaneous injection of 150 µl of 

sesame oil with an equivalent amount of DMSO. To minimize changes in VMH gene expression or 

signal transduction associated with fear and/or anxiety, mice were handled daily in a manner that 

simulated injection for at least 5 days before oestradiol benzoate or vehicle treatment and tissue 

collection. For FOS analyses, mice were treated with 400 µg MT-II (Bachem) by intraperitoneal 

injection, and brains were collected 1–1.5 h later. 
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RNA sequencing and qPCR. Brains from OVX female mice treated with oestradiol benzoate (n = 4) 

or vehicle (n = 3) were rapidly dissected into ice-cold PBS with 0.1% DEPC. Coronal brain sections 

(250 µm thick) were cut on a vibratome and transferred to glass slides so that the VMH could be 

visualized and manually microdissected. Isolated tissue was flash-frozen and stored at −80 °C. RNA 

was prepared using the RNeasy Micro kit (Qiagen). Sequencing libraries were constructed using the 

TRIO RNA-seq Library Preparation kit (TECAN) using 15 ng of input RNA. Equal amounts of each 

sample library were multiplexed and sequenced (50-bp single-end reads) on a single flow cell lane 

HiSeq 4000 (Illumina). Demultiplexed reads were aligned to the mouse genome (mm10) using HISAT2 

(D. Kim et al., 2015) v.2.1.0 and counted using HTSeq (Anders et al., 2015) v.0.9.1. Finally, differential 

gene expression testing was performed using DESeq2 (Love et al., 2014) v.1.14.1. 

Isolated RNA, prepared as described above, was converted to cDNA using the SuperScript III 

reverse transcriptase (Invitrogen). qPCR was performed using a BioRad CFX instrument with Maestro 

software v.4.1.2433.1219. Target genes were amplified using specific primers (Mc4r forward, 5′-

GCCAGGGTACCAACATGAAG-3′ and reverse, 5′-ATGAAGCACACGCAGTATGG-3′; Nmur2 

forward, 5′-CCTCCTTCCTCTTCTACATCCT-3′ and reverse, 5′-AGTCACTTTGTCTGCCTCAA-3′; 

Esr1 forward, 5′-GAACGAGCCCAGCGCCTACG-3′ and reverse, 5′-

TCTCGGCCATTCTGGCGTCG-3′; and Ucp1 forward, 5′-CACGGGGACCTACAATGCTT-3′ and 

reverse, 5′-TAGGGGTCGTCCCTTTCCAA-3′). Ct values were normalized to cyclophilin B (Ppib; 

forward primer, 5′-TGGAGAGCACCAAGACAGACA-3′ and reverse primer, 5′-

TGCCGGAGTCGACAATGAT-3′) and relative expression levels were quantified using the 

comparative Ct method. Individual values, representing the VMHvl or iBAT from one mouse are the 

average of two technical replicates. 

 

CUT&RUN. ERα CUT&RUN was performed on 400,000 nuclei isolated from BNSTp, POA and MeA 

tissue using density gradient centrifugation (Mo et al., 2015). In brief, tissue was homogenized 15× 
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with a loose pestle in a glass homogenizer containing homogenization medium (250 mM sucrose, 

25 mM KCl, 5 mM MgCl2, 20 mM Tricine KOH, 1 mM DTT, 0.15 mM spermine, 0.5 mM spermidine, 

1× Roche EDTA-free protease inhibitor cocktail, pH 7.8). Then, 0.3% IGEPAL CA-630 was added, 

and the tissue was further dounced 5× with a tight pestle. After douncing, the homogenate was filtered 

through a 40-µm strainer and mixed 1:1 with 50% OptiPrep solution (Millipore Sigma) prepared in 

dilution buffer (150 mM KCl, 30 mM MgCl2, 120 mM Tricine KOH, pH 7.8). The homogenate was 

underlaid with 5 ml each of 30% and 40% OptiPrep solution, and centrifuged at 10,000g for 18 min at 

4 °C in an ultracentrifuge. Then, 2 ml of nucleus-containing solution was removed from the 30–40% 

OptiPrep interface by direct tube puncture. After the isolation of the nuclei, 0.4% IGEPAL CA-630 

was added to improve binding to concanavalin A magnetic beads (Bangs Laboratories BP531). 

CUT&RUN was performed on brain nuclei, according to the standard protocol (Skene et al., 2018). 

Nuclei were washed twice in wash buffer (20 mM HEPES, pH 7.5, 150 mM NaCl, 0.1% BSA, 0.5 mM 

spermidine, 1× protease inhibitor cocktail) and incubated overnight on a nutator with ERα antibody 

(Millipore Sigma, 06-935), diluted 1:100 in antibody buffer (wash buffer containing 2 mM EDTA). 

Nuclei were washed twice in wash buffer, and around 700 ng ml−1 protein-A-MNase (pA-MNase) was 

added. After 1 h incubation on a nutator at 4 °C, the nuclei were washed twice in wash buffer and placed 

in a metal heat block on ice. pA-MNase digestion was initiated by 2 mM CaCl2. After 90 min, pA-

MNase activity was stopped by mixing 1:1 with 2× stop buffer (340 mM NaCl, 20 mM EDTA, 4 mM 

EGTA, 50 µg ml−1 RNase A, 50 µg ml−1 glycogen). Digested fragments were released by incubating 

at 37 °C for 10 min, followed by centrifuging at 16,000g for 5 min at 4 °C. DNA was purified from the 

supernatant by phenol–chloroform extraction. 

 

CUT&RUN library preparation. CUT&RUN libraries were prepared using the SMARTer 

ThruPLEX DNA-seq Kit (Takara Bio), with the following PCR conditions: 72 °C for 3 min, 85 °C for 

2 min, 98 °C for 2 min, (98 °C for 20 s, 67 °C for 20 s, 72 °C for 30 s) for 4 cycles, (98 °C for 20 s, 72 °C 
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for 15 s) for 10 cycles. Samples were size-selected with AMPure XP beads (1.5× right-sided and 0.5× 

left-sided) to remove residual adapter dimers and large DNA fragments. Individually barcoded libraries 

were multiplexed and sequenced with paired-end 75-bp reads on an Illumina NextSeq, using the High 

Output Kit. 

 

CUT&RUN data processing. Paired-end reads were trimmed with cutadapt (Martin, 2011) v.3.2.0 to 

remove low-quality base calls (-q 30) and adapters. Trimmed reads were aligned to mm10 using 

Bowtie2 (Langmead & Salzberg, 2012) v.2.4.2 with the following flags: -dovetail -very-sensitive-local 

-no-unal -no-mixed -no-discordant -phred33. After alignment, duplicate reads were removed using 

Picard v.2.21.6 (http://broadinstitute.github.io/picard/) MarkDuplicates 

(REMOVE_DUPLICATES = true). Deduplicated reads were filtered by mapping quality (MAPQ > 40) 

using samtools (H. Li et al., 2009) v.1.11.0 and fragment length (<120 bp) using deepTools v.3.5.0 

alignmentSieve (Ramírez et al., 2016). After filtering, peaks were called using MACS2 v.2.2.7.1 

callpeak (Zhang et al., 2008) with a q-value threshold of 0.01 and min-length set to 25. Peaks shown in 

Fig. 3.1 were called in 2 out of 3 replicates. Individual replicate BAM files were normalized by CPM 

and converted to bigwig tracks, using deepTools bamCoverage (-bs 1, -normalize using CPM). CPM-

normalized bigwig tracks for individual oestradiol benzoate and vehicle samples (n = 3 per condition) 

were plotted using Gviz (Hahne & Ivanek, 2016). 

 

ISH. For colorimetric ISH, antisense Mc4r probes were PCR-amplified (forward primer, 5′-

ACTCTGGGTGTCATAAGCCTGT-3′ and reverse primer, 5′-TCTGTCCCCCACTTAATACCTG-

3′) from hypothalamic cDNA libraries, and in vitro transcribed with incorporation of digoxigenin-UTP 

(Roche) using the T7 or SP6 Riboprobe kit (Promega). The 20-µm sections from fixed tissue were 

labeled and detected by chromogenic immunohistochemistry as previously described (Correa et al., 

2015). Fluorescent ISH was performed using RNAScope (ACD, Multiplex Fluorescent v.2) according 



65           Chapter 3. Estrogen engages brain MC4R signaling to drive physical activity in female mice 

 
 
to the manufacturer’s protocol using the following probes: Esr1 (478201), Mc4r (319181-C2) and Rprm 

(466071). 

 

Immunofluorescence staining and histology. Fixed central nervous system tissue was cryosectioned 

(20 µm) and stained overnight with primary antibodies against: ERα (EMD Millipore, C1355, 

polyclonal rabbit, 1:750 dilution or Abcam, 93021, monoclonal mouse, 1:100 dilution), 

pS6(S244/S247) (RPS6) (Invitrogen, 44-923G, polyclonal rabbit, 1:500 dilution), FOS (Santa Cruz, 

SC-52, polyclonal rabbit, 1:500 dilution) or red fluorescent protein (RFP; Rockland, 600-401-379, 

polyclonal rabbit, 1:1,000 dilution). For detection, sections were labeled with species-appropriate 

secondary Alexa-Fluor-coupled antibodies (Invitrogen, A11029 and A11037, 1:1,000 dilution for 

both). Widefield images were acquired using a Nikon microscope and NIS-Elements v.3.22.15. 

Confocal images were acquired at the UCSF Nikon Imaging Center using a Nikon CSU-22 with 

EMCCD camera and MicroManager v.2.0gamma. Images were processed and quantified using ImageJ 

FIJI v.1.52i and the Cell Counter plugin v.2. 

Fixed gonadal white adipose tissue was paraffin-embedded, sectioned (5 µm) and stained with 

haematoxylin and eosin by the Gladstone Histology and Light Microscopy core. Brightfield images 

were thresholded to define adipocyte borders, and the adipocyte area was quantified using ImageJ FIJI. 

 

Micro-computed tomography. After perfusion fixation, femurs from Mc4rCRISPRa and control female 

mice were isolated. Volumetric bone density and bone volume were measured by micro-computed 

tomography as previously described (Herber et al., 2019). 
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Chapter 4 
 
 
Activation of sex differences in gene regulation in the BNST 
 
Sections of this chapter were previously uploaded to bioRxiv (2020) under the title “Regulation of 

neural gene expression by estrogen receptor alpha” by Bruno Gegenhuber, Melody V. Wu, Robert 

Bronstein, and Jessica Tollkuhn. This manuscript is now in press at Nature (2022) under the title “Gene 

regulation by gonadal hormone receptors defines neuronal sex differences” by Bruno Gegenhuber, 

Melody V. Wu, Robert Bronstein, and Jessica Tollkuhn. I thank Melody V. Wu for helping collect the 

immunofluorescence data shown in this chapter.  

 

4.1 Abstract 

Across many mammalian species, females and males differ in the display of mating, territoriality, and 

aggressive behaviors critical for reproduction and survival. While the neural circuits underlying these 

sex differences have been extensively characterized in the mouse brain, the genomic mechanisms by 

which gonadal hormone receptors act to specify sex differences within these circuits remain unknown. 

In this Chapter, I re-analyze a single-nucleus RNA-seq (snRNA-seq) dataset to characterize sex 

differences in cell type abundance and gene expression within a central node in the circuitry of sex-

typical behaviors: the BNSTp. I find two neuron types, marked by TFs Nfix and Esr2, respectively, are 

more abundant in males than in females. I also detect extensive sex differences in gene expression 

across neuron types, with nearly all sex differences restricted to hormone receptor-expressing 

populations. Bulk ATAC-seq of BNSTp Esr1+ neurons from gonadally intact and GDX animals further 

revealed that sex differences in the underlying chromatin landscape largely depend on adult male 

gonadal hormones. Together, these data provide a molecular and cellular basis to the regulation of sex-
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typical behaviors by the BNSTp and establish that the activational effects of gonadal hormones are 

required for adult sex differences in gene regulation.  

4.2 Introduction 

How do gonadal hormones activate sex differences in the brain? As discussed in Chapter 1, gonadal 

hormones bind gonadal hormone receptors, which principally act as TFs. During puberty, females and 

males initiate patterns of gonadal hormone production that persist until old age. The female ovaries 

secrete progesterone and estradiol throughout the estrous cycle, while the male testes secrete 

testosterone. The activational effects of these adult hormones is required for the full display of sex-

typical reproductive, territorial, and aggressive behaviors (McEwen, 1981). Therefore, understanding 

how sex differences in adult hormone production give rise to sex differences in gene expression is 

essential to understanding how hormones influence circuit function and behavior.  

 Surprisingly, until recently, few studies have used bulk or single-cell RNA sequencing to 

identify transcriptomic sex differences within the social behavior network. The classic example of 

defining sex-biased genes in the brain was carried out using cDNA microarrays (X. Xu et al., 2012). 

By employing a well-designed experimental strategy and rigorous histological validation, the authors 

discovered 15 sex-biased genes, the majority of which were more abundant in males than in females. 

Moreover, male GDX feminized the expression of nearly all of these sex-biased genes, whereas female 

GDX largely did not influence their expression. This finding suggests that adult sex differences are 

driven primarily by male gonadal hormones, which can both activate and repress transcription.  

 More recently, the Correa, Anderson, Stuber, and Dulac labs have employed scRNA-seq and/or 

spatial transcriptomics to identify sex differences in gene expression in the VMH (D.-W. Kim et al., 

2019; van Veen et al., 2020) and MPOA (Hashikawa et al., 2021; Moffitt et al., 2018a). These studies 

revealed additional sex-biased genes throughout the social behavior network; however, most lacked 

sufficient numbers of cells, transcript counts per cell, and/or biological replicates to systematically 
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detect sex differences in gene expression within individual neuron types. For instance, Hashikawa et 

al. 2021 sequenced ~59,000 MPOA cells across 8 different experimental conditions and captured ~1000 

genes per cell; perhaps due to low statistical power, the authors aggregate all Vgat+ inhibitory neurons 

for differential expression testing rather than examine sex differences within individual types. Likewise, 

van Veen et al. 2020 sequenced only 530 cells from the VMH, then functionally characterized an 

individual sex-biased gene, Rprm. Interestingly, despite sequencing a high number of cells (~150,000), 

Kim et al. 2019 exclusively discovered sex-specific neuron types in the VMHvl, as opposed to sex 

differences in gene expression within sex-shared types; however, the authors did not examine how such 

sex-specific neuron types arise. Collectively, these prior studies also did not profile the chromatin and 

examine mechanisms by which gonadal hormones specify transcriptomic sex differences.    

 In this Chapter, I re-analyze a snRNA-seq dataset of the adult BNSTp, consisting of 76,693 

neurons from 7 female and 8 male mice (Welch et al., 2019), to characterize sex differences in neuron 

type abundance and gene expression. I further examine the identity of BNSTp Esr1+ neuron types by 

comparing to GABAergic subclasses in the Allen Institute cortical and hippocampal scRNA-seq atlas 

(Z. Yao et al., 2021) with MetaNeighbor (Crow et al., 2018). To identify regulatory mechanisms giving 

rise to sex differences in gene expression, I perform ATAC-seq on BNSTp Esr1+ neurons from 

gonadally intact females and males and integrate these data with ATAC-seq data collected from 

gonadectomized animals in Chapter 2. Together, these experiments define cellular and molecular sex 

differences within the BNSTp and demonstrate that male gonadal hormones drive adult sex differences 

in the chromatin landscape. 

4.3 Results 

4.3.1 Identification of male-biased inhibitory neuron types in the BNSTp 

Across rodents and humans, males have a ~1.5-2x larger BNSTp than females (Allen & Gorski, 1990b; 

Hines et al., 1992b). In mice, this structural dimorphism arises from male-specific neonatal ERα 
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activation, which promotes neuron survival (Tsukahara et al., 2011; M. V. Wu et al., 2009b). While 

BNSTp Esr1+ neurons are known to be GABAergic (M. V. Wu & Tollkuhn, 2017b), the identity of 

male-biased GABAergic neuron types remains unclear. To characterize the identity of male-biased cell 

populations, and assess whether they comprise sex-shared or sex-specific types, I re-analyzed a snRNA-

seq dataset collected from the BNST of adult, gonadally intact females and males (Welch et al., 2019). 

Seven BNSTp Esr1+ transcriptomic neuron types emerged from this analysis, and two of these marked 

by Nfix (i1:Nfix) and Esr2 (i3:Esr2) are more abundant in males than in females (Fig. 4.1a-b, Fig. 4.2a-

b). While a male-bias in BNSTp Esr2/ERβ-labeled cells is known (Zuloaga et al., 2014a), Nfix 

expression has not been previously described in the BNSTp. Immunofluorescent staining confirmed 

that males have twice the number of ERα+/Nfix+ neurons than females (Fig. 4.1c).  

To interpret the functional relevance of BNSTp Esr1+ neuron types, I compared their gene 

expression profiles to the Allen Institute mouse cortical and hippocampal scRNA-seq atlas using 

MetaNeighbor (Crow et al., 2018; Z. Yao et al., 2021). i1:Nfix neurons uniquely matched the identity 

of Lamp5+ neurogliaform interneurons, particularly the Lamp5+/Lhx6+ neuron subtype (Fig. 4.1d, Fig. 

4.2d-e) (Fishell & Kepecs, 2020; Paul et al., 2017b) and also shared markers (Moxd1 and Cplx3, Fig. 

4.2f) with a male-biased neuron type (i20:Gal/Moxd1) in the SDN-POA that was previously found to 

activate during male-typical mating, inter-male aggression, and parenting behaviors, as determined by 

MERFISH (Moffitt et al., 2018b). Beyond these two marker genes, i1:Nfix and i20:Gal/Moxd1 neuron 

types share a transcriptomic identity, consistent with observed Nfix immunofluorescence and in situ 

hybridization signal spanning the BNSTp and SDN-POA (Fig. 4.1e, Fig. 4.2c, e-h). Together, these 

results define male-biased neurons in the BNSTp and reveal a common Lamp5+ neurogliaform identity 

between the BNSTp and SDN-POA. 
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Figure 4.1. Sex differences in cell type abundance and gene regulation in BNSTp Esr1+ cells. (a) 
UMAP visualization of BNSTp Esr1+ snRNA-seq clusters, colored by identity (left), sex (middle), and 
Esr1 expression (right). (b) Proportion of BNSTp Esr1+ nuclei in each BNSTp Esr1+ cluster per sex. 
Higher proportions of i1:Nfix (padj=0.002) and i3:Esr2 (padj=0.002) neurons are in males than females. 
Boxplot center=median, box boundaries=1st and 3rd quartile, whiskers=1.5*IQR from boundaries, 
n=7, **padj<0.01, one-sided, Wilcoxon rank-sum test, adjusted with Benjamini-Hochberg procedure. 
(c) BNSTp IF staining for GFP (left) and Nfix (middle) in P14 female and male Esr1Cre/+; Sun1-GFPlx/+ 
animals (scale=100um). Boxplot center=median, box boundaries=1st and 3rd quartile, 
whiskers=1.5*IQR from boundaries, n=6, p=0.0422, *p<0.05, two-sided, unpaired t-test. (d) Heatmap 
of median MetaNeighbor AUROC values for BNSTp Esr1+ clusters and cortical/hippocampal 
GABAergic neuron subclasses. Colorbar indicates developmental origin of GABAergic subclasses. (e) 
(top) Heatmap of MetaNeighbor AUROC values for BNSTp and MPOA Esr1 + clusters. (bottom) 
Average expression of i1:Nfix marker genes across BNSTp and MPOA Esr1+ clusters. n=297 
i20:Gal.Moxd1 cells, 2459 i1:Nfix cells. Boxplot center=median, box boundaries=1st and 3rd quartile, 
whiskers=1.5*IQR from boundaries. (f) Number of differentially expressed genes (DEGs) between 
females and males (DESeq2, padj<0.1) per snRNA-seq cluster. (g) R2 between % TF expression and 
number of sex DEGs per cluster across snRNA-seq clusters. Inset shows correlation for top-ranked TF, 
Esr1. Error band represents 95% confidence interval. (h) Differential ATAC sites between (top) 
gonadectomized, Veh-treated females and males and (middle) gonadally intact females and males. blue 
dots (edgeR, log2FC>1, padj<0.05), red dots (edgeR, log2FC<-1, padj<0.05). (bottom) Enrichment 
analysis of sex-biased ATAC peaks at sex DEGs. (i) (top) k-means clustering of differentially-
accessible ATAC peaks across four conditions (edgeR, padj<0.01). (bottom) Dotplot showing % of 
sites per cluster overlapping E2-open ATAC loci and motif enrichment analysis of peaks in each cluster 
(AME). (j) Example ATAC peaks in k-means clusters 1 and 2. 
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Figure 4.2. Characterization of a shared BNSTp/MPOA transcriptomic cluster. (a) Dotplot of top  
marker genes for each adult BNSTp Esr1+ GABAergic cluster (Wilcoxon rank-sum test, padj<0.05). 
(b) Differentially-expressed genes between the i1:Nfix cluster and the other six BNSTp Esr1+ 
inhibitory neuron clusters (DESeq2, log2FC>2, padj<0.01). (c) ISH of adult gonadectomized, Veh-
treated male (Esr1) and adult male (Nfix) mouse. Arrows denote Nfix ISH staining in BNSTp (dorsal) 
and POA (ventral). Scale=1mm. (d) Co-expression of top i1:Nfix marker genes (St18, Moxd1, Nfix, 
Cplx3) in individual BICCN cortical and hippocampal scRNA-seq GABAergic clusters, colored by 
subclass. Co-expression defined as % of cells per cluster with non-zero counts for all 4 marker genes. 
(e) Mean expression of Lamp5+ subclass marker genes (Wilcoxon rank-sum test, avg_log_FC>0.75, 
<40% expression in non-Lamp5+ neurons, padj<0.05) in BNSTp (left) and MPOA (right) Esr1+ 
clusters, scaled across clusters within each brain region. (f) Normalized expression of top marker genes 
(Moxd1, St18, Nfix, Cplx3, Gpd1, Prox1) shared between i1:Nfix and i20:Gal.Moxd1 (labeled in red). 
Boxplot center=median, box boundaries=1st and 3rd quartile, whiskers=1.5*IQR from boundaries. 
n=297 i20:Gal.Moxd1 cells, 2459 i1:Nfix cells. (g) UMAP visualization of integrated BNSTp and 
MPOA Esr1+ clusters, demonstrating shared Nfix expression across datasets (see also Fig. 2e). (h) GFP 
(left) and Nfix (middle) immunofluorescence staining in an adult male Esr1Cre/+;Sun-GFPlx/+ mouse. 
Solid white circle indicates BNSTp; dotted white circle indicates SDN-POA. Scale=100um. 
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4.3.2 Sex differences in gene expression across BNSTp neuron types 

Given that snRNA-seq was performed on both sexes with independent, biological replicates, I next 

tested for sex differences in gene expression and found extensive and robust (FDR<0.1) sex-biased 

expression across BNST neuron types (Fig. 4.1f, Fig. 4.3a). Hierarchical clustering of sex-biased genes 

across these types revealed a striking degree of heterogeneity (Fig. 4.3b): most sex differences were 

specific to individual types (e.g., Dlg2/PSD-93 and Kctd16 in i1:Nfix neurons), whereas certain 

differences were detected across multiple populations (e.g., Tiparp, Socs2) (Fig. 4.3c). In line with prior 

circuit-mapping experiments, neuron types annotated to the BNSTp contained a higher number of sex-

biased genes per type than those annotated to the anterior BNST (BNSTa) (Fig. 4.3e). To predict which 

TFs may regulate sex-biased gene expression in the BNSTp, I performed a linear regression analysis 

between % cells per type expressing a given TF of interest (for each mouse TF) and the number of sex-

biased genes per type. Relative to all other TFs in the mouse genome, Esr1, along with co-expressed 

gonadal hormone receptors, Ar and Pgr, correlated best with the degree of sex-biased genes (Fig. 4.1g, 

Fig. 4.3f). This finding reveals that gonadal hormone receptors define neuron types with prominent sex-

biased gene expression. Of note, Esr2 did not correlate well with sex-biased expression, as it is largely 

restricted to a single BNSTp type (i3:Esr2), indicating it is not a key regulator of sex differences within 

this region – a concept I return to in Chapters 5 and 6.  
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Figure 4.3. Additional analysis of BNSTp sex DEGs and gonadally intact ATAC-seq. (a) 
Normalized, pseudo-bulk expression of sex DEGs identified within each BNSTp Esr1+ cluster 
(DESeq2, padj<0.1). Each heatmap column corresponds to a pseudo-bulk sample (gene counts 
aggregated across cells in sample). (b) Hierarchical clustering of log2FC values for sex DEGs called 
as significant in at least one BNSTp Esr1+ cluster. Sex DEGs with non-significant differential 
expression colored in white. (c) Example sex DEGs with significant differential expression in a single 
Esr1+ cluster (Dlg2, Kctd16) and in multiple Esr1+ clusters (Tiparp, Socs2). Boxplot center=median, 
box boundaries=1st and 3rd quartile, whiskers=1.5*IQR from boundaries. n=4-7 female pseudo-bulk 
replicates, 6-8 male pseudo-bulk replicates. (d) Top HGNC gene families (clusterProfiler, padj<0.1) 
enriched within female-biased DEGs (left) and male-biased DEGs (right) relative to non-differential, 
expressed genes. (e) Number of sex DEGs per cluster in Esr1+ clusters annotated to the BNST posterior 
(BNSTp, n=7 clusters) and anterior (BNSTa, n=7 clusters) subregions. Boxplot center=median, box 
boundaries=1st and 3rd quartile, whiskers=1.5*IQR from boundaries. p-value from two-sided, 
Wilcoxon rank-sum test. (f) Dotplot of sex hormone receptor (HR) expression across BNSTp Esr1+ 
clusters. (g) Barplots of (top) male-biased DEGs ranked by male-biased ATAC peak regulatory 
potential score and (bottom) female-biased DEGs ranked by female-biased ATAC peak regulatory 
potential score. Higher score indicates higher density of sex-biased ATAC peaks around the TSS of sex 
DEGs. (h) Example sex DEGs (Fkbp5, Epha6) with high density of sex-biased ATAC peaks. *sex-
biased ATAC peak. (i) PCA of gonadally intact and gonadectomized (GDX), Veh-treated ATAC CPM 
values within the consensus peak matrix. (j) Heatmap of ATAC CPM for gonadally intact (n=2 per 
condition) and GDX, Veh-treated ATAC samples (n=3 per condition) at differential peaks (edgeR, 
glmQLFTest, padj<0.01), grouped by k-means clustering. (k) Example differential ATAC peaks in k-
means clusters c3 (left) and c4 (right). 
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4.3.3 Male gonadal hormones control adult sex differences in gene regulation 

To identify chromatin regions and TFs controlling sex differences in BNSTp gene expression, I 

performed ATAC-seq on BNSTp Esr1+ cells harvested from adult, gonadally intact Esr1Cre/+; Sun1-

GFPlx/+ mice. ~18,000 regions differed in accessibility between females and males (Fig. 4.1h). 

Importantly, these regions were statistically enriched at sex-biased genes detected across Esr1+ neuron 

types (Fig. 4.1h), suggesting they act as putative enhancers of these genes. Ranking sex-biased genes 

by their regulatory potential score, a metric that takes into account the number and distance of sex-

biased peaks to the gene transcription start site (TSS), highlighted genes with multiple associated peaks, 

such as Epha6 (female-biased, with 5 female-biased peaks) and Fkbp5 (male-biased, with 4 male-

biased peaks) (Fig. 4.3h). 

In contrast, adult gonadectomy reduced the number of sex-biased regions to 71 (Fig. 4.1h), 

which were mostly located on sex chromosomes. To characterize patterns of chromatin accessibility 

across sexes and gonadal hormone status, I performed k-means clustering on ATAC peaks that differed 

significantly across the 4 groups (female GDX, female intact, male GDX, male intact). This approach 

revealed male-specific, but not female-specific, responses to gonadectomy (Fig. 4.1i, 4.3j) – namely, 

k-means cluster 1, which closes in males upon GDX, and cluster 3, which opens in males upon GDX. 

Clusters 2 and 4 changed across both sexes in response to GDX, either closing (cluster 2), such as at 

the Ar locus (Fig. 4.1j), or opening (cluster 4), respectively. Moreover, principal component analysis 

(PCA) of the 4 experimental groups revealed the chromatin accessibility of males undergoes global 

feminization upon GDX (Fig. 4.3i); one example of this is an aforementioned peak at the Epha6 locus 

(Fig. 4.3k). Notably, cluster 1 regions primarily contained the ARE, while cluster 2 regions were 

enriched for the ERE and strongly overlapped E2-open regions defined in Chapter 2 (Fig. 4.1i). 

Therefore, in the BNSTp, estradiol maintains chromatin in an active state across both sexes, whereas 

testosterone, produced from the male testes, facilitates both chromatin activation and repression. 

Interestingly, testosterone-dependent repression does not involve direct AR binding to the genome, as 
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the GDX-opened regions did not contain the ARE. Rather, a male-biased AR target gene may control 

genomic repression. Collectively, these data indicate that gonadal hormone receptors activate sex 

differences in gene expression in the adult brain, largely as a consequence of acute hormonal state.  

4.4 Discussion 

In this Chapter, I describe cellular and gene regulatory sex differences in the adult BNSTp. Males 

contain ~1.5-2x more neurons in the BNSTp than females; however, the identity of these neurons, and 

whether they represent sex-shared or sex-specific types, was unclear. Here I find that the male-bias in 

BNSTp cell number is attributed to two male-biased inhibitory neuron types defined by the marker 

genes, Nfix (i1:Nfix) and Esr2 (i3:Esr2) (Fig. 4.1b-c). Comparison to GABAergic subclasses from the 

Allen Institute cortical and hippocampal scRNA-seq atlas revealed that these two types resemble 

Lamp5+ and Pv+ neurons, respectively (Fig. 4.1d, 4.2d-e). Consistent with this prediction, ERβ has 

been shown to co-localize with PV throughout other regions of the brain (Blurton-Jones & Tuszynski, 

2002). In layer V of the somatosensory cortex, estrogens modulate the excitability of ERβ+/PV+ 

inhibitory neurons throughout the estrous cycle (Clemens et al., 2019). Given this similarity in gene co-

expression across brain regions, it is possible that these neurons share a developmental origin, with 

Esr2 and Pv regulated by a common upstream identity regulator TF. 

 i1:Nfix neurons resemble the Lamp5+ GABAergic subclass, which is composed of 

neurogliaform and Ivy cells (Z. Yao et al., 2021). Further analysis revealed that the top marker genes 

of the i1:Nfix type (Cplx3, Moxd1, Nfix, St18) are co-expressed exclusively within Lamp5+/Lhx6+ 

neurons (Fig. 4.2d). Similar to i1:Nfix neurons, the Lamp5+/Lhx6+ type co-expresses TFs that 

distinguish MGE (Lhx6) from CGE (Nfix, Prox1) lineages (Z. Yao et al., 2021); hence, the 

developmental origin of this type, and its relationship to prior genetic targeting strategies, remains 

unclear (Z. J. Huang & Paul, 2019). In cortical circuits, neurogliaform interneurons provide regional 

inhibition through synaptic and ambient release of GABA (Overstreet-Wadiche & McBain, 2015). As 
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all BNSTp neurons are GABAergic, it is possible that elevated numbers of i1:Nfix inhibitory neurons 

in males generates stronger disinhibition of downstream projection sites, such as the VMHvl and MeA, 

resulting in increased responses to olfactory information and male-typical levels of mounting or 

attacking (Karigo et al., 2020). Of note, the i1:Nfix type matches a neuron type in the SDN-POA (Fig. 

4.1e, 4.2f-h) that was previously found to be active during male-typical mating, aggression, and 

parenting behavior (Moffitt et al., 2018a). A shared identity between the BNSTp and SDN-POA may 

indicate a common developmental origin and raises the intriguing possibility that this population may 

have evolved to regulate a highly-conserved repertoire of innate, reproductive behaviors. In the future, 

it will be critical to develop genetic strategies to selectively label these neurons for circuit-tracing, 

electrophysiology, and fate-mapping experiments.  

 Consistent with a prior study utilizing cDNA microarrays (X. Xu et al., 2012), I find that male 

gonadal hormones, rather than female gonadal hormones, largely control sex differences in gene 

regulation in the adult BNSTp (Fig. 4.1i, 4.3i). ATAC-seq, followed by motif analysis, further revealed 

that male hormones, presumably testosterone, both activate and repress chromatin, with activation 

driven by direct binding of AR to the genome and repression not involving recruitment of a gonadal 

hormone receptor (Fig. 4.1i). How does testosterone facilitate genomic repression? One possible 

mechanism is that AR drives the male-biased expression of a transcriptional repressor, or an upstream 

molecule that signals to a transcriptional repressor, consequently resulting in male-specific chromatin 

closing that is reversed upon male GDX. Moreover, it is possible, if not likely, that repressive 

mechanisms vary across Esr1+ neuron types, given that they represent distinct populations with varying 

numbers of female-biased genes (Fig. 4.1f, 4.3a-c). To address this question, I have recently performed 

single-nucleus ATAC-sequencing (snATAC-seq) on ~40,000 adult female and male BNST inhibitory 

neurons (VgatCre/+; Sun1-GFPlx/+) and am currently analyzing this dataset. 

 The lack of a genomic response to female GDX raises the question: Do hormones released 

throughout estrous influence gene expression and chromatin state in the BNSTp? Female mice spend 
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longer in diestrus (low estradiol and progesterone) than in proestrus (high estradiol and progesterone); 

hence, it is possible that the females used in the snRNA-seq and ATAC-seq experiments were mostly 

in a low-hormone state. However, given that these datasets were collected by independent laboratories 

from 15 female mice (7 biological replicates with 1 animal per replicate for snRNA-seq, and 2 

biological replicates with 4 animals per replicate for ATAC-seq), it seems unlikely that no animals were 

in proestrus at the time of collection. Another explanation is that estradiol and progesterone may 

transiently regulate gene expression on a timescale of minutes or hours, making their response difficult 

to detect. In line with this explanation, I performed one preliminary ATAC-seq experiment on BNSTp 

Esr1+ neurons from diestrus and proestrus females staged using vaginal smears, but did not detect any 

significant differences (data not shown). It is possible that applying a more sensitive approach to staging 

animals (i.e., measuring serum hormone levels) and accounting for inter-individual variability by using 

1 female per biological replicate may reveal modulation of gene regulation throughout the cycle, as 

observed for Mc4r in the VMHvl (Chapter 3).  

Collectively, these data reveal that adult sex differences in gene regulation are largely driven 

by the activational effects of gonadal hormones. In the next Chapter, I examine the second component 

of the “Organizational-Activational” hypothesis: how do neonatal hormones organize sex differences 

in the brain? 

4.5 Materials and Methods 

Animals. All animals were maintained on a 12:12 light cycle and provided food and water ad libitum. 

All mouse experiments were performed under strict guidelines set forth by the CSHL Institutional 

Animal Care and Use Committee (IACUC). Esr1Cre (H. Lee et al., 2014), ROSA26CAG-Sun1-sfGFP-Myc (Mo 

et al., 2015) (abbreviated as Sun1-GFP), and C57Bl6/J wildtype mice were obtained from Jackson labs. 

Adult male and female mice were used between 8-12 weeks of age.  
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Adult ATAC-seq nuclei isolation. GFP+ nuclei were isolated from adult Esr1Cre/+; Sun1-GFPlx/+ mice 

(4 pooled per condition), as previously described in Chapter 2 Materials and Methods.  

 

ATAC-seq library preparation. ATAC-seq libraries were prepared, as previously described in 

Chapter 2 Materials and Methods.  

 

Nfix immunofluorescence staining. Brains were dissected from perfused P14 Esr1Cre/+; Sun1-GFPlx/+ 

animals and cryosectioned at 40μm prior to immunostaining with primary antibodies against GFP 

(1:1000, Aves GFP-1020) and Nfix (1:1000, Thermo Fisher PA5-30897), and secondary antibodies 

against chicken (1:300, Jackson Immuno 703-545-155) and rabbit (1:800, Jackson Immuno 711-165-

152), as previously described (M. V. Wu & Tollkuhn, 2017b). 20x widefield image stacks spanning the 

BNSTp (5 sections, both sides) were taken on a Zeiss Axioimager M2 System equipped with MBF 

Neurolucida Software. The number of Nfix+, GFP+, and Nfix+/GFP+ cells was quantified using 

Fiji/ImageJ from the center 3 optical slices by an investigator blinded to condition.  

 

ATAC-seq data processing. ATAC-seq data were processed using the ENCODE ATAC-seq pipeline 

(https://github.com/ENCODE-DCC/atac-seq-pipeline) with default parameters, as previously 

described in Chapter 2 Materials and Methods.  

 

Adult gonadally intact ATAC-seq analysis. ATAC-seq differential peak calling and comparison 

between gonadally intact (abbreviated as intact) and GDX ATAC samples were performed with 

DiffBind and edgeR. A DiffBind dba object was created from individual replicate BAM and MACS2 

narrowPeak files for the four groups: female intact (n=2), male intact (n=2), female GDX Veh-treated 

(n=3), male GDX Veh-treated (n=3). A count matrix was created with dba.count, and consensus peaks 

were re-centered to ±250 bp around the point of highest read density (summits=250). The consensus 
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peakset count matrix was subsequently used as input to edgeR. Differential peaks (abs(log2FC)>1, 

padj<0.05) were calculated between female intact and male intact and between female GDX Veh-

treated and male GDX Veh-treated groups using glmQLFTest. BETA was used to assess statistical 

association between gonadally intact, sex-biased ATAC peaks and sex DEGs called in BNSTp Esr1+ 

snRNA-seq clusters (top 500 genes per cluster, ranked by padj). Sex DEGs ranked by ATAC regulatory 

potential score (S. Wang et al., 2013), a metric that reflects the number of sex-biased peaks and distance 

of sex-biased peaks to the TSS, are shown in Fig. 4.3g. HGNC gene family enrichment was performed 

on sex DEGs, using a background of expressed genes in any of the 7 BNSTp Esr1+ clusters.  

To identify differential peaks across the four conditions, an ANOVA-like design was created 

in edgeR by specifying multiple coefficients in glmQLFTest (coef=2:4). A matrix of normalized counts 

within these differential peaks (padj<0.01) was clustered using k-means clustering (kmeans function in 

R), with k=4 and iter.max=50. For each k-means cluster, the cluster centroid was computed, and outlier 

peaks within each cluster were excluded on the basis of having low Pearson’s correlation with the 

cluster centroid (R<0.8). Depth-normalized ATAC CPM values within these peak clusters are shown 

in Fig. 4.1i (mean across biological replicates per group) and Fig. 4.3j (individual biological replicates). 

Peak cluster overlap with E2-open ATAC loci (abs(log2FC)>0, padj<0.05) was computed with 

bedtools intersect (-wa). For each peak cluster, motif enrichment analysis was performed by first 

generating a background peak list (matching in GC-content and accessibility) from the consensus 

ATAC peak matrix using chromVAR (addGCBias, getBackgroundPeaks) (Schep et al., 2017), then 

calculating enrichment with AME using the background peak list as the control (--control background 

peaks). In Fig. 4.1i, the JASPAR 2020 AR motif (MA0007.3) is labeled as ‘ARE’, and the ESR2 motif 

(MA0258.2) is labeled as ‘ERE’.  

 

Adult single-nucleus and -cell RNA-seq analysis. Mouse BNST snRNA-seq data containing 76,693 

neurons across 7 adult female and 8 adult male biological replicates (Welch et al., 2019) were accessed 
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from GEO:GSE126836 and loaded into a Seurat object (Stuart et al., 2019). Mouse MPOA scRNA-seq 

data containing 31,299 cells across 3 adult female and 3 adult male biological replicates (Moffitt et al., 

2018b) were accessed from GEO:GSE113576 and loaded into a Seurat object. Cluster identity, 

replicate, and sex were added as metadata features to each Seurat object. Pseudo-bulk RNA-seq analysis 

was performed to identify sex differences in gene expression in the BNST snRNA-seq dataset. Briefly, 

the Seurat object was converted to a SingleCellExperiment object (as.SingleCellExperiment). Genes 

were filtered by expression (genes with >1 count in ≥5 nuclei). NCBI predicted genes were removed. 

For each cluster, nuclei annotated to the cluster were subsetted from the main Seurat object. Biological 

replicates containing ≤20 nuclei in the subsetted cluster were excluded. Gene counts were summed for 

each biological replicate within each cluster. Differential gene expression analysis across sex within 

each cluster was performed on the filtered, aggregated count matrix using DESeq2 (design = ~ sex) 

with alpha = 0.1. The BNSTp_Cplx3 cluster was excluded, as none of the replicates in this cluster 

contained over 20 nuclei. Clusters containing ≥25% nuclei with ≥1 Esr1 counts in the main Seurat 

object were classified as Esr1+ (i1:Nfix, i2:Tac2, i3:Esr2, i4:Bnc2, i5:Haus4, i6:Epsti1, i7:Nxph2, 

i8:Zeb2, i9:Th, i10:Synpo2, i11:C1ql3, i12:Esr1, i13:Avp, i14:Gli3). To identify TFs that correlate with 

sex DEG number per cluster (Fig. 4.1g), a linear regression model with % TF expression as the predictor 

variable and sex DEG number per cluster as the response variable was generated using the lm function 

in R stats (formula = % TF expression ~ DEG number). This model was tested for all TFs in the 

SCENIC (Aibar et al., 2017) mm10 database. All TFs were then ranked by R2 to identify those most 

predictive of sex DEG number, and the ranked R2  values are shown in Fig. 4.1g. 

To visualize BNSTp Esr1+ snRNA-seq data (Fig. 4.1a), BNSTp Esr1+ clusters were subsetted 

from the main Seurat object. Gene counts were normalized and log-transformed (‘LogNormalize’), and 

the top 2000 variable features were identified using FindVariableFeatures (selection.method=‘vst’). 

Gene counts were scaled, and linear dimensionality reduction was performed by principal component 

analysis (runPCA, npcs=10). BNSTp Esr1+ clusters were visualized with UMAP (runUMAP, dims = 
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10). To generate the heatmaps in Fig. 4.2a, pseudo-bulk counts for each biological replicate included 

in the analysis were normalized and transformed with variance stabilizing transformation (DESeq2 

‘vst’), subsetted for sex-biased genes in each cluster, and z-scaled across pseudo-bulk replicates.  

To examine differential abundance of BNSTp Esr1+ clusters between sexes (Fig. 4.1b), the 

proportion of total nuclei in each BNSTp Esr1+ cluster was calculated for each biological replicate. 

After calculating the nuclei proportions, sample ‘MALE6’ was excluded as an outlier for having no 

detection (0 nuclei) of i1:Nfix and i2:Tac2 clusters and over-representation of the i5:Haus4 cluster. The 

one-sided Wilcoxon rank-sum test (wilcox.test in R stats) was used to test for male-biased nuclei 

abundance across biological replicates in each cluster. P-values were adjusted for multiple hypothesis 

testing using the Benjamini-Hochberg procedure (method=‘fdr’). 

To identify marker genes enriched in the i1:Nfix cluster relative to the remaining 6 BNSTp 

Esr1+ clusters (Fig. 4.2b), differential gene expression analysis was performed using DESeq2 with 

design = ~ cluster_id (betaPrior=TRUE), alpha=0.01, lfcThreshold=2, altHypothesis = “greater”.  

To identify the enrichment of Lamp5+ subclass markers in BNSTp and MPOA Esr1+ clusters 

(Fig. 4.2e), a Seurat object was created from the Allen Brain Atlas Cell Types dataset. Gene counts per 

cell were normalized and log-transformed (‘LogNormalize’), and subclass-level marker genes were 

calculated with the Wilcoxon rank-sum test (FindAllMarkers, test.use=‘wilcox’, min.diff.pct=0.2). The 

mean expression of Lamp5+ subclass markers (avg_logFC>0.75, padj<0.05, <40% in non-Lamp5+ 

subclasses) was calculated in BNSTp and MPOA Esr1+ clusters and visualized using pheatmap.    

To generate the UMAP plots shown in Fig 4.1g, BNSTp Esr1+ clusters were integrated with 

MPOA/BNST Esr1-expressing clusters (e3: Cartpt_Isl1, i18: Gal_Tac2, i20: Gal_Moxd1, i28: 

Gaba_Six6, i29: Gaba_Igsf1, i38: Kiss1_Th) using Seurat. ‘Anchors’ were identified between cells 

from the two datasets, using FindIntegrationAnchors. An integrated expression matrix was generated 

using IntegrateData (dims=1:10). The resulting integrated matrix was used for downstream PCA and 

UMAP visualization (dims=1:10).  
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MetaNeighbor analysis. MetaNeighbor (Crow et al., 2018) was used to quantify the degree of 

similarity between BNSTp Esr1+ clusters and MPOA Esr1+ clusters and between BNSTp Esr1+ 

clusters and cortical/hippocampal GABAergic neuron subclasses from the Allen Brain Atlas Cell Types 

database (Z. Yao et al., 2020). Briefly, the BNST and MPOA Seurat objects were subsetted for Esr1+ 

clusters, then transformed and merged into one SingleCellExperiment object. For the BNSTp and 

cortex comparison, BNSTp Esr1+ clusters were merged into a SingleCellExperiment with 

cortical/hippocampal GABAergic cortical clusters. Unsupervised MetaNeighbor analysis was 

performed between BNST and MPOA clusters, and between BNST and cortical/hippocampal clusters, 

using highly variable genes identified across datasets (called with ‘variableGenes’ function). The 

median AUROC value per cortical/hippocampal GABAergic subclass across Allen Brain Atlas datasets 

for each BNSTp Esr1+ cluster is shown in Fig. 4.1d. 
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Chapter 5 
 
 
Organization of sex differences in gene regulation in the BNST 
 
Sections of this chapter were previously uploaded to bioRxiv (2020) under the title “Regulation of 

neural gene expression by estrogen receptor alpha” by Bruno Gegenhuber, Melody V. Wu, Robert 

Bronstein, and Jessica Tollkuhn. This manuscript is now in press at Nature (2022) under the title “Gene 

regulation by gonadal hormone receptors defines neuronal sex differences” by Bruno Gegenhuber, 

Melody V. Wu, Robert Bronstein, and Jessica Tollkuhn. 

 

5.1 Abstract 

In mice, a neonatal surge of testosterone permanently masculinizes the brain via conversion to estradiol 

and activation of ERα. A central hypothesis in the field of neuroendocrinology states that sex 

differences in the brain arise from an epigenetic program driven by the male-specific neonatal hormone 

surge (McCarthy, Auger, et al., 2009; McCarthy et al., 2017). However, the nature of this program 

remains unclear, given that the genomic targets of ERα, and their longevity across brain development, 

have not been identified. Here I utilize low-input and single-cell transcriptomic and chromatin profiling 

approaches to discover the genomic response to the neonatal hormone surge and define its longevity in 

the BNSTp. I find that the neonatal surge rapidly recruits ERα to the genome to drive a male-typical 

gene regulatory program concomitant with the onset of male-biased BNSTp cell survival and 

axonogenesis. A subset of these ERα target genes persists as sex-biased throughout the neonatal critical 

period, including those involved in axon outgrowth (Nell2, Pak7/PAK5), synapse formation (Col25a1, 

Il1rap), and transcriptional regulation (Greb1, Plagl1, Sox5). Selective deletion of ERα within 

inhibitory neurons both feminized the expression of these genes as well as the abundance of previously 
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identified male-biased neuron types (i1:Nfix and i3:Esr2). Together, these experiments reveal two 

mechanisms by which ERα organizes brain sexual differentiation: 1) inducing a persistent gene 

regulatory program and 2) promoting the abundance of two BNSTp inhibitory neuron types. The genes 

and enhancers identified here provide the first step toward defining molecular mechanisms underlying 

sex differences in the connectivity and survival of BNSTp neuron types.  

5.2 Introduction 

In mammals, gonadal steroid hormones regulate sex differences in neural activity and behavior. These 

hormones establish sex-typical neural circuitry during critical periods of development and activate the 

display of innate social behaviors in adulthood. Among these hormones, estradiol is the principal 

regulator of mouse brain sexual differentiation. In males, the testes briefly activate at birth, generating 

a sharp rise in testosterone that subsides within hours (Clarkson & Herbison, 2016). Neural aromatase 

converts circulating testosterone to 17β-estradiol, which acts through ERα in discrete neuronal 

populations in the brain to specify sex differences in cell number and connectivity (MacLusky & 

Naftolin, 1981; McCarthy, 2008b; Simerly, 2002b).  

Prior studies have proposed that sex differences in the brain arise from permanent epigenomic 

modifications imparted by the neonatal hormone surge, constituting an epigenetic process (McCarthy, 

Auger, et al., 2009; McCarthy et al., 2017). While these studies implicated DNA methylation and 

histone acetylation in the development of brain sex differences using non-specific, pharmacological 

inhibitors and/or constitutive genetic deletion approaches, they did not identify genomic loci with 

persistent sex differences in epigenomic modifications arising from the neonatal surge (Auger et al., 

2000; Matsuda et al., 2011; Murray et al., 2009; Nugent et al., 2015). Therefore, it remains unclear 

whether sex differences in chromatin both exist and persist in the developing brain. Likewise, aside 

from Ar (Juntti et al., 2010), the identity and function of sex-biased genes targeted by neonatal ERα 

activation remain unclear. 
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Until recently, studying the chromatin of small cell populations, such as genetically defined 

neuron types in the developing brain, has been limited by technology. With the advent of CUT&RUN 

(discussed in Chapter 2) and CUT&Tag (Kaya-Okur et al., 2019; Skene & Henikoff, 2017), it is now 

possible to profile TF binding and histone modifications in small cell populations or at single-cell 

resolution. TF binding and histone modifications associated with active enhancers, histone H3 lysine 4 

monomethylation (H3K4me1) and lysine 27 acetylation (H3K27ac), modify the accessibility of 

chromatin by driving nucleosome turnover and/or decompacting chromatin fibers (Klemm et al., 2019). 

Hence measuring chromatin accessibility with ATAC-seq (as done in Chapter 2) captures the activation 

status of enhancers genome-wide without a priori knowledge of the specific epigenomic modifications 

involved. In addition, recent advancements in single-cell sequencing have led to the simultaneous 

detection of chromatin accessibility and RNA from the same cell at high-throughput (Ma et al., 2020; 

C. Zhu et al., 2021), enabling accurate reconstruction of gene regulatory networks. In the context of 

brain sexual differentiation, such advancements offer the ability to link ERα binding to sex differences 

in gene expression within specific neuron types and predict how such genes give rise to sexual 

differentiation of neural circuits.  

In this Chapter, I use ATAC-seq to investigate sex differences in chromatin state in BNSTp 

Esr1+ cells four days after the neonatal surge. To determine the extent to which these differences 

depend on the neonatal surge, I additionally profile the chromatin of females treated at birth with 

estradiol. These experiments revealed that the neonatal surge drives extensive and sustained sex 

difference in chromatin accessibility. I further demonstrate that male-biased, and neonatal estradiol-

dependent, chromatin loci are primarily driven by neonatal ERα recruitment by performing CUT&RUN 

on females treated acutely with vehicle or estradiol at birth. To link these sex-biased genomic regions 

to gene expression, I perform single-nucleus multiome sequencing (RNA & ATAC) on females and 

males at P4 and P14. I identify transcriptomic sex differences linked to sex-biased enhancers within 

individual BNSTp neuron types. Furthermore, a subset of sex-biased genes and enhancers remained 
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sex-biased throughout the neonatal critical period, indicative of a bona fide epigenetic program of brain 

sexual differentiation. Many of these genes regulate key  neurodevelopmental processes, such as axon 

outgrowth, synapse formation, and neurotransmission. Future investigation will reveal how these genes 

coordinate sex differences in BNSTp circuitry.  

5.3 Results 

5.3.1 ERα drives sex differences in chromatin state following birth 

Sexual dimorphism in BNSTp neuron survival and wiring emerges throughout a two-week window 

following birth, well after neural estradiol has subsided in males. To determine the genomic targets of 

the neonatal surge, I performed ATAC-seq on BNSTp Esr1+ cells harvested from females and males 

treated on the day of birth with vehicle (NV), and females treated with E2 (NE), at postnatal day 4 (P4), 

which corresponds to the onset of male-biased BNSTp cell survival and axonogenesis (Cooke & 

Simerly, 2005; Gotsiridze et al., 2007). I detected ~2000 sex-biased chromatin regions at this time, the 

majority of which were male-biased (Fig. 5.1a). Hierarchical clustering of differential ATAC peaks 

across the three groups (NV female, NV male, NE female) demonstrated, in an unbiased fashion, that 

nearly all sex differences depended on neonatal estradiol (clusters 3 and 5, Fig. 5.2a). The 54 sex-biased 

regions uninfluenced by estradiol treatment, corresponding to clusters 1 and 4, were primarily on sex 

chromosomes. The majority (~85%) of the neonatal estradiol (NE)-open regions were also induced by 

estradiol in the adult E2 ATAC-seq dataset (Fig. 5.2c-d), suggesting that developmental state largely 

does not restrict the genomic response to estradiol. Likewise, the overwhelming majority of NE-open 

regions contained the ERE (Fig. 5.2b). To determine whether activation of ERα by the neonatal surge 

drives male-typical chromatin opening, I performed ERα CUT&RUN on FACS-isolated Esr1+ cells 

from female Esr1Cre/+; Sun1-GFPlx/+ pups treated acutely with vehicle or estradiol on the day of birth. 

Estradiol rapidly recruited ERα to NE-open regions (Fig. 5.1a, Fig. 5.2e-h). Interestingly, while 

neonatal estradiol also led to chromatin repression, ERα did not bind these sites (Fig. 5.1a, Fig. 5.2h), 
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indicating a downstream target of ERα may close chromatin, similar to how a downstream target of AR 

closes chromatin in adulthood. Together, these results demonstrate neonatal ERα activation drives 

early-life sex differences in the chromatin landscape.  

Collecting chromatin accessibility data at different life stages (P4, adulthood) allowed me to 

test whether chromatin regions regulated by the neonatal surge maintain sex-biased activation status 

into adulthood. A small, but detectable, number of NE-regulated regions (152 regions) were maintained 

as sex-biased in gonadally intact adults (Fig. 5.3a). Of note, while most NE-open loci did not maintain 

male-biased accessibility after puberty, they still localized at adult male-biased genes and clustered 

around adult male-biased ATAC peaks (Fig. 5.3b-d). Therefore, certain male-biased genes undergo 

sequential regulation by ERα and AR in early life and adulthood, respectively, such as Prlr, Cckar, 

Pdzrn4, and Tiparp. Moreover, the close proximity of NE-open and adult male-biased sites along the 

linear genome suggests early-life organization of 3D chromatin structure may influence the response 

to gonadal hormones released at puberty.  

 

5.3.2 ERα organizes a sustained gene expression program during brain sexual 

differentiation 

The identification of ~2000 chromatin regions controlled by the neonatal surge suggests ERα drives 

extensive sex differences in the expression of genes that control brain sexual differentiation. To identify 

these genes, and assess the longevity of their expression, I optimized and performed single-nucleus 

multiome (RNA & ATAC) sequencing on female and male BNST Esr1+ cells collected at P4 and P14, 

after the closure of the neonatal critical period (McCarthy, 2008b). I profiled 14,836 cells across groups 

(Fig. 5.1b, Fig. 5.4a-b). By comparing de novo clustering of the neonatal BNST to the previously 

published adult snRNA-seq dataset (Fig. 5.1b, Fig. 5.4c-e), I found that Esr1+ neuron identity is largely 
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the same across P4, P14, and adulthood, consistent with recent neurodevelopmental studies examining 

the timing of cortical neuron fate specification (Allaway et al., 2021; Di Bella et al., 2021).  

Differential gene expression analysis between females and males across Esr1+ neuron types 

on P4 revealed >400 sex-biased genes (Fig. 5.1c). Similar to the adult BNST, these genes are 

heterogeneously sex-biased across neuron types (Fig. 5.5a), with the majority of sex differences arising 

in 5 populations (i1:Nfix, i2:Tac2, i3:Esr2, i4:Bnc2, i12:Esr1). Performing bulk RNA-seq on BNSTp 

Esr1+ cells harvested from females treated at birth with vehicle or estradiol validated that many of 

these sex-biased genes are regulated by neonatal estradiol (Fig. 5.5b). Notably, estradiol-dependent, 

sex differences in gene expression and chromatin state occurred in neuron types lacking 

Cyp19a1/aromatase expression (Fig. 5.1c-e), indicative of non-cell-autonomous estradiol signaling.  

To link the chromatin and gene expression data, I constructed a gene regulatory map across 

Esr1+ neuron types consisting of sex-biased genes and NE-regulated ATAC peaks with correlated 

accessibility (Fig. 5.1c, Fig. 5.5e-h). This map demonstrates both divergent responses across neuron 

types, such as Htr4 and Csgalnact1 upregulation and enhancer activation in i1:Nfix and i3:Esr2 cells 

(Fig. 5.5f), respectively, as well as neuron type-specific enhancers for common sex-biased targets, such 

as Arid1b (Fig. 5.5g),  a known autism spectrum disorder (ASD) candidate. Further examination 

showed that ~40% of high-confidence (FWER≤0.05) ASD candidate genes (Satterstrom et al., 2020), 

including Grin2b, Scn2a1, and Slc6a1, contained NE-open chromatin regions and ERα occupancy (Fig. 

5.2j).    

Lastly, I examined whether sex-biased genes, and their corresponding sex-biased enhancers, 

are sustained across the neonatal critical period by comparing Esr1+ neurons between P4 and P14. 

While the total number of sex-biased genes declined between P4 and P14, a subset persisted as sex-

biased throughout the neonatal critical window (Fig. 5.1f-g, Fig. 5.5h); in i1:Nfix neurons, ~20% of 

differentially-expressed genes on P4 persisted as sex-biased on P14. These genes regulate distinct 

components of neural circuit development, including neurite extension (Klhl1, Pak7), axon pathfinding 
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(Epha3, Nell2), neurotransmission (Kcnab1, Scg2), and synapse formation (Il1rap, Tenm2) (Fig. 5.1g, 

Fig. 5.5h). Together, these results demonstrate that neonatal ERα activation drives the epigenetic 

maintenance of a gene expression program that facilitates sexual differentiation of BNSTp circuitry. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



90         Chapter 5. Organization of sex differences in gene regulation in the BNST 

 
 

Figure 5.1. Neonatal ERα binding drives a sustained male-biased gene expression program. (a) 
Heatmap of P4 BNST Esr1+ ATAC, P0 IgG CUT&RUN, and P0 ERα CUT&RUN CPM ±1Kb 
around 1605 neonatal estradiol (NE)-open and 403 NE-close ATAC peaks (edgeR, padj<0.1). 
ERα+=Sun1-GFP+ nuclei, ERα-=Sun1-GFP- nuclei. (b) UMAPs of adult (left) and neonatal (middle 
left) BNST Esr1+ snRNA-seq clusters; neonatal snRNA-seq clusters colored by sex (middle right) 
and timepoint (right). (c) (top) Number of sex DEGs (MAST, padj<0.05) in P4 multiome clusters. 
(bottom) Heatmaps indicating (left) RNA log2FC of P4 sex DEGs and (right) Pearson’s correlation 
coefficient of NE-open (red) and -close (blue) peaks linked to sex DEGs in each cluster. Non-
significant genes and coefficients colored in white. (d) Cyp19a1 expression on P4. (e) (left) NE-open 
peaks correlating with Lrp1b expression in Cyp19a1- clusters, i2:Tac2 and i12:Esr1. (right) Sex 
difference in Lrp1b expression in i2:Tac2 (n=260 female, 153 male, padj=2.13x10-8), i4:Bnc2 (n=437 
female, 373 male, padj=5.62x10-37), i12:Esr1 cells (n=803 female, 507 male, padj=1.09x10-12). 
***padj<0.001, MAST. (f) Proportion of P4 sex DEGs detected as sex-biased on P14. (g) (top) 
i1:Nfix-specific, NE-open ATAC peaks at Fat1 and Scg2 loci on P4 and P14. (bottom) Sex difference 
in i1:Nfix Fat1 and Scg2 expression on P4 (Fat1, padj=1.28x10-37; Scg2, padj=1.54x10-46; n=887 
female, 676 male) and P14 (Fat1, padj=1.13x10-11; Scg2, padj=1.52x10-5; n=554 female, 829 male). 
***padj<0.001, MAST. 
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Figure 5.2. P4 ATAC-seq and P0 ERα CUT&RUN analysis. (a) Heatmap of mean ATAC CPM for 
P4 NV male, NV female, and NE female individual replicates (n=3 per condition) at differential peaks 
(edgeR, glmQLFTest, padj<0.1), grouped by hierarchical clustering (cutree, k=6). Clusters c3 and c5 
correspond to NE-open and NE-close sites, respectively, shown in Fig. 5.1a. (b) Top enriched motifs 
(AME) in NE-open ATAC peaks. (c) (left) Overlap between P4 NE-open ATAC peaks and adult E2-
open ATAC peaks (log2FC>1). (right) Overlap between remaining 509 P4 NE-open ATAC peaks and 
log2FC>0 E2-open ATAC peaks. (d) Example P4 NE-open ATAC peaks not detected as E2-induced 
in adult E2-open ATAC peakset. (e) MA plot of P0 female E2 vs. female Veh ERα CUT&RUN peaks 
(DiffBind, DESeq2, padj<0.01); red dots=E2-induced peaks, grey dots=E2-down peaks. (f) Top 
enriched motifs (AME) in P0 E2-induced ERα peaks. (g) Heatmap of mean P0 ERα CUT&RUN CPM 
±1Kb around 8102 E2-induced ERα peaks for individual replicates (n=2 per condition). (h) (left) 
Overlap between P4 NE-open ATAC peaks and P0 E2-induced ERα peaks. (right) Overlap between P4 
NE-close ATAC peaks and P0 E2-induced ERα peaks. (i) (top) Top GO Biological Process terms 
(clusterProfiler, padj<0.1), (middle) DO terms (clusterProfiler, padj<0.1), and (bottom) HGNC gene 
families (clusterProfiler, padj<0.1) enriched within P4 NE-open peak-associated genes. (j) Example P0 
ERα peaks overlapping P4 NE-open peaks at high-confidence ASD candidate genes, Scn2a1 and 
Slc6a1. 
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Figure 5.3. Comparison of P4 and adult Esr1+ ATAC-seq. (a) (left) Overlap between P4 NE-open 
ATAC peaks and gonadally intact adult male-biased ATAC peaks. (right) Overlap between P4 NE-
close ATAC peaks and gonadally intact adult female-biased ATAC peaks. (b) Dotplot of BETA 
enrichment p-values for P4 NE-open ATAC peaks (top) and NE-close ATAC peaks (bottom) at adult 
BNST snRNA-seq sex DEGs relative to a background of non-differential, expressed genes. (c) 
Histogram of mean distance between P4 NE-open peaks and nearest gonadally intact adult male-biased 
ATAC peak (red line) vs. nearest chromosome-matched, non-differential adult ATAC peak (n=1000 
permutations) (blue histogram). Mean distance between P4 NE-open peaks and adult male-biased peaks 
is significantly smaller than the expected distribution (Permutation test, p=0.007). (d) Example adult 
male-biased DEGs (Prlr, Cckar, Pdzrn4, Tiparp) with neighboring P4 NE-open (highlighted in yellow) 
and adult male-biased ATAC peaks (highlighted in purple).   
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Figure 5.4. Additional analysis of neonatal BNST Esr1+ single-nucleus multiome dataset. (a-b), 
RNA (a) and ATAC (b) quality control (QC) metrics for neonatal (P4, P14) single-nucleus multiome 
experiments, split by timepoint and sex. Boxplot center=median, box boundaries=1st and 3rd quartile, 
whiskers=minimum and maximum values. n=4265 P14_male, 3148 P14_female, 3128 P4_male, 4295 
P4_female. (c) UMAPs of de novo clustering of neonatal multiome snRNA data, colored by cluster 
identity (top left), sex (top right), timepoint (bottom left), and Esr1 expression (bottom right). (d) (left) 
Prediction scores of adult-to-neonatal label transfer for each adult BNST Esr1+ reference cluster, split 
by timepoint. Boxplot center=median, box boundaries=1st and 3rd quartile, whiskers=minimum and 
maximum values. n=14836 cells. (right) % of nuclei in each neonatal de novo cluster that mapped to 
each adult BNST Esr1+ cluster. (e) UMAPs of neonatal marker gene module expression in neonatal 
dataset (left) and adult dataset (right).  
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Figure 5.5. Sex differences in single-nucleus multiome dataset. (a) Hierarchical clustering of log2FC 
values for P4 sex DEGs detected in Esr1+ inhibitory neuron clusters (see also Fig. 3e). Sex DEGs with 
non-significant differential expression colored in white. (b) Neonatal E2 (NE) vs. neonatal vehicle 
(NV) female nuclear RNA-seq on P4 BNST Esr1+ cells; grey, red dots (DESeq2, padj<0.1). (c) (top) 
Overlap between NE-induced genes and P4 multiome male-biased genes. (bottom) Overlap between 
NE-downregulated genes and female-biased genes. (d) (left) Pearson’s correlation coefficient values 
for non-differential (grey) and NE-regulated (gold) ATAC peaks that correlate with P4 sex DEG 
expression. Boxplot center=median, box boundaries=1st and 3rd quartile, whiskers=1.5*IQR from 
boundaries. n=5169 non-differential, 244 NE-regulated. p-value from two-sided, Wilcoxon rank-sum 
test. (right) Distance between non-differential (grey) and NE-regulated (gold) ATAC peaks to P4 sex 
DEG transcription start sites (TSS). p-value from Kolmogorov-Smirnov test. (e) Example P4 sex-biased 
genes that are also NE-regulated, Htr4 (top) and Csgalnact1 (bottom). (left) n=3, (right) n=887 i1:Nfix 
female cells, 676 i1:Nfix male cells, 404 i3:Esr2 female cells, 550 i3:Esr2 male cells. (f) Tracks for 
NE-open ATAC peaks that correlate with NE-regulated, sex-biased targets, Htr4 and Csgalnact1. (g) 
Different NE-open ATAC peaks across i1:Nfix, i3:Esr2, and i4:Bnc2 neurons correlated with a 
common male-biased target, Arid1b. (h) Heatmaps indicating (left) RNA log2FC of P14 sex DEGs and 
(right) Pearson’s correlation coefficient of NE-open (red) and -close (blue) ATAC peaks linked to sex 
DEGs within each cluster. Non-significant genes and correlation values colored in white. 
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5.3.3 ERα is required for sustained sex differences in gene expression 

The adult display of male mating and territoriality behaviors requires ERα expression in GABAergic 

neurons (M. V. Wu & Tollkuhn, 2017b). To determine whether ERα is also required for the sustained 

sex differences in gene expression observed in the multiome dataset, I performed snRNA-seq on 38,962 

BNST GABAergic neurons isolated from P14 conditional mutant males lacking ERα (VgatCre; Esr1lx/lx; 

Sun1-GFPlx), and littermate control females and males (VgatCre; Esr1+/+; Sun1-GFPlx) (Fig. 5.6a). The 

identity of GABAergic neurons in ERα mutant males did not deviate from P14 control or adult BNST 

neuron types (Fig. 5.6a). However, the abundance of male-biased i1:Nfix and i3:Esr2 neurons reduced 

to female levels in VgatCre; Esr1lx/lx males (Fig. 5.7a), indicating neonatal ERα activation is required for 

their male-typical abundance.   

Differential expression analysis between control females and control or ERα KO males within 

each neuron type revealed that ERα is required for nearly all sexually dimorphic gene expression, with 

the exception of genes located on the Y chromosome or escaping X inactivation (Fig. 5.6b). As 

expected, the loss of sex differences was largely driven by feminized expression in ERα KO males (Fig. 

5.6b). Of note, despite expressing ERβ, which binds estradiol, i3:Esr2 neurons still lost sex-biased gene 

expression in the absence of ERα (Fig. 5.6b). Together, these findings demonstrate the neonatal 

hormone surge drives a sustained male-typical gene expression program via activation of a master 

regulator TF, ERα (Fig. 5.6c). 
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Figure 5.6. ERα is required for sustained sex differences in gene expression. (a) UMAPs of adult 
(top left) and P14 (top right) BNST Vgat+ snRNA-seq clusters, P14 Vgat+ snRNA clusters colored by 
group (bottom left) and Esr1+ status (bottom right). (b) (top) Number of F vs. M sex DEGs (MAST, 
padj<0.05) in P14 snRNA clusters (black bar). Number of F vs. M sex DEGs detected in KO vs. M 
comparison (grey bar). (bottom) Heatmap of mean expression of i1:Nfix sex DEGs, scaled across 
control males, control females, and conditional ERα KO males. (c) Neonatal ERα activation drives a 
sustained male-typical gene expression program. 
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Figure 5.7. Additional analysis of P14 BNST Vgat+ snRNA-seq dataset. (a) RNA QC metrics for 
P14 BNST Vgat+ snRNA-seq experiment, split by sample. a and b refer to technical replicates. Boxplot 
center=median, box boundaries=1st and 3rd quartile, whiskers=minimum and maximum values. 
n=6355 ko_male_a, 5614 ko_male_b, 7184 wt_female_a, 6367 wt_female_b, 6881 wt_male_a, 6561 
wt_male_b. (b) Prediction scores of adult-to-P14 label transfer for each adult BNST Vgat+ reference 
cluster, split by group. Boxplot center=median, box boundaries=1st and 3rd quartile, 
whiskers=minimum and maximum values. n=38962 cells. (c) Proportion of total P14 Vgat+ nuclei in 
each Vgat+ cluster, separated by group. Adult male-biased Esr1+ clusters i1:Nfix and i3:Esr2 are 
indicated in grey.  
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5.4 Discussion 

In this Chapter, I report that activation of ERα by the neonatal hormone surge drives a sustained male-

typical gene regulatory program in the developing BNSTp. This program is required for brain sexual 

differentiation, as selective deletion of ERα in Vgat+ inhibitory neurons eliminates neonatal sex 

differences in gene expression and, as previously shown, impairs male-typical mating and territoriality 

behavior (M. V. Wu & Tollkuhn, 2017a). Interestingly, ERβ does not appear to compensate for the 

removal of ERα, as the i3:Esr2 neuron type loses sex-biased gene expression upon ERα deletion (Fig. 

5.6b). This finding implies that ERβ does not respond to neonatal estradiol, consistent with a non-sex-

specific function in brain development (L. Wang et al., 2003). In Chapter 6, I discuss the possibility 

that ERβ may instead act as a regulator of inhibitory neuron identity, although more experiments are 

required to determine whether it acts in a ligand-independent manner or utilizes alternative estrogen 

ligands.  

 How does ERα regulate chromatin accessibility following the neonatal surge? Prior studies in 

MCF-7 cells have revealed ERα binds an extensive repertoire of cofactors in response to ligand 

(Mohammed et al., 2013; Papachristou et al., 2018), including histone acetyltransferases CREBBP, 

EP300, NCOA3, and CARM1. In addition, ERα binds the dioxygenase TET2, which catalyzes the 

conversion of 5mC to 5hmC, resulting in enhancer activation via demethylation (Broome et al., 2021; 

L. Wang et al., 2018). To date, protein binding partners of ERα have not been identified in the brain. 

Identifying these partners, either via co-immunoprecipitation mass spectrometry of a peptide-tagged 

ERα or biotinylation-based proximity labeling, is essential to determining the epigenomic mechanisms 

underlying sex differences in chromatin accessibility. Moreover, it remains unclear how neonatal ERα 

binding leads to persistent regulation of chromatin accessibility, as the duration of neural estradiol 

production following the testosterone surge has not been directly measured. For instance, ERα may 

remain bound to the chromatin for several days, or it may transiently open the chromatin as a PF, 

allowing other TFs to then bind and maintain accessibility. While hormone receptors have not 
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historically been considered PFs, recent in vitro data from Gordon Hager’s lab suggests that ERα, AR, 

and GR can open closed chromatin and facilitate recruitment of other TFs (Paakinaho et al., 2019; 

Swinstead et al., 2016). Consistent with this model, in Chapter 6, I describe how estradiol drives the 

genomic binding of a neuron type-specific TF.  

How does the neonatal hormone surge gise rise to sex differences in BNSTp circuitry? The 

identity of sex-biased genes provides some clues as to how neonatal estradiol specifies these sex 

differences. For instance, Pak7/Pak5, male-biased specifically within the i1:Nfix neuron type, encodes 

a mitochondrial kinase that facilitates axonogenesis by boosting axonal ATP production (N. Huang et 

al., 2021). Crim1 has also been recently found to drive extension of corticospinal neuron axons, around 

the same time window (~P4) that BNSTp neurons initiate this process (G. Gu et al., 2003; Sahni et al., 

2021). A number of genes involved in neurotransmission and physiology, such as Asic2, Htr4, Kcnab1, 

and Scg2, were also sex-biased in expression, suggesting sex differences in the regulation of neuronal 

activity. Surprisingly, despite the well-characterized male-biased neuron survival phenotype during 

BNSTp development (Forger et al., 2004b; Gotsiridze et al., 2007; M. V. Wu et al., 2009a), none of the 

canonical pro-survival/pro-apoptotic genes (Bax, Bak, Bcl-2, Puma, or caspases) had sex-biased 

expression, suggesting that neuron survival may be a downstream consequence of neuronal wiring 

and/or integration into functional circuits (Pfisterer & Khodosevich, 2017). Future investigation into 

neonatal sex differences in the connectivity and activity of specific BNSTp neuron types will link 

neuron type-specific sex-biased genes to sexually differentiated circuitry. 

Lastly, it will be important to examine whether epigenomic modifications imparted by the 

neonatal surge persist throughout life, and whether such persistence is required for sex differences in 

behavior. Despite a major increase in sex differences following puberty (Fig. 4.1h), a low number of 

sites (~150) maintain sex-biased accessibility between P4 and adulthood (Fig. 5.3). It is possible that 

additional sites are maintained but cannot be detected as sex-biased in the bulk Esr1+ population. 

Preliminary analysis of a snATAC-seq dataset collected from adult conditional mutant females and 
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males lacking ERα (VgatCre; Esr1lx/lx; Sun1-GFPlx), and littermate controls (VgatCre; Esr1lx/+; Sun1-

GFPlx) has revealed additional persistent sites, which are also feminized upon ERα deletion (data not 

shown). However, it remains unclear whether the persistency of sex differences at these loci is, in itself, 

required for behavioral sex differences. For instance, it is possible that they only need to differ between 

sexes during circuit formation, after which time they simply represent a scar or shadow of a prior 

developmental event. Silencing persistent, sex-biased loci in adulthood by injecting a Cre-dependent 

CRISPR interference (CRISPRi) virus and sgRNA library targeting these sites into the BNSTp may 

identify whether their persistency is required for the display of sex-typical behaviors.   

5.5 Materials and Methods 

Animals. All animals were maintained on a 12:12 light cycle and provided food and water ad libitum. 

All mouse experiments were performed under strict guidelines set forth by the CSHL Institutional 

Animal Care and Use Committee (IACUC). Esr1Cre (H. Lee et al., 2014), ROSA26CAG-Sun1-sfGFP-Myc (Mo 

et al., 2015) (abbreviated as Sun1-GFP), and VgatCre (Vong et al., 2011) mice were obtained from 

Jackson labs. Esr1lx mice were received from Sohaib A. Khan (Feng et al., 2007). For neonatal 

CUT&RUN, ATAC-seq, and RNA-seq experiments, animals were treated with 5μg E2 or vehicle on 

P0 and harvested four hours later (ERα CUT&RUN) or four days later (ATAC-seq, nuclear RNA-seq). 

For neonatal multiome, snRNA-seq, and IF quantification, animals were harvested on P4 (multiome) 

or P14 (multiome, snRNA-seq, IF staining). 

 

Neonatal bulk ATAC-seq. Female and male Esr1Cre/+; Sun1-GFPlx/+ mice were injected 

subcutaneously with 5μg E2 or vehicle on P0 and harvested on P4 (4-5 animals pooled per condition 

and per replicate). The BNSTp was microdissected and collected in 300 μl of cold, supplemented 

homogenization buffer. Nuclei were extracted as described in Chapter 2 Materials and Methods. After 

filtering through a 40-μm strainer, the nuclei were diluted 3:1 with 600 μl of cold, supplemented 
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homogenization buffer and immediately used for sorting. 30,000 GFP+ nuclei were collected into cold 

ATAC-RSB buffer using the Sony SH800S Cell Sorter (purity mode) with a 100-μm sorting chip. After 

sorting, nuclei transposition and library preparation were performed, as previously described. 

 

P0 ERα CUT&RUN. Female Esr1Cre/+; Sun1-GFPlx/+ mice were injected subcutaneously with 5μg E2 

or vehicle on P0 and harvested four hours later (5 animals pooled per condition and per replicate). The 

BNSTp, MPOA, and MeA were microdissected, and nuclei were extracted, as described for the 

neonatal bulk ATAC-seq experiment. After filtering through a 40-μm strainer, the nuclei were diluted 

3:1 with 600 μl of cold, supplemented homogenization buffer. 2 mM EDTA was added, and the sample 

was immediately used for sorting. 150,000 GFP+ nuclei were collected into cold CUT&RUN wash 

buffer using the Sony SH800S Cell Sorter (purity mode) with a 100-μm sorting chip. GFP- events were 

collected into cold CUT&RUN wash buffer, and 150,000 nuclei were subsequently counted on the 

Countess II FL Automated Cell Counter for ERα- and IgG negative control CUT&RUN. All subsequent 

steps were performed as described for the adult brain CUT&RUN experiments in Chapter 2 Materials 

and Methods. P0 CUT&RUN libraries were prepared with 10 PCR cycles. 

 

Neonatal single-nucleus multiome-seq. The BNST was microdissected fresh from P4 and P14 female 

and male Esr1Cre/+; Sun1-GFPlx/+ mice, as described above (4-5 animals pooled per condition). Nuclei 

were extracted and prepared for sorting, as done for the neonatal bulk ATAC-seq experiment, with the 

inclusion of 1 U/μl Protector RNase inhibitor (Sigma) in the homogenization buffer. 40,000-50,000 

GFP+ nuclei were collected into 1 ml of cold ATAC-RSB buffer, supplemented with 0.1% Tween-20, 

0.01% digitonin, 2% sterile-filtered BSA (Sigma A9576), and 1 U/μl Protector RNase inhibitor. The 

nuclei were centrifuged in a swinging-bucket rotor at 500 x g for 10 minutes at 4oC. ~950 μl of 

supernatant was carefully removed, and 200 μl 10X Genomics Dilute Nuclei Buffer was added to the 

side of the tube without disturbing the pellet. The nuclei were centrifuged again at 500 x g for 10 



102         Chapter 5. Organization of sex differences in gene regulation in the BNST 

 
 
minutes at 4oC. ~240 μl of supernatant was carefully removed, and the nuclei were resuspended in the 

remaining volume (~7 μl). Samples were immediately used for the 10X Genomics Single Cell 

Multiome ATAC + Gene Expression kit (1000285), following manufacturer’s instructions. snRNA-seq 

and snATAC-seq libraries were sequenced on an Illumina NextSeq, using the High Output kit. Each 

sample was sequenced to a depth of ~40,000-80,000 mean reads per cell for the snATAC library and 

~40,000-50,000 mean reads per cell for the snRNA library. 

  

P14 snRNA-seq. The BNSTp was microdissected from P14 female and male VgatCre;Esr1+/+;Sun1-

GFPlx and male VgatCre;Esr1lx/lx;Sun1-GFPlx mice. Tissue samples from individual animals were 

immediately flash-frozen in an ethanol dry ice bath and stored at -80oC until n=3 animals were collected 

per group. On the day of the experiment, tissue samples were removed from -80oC and maintained on 

dry ice. With the tissue still frozen, cold, supplemented homogenization buffer was added to the tube, 

and the tissue was immediately transferred to a glass homogenizer and mechanically dounced and 

filtered, as described for our other neonatal experiments. 80,000-90,000 GFP+ nuclei were collected 

into 100 μl of cold ATAC-RSB buffer, supplemented with 1% sterile-filtered BSA (Sigma A9576), and 

1 U/μl Protector RNase inhibitor, in a 0.5 ml DNA lo-bind tube (Eppendorf) pre-coated with 30% BSA. 

After collection, nuclei were pelleted with 2 rounds of gentle centrifugation (200 x g for 1 min) in a 

swinging-bucket centrifuge at 4oC. After the second round, the supernatant was carefully removed, 

leaving ~40 μl in the tube. The nuclei were gently resuspended in this remaining volume and 

immediately used for the 10X Genomics Single Cell 3’ Gene Expression kit v3 (1000424), following 

the manufacturer’s instructions. Each biological sample was split into two 10X lanes, producing 6 

libraries that were pooled and sequenced on an Illumina NextSeq 2000 to a depth of ~45,000-60,000 

mean reads per cell. 
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Neonatal nuclear RNA-seq. Female Esr1Cre/+; Sun1-GFPlx/+ mice were injected subcutaneously with 

5μg E2 or vehicle on P0. Four days later, animals were rapidly decapitated, and 400-μm sections were 

collected in cold homogenization buffer using a microtome (Thermo Scientific Microm HM 650V). 

The BNST was microdissected (4 animals pooled per condition) and collected in 1 ml of cold, 

supplemented homogenization buffer containing 0.4 U/ml RNAseOUT (Thermo Fisher, 10777019). 

Nuclei isolation was performed as described for neonatal bulk ATAC-seq. 12,000 GFP+ nuclei were 

collected into cold Buffer RLT Plus supplemented 1:100 with β-mercaptoethanol (Qiagen, 74034) 

using the Sony SH800S Cell Sorter (purity mode) with a 100-μm sorting chip. Nuclei lysates were 

stored at -80°C until all replicates were collected. Nuclei samples for all replicates were thawed on ice, 

and RNA was isolated using the Qiagen RNeasy Plus Micro Kit (74034). Strand-specific RNA-seq 

libraries were prepared using the Ovation SoLo RNA-seq system (Tecan Genomics, 0501-32), 

following manufacturer’s guidelines. Individually barcoded libraries were multiplexed and sequenced 

with single-end 76bp reads on an Illumina NextSeq, using the Mid Output Kit.  

 

CUT&RUN data processing. P0 ERα CUT&RUN data were processed, as described previously in 

Chapter 2 Materials and Methods. 

 

CUT&RUN data analysis. CUT&RUN differential peak calling was performed with DiffBind (Stark 

et al., 2011). A count matrix was created from individual replicate BAM and MACS2 narrowpeak files 

(n=2 per condition). Consensus peaks were re-centered to ±100 bp around the point of highest read 

density (summits=100). Differential peak-calling for the P0 ERα CUT&RUN experiment was 

performed with DESeq2 (padj<0.01) within DiffBind.  

 

Neonatal bulk ATAC-seq analysis. Differential peak calling on the neonatal bulk ATAC-seq 

experiment was performed with DiffBind and edgeR. A count matrix was created from individual 
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replicate BAM and MACS2 narrowpeak files (n=3 per condition). Consensus peaks were re-centered 

to ±250 bp around the point of highest read density (summits=250), and the consensus peakset count 

matrix was subsequently used as input to edgeR. Differential peaks across the three treatment groups 

(NV female, NV male, NE female) were calculated by specifying multiple coefficients in glmQLFTest 

(coef=4:5). To identify accessibility patterns across differential peaks (padj<0.05), a matrix of 

normalized counts within differential peaks was hierarchically clustered using pheatmap, and the 

resulting dendrogram tree was cut with k=6 to achieve 6 peak clusters. The two largest clusters were 

identified as having higher accessibility in NV males and NE females compared to NV females (cluster 

3, labeled as NE-open), or lower accessibility in NV male and NE female compared to NV females 

(cluster 5, labeled as NE-close). Motif enrichment analysis of NE-open peaks was performed with AME 

using the 2020 JASPAR core non-redundant vertebrate database. GO Biological Process, DO, and 

HGNC gene family enrichment analyses were performed, as described above for adult GDX treatment 

ATAC-seq data analysis. 

 

Neonatal single-nucleus multiome data processing and analysis. Raw sequencing data were 

processed using the Cell Ranger ARC pipeline (v2.0.0) with the cellranger-arc mm10 reference. Default 

parameters were used to align reads, count unique fragments or transcripts, and filter high-quality 

nuclei. Individual HDF5 files for each sample containing RNA counts and ATAC fragments per cell 

barcode were loaded into Seurat (Read10X_h5). Nuclei with lower-end ATAC and RNA QC metrics 

(<1000 ATAC fragments, <500 counts, nucleosomal signal>3, TSS enrichment<2) were removed. 

DoubletFinder (McGinnis et al., 2019) was then used to remove predicted doublets from each sample 

(nExp=9% of nuclei per sample). Following doublet removal, nuclei surpassing upper-end ATAC and 

RNA QC metrics (>60000 ATAC fragments, >20000 RNA counts, >6000 genes detected) were 

removed. After filtering, Seurat objects for each sample were subsetted for the RNA assay and merged. 

Gene counts were normalized and log-transformed (‘LogNormalize’), and the top 2000 variable 
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features were identified using FindVariableFeatures (selection.method=‘vst’). Gene counts were 

scaled, regressing out the following variables: number of RNA counts, number of RNA genes, 

percentage of mitochondrial counts, and biological sex. Linear dimensionality reduction was performed 

by principal component analysis (runPCA, npcs=25). A k-nearest-neighbors graph was constructed on 

the basis of Euclidean distance in PCA space and refined (FindNeighbors, npcs=25), then the nuclei 

were clustered using the Louvain algorithm (FindClusters, resolution=0.8). snRNA clusters were 

visualized with UMAP (runUMAP, dims=25). To reduce the granularity of clustering, a phylogenetic 

tree of cluster identities was generated from a distance matrix constructed in PCA space 

(BuildClusterTree) and visualized as a dendrogram (PlotClusterTree). DEGs between clusters within 

terminal nodes of the phylogenetic tree were calculated (FindMarkers, test.use=‘wilcox’, padj<0.05), 

and clusters were merged if they had fewer than 10 DEGs with the following parameters: >0.5 

avg_logFC, <10% expression in negative nuclei, and >25% expression in positive nuclei. The final de 

novo snRNA-seq clusters are shown in Fig. 5.4c. 

Inhibitory neuron clusters (Slc32a1/Gad2+) from the neonatal multiome dataset were 

subsequently assigned to adult BNST Esr1+ cluster labels using Seurat. Adult BNST Esr1+ clusters 

(as defined above) were subsetted from the adult snRNA-seq object and randomly downsampled to 

5000 nuclei. Normalization, data-scaling, and linear dimensionality reduction were performed with the 

same parameters for neonatal and adult Esr1+ inhibitory neuron clusters. Anchor cells between adult 

(reference) and neonatal (query) datasets were first identified using FindTransferAnchors. Reference 

cluster labels, as well as the corresponding UMAP structure, were subsequently transferred to the 

neonatal dataset using MapQuery. Prediction scores, which measure anchor consistency across the 

neighborhood structure of reference and query datasets as previously described (Stuart et al., 2019), 

were used to quantify the confidence of label transfer from adult to neonatal nuclei. Fig. 5.4d shows 

the prediction scores per reference cluster and timepoint of nuclei mapped onto adult reference cluster 

labels as well as the % of nuclei from each de novo cluster mapped onto each adult reference cluster 
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(prediction score>0.5). To further validate the quality of label-transfer between adult and neonatal 

datasets, we computed DEGs between neonatal clusters post-label-transfer (FindMarkers, 

test.use=‘wilcox’, padj<0.05, min.diff.pct=0.1, avg_logFC>0.5) and calculated their background-

subtracted, average expression (AddModuleScore) in neonatal and adult BNST Esr1+ nuclei (shown 

in Fig. 5.4e). 

To generate pseudo-bulk, normalized ATAC bigwig tracks for each snATAC cluster, I first re-

processed the cellranger ARC output BAM file for each sample using SAMtools (-q 30 -f 2) and 

removed duplicate reads per cell barcode using picard MarkDuplicates (BARCODE_TAG=CB 

REMOVE_DUPLICATES=true). Sinto (https://timoast.github.io/sinto/) was used to split ATAC 

alignments for each cluster into individual BAM files using cell barcodes extracted from the Seurat 

object. CPM-normalized bigwig files were computed for each pseudo-bulk BAM file using DeepTools 

bamCoverage (--binSize 1 --normalizeUsing CPM). 

To analyze the neonatal multiome snATAC data, I used ArchR (Granja et al., 2021). Separate 

Arrow files were created for each multiome sample, then merged into a single ArchR project. Gene 

activity scores per nucleus were calculated at the time of Arrow file creation 

(addGeneScoreMat=TRUE). Metadata (cluster label, sex, time, QC metrics) were transferred from the 

previously generated Seurat object to the ArchR project by cell barcode-matching. Dimensionality 

reduction was performed on the snATAC data using ArchR’s iterative Latent Semantic Indexing 

approach (addIterativeLSI). Per-nucleus imputation weights were added using MAGIC (van Dijk et al., 

2018) within ArchR (addImputeWeights) to denoise sparse ATAC data for UMAP visualization. 

Cluster-aware ATAC peak-calling was performed using ArchR’s iterative overlap peak merging 

approach (addReproduciblePeaks, groupBy=‘cluster’).  

To call sex DEGs (padj<0.05) within each cluster and timepoint, I used MAST (Finak et al., 

2015) within Seurat (FindMarkers, test.use=‘MAST’, min.pct=0.05, logfc.threshold=0.2, latent.vars= 

‘nFeature_RNA’, ‘nCount_RNA’). To link NE-regulated loci to sex DEGs at P4 and P14 (Fig. 5.1c, 
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Fig. 5.5h), I computed the Pearson correlation coefficient between sex DEG expression and NE-

regulated peak accessibility for each cluster (LinkPeaks, min.distance=2000, distance=1000000, 

min.cells=2% of cluster size). Sex DEG log2FC values and NE-regulated ATAC site correlation 

coefficients were hiearchically clustered and visualized using ComplexHeatmap (Z. Gu et al., 2016). 

 

P14 snRNA-seq data processing and analysis. Raw sequencing data were processed using the Cell 

Ranger pipeline (v6.0.0) with the refdata-gex-mm10-2020-A reference. Default parameters were used 

to align reads, count unique transcripts, and filter high-quality nuclei. Individual HDF5 files for each 

sample were loaded into Seurat. Nuclei with lower-end RNA QC metrics (<1000 counts) were removed. 

DoubletFinder (McGinnis et al., 2019) was then used to remove predicted doublets from each sample 

(nExp=9% of nuclei per sample). Following doublet removal, nuclei surpassing upper-end RNA QC 

metrics (>20000 counts, >6000 genes detected) were removed. After filtering, Seurat objects were 

merged. Gene counts were normalized and scaled, as described for the single-nucleus multiome data 

processing.  

The P14 snRNA-seq dataset was assigned to adult BNST inhibitory cluster labels using Seurat. 

Adult BNST inhibitory clusters were subsetted from the adult snRNA-seq object and randomly 

downsampled to 10000 nuclei. Normalization, data-scaling, and linear dimensionality reduction were 

performed with the same parameters for P14 and adult inhibitory neuron clusters. Label transfer was 

then performed, as described for the single-nucleus multiome data processing. To validate the quality 

of label-transfer between adult and P14 datasets, I computed DEGs between P14 clusters post-label-

transfer, as described above, and calculated their background-subtracted, average expression 

(AddModuleScore) in P14 and adult BNST inhibitory clusters. Sex DEGs between control female and 

control male, and between control female conditional ERα KO, conditions were calculated for each 

P14 cluster, as described above for the multiome analysis. Cluster abundance for each group was 

computed and plotted in Fig. 5.7. 
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Neonatal bulk nuclear RNA-seq data processing and analysis. Reads were trimmed to remove 

Illumina adapters and low-quality basecalls (cutadapt -q 30), then mapped to the mm10 reference 

genome using STAR. Technical duplicate reads (identical start and end positions with same strand 

orientation and identical molecular identifier) were removed using the nudup.py python package 

(https://github.com/tecangenomics/nudup). The number of reads mapping to each gene (including 

introns) on each strand (-s 1) was calculated with featureCounts (Liao et al., 2014), using the 

mm10.refGene.gtf file. Differential gene expression analysis was performed using DESeq2 (design = 

~ treatment) after prefiltering genes by expression (rowMeans>=5).  
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Chapter 6 
 
 
Characterization of neuron identity regulators in the BNST 
 
Sections of this chapter were previously uploaded to bioRxiv (2020) under the title “Regulation of 

neural gene expression by estrogen receptor alpha” by Bruno Gegenhuber, Melody V. Wu, Robert 

Bronstein, and Jessica Tollkuhn. This manuscript is now in press at Nature (2022) under the title “Gene 

regulation by gonadal hormone receptors defines neuronal sex differences” by Bruno Gegenhuber, 

Melody V. Wu, Robert Bronstein, and Jessica Tollkuhn. 

6.1 Abstract 

Advancements in single-cell sequencing methods have revealed extensive transcriptomic and 

epigenomic diversity among neuron types in the mammalian brain. A central goal of neuroscience is to 

understand how combinatorial codes of TFs specify and maintain the identity of these neuron types, 

enabling their unique morphological, connectivity, and electrophysiological properties. Here I adopt a 

computational strategy to predict neuron identity regulator TFs from single-cell multiome (RNA + 

ATAC-seq) data. I demonstrate that this strategy highlights canonical GABAergic identity TFs a priori 

and reveals novel, putative regulator TFs. To experimentally validate this approach, I profile the 

genomic binding of a predicted identity regulator, Nfix, in the adult BNSTp and find that Nfix binding 

events are primarily accessible in the i1:Nfix neuron type. Moreover, sex-biased enhancers in the 

i1:Nfix type are also preferentially bound by Nfix, suggesting neuron identity TFs may enable diverse 

cellular responses to common signaling events. Together these results demonstrate an improved 

computational approach for predicting neuron identity regulators and provide a template for defining 

such regulators across brain regions and developmental stages. 
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6.2 Introduction 

How can one understand the operation of a complex machine without a detailed understanding of its 

parts? This analogy describes a major goal of modern neuroscience: to characterize and catalog neuron 

types in the brain by integrating phenotypic measurements (i.e., transcriptome, epigenome, 

electrophysiology, morphology, connectivity, etc.). Since the advent of high-throughput, single-cell 

RNA-sequencing, considerable progress has been made toward unsupervised, transcriptomic-based 

neuron classification (Tasic et al., 2016, 2018; Z. Yao et al., 2021), as well as establishing criteria for 

defining neuron types from transcriptomic data (Paul et al., 2017a). More recently, the Brain Initiative 

Cell Census Network, (BICCN), has generated a complete cell atlas of the mammalian primary motor 

cortex (MOp) by integrating multiple data modalities, including scRNA/snRNA-seq, single-nucleus 

ATAC-seq (snATAC-seq), single-nucleus DNA methylation-seq (snmC-seq2), MERFISH, Patch-seq, 

and anterograde/retrograde tracing (BRAIN Initiative Cell Census Network (BICCN), 2021). While 

this effort succeeded in matching transcriptome to phenotype for each neuron type, it still remains 

unclear how neuron identity is established and maintained, and whether mechanisms governing neuron 

identity are conserved across species.  

 At a fundamental level, cell identity is specified and maintained by TFs. In C. elegans, a model 

system with considerable genetic access, combinatorial codes of TFs, particularly of the homeobox 

family, specify neuron types by coordinating the expression of neuron type-specific gene batteries that 

impart unique physiological features (Hobert, 2021; Hobert et al., 2010; Serrano-Saiz et al., 2013; 

Taylor et al., 2021). Although such a model has been proposed to describe the regulation of neuron 

types in the mammalian brain (Fishell & Kepecs, 2020; Z. J. Huang & Paul, 2019; Paul et al., 2017a), 

aside from a few important examples (e.g., Lhx6, Nkx2-1, Prox1), a systematic understanding of this 

process, incorporating developmental single-cell transcriptomics and epigenomics, TF genomic 

binding, and loss-/gain-of-function experiments, has not yet been achieved. 
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 To date, understanding of gene regulatory mechanisms in the mammalian brain has been 

limited both by technology and complexity of the system. As discussed in Chapter 2, prior to 

CUT&RUN, it has been nearly impossible to measure TF genomic binding in low numbers of cells, 

such as individual neuron types in the mammalian brain. Moreover, identifying identity regulator TFs 

requires detection of both TF expression and chromatin state at single-cell resolution, which has only 

recently been made possible with single-cell multiome sequencing approaches (Ma et al., 2020). To 

date, there is still no approach to measure RNA and TF binding in the same cell at high-throughput, 

although future advancements in CUT&RUN or CUT&Tag may enable this (see Discussion). In 

addition to technology, the complexity of the mammalian brain, and of neuron fate specification 

generally, has precluded systematic characterization of identity regulators. Aspects of this complexity 

are summarized in the following points: 

1) Thus far, there is no clear relationship between mechanisms of gene regulation and the 

neuron types identified via integration of datasets generated by the BICCN. In other words, do 

all 56 MOp types have a distinct combinatorial code of TFs specifying their identity, or do 

these codes specify types at a certain level of granularity, such as distinguishing Pv+ from Sst+ 

interneurons, after which other non-genomic factors (e.g., mRNA translation, alternative 

splicing, network connectivity) influence identity? 

2) TFs act dynamically and combinatorially throughout development to control cell fate (Mayer 

et al., 2018), meaning TFs specifying identity may differ from those maintaining identity. 

Therefore, building a model of neuron type regulation requires integration of datasets across 

multiple developmental timepoints.  

3) TFs specify fate via chromatin activation or repression (Greig et al., 2013). While it is 

feasible to predict transcriptional activators from accessible chromatin data, it is much more 

challenging to identify repressors without measuring gene expression, as closed chromatin may 

reflect the action of a repressive TF or lack of expression of an activator TF. Thus, identifying 
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modes of TF action in fate specification requires simultaneous measurement of transcriptomic 

and epigenomic data.  

4) TFs can differentially influence fate specification between neuron types without themselves 

being differentially expressed (Allaway et al., 2021). Therefore, the function of a TF is better 

represented in its genomic binding profile rather than its expression pattern.  

5) TFs within the same protein family often have a near-identical recognition motif, such as 

the homeodomain family or NFI family, making it difficult to predict specific identity 

regulators from chromatin profiling data alone.  

 In this Chapter, I describe a computational strategy to predict neuron identity regulator TFs 

from the single-cell multiome data collected in Chapter 5, taking into account several of the above 

points. I demonstrate that this approach improves predictions relative to the standard approach of 

performing motif enrichment analysis within cell type-specific marker peaks, in that it reveals canonical 

GABAergic identity TFs a priori. Moreover, several novel regulator TFs are predicted, which may be 

important for specifying identity in the BNST. To experimentally validate this computational strategy, 

I profile the genomic binding of a predicted identity regulator, Nfix, in the adult BNSTp and 

demonstrate that Nfix binding events are primarily accessible within the i1:Nfix neuron type. Future 

loss-/gain-of-function experiments will reveal whether Nfix is necessary and/or sufficient for 

specifying this identity. Collectively, these results establish an approach for high-throughput prediction 

of neuron identity regulator TFs across brain regions.  

6.3 Results 

6.3.1 Predicting neuron identity regulator TFs from single-nucleus multiome data 

To identify TFs regulating BNSTp Esr1+ neuron identity, I first used a standard approach (Y. E. Li et 

al., 2021; Stuart et al., 2021) of calculating marker peaks for each neuron type in the dataset and 

subsequently finding the top enriched TF motifs within these marker peaks (Fig. 6.1a). This approach 
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highlighted specific families of TFs with restricted motif enrichment across Esr1+ types; namely, POU 

TFs in i2:Tac2 neurons, NFI TFs in i1:Nfix neurons, and MEF2 TFs in i9:Th neurons (Fig. 6.1a). Many 

TFs known to specify the identity of inhibitory neurons throughout other regions of the brain, including 

Prox1, Lhx6, Meis2, Pax6, and Nkx2-1 (Fishell & Kepecs, 2020; Lim et al., 2018), did not emerge from 

this analysis, suggesting either that they do not regulate BNST neuron identity or that intrinsic 

limitations to this approach prevent their detection.  

 After closer examination, I detected a number of computational assumptions that may prohibit 

accurate detection of TF regulators, which I outline here. First, cell type-specific peak-calling is, in 

itself, problematic, as there are several user-defined parameters that strongly bias results, including 

fold-change and significance thresholds, as well as a bias toward calling more marker peaks in larger 

clusters due to increased statistical power. Second, restricting motif analysis to cell type-specific peaks 

masks TFs that specify the identity of multiple neuron types within the dataset; rather than such a 1:1 

relationship, it is possible, if not likely, that combinatorial binding of TFs drives neuron identity. Third, 

as stated above, motif enrichment analysis often fails to distinguish between TFs with highly-similar 

motifs, which is often the case for those belonging to the same TF family. Fourth, this approach assumes 

all TFs specify identity by opening chromatin, whereas it is likely that certain TFs specify identity by 

repressing chromatin.  

 To bypass these limitations, I adopted an approach incorporating the ChromVAR algorithm 

developed in the Greenleaf lab (Schep et al., 2017) and the simultaneous detection of TF RNA 

expression from the multiome dataset. First, I identified TFs whose expression predicts motif 

accessibility by calculating the correlation between genome-wide motif accessibility and RNA 

expression for each TF across all cells in the dataset (Fig. 6.1b). To then identify TFs with restricted 

expression across neuron types, I plotted this correlation coefficient against the maximum TF 

expression fold-change value between each cluster. I identified TFs scoring highly on both parameters; 

here I used a coefficient > 0.5 and max log2FC value in the top 50% of all TFs, although these 
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parameters can be adjusted for stringency. Together, this approach ranked TFs both on their potential 

to regulate chromatin accessibility and their expression specificity across neuron types (Ma et al., 

2020).  

 Remarkably, this method revealed several experimentally-validated GABAergic identity TFs 

a priori, including Lhx6, Meis2, Nkx2-1, Pax6, and Prox1 (Frazer et al., 2017; Miyoshi et al., 2015; 

Paul et al., 2017a; Quinn et al., 2007; Sandberg et al., 2016), as well as novel regulators Egr4, Zfhx3, 

and Nr4a2. While most TFs putatively maintained open chromatin (positive correlation), several TFs 

were predicted to act as repressors (negative correlation), including Prox1 and Zfhx3, which have 

previously been shown to act as transcriptional repressors in vitro (Q. Hu et al., 2019; Takeda & Jetten, 

2013). Interestingly, despite having similar motifs, ERβ/Esr2, but not ERα/Esr1, emerged as a regulator 

of neuron identity, specifically of the i3:Esr2 and i13:Avp neuron types (Fig. 6.1c). This finding is 

consistent with a non-sex-specific role for ERβ in early cortical development and neural differentiation 

(Fan et al., 2006; Varshney et al., 2017; L. Wang et al., 2001, 2003). 

6.3.2 Nfix defines the chromatin landscape of a male-biased BNSTp neuron type 

In addition to those listed above, Nfix was predicted to regulate the identity of the male-biased i1:Nfix 

neuron type (Fig. 6.1b, Fig. 6.2e). To validate this prediction, we performed Nfix CUT&RUN on the 

adult BNSTp, following the treatment paradigm described in Chapter 2. This experiment revealed 

~33,000 consensus Nfix binding sites, which primarily contained the NFI motif, as well as a small 

number of E2-regulated Nfix sites (Fig. 6.2a-d). Of note, the CTCF motif was enriched within 

consensus Nfix sites, and a high proportion of these sites (~30%) overlapped CTCF-bound loci 

previously detected in the mouse forebrain using ChIP-seq (Fig. 6.2c).  

 By comparing Nfix CUT&RUN and multiome data, I found that Nfix-bound sites, including at 

the Nfix locus itself, are maintained in an active state primarily in i1:Nfix neurons (Fig. 6.2e). Nfix-
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bound sites at the Nfix locus correlate in accessibility with Nfix expression, indicating they act as a 

positive feedback loop (Fig. 6.2e).  

Are neuron identity regulators also important for brain masculinization? Additional 

examination of neonatal estradiol-responsive chromatin regions (defined in Chapter 5) showed that NE-

open regions vary strongly as a function of neuron identity (see also Fig. 5.1c, 5.1e, Fig. 5.5e-f), with 

NE-open regions in i1:Nfix neurons preferentially containing both consensus and E2-induced Nfix 

binding events (Fig. 6.2f). Together, these data suggest that in addition to specifying the chromatin 

landscape, neuron identity TFs may diversify the response to neonatal estradiol by influencing ERα 

recruitment. 
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Figure. 6.1. Predicting neuron identity regulator TFs from single-nucleus multiome data. (a) (left) 
Heatmap of pseudo-bulk ATAC CPM at 18783 marker peaks for neonatal multiome clusters. (right) 
Top three motifs enriched in marker peaks for each multiome cluster. (b) (top) Schematic of a putative 
identity regulator TF, based on two criteria: 1) robust correlation between TF expression and genome-
wide motif accessibility and 2) differential TF expression between cell type x and cell type y. (bottom) 
Correlation of TF expression and genome-wide motif accessibility vs. maximum inter-cluster log2FC 
TF expression. TFs with a correlation coefficient greater than 0.5, and in the top 50% of of log2FC 
expression colored in pink and classified as putative regulator TFs. (c) UMAPs of TF RNA expression 
(left), gene activity score (middle), and ChromVAR motif deviation score (right) of example putative 
BNST Esr1+ neuron identity regulators: Prox1, Meis2, Esr2, Nr4a2, and Zfhx3. 
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Figure 6.2. Nfix specifies the chromatin landscape of i1:Nfix neurons. (a) Heatmap of mean cortical 
IgG and BNSTp Nfix CUT&RUN CPM ±1Kb around 32,578 consensus Nfix peaks. (b) Top motifs 
enriched (AME) in 32,578 consensus BNSTp Nfix CUT&RUN peaks (MACS2, q<0.01; peaks 
intersected across treatment and sex). %TP=% of peaks called as positive for the indicated motif. (c) 
Overlap between consensus BNSTp Nfix CUT&RUN peaks and mouse forebrain CTCF ChIP-seq 
peaks, accessed from the ENCODE database. (d) MA plot of E2 vs. vehicle BNSTp Nfix CUT&RUN 
peaks (DiffBind, edgeR, padj<0.1); red dots=E2-induced peaks, grey dots=E2-down peaks. (e) (left) 
UMAPs of Nfix expression (top left), gene activity score (top right), motif chromVAR deviation score 
(bottom left), and CUT&RUN chromVAR deviation score (bottom right). (right) Neonatal snATAC 
and adult BNSTp Nfix CUT&RUN tracks at Nfix locus. Peak-RNA correlation indicates correlation 
coefficient for snATAC peaks correlated with Nfix expression. (f) Heatmap of differential snATAC 
CPM between males and females at 1605 NE-open sites, scaled across snRNA-seq clusters and grouped 
via k-means clustering. Barplot indicates % overlap for each k-means cluster with consensus and E2-
induced BNSTp Nfix CUT&RUN peaks.  
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6.4 Discussion 

Here I describe a computational strategy for identifying neuron identity regulator TFs from single-cell 

multiome sequencing data. I use this strategy to predict regulators of BNSTp Esr1+ neuron types. The 

BNSTp contains inhibitory neurons from the medial and caudal ganglionic eminences (MGE and CGE), 

as well as the embryonic POA (García-López et al., 2008; Nery et al., 2002). Consistent with this, 

several canonical regulators of inhibitory neurons deriving from the CGE (Nfix, Prox1) and MGE 

(Lhx6, Nkx2-1) were identified by this analysis (Fig. 6.1b-c). Of note, not every regulator acts as a 

transcriptional activator. In particular, Prox1 expression and gene body accessibility is largely restricted 

to the i1:Nfix type, as opposed to the accessibility of its binding motif (Fig. 6.1c). Conversely, Zfhx3 

expression and gene accessibility occurs across most BNST Esr1+ neuron types, except for i1:Nfix and 

i3:Esr2, whereas its motif is primarily accessible within those two types (Fig. 6.1c). While not studied 

in cortical development, Nr4a2/Nurr1, a nuclear receptor TF, has previously been shown to be required 

for the formation of midbrain dopaminergic neurons; Nr4a2-/- mice lack dopaminergic neurons 

throughout the mesolimbic pathway and consequently lack expression of tyrosine hydroxylase (Th), a 

key enzyme in dopamine synthesis (J.-Y. Kim et al., 2003; Simeone, 2005). Consistent with these prior 

experiments, Nr4a2 predicts the identity of the BNST Esr1+ i9:Th neuron type, which selectively 

expresses Th. This finding suggests mechanisms of neuron fate specification may be shared across brain 

regions and further validates the accuracy of this computational strategy. 

 Surprisingly, rather than influencing sex differences in gene expression within the BNSTp (see 

Chapter 5 Discussion), ERβ/Esr2 is predicted to regulate the identity of i3:Esr2 and i13:Avp neuron 

types independently of biological sex (Fig. 6.1c). A non-sex-specific role of Esr2 in regulating brain 

development is supported by findings from constitutive Esr2-/- mice, which have gross cortical 

morphological abnormalities prior to the neonatal surge on E18.5 (L. Wang et al., 2001) resulting from 

impairments in cortical neuron migration (L. Wang et al., 2003). Moreover, Esr2 is required for neural 

differentiation of mouse embryonic stem cells (Varshney et al., 2017). How does Esr2 control these 
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aspects of brain development? Given that aromatase KO animals do not display deficits in brain 

morphology (Fan et al., 2010), ERβ must act either in a ligand-independent manner or bind a ligand 

other than estradiol that is present across both sexes in utero. It has been proposed that a 

dihydrotestosterone metabolite, 5α-androstane-3β, 17β-diol (3β-Adiol), secreted by the immature 

ovaries and testes may bind ERβ in the embryonic brain, although additional data are required to 

validate this mechanism (Fan et al., 2010). 

 To further test the prediction of BNST Esr1+ identity regulators, we profiled Nfix genomic 

binding in the adult BNSTp by CUT&RUN (Fig. 6.2a-b). Because Nfix is restricted in expression to 

the i1:Nfix type among BNSTp Esr1+ neurons (Fig. 6.2e), I can conclude that the binding sites detected 

in the bulk BNSTp population derive from this neuron type. Consistent with this assumption, consensus 

BNSTp Nfix binding sites, including at the Nfix locus, are primarily accessible within i1:Nfix neurons. 

Nfix self-binding implies an positive feedback loop by a terminal selector TF (Ptashne, 2013); 

therefore, Nfix may maintain the i1:Nfix identity by regulating itself along with a gene battery that 

specifies intrinsic properties of i1:Nfix neurons.  

Outside of the BNST, NFI TFs regulate cell fate specification across diverse biological 

contexts, including adipocytes (Waki et al., 2011), prostate epithelial cells (Grabowska et al., 2014), 

Müller glia and retinal bipolar interneurons (Clark et al., 2019), and hair follicle stem cells (Adam et 

al., 2020). NFIs are thought to control cell fate decisions by invading closed chromatin and acting as 

PFs (Adam et al., 2020). Given that a high proportion of Nfix peaks contain forebrain CTCF binding 

events (Fig. 6.2b-c), and also that NFI factors frequently occupy chromatin boundaries (Bashkirova et 

al., 2020; Pjanic et al., 2013), it is possible that Nfix-dependent chromatin opening regulates 3D 

chromatin organization, resulting in the formation of TADs specific to the i1:Nfix neuron type. Such 

differences in chromatin topology have recently been shown to deviate between neuron types across 

brain regions and may be an important mechanism for the long-term maintenance of neuron identity 

(Winick-Ng et al., 2021). Future gain-/loss-of-function experiments within the BNSTp will reveal how 
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Nfix controls the identity of the i1:Nfix type, which as shown in Chapters 4 and 5, is sexually dimorphic 

both in neuron number and gene expression.  

6.5 Materials and Methods 

Animals. All animals were maintained on a 12:12 light cycle and provided food and water ad libitum. 

All mouse experiments were performed under strict guidelines set forth by the CSHL Institutional 

Animal Care and Use Committee (IACUC). C57Bl6/J wildtype mice were obtained from Jackson labs. 

Adult male and female mice were used between 8-12 weeks of age. For adult hormone treatment 

experiments, animals were sacrificed for tissue collection four hours after subcutaneous administration 

of 5μg estradiol benzoate (E2) (Sigma E8515) suspended in corn oil (Sigma C8267) or vehicle three 

weeks post-gonadectomy.  

 

Adult brain CUT&RUN. Nuclei were isolated from the BNSTp as described  in Chapter 2 Materials 

and Methods. For Nfix CUT&RUN (1:100, Abcam ab101341), 200,000 nuclei were isolated from 

BNSTp of 5 animals. 400,000 cortical nuclei were used for the CUT&RUN IgG control (1:100, 

Antibodies-Online ABIN101961). All subsequent steps, including library preparation and sequencing, 

were performed as described in Chapter 2 Materials and Methods. 10 PCR cycles were used for Nfix 

CUT&RUN libraries. 

 

CUT&RUN data processing. Processing of sequencing reads was performed as described for other 

CUT&RUN experiments in Chapter 2 Materials and Methods. To identify consensus Nfix peaks across 

samples, MACS2 callpeak was performed on BAM files merged across biological replicates (n=2) and 

subsequently intersected across treatment and sex. TF peaks that overlapped peaks called in the IgG 

control were removed using bedtools intersect (-v) (Quinlan & Hall, 2010) prior to downstream 

analysis.  
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CUT&RUN data analysis. Nfix CUT&RUN differential peak calling was performed with DiffBind 

(Stark et al., 2011). A count matrix was created from individual replicate BAM and MACS2 

narrowpeak files (n=2 per condition). Consensus peaks were re-centered to ±100 bp around the point 

of highest read density (summits=100). edgeR (Robinson et al., 2010) was used for differential peak 

calling. For Nfix, differential peaks with an padj<0.1 and abs(log2FC)>1 were used for downstream 

analysis. Motif enrichment analysis of consensus Nfix peaks was performed with AME using the 2020 

JASPAR core non-redundant vertebrate database. The overlap between consensus BNSTp Nfix peaks 

and conservative, IDR-thresholded ENCODE forebrain CTCF peaks (accession: ENCFF715PXI) was 

performed using bedtools intersect. 

 

Single-nucleus multiome neuron identity regulator analysis. 

Following peak-calling of single-nucleus multiome data (as described in Chapter 5 Materials and 

Methods), Signac (Stuart et al., 2021) was used to generate and store peak-by-cell count matrices for 

each sample. snATAC markers for each cluster were calculated (FindAllMarkers, test.use=‘LR’, 

vars.to.regress= ‘nCount_ATAC’, min.pct=0.1, min.diff.pct=0.05, logfc.threshold=0.15). Pseudo-bulk 

snATAC cluster CPM was computed for each marker peak using DeepTools multiBigwigSummary 

and visualized with pheatmap (Fig. 6.1a). Motif enrichment analysis of snATAC marker peaks for each 

cluster was performed using FindMotifs. The top 3 enriched motifs per snATAC cluster are shown in 

Fig. 6.1a.  

To perform neuron identity regulator analysis (Fig. 6.1b), TF motif annotations from the CISBP 

database were added to each peak (addPeakAnnotation) in ArchR, and ChromVAR deviation scores 

(addDeviationsMatrix), which indicate the background-subtracted, genome-wide motif accessibility 

signal per cell, were calculated for each cell and each motif. ChromVAR was also used to calculate 

per-cell deviation scores for the consensus BNSTp Nfix CUT&RUN peakset (Fig. 6.2e). Correlation 
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of TF RNA expression and motif deviation score was calculated for all TFs in the CISBP motif database 

(correlateMatrices). TFs with a correlation coefficient >0.5 and a maximum TF RNA log2FC value 

between each cluster in the top 50% of all TFs were classified as “neuron identity regulators” (colored 

pink in Fig. 6.1b).  

To visualize gene activity and motif deviation scores (Fig. 6.1c), scores were imputed 

(imputeMatrix), transferred to the original Seurat object by cell barcode-matching, and visualized 

alongside TF expression using FeaturePlot. 

To identify sex-biased enrichment of NE-open ATAC regions across P4 snATAC clusters (Fig. 

6.2f), I first filtered out low-abundant P4 snATAC clusters (<400 nuclei), then computed the difference 

in ATAC CPM between males and females at NE-open loci within each cluster. Differential ATAC 

CPM values were scaled across clusters, and subsequently grouped via k-means clustering (k=12, 

iter.max=50) and visualized with pheatmap. The overlap between each k-means cluster and consensus 

and/or E2-induced Nfix peaks was calculated using bedtools intersect.  
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Perspectives and Future Directions 
 
 

In this thesis, I discovered mechanisms by which gonadal hormones organize and activate neural sex 

differences in gene regulation. I defined the first genomic targets of a gonadal hormone receptor (ERα) 

in the brain (Chapter 2) and revealed many targets unique to this tissue. I then described that one of 

these targets, Mc4r, drives female activity across the estrous cycle in response to estradiol (Chapter 3), 

providing a model for how ERα genomic regulation activates a sex-typical behavior. After establishing 

this methodology, I next identified gene regulatory principles underlying “activation” (Chapter 4) and 

“organization” (Chapter 5) of brain sex differences by gonadal hormones. I found that the neonatal 

hormone surge activates ERα to drive a sustained, male-typical gene regulatory program in the 

developing brain, comprised of both sex-biased enhancers and genes. A subset of this program persists 

as sex-biased into adulthood, yet many additional sex-biased loci and genes emerge following puberty 

as a result of gonadal hormone production. Lastly, I utilized the wealth of single-cell sequencing data 

generated in these experiments to predict TFs that regulate the identity of BNST Esr1+ neuron types 

and further validated identity regulator function of Nfix in the male-biased i1:Nfix neuron type (Chapter 

6). In the Appendix, I describe a novel approach for high-throughput, single-cell RNA sequencing that 

offers improvements in cost and flexibility compared to existing commercial options. The findings 

described here provide the first step toward understanding how gonadal hormone receptors program 

the display of innate behaviors. In this section, I outline a number of open questions, which I hope 

inspire others to continue this research. 
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7.1 Hormones, gene regulation, and the brain 

In this thesis, I have focused on how gonadal hormones, principally estradiol acting through ERα and 

testosterone acting through AR, generate neural sex differences under basal conditions. However, there 

are many other hormones secreted by peripheral organs, and many other critical windows of hormone 

signaling, which remain unexplored. For example, during proestrus and prior to parturition, the ovaries 

also secrete progesterone (Murr et al., 1974), which binds its cognate receptor PR. Similar to ERα, 

regulation of gene expression by PR within specific populations of neurons may coordinate the display 

of appropriate behaviors, such as lordosis and maternal aggression, with internal physiological state. 

Consistent with this hypothesis, different populations of VMHvl ERα+/PR+ neurons control the display 

of female lordosis and maternal aggression behaviors (Hashikawa et al., 2017; Liu et al., 2022). Of 

note, PR and AR share a near-identical DBD and recognition motif (Hill et al., 2012); therefore, one 

tempting speculation is that progesterone and testosterone drive aggression across females and males, 

respectively, by converging upon a similar set of genomic targets within the VMHvl. In addition to 

progesterone, the neural mode of action for other estrogens, such as estriol, which is produced in high 

quantities by the placenta and released into maternal circulation (Tulchinsky et al., 1972), remains 

poorly understood. Prolactin, another hormone released from the pituitary gland during proestrus, early 

pregnancy, and lactation, regulates maternal care, food intake, and stress response by acting on prolactin 

receptors expressed throughout the social behavior network (Grattan, 2002; Kokay et al., 2018; 

Phillipps et al., 2020). While prolactin receptor activation is known to stimulate STAT5 

phosphorylation within this network (Furigo et al., 2016; Gustafson et al., 2020), the neural gene 

regulatory mechanisms of pSTAT5, and their contribution to maternal behaviors, also remain 

unexplored.  

Another critical window of hormone signaling – menopause – was not directly examined in 

this thesis. The decline in ovarian estradiol production during this period can lead to several 

physiological changes, such as metabolic decline, sleep disturbance, mood swings, and memory lapses 
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(de Boer et al., 2018; Searles et al., 2018). Men also undergo a more gradual decline in androgen 

production during aging, termed “andropause”. Across both sexes, hormone replacement therapy has 

been and is still under investigation as an approach to improve metabolism, mood, and cognitive 

function during these life stages (Bassil et al., 2009; Sherwin & Gelfand, 1985). Understanding how 

gradual reduction in hormone levels influences hormone receptor-dependent gene regulation during 

aging, and how changes at the genomic level influence mood and cognition, will be critical for 

developing strategies to mitigate these negative effects.  

 One current limitation of hormone replacement therapy is the non-specific targeting of tissues 

throughout the body, resulting in potentially elevated risk of prostate and breast cancer (Beral & Million 

Women Study Collaborators, 2003). A similar phenomenon exists for the treatment of cancer itself: 

selective estrogen receptor modulators (SERMs), such as raloxifene and tamoxifen, and aromatase 

inhibitors, such as letrozole, are regularly used to treat and prevent relapse of ER positive breast cancer, 

yet these drugs also act on the brain (M. A. Arevalo et al., 2011; M.-A. Arevalo et al., 2015). While 

tamoxifen is associated with an increased risk of cognitive impairment and depression, raloxifene 

appears to have beneficial effects on brain function (de Boer et al., 2018) and is currently in a phase 3 

clinical trial for the treatment of schizophrenia. To date, the mode of action for SERMs in the brain 

remains unclear. Understanding how these drugs influence ERα genomic binding and cofactor 

recruitment may explain their effects on cognition and mood and lead to the development of hormonal 

drugs with tissue-specific activity.  

 Lastly, comparing and contrasting gonadal hormone receptor gene regulatory mechanisms 

across species will be critical to understanding the immense variety of sex-typical behaviors displayed 

throughout the animal kingdom. In the era of single-cell sequencing, CRISPR-based genetic tools,  and 

genome assembly with long-read sequencing, addressing this question is now more possible than ever 

before.  
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7.2 Epigenetics of brain sex differences 

To study chromatin sex differences in the brain, I have extensively used ATAC-seq, as it provides a 

useful proxy for epigenomic modifications. Chromatin accessibility depends on nucleosome turnover, 

which is controlled by TF binding, histone PTMs and DNA methylation (Klemm et al., 2019). 

However, to better understand the epigenetic programming of brain sexual differentiation, it will be 

critical to study how hormone receptors impart specific epigenomic modifications in neurons. As 

discussed in Chapter 1, hormone receptors physically modify the genome upon binding by recruiting a 

suite of coactivator and corepressor proteins, which influence histone PTMs, DNA methylation, and 

nucleosome positioning (Perissi & Rosenfeld, 2005). To date, the protein binding partners of gonadal 

hormone receptors have not been identified in the brain, nor in most other tissues in which they are 

expressed. Developing genetic tools for co-immunoprecipitation mass spectrometry or proximity 

biotinylation labeling, such as FLAG-tagged ERα and/or APEX2-ERα knock-in mouse lines, would 

address this question and provide a critical resource for the field of neuroendocrinology.  

Along these lines, it is not only important to understand how ERα imparts epigenomic 

modifications in the brain but to understand how such modifications persist throughout brain 

development, as it may reveal fundamental principles of how post-mitotic cells encode transient signals 

in the genome. In mice, testosterone falls to undetectable levels in serum within hours after birth 

(Clarkson & Herbison, 2016), suggesting ERα does not remain bound at loci that persist as male-biased 

throughout the neonatal critical window. Instead, it is possible that neonatal ERα activation initiates 

chromatin opening, which provides access for other, constitutively-expressed TFs to bind and recruit 

cofactors that maintain the epigenome. In line with this hypothesis, a high proportion of neonatal ERα-

bound sites in the i1:Nfix neuron type were frequently co-bound by Nfix in response to estradiol 

(Chapter 6). This finding suggests that identity regulator TFs may play a role in coordinating sex 

differences in gene regulation that vary across neuron types. Future genetic manipulation experiments 
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will reveal whether Nfix, or other identity regulators, are required for maintaining sex-biased chromatin 

states in a neuron type-specific manner. 

Another possibility is that neonatal ERα activation drives lasting changes in gene regulation at 

the level of 3D chromatin organization. Similar to other transcription factors, gonadal hormone 

receptors regulate gene expression by looping distal enhancer elements and associated regulatory 

machinery to target gene promoters, resulting in the formation of TADs (Fullwood et al., 2009; Hsieh 

et al., 2014; Hsu et al., 2010; Le Dily et al., 2019; Le Dily & Beato, 2018; Ross-Innes et al., 2011; Q. 

Wang et al., 2005). Such large-scale rearrangements of chromatin can coordinately activate or repress 

a high number of genes (Jubb et al., 2017; Rafique et al., 2015). E2 has previously been shown to 

rapidly affect nuclear organization, primarily reducing nuclear envelope invaginations and clumped 

heterochromatin speckles, in a pioneering electron microscopy study of the VMH (Jones et al., 1985). 

Measuring neonatal sex differences in chromatin structure using chromosome conformation capture 

methods, such as Hi-C, and comparison to sex-biased chromatin loci, will reveal whether neonatal ERα 

activation leads to long-lasting changes to the 3D genome.  

Why do persistent sex differences in the epigenome occur? As discussed in Chapter 1, the male-

bias in BNSTp neuron survival and axon outgrowth occurs between P4 and P7 (G. Gu et al., 2003; 

Hutton et al., 1998; Ibanez et al., 2001; M. V. Wu et al., 2009a), long after neonatal hormone subsides 

from the serum (Clarkson & Herbison, 2016). Throughout the brain, the first two weeks of postnatal 

life constitute a critical period of development, during which time neurons undergo apoptosis, 

axonogenesis, synaptogenesis, myelination, and synaptic pruning (Marín, 2016). Therefore, it is 

possible that maintaining sex-biased gene expression across this prolonged developmental window is 

critical for ensuring male-typical BNSTp circuit formation. Consistent with this hypothesis, the 

majority of genes persisting as sex-biased between P4 and P14 regulate axon outgrowth (Nell2, 

Pak7/PAK5), synapse formation (Col25a1, Il1rap), and neurotransmission (Adra1a, Asic2, Kcnab1, 

Scg2). A small number of transcriptional regulators (Greb1, Klf12, Plagl1, Sox5) also persist as sex-
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biased, which may be important for maintaining sex differences in chromatin state. Another possibility 

is that a persistent sex difference in gene regulation is required to prime a genomic or upstream signaling 

response to gonadal hormones released at puberty. In line with this prediction, neonatal and adult sex-

biased loci occur in close proximity along the linear genome at many of the same sex-biased genes (Fig. 

5.3). Therefore, it is possible that neonatal ERα recruitment influences adult AR binding site selection 

by controlling accessible chromatin domains via loop extrusion (Le Dily et al., 2019).  

7.3 Controlling epigenetic programs of brain development 

The logical next step after observing an epigenetic program of brain sexual differentiation is to perturb 

and ask whether it is required for sexual differentiation of the BNSTp and, ultimately, the display of 

sex-typical behaviors. With CRISPRa and CRISPRi tools, it is now feasible to directly manipulate the 

activity of enhancers, either singly or combinatorially, in specific regions of the brain and assess their 

involvement in behavioral display (Matharu et al., 2019; Savell et al., 2020). For instance, as shown in 

Chapter 3 and previously (Matharu et al., 2019), hypothalamic co-delivery of AAVs expressing dCas9-

VP64 and sgRNAs targeting either a Sim1 enhancer or Mc4r promoter increases physical activity.  

 To faithfully manipulate the epigenetic program identified here, it will be necessary to target 

CRISPRa/i to the same neuron types in which this program occurs. Currently, Cre-dependent 

CRISPRa/i lentiviral constructs have been described (Carullo et al., 2021), although they have not yet 

been applied in the brain. Cre-dependent CRISPRa/i mouse lines have also recently been developed 

(Gemberling et al., 2021; H. Zhou et al., 2018); however, these prior studies delivered Cre via AAV 

injection, rather than targeting a particular cell type by crossing animals with a Cre-driver line. As a 

proof-of-principle experiment to test the feasibility of CRISPRa/i enhancer manipulation on the day of 

birth, I have developed sgRNAs targeting a neonatal sex-biased enhancer at the Greb1 locus (Fig. 7.1a) 

and validated that they upregulate Greb1 expression in vitro upon co-nucleofection with dCas9-VPR 

(Fig. 7.1b). Likewise, performing CRISPRa with a previously published sgRNA targeting the Sim1 
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promoter (Matharu et al., 2019) robustly increased Sim1 expression (Fig. 7.1b). In parallel, I have 

generated lentiviruses expressing these sgRNAs, as well as a non-targeting control (lacZ promoter), 

and optimized stereotactic targeting of the BNST on P0 (Fig. 7.1c). Currently, I am testing whether this 

approach stably induces Greb1 expression in the neonatal BNST by in situ hybridization. 
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Figure 7.1. CRISPRa enhancer activation and stereotactic delivery into P0 BNST. (a)  Neonatal 
ERα binding and male-biased chromatin accessibility at an intronic enhancer of the male-biased gene, 
Greb1. Green and blue arrows indicate position of CRISPRa sgRNAs on the antisense (Greb1 enh 
sgRNA #1) and sense (Greb1 enh sgRNA #2) strands, respectively. (b) qPCR analysis of Greb1 
expression following co-nucleofection of dCas9-VPR and sgRNAs targeting the lacZ promoter (non-
targeting control), Greb1 enhancer, or the Sim1 promoter in mHypoA cells. (c) Coronal section of a 
P14 mouse co-injected with dCas9-VPR and lacZ sgRNA-mCherry lentiviruses on P0.  
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7.4 Future advancements in low-input genomics 

The experiments described here utilized novel approaches for studying TF binding in low numbers of 

cells and chromatin accessibility in single cells. It is possible that future advancements in these 

technologies may reveal further insights into the heterogeneity of gene regulation by gonadal hormone 

receptors across neuron types and developmental time.  

For instance, CUT&Tag has recently been optimized to profile histone PTMs within single 

cells at high-throughput (Bartosovic et al., 2021; S. J. Wu et al., 2021), to simultaneously measure 

histone PTMs and RNA (C. Zhu et al., 2021), and to detect multiple PTMs within the same cell 

(Bartosovic & Castelo-Branco, 2022; Janssens et al., 2021). These advancements raise the possibility 

of examining whether neonatal ERα activation imparts specific histone PTMs, such as H3K27ac and/or 

H3K4me1, and whether such modifications are involved in maintaining sex differences in gene 

regulation. However, CUT&Tag currently suffers from a few technical limitations, prohibiting its 

widespread use. For instance, unlike the pA-MNase used in CUT&RUN, pA-Tn5, like unconjugated 

Tn5, has preferential affinity for accessible chromatin, necessitating the inclusion of a high salt wash 

(300 mM) to mitigate non-specific binding and tagmentation (Kaya-Okur et al., 2019). Despite 

increasing the salt concentration, residual pA-Tn5 still tagments accessible regions of the genome 

independently of the targeted histone PTM, obscuring true from false positive peaks (Kaya-Okur et al., 

2019; M. Wang & Zhang, 2021). Moreover, several of the early implementations of single-cell 

CUT&Tag (scCUT&Tag) using the 10X Genomics platform detected few unique fragments per cell 

relative to snATAC-seq (~400-500 vs. ~30,000) and failed to resolve individual neuron types 

(Bartosovic et al., 2021). Lastly, as scCUT&Tag exchanges wash buffers by centrifuging nuclei, rather 

than immobilizing on magnetic beads, there is major sample loss prior to single nucleus droplet capture. 

Therefore, a high amount of input material is required (50,000 to 1 million nuclei, depending on the 

protocol), which prohibits its application to small numbers of cells, such as genetically defined neuron 

populations. 
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 If these technical obstacles are overcome, scCUT&Tag may be an invaluable tool for 

characterizing gene regulatory mechanisms in the brain. One possibility is that improving Tn5 

transposase itself may reduce open chromatin bias and improve efficiency of fragment detection. For 

instance, protein engineering of Tn5 transposase, or another member of the transposase family,  may 

result in an enzyme with reduced affinity for open chromatin but preserved tagmentation function when 

targeted to a histone PTM by protein A. This idea is supported by the observation that the version of 

the Tn5 enzyme used in CUT&Tag and ATAC-seq was originally engineered from the inactive, 

wildtype enzyme to have high activity on accessible chromatin, suggesting low-affinity enzymes may 

also be derived (Reznikoff, 2003). Moreover, implementing a deterministic tagmentation by loading 

pA-Tn5 with only the P5 adaptor and subsequently introducing the P7 adaptor with a second round of 

tagmentation post-library amplification has been shown to substantially improve fragment recovery in 

scCUT&Tag (Bartosovic & Castelo-Branco, 2022). A pA-Tn5 with minimal non-specific targeting 

may also enable high-throughput, single-cell profiling of TF binding, as the 300 mM salt wash used in 

CUT&Tag strips most TFs off of chromatin, preventing their detection. Such an improvement would 

undoubtedly revolutionize our understanding of how TFs specify neuron identity and coordinate 

stimulus-dependent transcription.  

7.5 Conclusion 

In this thesis, I used low-input and single-cell genomics to define the molecular principles of the 

“Organizational-Activational Hypothesis”. I revealed that neonatal ERα activation initiates an 

epigenetic program of brain sexual differentiation, which undergoes heterogeneous regulation across 

BNSTp neuron types. While a small subset of genes and enhancers persists as sex-biased throughout 

life, gonadal hormones released following puberty drive the majority of adult sex differences in gene 

regulation. Gonadectomy in adulthood attenuated sex differences in chromatin state, and under these 

conditions, Esr1+ neurons of both sexes responded similarly to estradiol at the genomic level. Together, 
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these findings demonstrate that while early-life gonadal hormone signaling organizes irreversible sex 

differences in BNSTp circuitry, the genome remains responsive to the activational influence of the 

hormonal milieu, consistent with the observation that both sexes retain the potential to display 

behaviors typical of the opposite sex (Edwards & Burge, 1971; Hashikawa et al., 2017; Kimchi et al., 

2007; Wei et al., 2018). Therefore, rather than restricting or canalizing phenotypic endpoints, gonadal 

hormones and their receptors may have evolved to enable dynamic, sexually differentiated states. 

 

I hope this thesis inspires future scientists to study the nature of the epigenetic program described herein 

and its involvement in innate behaviors. 
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Copolymerization of single-cell nucleic acids into balls
of acrylamide gel
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We show the use of 5′-Acrydite oligonucleotides to copolymerize single-cell DNA or RNA into balls of acrylamide
gel (BAGs). Combining this step with split-and-pool techniques for creating barcodes yields a method with advantages
in cost and scalability, depth of coverage, ease of operation, minimal cross-contamination, and efficient use of samples.
We perform DNA copy number profiling on mixtures of cell lines, nuclei from frozen prostate tumors, and biopsy washes.
As applied to RNA, the method has high capture efficiency of transcripts and sufficient consistency to clearly distinguish
the expression patterns of cell lines and individual nuclei from neurons dissected from the mouse brain. By using varietal
tags (UMIs) to achieve sequence error correction, we show extremely low levels of cross-contamination by tracking source-
specific SNVs. The method is readily modifiable, and we will discuss its adaptability and diverse applications.

[Supplemental material is available for this article.]

Single-cell analyses are increasingly used for understanding the
patterns of gene expression and genomic variation in complex
populations of cells and tissues (Navin et al. 2011; Patel et al.
2014; Tirosh et al. 2016; Villani et al. 2017). Many droplet-based
technologies have emerged as high-throughput ways to study
DNA (Lan et al. 2017; Pellegrino et al. 2018) or RNA (Klein et al.
2015; Macosko et al. 2015) of single cells. However, thesemethods
often lack the breadth of coverage (see Supplemental Text; Ding
et al. 2019). Droplet merging and breakage give rise to cross-
contamination. Moreover, some droplet-based methods suffer
from inefficient use of samples. Therefore they are not the ideal
choice for analyzing rare and valuable samples, such as cells from
biopsy washes or cells microdissected from tissue samples. To ad-
dress these and other needs, we developed and describe here a
method thathas advantages in coverage, quantitation, the efficient
use of samples, sequence accuracy, and flexibility without sacrific-
ing scalability. The set-up requires only inexpensive standard
equipment and reagents, and the cost of preparing single-cell li-
braries is negligible compared with sequencing.

The central concept in this protocol has broad applicability.
The underlying principle is the encapsulation of single cells or sin-
gle nuclei in aqueous droplets containing acrylamidemonomer in
an oil emulsion, followed by conversion of each droplet into a ball
of acrylamide gel (BAG) by polymerization. Primers containing
5′-Acrydite copolymerize with the acrylamide. Through annealing
and extension, the information content of the cell is captured as
nucleic acids covalently bound to the polyacrylamide matrix.

After removing the oil, eachBAGserves as an independent reaction
vessel, accessible by diffusion in an aqueous environment to poly-
merases and other reagents. BAGs are then individually barcoded
by split-and-poolmethods, first used during the productionof pep-
tide libraries (Fodor et al. 1991), then used as a method to encode
beads (Ohlmeyer et al. 1993), and finally for single-cell analysis
(Cusanovich et al. 2015; Rosenberg et al. 2018). Our method has
great flexibility. By varying designs of primers, enzymes, and con-
ditions, the BAGs can be used as sources for libraries for single-
cell DNA or RNA, or possibly even proteins. In this report, we
show and characterize the applications for single-cell DNA copy
number and RNA profiling from simple and complex mixed
populations.

Results

Converting single cells into BAG libraries
Figure 1 illustrates our protocol, which we outline here. First, we
create a suspended aqueous droplet in oil containing single-cell
contents and reagents and then convert that droplet into a poly-
acrylamide bead. By using 5′-Acrydite primers, some of the con-
tents of single cells become linked to the bead matrix. To
achieve this, we use a single-cell DroNc device (Habib et al.
2017), with one stream (aqueous phase 1) carrying the single cells
or nuclei and another stream (aqueous phase 2) carrying reagents,
combining both as an aqueous droplet in oil. Aqueous phase 2
contains acrylamide monomers, bis-acrylamide cross-linker,
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Article published online before print. Article, supplemental material, and publi-
cation date are at http://www.genome.org/cgi/doi/10.1101/gr.253047.119.
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ammoniumpersulfate, 5′-Acrydite capture primers, and detergents
in a buffer. For single-cell DNA analysis, we also include Proteinase
K in aqueous phase 2. For RNA analysis, we include RNase inhibi-
tor and omit Proteinase K. The oil phase contains TEMED, an accel-
erator of polymerization. During incubation in oil, the aqueous
droplet forms a gel ball with the Acrydite primer covalently incor-
porated into the matrix.

For DNA, we use 5′-Acrydite primers made of essentially
random Ts and Gs. We tested other primers, including Alu repeat
sequence and random N primers, but these T and G primers per-
formed best (Supplemental Fig. S1). We melt and cool to allow
annealing to the 5′-Acrydite primers. For RNA, the Acrydite prim-
ers are poly(T) (see Methods; Fig. 1). We remove the oil, and the
BAGs are subsequently processed in the aqueous phase.
Annealing to primers is essential, as without linkage to thematrix,
all nucleic acids leak out of the bead.

After removal from the oil, each BAG functions as a reaction
vessel, with the nucleic acid tethered to the bead matrix. Once in
the aqueous phase, we extend the primers on the captured tem-
plates, and thereby link copies of templates to the bead matrix.
In subsequent steps, including split-and-pool, we add varietal
tags (unique molecular identifiers) (Kivioja et al. 2012; Hicks
et al. 2016) and BAG barcodes, but the method details differ if
the initial template is DNA or RNA.

If the template is DNA, wemake the second strand in the pool
stage and cleave with a restriction endonuclease tomake an adapt-
able end. In the first split, we use the cleavage site to add a varietal
tag and the first split barcode. We pool the BAGs and redistribute
them into wells for the second split, during which the second
split barcode is added by PCR. We pool the PCR product from

the second split and amplify using modified Illumina sequencing
adapters to make the final sequencing library (for details, see
Supplemental Method S1).

If the template is RNA, copying takes place in the first split
yielding a DNA–RNA hybrid, and by using a “template switch
oligo,” the DNA strand acquires a varietal tag and first-split bar-
code. The second split can be performed as with DNA (see
Methods), or additional cycles of split can be performed through
a denaturation–hybridization–extension procedure and the final
split is performed by PCR (see Supplemental Method S2). After
pooling the PCR product, tagmentation followed by PCR is used
to make the final sequencing library.

For DNA or RNA, sequencing libraries are prepared from
pooled BAGs. The combination of first and second split barcodes
gives almost all BAGs a unique bead barcode. We partition all
the reads by this barcode. We then tally the captured templates
with a given barcode by counting the nearly unique combination
of varietal tag and captured sequence.

Not all detected barcodes derive from BAGs with single-cell
contents. To determine which barcodes correspond to BAGs with
cells, we only use barcodes with high read count. To do this, we
plot a cumulative sumof the barcode counts, ordered by theirmag-
nitude.We typically observe a sharp inflection point, as illustrated
in Supplemental Figure S2, and use the barcodes to the left of the
inflection point.

In general, we observe efficient use of input cells (see
Methods). Upon loading into the microfluidic device anywhere
from 0.3 to 1 mL, we can recover up to 85% of cells in the final li-
brary. Someof the input fluid is retained by the device, so yields are
higher for larger input volume.

Figure 1. Schematic of single-cell DNA or RNA BAG-seq workflow. The star between first split and second split indicating the place where more cycles of
split-and-pool can be added.
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Copy number profiles from mixed populations

As a demonstration of our method, we applied it to mixtures of
four cell sources: three breast tumor cell lines (SK-BR-3, MCF-7,
and BT-20) and one normal cell strain (SKN1). We computed the
copy number profiles of each BAG using empirically normalized
bins (see Methods). We display the results in Figure 2, A and B,
at a resolution 20,000 bins or ∼150 kbp per bin. After hierarchical
clustering, we observe four clusters (Fig. 2A). One representative of
each cluster is displayed as a conventional copy number profile in
Figure 2B. Supplemental Figure S3 shows profiles from two BAGs

with the SK-BR-3 pattern, illustrating the consistency of the
method.

Themethodworks onnuclei isolated from frozen tumor biop-
sies, and we illustrate this using previously published clinical ma-
terial (Alexander et al. 2018). Figure 2C shows the pathology image
of a region from a prostate with a Gleason 9 lesion, assessed by pa-
thologists as 60% cancer. The BAGprofiles from that region are dis-
played in a hierarchical cluster (Supplemental Fig. S4A). There are
two clusters, onewith 26 “normal” profiles and onewith 39 tumor
profiles. Figure 2,D through F, shows the representative copynum-
ber profiles from each clone of this regionusing BAG technology at

A

C D

E F

G

B

Figure 2. Copy number variation analysis of single-nucleus DNA (snDNA) BAG in cell lines and frozen prostate tumor. (A) Hierarchical clustering of four
cell types SKN1, SK-BR-3, MCF-7, and BT-20 at a resolution of 20,000 bins (150 kbp per bin). Red indicates amplification, whereas blue indicates deletion.
(B) The 20,000-bin copy number profiles from each of the four clusters in A. (C ) Pathology image showing the region of Gleason 9 prostate cancer, which
was estimated by pathologist as 60% tumor. Scale bar, 100 µm. (D–F ) Representative snDNA BAG copy number profiles from this region: (D) a represen-
tative normal copy number profile; (E) a representative diploid tumor profile; and (F ) a representative tetraploid tumor profile. (G) Hierarchical clustering of
this region by combining data from both the BAG method and 96-well WGA method.
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a resolution of 5000 bins (Supplemental Data S1, S2).
Supplemental Figure S4B compares three BAG profiles with three
single-nucleus profiles obtained from an earlier published whole
genome amplification (WGA) method in 96-well plates. We com-
bined profiles from our current (BAG) and previous (WGA) meth-
ods and display the hierarchical clustering in Figure 2G. The
individual profiles obtained by the two methods are largely
indistinguishable.

To illustrate that the method works with small amounts of
precious sample, we also studied two biopsy wash samples from

one patient. One sample was defined by the pathologist as benign
(Fig. 3A; Supplemental Data S3, S4), and the other region was
Gleason 6 cancer (Fig. 3B; Supplemental Data S5, S6). We exam-
ined 75 nuclei from the biopsy wash of this benign region, all
normal profiles, and 269 nuclei from the Gleason 6 region.
Hierarchical clustering trees from these two biopsy wash samples
are shown in Figure 3, C and D. From the Gleason 6 region, we de-
tected onemajor tumor clone as 35%of the cells, and among them
possibly aminor clone (seven nuclei) that possesses all the features
of the major clone but also has additional unique features

BA

DC

FE

Figure 3. CNV study of prostate tumor biopsy wash samples from a benign region and a Gleason 6 cancer region. (A) A 20× magnification pathology
image of a benign region of the prostate. (B) Pathology image of a Gleason 6 cancer region from the same patient at the same resolution. (C) Hierarchical
clustering of biopsy wash sample from the benign region. (D) Hierarchical clustering of biopsy wash sample from the Gleason 6 region showing a normal
clone and two tumor clones based on CNV patterns. Red arrows indicate themajor (clone 1) andminor (clone 2) tumor clones. (E) A representative normal
single-nucleus copy number profile from the biopsy wash of this benign region. (F ) Representative single-nucleus copy number profiles from one normal
clone and two tumor clones from the biopsy wash of the Gleason 6 cancer region.
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(Fig. 3D). Representative copy number profiles of these two sam-
ples are shown in Figure 3, E and F.

Statistics of coverage
To measure the coverage of the method, we used SKN1, a diploid
cell strain prepared from a healthy donor. The BAGs had 96×96
possible barcodes. We obtained 342 million read pairs, of which
84% were mapped to 88 BAGs with the largest counts (Supple-
mental Fig. S2A). From these 88, we characterized each BAG with
respect to the numbers of read pairs, mapped reads pairs, uniquely
tagged templates, and reads per template. We also characterize the
total genome coverage per BAG. The data are found in Supplemen-
tal Table S1.

We sequenced about 300 million read pairs from the library
made from 88 cells. We determined that 53% of paired-end reads
could be properly mapped to the genome, meaning that both
ends mapped within 2 kb apart had the proper orientation to
each other, and Read 2 had the expected restriction endonuclease
site. Because each template is captured as a single strand, with the
NlaIII cleavage site marking the 3′ end, we could determine that
38.8% of the genome is captured from the plus strand, 38.9% cap-
tured from the minus strand, and 15.7% from both strands. In to-
tal, uniquely mapped reads cover a total of 60% of the human
genome, with 40% of the genome mapping to at least two BAGs
(Supplemental Fig. S5A).

We obtained a median number of 1.3 million reads per BAG,
and a median absolute deviation (MAD) of 0.5 million. We have a
multiplicity of about 3.5 reads per uniquely tagged template, yield-
ing on average 492,490 unique templates. The median BAG bar-
code covered ∼1.6% of the genome. These statistics are a
function of read depth, so we sampled from 10% to 100% of reads
and recomputed them. Supplemental Figure S5A shows total ge-
nome coverage, as well as the proportion of the genome seen in
at least two BAGs as a function of reads sampled. Supplemental

Figure S5B shows the shape of coverage for each of the 88 BAGs
on downsampling, normalized to total counts at 100%. The 88
curves are very similar, as shown by the small error bars at each
downsampling position, and indicate the limiting return of addi-
tional sequence.

Sequence error correction
Single-cell genome sequencing has been used for variant analysis
(Wang et al. 2012; Xu et al. 2012; Zong et al. 2012). To use our
method in this fashion requires an understanding of its sequence
error rate. To measure error, we examined the single-cell sequence
data from SKN1 for differences to the donor genome obtained
from his blood DNA. We restricted analysis to those regions of
the genome where the donor was well covered and homozygous
to the human reference, and we sought variant sequence in the in-
dividual reads of the BAG libraries that were not reference bases.
We then determined if the variant sequence was seen in multiple
reads from the same template and in more than one BAG.We also
examined the trinucleotide sequence context and the variant base.

Figure 4A summarizes error rates in single and multiple reads
per uniquely tagged template. There are 64 trinucleotide contexts
with three possible variants for the central nucleotide.Without er-
ror correction, some nucleotide contexts have low error (A or T to
G, below 10−4) and others high (G to C, about 10−3). Using only
multiple reads for a template, and then onlywhen they are concor-
dant, reduces some error rates on the order of 10-fold (e.g., A or T to
C) (Fig. 4A). Some nucleotide contexts are not corrected by multi-
ple reads in consensus (e.g., G to C, and C to G). We assume that if
an error is not corrected by the concordance method, the error is
due largely to initial template damage, for example, from depuri-
nation or deamination. Moreover, we observed that the error rate
is lowered by reducing polymerization time or decreasing polymer-
ization temperature. We infer this low-frequency damage may be
induced by heat or the chemicals needed for polymerization, in

A B

Figure 4. Sequence error correction (ec) and analysis of cross-contamination using error-corrected SNVs. (A) Comparison of error rates between random
sampling and ec in trinucleotide context. The number in each box indicates the error rate and is colored by its intensity. Themiddle base in the trinucleotide
context is the “source” base, and the single base on top of each column is the “destination” base. For each “destination” base, the first column corresponds
to random sampling method, and the second column corresponds to the ec method. (B) Minority SNV ratios of SK-BR-3 nuclei and SKN1 nuclei from the
four-nuclei mixing experiment using the ec method showing very low contaminations between BAGs.
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particular the presence of persulfate, as has been previously noted
(Wang et al. 2017).

One can further lower background errors to a large extent
by demanding to see a variant as concordant in at least two
BAGs. For applications such as studying cell lineage based on var-
iants, one would require mutations shared by at least two cells. In
Supplemental Table S2, we note the incidence of variant reads oc-
curring at all homozygous reference positions on all chromo-
somes, the positions of which are seen in at least two BAGs and
in each BAG with concordance. We note that if we restrict to var-
iants appearing in at least two BAGs, then such variants occur with
a frequency of 10−5 to 10−6.

Let us call a variant that appears in two BAGs, in each with
concordance, a “candidate” variant. We have thus put an impres-
sive upper boundon the error rate for candidate variants. But this is
not a least upper bound, because some of these variants might ac-
tually be somatic variation between these fibroblast cells and the
blood DNA, and not sequence error. To explore this further, we
consider the two genome strands since we can tell them apart. In
this data set, if a position is captured on one strand in at least
two BAGs (in each with concordance), ∼40% of the time that po-
sition is captured on the opposite strand in at least one BAG.When
the position of a candidate variant can be observed on the comple-
mentary captured strand, the complement of the variant is seen
∼56% of the time. Thus, the candidate is most likely a somatic var-
iant between the fibroblast and blood DNA, not sequencing error.
Thus, one may make discovery of somatic mutation from single-
cell genome data obtained using our current protocol.

Measuring cross-contamination
BAGs are semiclosed systems. They are porous and accessible by
diffusion, but the trapped contents of the cell, once covalently
linked to the polyacrylamide skeleton, will not leak out. Were
this otherwise, wewould not obtain the distinct copy number pro-
files that we see in mixed cell populations. However, we can now
make this a quantitatively precise conclusion. To examine just
how little cross-contamination does occur, we used SNV analysis
from the four genome mixing experiments (illustrated in Fig.
2A), but looking only at the two genomes for which we had com-
plete genome sequence data, SK-BR-3 and SKN1. We considered
only “mutually distinct” variants and used the error-correction
rules just described. Thenwe looked for consensus reads of distinct
variants found in one ormore BAGs thatmatch thewrong genome
(Supplemental Table S3). It is evident that there are very few dis-
tinct variants from the SK-BR-3 genome that are seen as consensus
reads in SKN1 BAGs (110 out of 29,360 observed variant posi-
tions), and the reverse (261 from SKN1 out of 125,468 seen in
SK-BR-3 BAGs). The average minority SNV ratio is 0.2% for SK-
BR-3 nuclei and 0.4% for SKN1 nuclei (Fig. 4B), and the minority
SNV ratios (0.2% to 0.4%) agree with the ploidy of SKN1 (diploid)
versus SK-BR-3 (tetraploid).

Single-cell mRNA BAG libraries
BAG technology is flexible and can also be used for single-cell
mRNA analysis using a 5′-Acrydite primer containing a 5′ PCR
primer 1 (UP1) with a poly(T) tail (see Fig. 1). After capture and
pooling, we split BAGs into a 96-well plate and used a reverse tran-
scriptase with terminal deoxynucleotidyl transferase (TdT) func-
tion to add to the cDNA a varietal tag, first BAG barcode, and a
common adapter sequence. We pooled BAGs again and split into
another 96-well plate, where the second round of BAG barcodes

withPrimer 2 (UP2)washybridized tomoleculeswith the common
adapter, and amplified by PCR (seeMethods; Fig. 1; for details, Sup-
plemental Methods). Following amplification, we fragmented the
cDNA amplification product using the Nextera XT kit. After final
amplification using the Nextera primer and P5-UP2 primer,
“Read 1” corresponds to the 5′ end of the captured nucleic acid,
the varietal tag, and the BAG barcodes and is used for deconvolu-
tion and counting of templates. “Read 2” is used for mapping to
the genome.

To show themethod works for RNA, we executed an assay on
mixed cell populations of SKN1 and SK-BR-3 cells. FromRead 2, we
found that 70% of the bases were mapped to the exons (40% cod-
ing and 30% UTR), 17% were mapped to the introns, and 13%
were mapped to the intergenic regions. These figures are similar
to those we obtain using bulk RNA sequencing data. We used
the cell-specific SNVs found in exons from these two cell sources
to identify the captured cell, shown in Figure 5A. From 235 cells
(Supplemental Fig. S2B), 233 (>99%) had a clear major source for
its SNVs. We observe little to no cross-contamination judged by
the SNV analysis. From these 233 BAGs, the median minority
SNV ratio is 0.5%whether theminority source is SK-BR-3 or SKN1.

Two of the BAG barcodes appear to be associated with two
cells. We expect this is the result of “barcode collision.” The
split-and-pool method does not guarantee that each BAG receives
a unique barcode. The collision rate is driven by the number of
BAGs and the number of possible barcodes. If there were 96×96
∼104 possible barcodes and if we picked barcodes at random 235
times, we expect the 2.9 barcodes to be picked twice, producing
a collision. Collisions can be reduced by increasing the number
of possible barcodes, as we will discuss.

The reads were then collapsed by their varietal tags to count
how many uniquely tagged templates and genes were captured
in each BAG. The median number of genes captured from 152 sin-
gle SKN1 cells and 81 single SK-BR-3 cells was 6560 and 6542, re-
spectively (Fig. 5B), and the median number of uniquely tagged
templates captured from single SKN1 cells and SK-BR-3 cells was
37,429 and 51,128, respectively (Fig. 5C). These numbers compare
favorably to what we obtained from previously used or commer-
cially available methods.

The average number of reads per uniquely tagged template
(RPT) was 5.9 for SK-BR-3 and 6.1 for SKN1. To estimate whether
we have sequenced to saturation, we downsampled the reads
and recomputed the unique templates and genes detected from
these reads. From the shape of the downsampling curves (see
Supplemental Fig. S6), more new templates would be observed
by deeper sequencing of the libraries.

To study the consistency of gene expression between single
cells of the same type, we performed PCA analysis after normaliz-
ing and centering the expression matrix. The first principal com-
ponent (PC1) dominates and clearly separates SKN1 cells from
SK-BR-3 cells (Fig. 5D). Two SKN1 and SK-BR-3 bulk RNA expres-
sion profiles from the conventional RNA sequencing method fit
well among the single-cell RNA (scRNA) expression profiles (Fig.
5D). We calculated the correlation coefficients between gene ex-
pression and PC1 and plotted a heatmap composed of the top 20
positively correlated genes and the top 20 negatively correlated
genes (Fig. 5E). Among the genes most correlated with PC1 in
the fibroblast cells are collagen genes, and in the epithelial cancer
cell line, SK-BR-3, are the keratin 8 (KRT8), ERBB2, and ERBB2 sig-
naling pathway genes.

To show scalability, we implemented three cycles of split-
and-pool by adding a denaturation–hybridization–extension step
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after the first split-and-pool (see Supplemental Method S2). This
generates around 1 million (96×96×96) different BAG barcodes.
We showed performance in a mixture of SKN1 and SK-BR-3 cells
surveying a total of approximately 3000 cells (Supplemental Fig.
S2C). After counting cell line–specific SNPs and removing BAGs
with fewer than 5000 unique tags, we identified 1663 BAGs as
SKN1 cells and 1193 BAGs as SK-BR-3 cells. We identified 19

BAGs as having mixed identity, showing SNP ratios between
15% and 85% (Fig. 5F). The observed barcode collision rate is
0.66%. The SKN1 and SK-BR-3 populations are easily separable
in the first component of PCA analysis (Fig. 5G).

One key advantage of BAG-seq is its high cell-capture efficien-
cy,making it an ideal technique for studying a rare cell population.
To show this important feature and also to show its performance

BA

ED

GF

C

Figure 5. Single-cell RNA (scRNA) BAG showing high yield, low contamination, and consistent expression profiles. (A–E) A two-cycle split-pool exper-
iment including 235 cells. (F,G) A three-cycle split-pool experiment including 2875 cells. (A) Scatter plot showing the number of SKN1-specific and SK-
BR-3–specific SNVs found in exons for each cell. BAGs with majority SKN1 or SK-BR-3 SNVs are colored blue or green. Two (0.85% of total) BAGs without
clear majority SNVs are labeled as red. (B) Boxplot showing the number of genes detected per cell. (C) Boxplot showing the number of unique templates
captured per cell. (D) Scatter plot of PC1 versus PC2. The scRNA BAGs are colored by their majority SNVs defined in A. Two bulk RNA data sets for SKN1 and
SK-BR-3 clusters with their respective single-cell data. The contribution of PC1 ismore than eight times that of PC2 (25.2%/3.0%). (E) Heatmap based on 40
(20+, 20−) genes with themost positive and negative correlations to PC1. (F ) Scatter plot showing the number of SKN1-specific and SK-BR-3–specific SNVs
found in exons for each cell in the three-cycle split-pool experiments. Nineteen (0.66% of total) cells without clear majority SNVs are labeled as red. (G) PC1
versus PC2 from the 2875 cells in the three-cycle split-pool experiment illustrated in F.
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on complex cell populations, we performed single-nuclei RNA
BAG-seq on a specific region of mouse brain. In this experiment,
we collected a subset of the bed nucleus of the stria terminalis
(BNST) called the principal nucleus (BNSTp) from five male mice
and five female mice and pooled the nuclei from male or female
mice, respectively. The area is sexually dimorphic in both mice
and humans, with ∼45% more neurons present in the BNSTp of
male mice compared with females (Allen and Gorski 1990;
Forger et al. 2004; Sokolowski and Corbin 2012; Welch et al.
2019). We studied 540 male mouse nuclei and 320 female mouse
nuclei in this experiment. After clustering, we obtained eight cell
populations (Fig. 6A–C). By comparing the number of nuclei be-
tween sexes in each cluster, we identified that in one of the eight
clusters, the number of nuclei from males is significantly larger
than that from females (Supplemental Table S4). We identified
several marker genes that distinguish between each cluster and
showed that this method distinguishes between neuronal and
nonneuronal cells and between excitatory and inhibitory neurons
(Fig. 6D).

Discussion
We have continued the evolution of methods for single-cell anal-
ysis. The first methods required isolating single cells into micro-

wells (Navin et al. 2011). This idea was then extended by
robotics (Wang et al. 2012; Gao et al. 2017; Gierahn et al. 2017).
The method also evolved by using droplets in oil to isolate cells
and then transferring the cell contents to beads coencapsulated
with the cells (Klein et al. 2015; Macosko et al. 2015). Other meth-
ods used nuclei or fixed cells as vehicles for combinatorial index-
ing (Cusanovich et al. 2015; Rosenberg et al. 2018). Each of
these methods has drawbacks, in the form of either expensive ma-
chinery, low yield per cell, limitations of Poisson sampling, re-
quirements of nuclei isolation or cell fixation, or costly barcoded
beads and reagents. In our present embodiment, we use aqueous
droplets to isolate the cells, but the cell and its contents are poly-
merized and form the bead itself. By including Acrydite-modified
primers, the nucleic acid sequences of the cell become bound to
the acrylamide matrix. We call these cells in a ball of acrylamide
gel (C-BAGs). Unlike other “cell bead” ideas (Tamminen and
Virta 2015; Andor et al. 2018), in C-BAGs the first copy of nuclei
acids is covalently bound to the gel matrix and individually tagged
by a split-and-pool strategy.

The apparatus is inexpensive, and we estimate the cost per
cell to be $0.50 when performed on the scale of a few hundred
cells, with costs asymptotic to zero on a larger scale, which is a ge-
neral feature for split-and-pool technologies. Unlike other droplet
methods inwhich the barcoded bead ismuch smaller than the size

A B

C D

Figure 6. Comparison of single-nuclei RNA clusters distinguishing sexes. (A) UMAP clustering of 860 nuclei frombrain BNSTp region, and colored by sex.
(B) Eight clusters in A are distinguished and labeled using different colors. (C) Nuclei are split by sex. There are 540 nuclei frommales and 320 nuclei from
females. (D) Dotplot showing features expression across all clusters. The size of the dot indicates the percentage of cells within a cluster, and the brightness
of color indicates the expression level in a cluster.
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of a droplet, in our method, the capture bead becomes the size of
the droplet so, in theory, capture should bemore efficient. The nu-
cleic acid capture reagents that fix the cell contents to the BAG
skeleton can be custom designed. The BAG that forms is perme-
able, and its contents can then be processed easily and cheaply
in an aqueous environment. We exploit this feature to generate
BAG barcodes, subsequent to their formation, by split-and-pool
synthesis, obviating the need for expensive reagents or kits.Weob-
serve virtually no cross-contamination between BAGs.We do have
occasional barcode collisions, as expected. These can be mini-
mized by increasing the number of barcodes as we showed in the
Results.

We have illustrated the BAG-seq method for single-cell DNA.
For this purpose, we used a non-self-annealing TG primer to trap
the cell DNA. The sequence distribution is sufficiently uniform
(Supplemental Fig. S1B), and we use varietal tags for accurate
counting of the initial templates, so that with empirical bin nor-
malization we obtain a genome copy number resolution equiva-
lent to our best previous manual methods. There is virtually no
cross-contamination between BAGs. Sequence error can be re-
duced with template varietal tags and the template concordance
method so that single-cell variant calling is feasible.

With minor modifications of the capture primer and the bar-
coding method, the C-BAGs capture RNA and can produce scRNA
libraries. At our sequence depth, about 250 cells per lane of
Illumina NextSeq for the two-cycle SKN1-SB-BR-3 mixing BAG-
seq experiment, we capture about 50,000 unique templates per
cell and on the order of 6500 expressed genes per cell. Deeper se-
quencing would yield higher numbers (Supplemental Fig. S6). By
integrating over all BAGs, we obtain the full spectrum of genes
found by bulk sequencing. We observe little to no cross-contami-
nation, as judged by SNV analysis. For comparison to other scRNA
technologies, we performed a scRNA BAG-seq using HEK293 cells
(Supplemental Fig. S7). We show that the BAG-seq method ex-
ceeds the number of genes and unique templates captured per
cell and has fewer barcode collisions compared with other high-
throughput methods (Supplemental Text). Many other variations
in methods for RNA trapping, extension, and barcoding might be
tested in the future such as encapsulating beads in BAGs. The pre-
sentmethod should keep pacewith or exceed future developments
in commercially available methods and at lower costs.

The protocol makes efficient use of sample cells since it does
not depend on two simultaneous Poisson events: one sampling
cells; the other, beads. Thus, we can examine a few hundred cells,
which is important if the sample is scarce and precious. By the
same token, running devices in parallel could generate millions
of C-BAGs and, after split-and-pool tagging, still achieve a one-
to-one correspondence between tag and cell.

As this last example illustrates, BAG technology is very flexi-
ble. Although we have presented two applications, many other
possible uses of BAGs merit development. For some of these, alter-
native ways of linking the cell nucleic acids, or proteins, to the gel
matrix will need to be developed. In principle, BAGs could capture
both DNA and RNA for making dual libraries from single cells.
Capturing RNA and/or protein, followed by reaction with fluores-
cent probes, could enable enrichment for BAGs containing the
content of rare subtypes of cells, for example, by fluorescence-acti-
vated cell sorting (FACS). In principle, the BAGs are reusable, and
one can select BAGs for deeper analysis as desired. It should be pos-
sible to freeze and store themuntil one is ready for sequencing.We
might be able to reencapsulate BAGs into oil if further biochemical
steps required reisolation.

Methods

Samples
In the experiments, we used a normal skin fibroblast cell strain
(SKN1) and three breast tumor cell lines (SK-BR-3, BT-20, and
MCF-7). Clinical specimens were as previously cited (Alexander
et al. 2018). In particular, a tissue biopsy was obtained from a pa-
tient (COR003.GS9.2) undergoing radical prostatectomy (RP) at
New York–Presbyterian/Weill Cornell Medical Center. The
Gleason score (GS) at RP was GS9 (4+5). One-millimeter-diameter
cores of frozen tissue were placed into a sterile tube and main-
tained on dry ice to transfer to Cold Spring Harbor Laboratory
(CSHL) for further processing. Clinical and pathological data
were collected and maintained in a database curated by the Weill
Cornell Medical College Center’s Prostate Cancer Biobank. Also,
tissue biopsies were obtained from a patient (NYU005) undergoing
prostate biopsy at the Smilow Comprehensive Prostate Cancer
Center (SCPCC) at NYU LangoneMedical Center. This patient un-
derwent a systematic transrectal ultrasound prostate biopsy (TRUS-
Bx) and an MRI-TRUS fusion-targeted biopsy (TBx). Individual
cores of prostate tissue were placed in site-separated vials filled
with 5 mL of sterile wash buffer (1× PBS containing 0.5% BSA
[Thermo Fisher Scientific B14] and 2mMEDTA) and gently invert-
ed several times for 60 sec to enhance exfoliation of prostate cells.
After inversion, prostate cores were removed from the wash solu-
tion using disposable single-use sterile forceps and transferred to
site-separated containers with formalin fixative for histological
processing and pathological evaluation. The biopsy GS for
NYU005 was GS7 (3 +4). The presence of perineural invasion
(PNI) was noted in the final diagnostic pathology report. Prostate
biopsy washings were kept on wet ice for 1–2 h during transfer
to CSHL, where the cell suspensions were briefly centrifuged to
pellet the cells and lysed using NST-DAPI buffer as described in
the previous study (Navin et al. 2011). This patient underwent a
RP in which the GS7 at biopsy was downgraded to GS6 at RP.

Mouse experiments were performed under the guidelines
of the CSHL Institutional Animal Care and Use Committee
(IACUC). Esr1cre (Lee et al. 2014) and ROSA26CAG-Sun1/sfGFP
(INTACT) (Mo et al. 2015) mice were obtained from the Jackson
Laboratory and crossed to generate Esr1cre; INTACT animals.

Isolating nuclei
Nuclei were prepared from four sources. First, nuclei from cell lines
were isolated using nuclei EZ Lysis buffer from a nuclei EZ prep kit
(Sigma-Aldrich NUC101). Second, nuclei from frozen tissue were
isolated using the protocol described by Habib et al. (2017). The
nucleiwere stored in ice-cold PBS-BSA (0.05%) buffer. Third, nuclei
from biopsy washings were isolated using NST-DAPI buffer. Nuclei
from prostate biopsy washes were prepared by gently centrifuging
washings at 1000 rpm for 5 min to pellet the exfoliated cells fol-
lowed by removal of supernatant and addition of 1.0 mL of NST-
DAPI buffer to the cell pellet. All nuclei suspensions were filtered
through a 35-µm cell strainer before flow sorting. Single nuclei re-
gardless of ploidy were sorted into an Eppendorf tube using a BD
Biosystems SORP flow cytometer. Fourth, nuclei were isolated
from the mouse BNSTp as described previously (Mo et al. 2015)
with minor modifications. BNSTp tissue was microdissected from
500-mm brain sections after rapid decapitation of anesthetized
animals. Tissue was pooled from five P14 male and female
animals heterozygous for the Esr1cre and INTACT alleles. The
tissue was dounce homogenized 15× with a loose pestle in a glass
homogenizer containing homogenization medium (250 mM
sucrose, 25 mM KCl, 5 mM MgCl2, 20 mM Tricine-KOH, 1 mM
DTT, 0.15 mM spermine, 0.5 mM spermidine, 1× EDTA-free
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protease inhibitor cocktail [Roche], 0.2 U/μL RNaseOUT [Thermo
Fisher Scientific], adjusted to pH 7.8). We added 0.3% IGEPAL
CA-630, and the tissue was further dounced 5× with a tight pestle.
The homogenate was then filtered through a 40-µm strainer and
mixed 1:1 with 50%OptiPrep solution (Millipore Sigma), prepared
in dilution buffer (150 mM KCl, 30 mM MgCl2, 120 mM Tricine-
KOH, adjusted to pH 7.8). The homogenate was underlaid with
5 mL of 30% and 40% OptiPrep solution, respectively, and centri-
fuged at 9200 RPM for 18 min at 4°C in an ultracentrifuge using
a Beckman SW-28 swinging bucket rotor. After centrifugation,
∼2 mL of nuclei solution was removed from the 30%–40%
OptiPrep interface by tube puncture using a 3-mL syringe attached
to an 18-gauge needle.

Single-nucleus/cell encapsulation
Nuclei were encapsulated into aqueous droplets using a 70-µm-
channel DroNc-seq device (Nanoshift), and the droplets were
polymerized into BAGs. The droplet formation requires two aque-
ous phases and one oil phase. The oil phase recipe and acrylamide
monomer concentration were adapted from the published proto-
col (Zilionis et al. 2017), but 5% surfactant (Ran Technologies
008-FluoroSurfactant) was used in HFE-7500 oil (Oakwood
Chemical 051243). Aqueous phase 1 is nuclei or cells in PBS-BSA
(0.05%) buffer.

For the single-cell DNA experiments and for the purpose of
forming a BAG, 1 mL of aqueous phase 2 contains 180 µL of
40% AA/bis-acrylamide solution (Sigma-Aldrich A9926), 129 µL
of 40% Acrylamide solution (Sigma-Aldrich A4058), 160 µL of
500 µM Acrydite-random (TG) primer (“/5ACryd//iSp18/TGTGT
TGGGTGTGTTTGGKKKKKKKGKKKKKKKKNN,” Integrated DNA
Technologies), 100 µL of 1M Tris-HCl (pH 7.5), 50 µL of 0.5M
EDTA, 10 µL of 20% sarkosyl (Sigma-Aldrich L7414), 20 µL of
Proteinase K (Sigma-Aldrich P4850), 20 µL of 0.1M DTT, 60 µL
of freshly made 10% APS, and 271 µL of H2O. The output of the
device was collected into 1.5-mL Eppendorf tubes preloaded
with 300 µL mineral light oil. Upon collection, a milky-colored
droplet layer forms between the heavy and light transparent oil
layers in the tube.

The tubes were then incubated overnight at 50°C. After incu-
bation, the bottom heavy oil layer was replaced by a new oil layer
consisting of FC-40 oil (Sigma-Aldrich F9755) with 5% surfactant.
The tubes were then transferred to a heating block preset at 95°C
formelting DNA. After heating for 12min, the tubes were incubat-
ed for 1 h at 55°C and then for another 10 min at room tempera-
ture to allow annealing. The top and bottom layers of oil were
removed, and the BAGs were washed twice using a mixture of
600 µL 6× SSC solution (Thermo Fisher Scientific 15557036) and
150 µL of 1H,1H,2H,2H-Perfluoro-1-octanol (Sigma-Aldrich
370533). The BAGs were then washed once using 6× SSC solution
and once with 1× NEBuffer 2.

For the scRNA experiments, 1mLof aqueous phase 2 contains
180 µL of 40% AA/bis-acrylamide solution, 129 µL of 40%
Acrylamide solution, 80 µL of 500 µM Acrydite-poly(T) primer
(“/5ACryd//iSp18/AAGCAGTGGTATCAACGCAGAGTNNWNNN
STTTTTTTTTTTTTTTTTTTTTTTTTTTTTT,” Integrated DNA Tech-
nologies), 70 µL of 1M Tris-HCl (pH 7.5), 50 µL of 0.5M
EDTA, 10 µL of 20% sarkosyl (Sigma-Aldrich L7414), 100 µL of
SUPERase•In RNase inhibitor (Thermo Fisher Scientific
AM2696), 100 µL of 10% NP-40 (Thermo Fisher Scientific
28324), 30 µL of 0.1M DTT, 60 µL of freshly made 10% APS,
and 191 µL of H2O.

The tubes were incubated for 2.5 h at room temperature for
polymerization and then transferred to a heat block for 5 min at
50°C. The tubes were then incubated for another 10 min at room

temperature. The BAGs were collected as previously described for
DNA experiments but were washed using 5× RT buffer instead of
1× NEBuffer 2 in the DNA experiment.

DNA BAG first split-and-pool barcoding
Immediately after the BAGswere collected andwashed, a linear ex-
tension step using DNA polymerase I (NEBM0210) was performed
for 1.5 h at room temperature and then for 30 min at 37°C. That
was followed by a 3′ exonuclease treatment using exonuclease I
(NEB, M0293) to chew up unused single-stranded primers.
The DNA in BAGs were cut using NlaIII (NEB R0125) to generate
a 3′CATG overhang. The BAGs were then distributed into a
96-well plate. In each well, we added dNTP (Sigma-Aldrich
11814362001) and well-specific primers with the following struc-
ture: 5′ adapter 1–BAG barcode 1–varietal tag–CATG. The last two
bases (T andG) are locked nucleic acid (LNA) to improve annealing
to the four-base overhang. We then perform what we call a liga-
tion-extension reaction, in which ligation and extension occur
in the same reaction. To be specific, after the BAGs were first incu-
bated with 1 µL of 100-µM well-specific primers in 1× Quick
Ligation buffer (NEB M2200) in a total volume of 14 µL for 20
min at 4°C with rotation, 0.75 µL of quick ligase (NEB M2200)
and 0.75 µL of Klenow fragment (NEB M0212) in 4.5 µL of 1×
Quick Ligation buffer were added. The plate was incubated for an-
other 20 min at 4°C with rotation and then for 30 min at 10°C to
promote ligation. Following that, the plate was then rotated for 40
min at room temperature and then for another 40 min at 37°C to
allow linear extension. The reaction was stopped by high-EDTA
buffer STOP-25. The beads were then pooled together and washed
by STOP-10 (Supplemental Method S1).

RNA BAG first split-and-pool barcoding
For scRNA experiments, immediately after we collected and
washed the gel balls from oil, we distributed them into 96-well
plates for reverse transcription using Maxima H Minus Reverse
Transcriptase (Thermo Fisher Scientific EP0751). During reverse
transcription, each well has a well-specific template-switch-oligo
with the structure: 5′ adapter 1–BAG barcode 1–varietal tag–
rGrGrG. Here “rG” means a ribonucleotide guanine base. The
BAG barcode 1 sequence and varietal tag sequence were copied
to the cDNA by reverse transcriptase. The reaction was stopped
by high-SDS buffer TE-SDS (Supplemental Method S2) and then
pooled and washed by STOP-10 buffer. An exonuclease reaction
was followed to chew up the free primers in the BAGs.

The last split-and-pool barcoding
For both single-cell DNA and RNA experiments, the last round of
BAG barcode was added in the same way. Many strategies can be
used to perform split-and-pool (Cao et al. 2017; Vitak et al. 2017;
Rosenberg et al. 2018; Cao et al. 2019), and additional rounds of
BAG split-barcodes can be added based on the common sequence
from the previous round (Supplemental Method S2). Here we used
PCR to add 96 different BAG barcodes in the last split. In eachwell,
there is a universal PCR primer and a well-specific primer contain-
ing different barcodes. BAGs from the last split-and-pool were
evenly distributed into 96 wells. DNA BAGs were amplified using
NEBNext ultra II Q5mastermix (NEBM0544). RNABAGswere am-
plified using KAPA HiFi HotStart ReadyMix (Roche KK2602). The
PCR product was pooled together and purified using AMPure XP
magnetic beads (Bechman Coulter A63881).

Li et al.

10 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on April 8, 2022 - Published by genome.cshlp.orgDownloaded from 



187               Appendix 
 

 

 
 
 

Single-nuclei WGA method
We used single-nuclei DNA data previously generated from a pre-
vious WGA method (Alexander et al. 2018). Briefly, single nuclei
were deposited into individual wells in a 96-well plate and ampli-
fied using GenomePlex WGA4 kit (Sigma-Aldrich WGA4-50RXN)
according to the manufacturer’s instructions. WGA DNAwas son-
icated using a Covaris focus acoustics system. The Covaris E210
300± sonication program generated WGA DNA inserts of the de-
sired length, ∼300 bp (range 200–400 bp), for library construction.
Customized well-specific barcodes were ligated to the fragments in
each well. Multiple libraries were combined into pools ranging
from eight to 12 libraries to pools of 96 libraries for 76-bp single-
read sequencing on single lanes of Illumina’s GAIIx and HiSeq
flowcells, respectively. The first 30 bases of each readwere trimmed
to remove any WGA primer sequence.

Bulk RNA sequencing
Total RNA from each cell line was extracted using Direct-zol RNA
MiniPrep plus kit (Zymo Research R2070). mRNA isolation was
performed using a NEBNext Poly(A) mRNA magnetic isolation
module (NEB E7490). Sequencing library was prepared using a
NEBNext ultra II directional RNA library prep kit for Illumina
(NEB E7760).

Estimating cell capture efficiency
First, wemeasured the cell solution volume and cell concentration
using a cell counter. We loaded a one:one ratio of cell solution
(aqueous phase 1) and aqueous phase 2 into the microfluidic de-
vice. After collecting and polymerizing the droplets, we measured
the volume of the recovered aqueous phase containing BAGs, as
well as the total number of BAGs by counting under a stereo-micro-
scope. At this time point, we measured the cell occupancy rate in
BAGs by DAPI staining and counting through a fluorescent micro-
scope. BAGs with a cell in them were much brighter than empty
BAGs in DAPI channel. By using the cell occupancy rate, we esti-
mated the total number of recovered cells in BAGs.

We also measured the number of BAGs by counting under a
stereo-microscope before wemade the cDNA library, and recorded
the number of cells in the final sequencing library with high read
counts. There was little loss of BAGs during the split-and-pool pro-
cedure, and essentially every BAG with a cell yielded a single-cell
library.

Read alignment
For DNA data, Illumina sequence files were preprocessed before
mapping to remove reads that do not conform to expectation, to
retain those that do, and to trim away sequences not needed for
mapping. In particular, read pairs were removed if the CATG
NlaIII cut site sequence was not in base positions 31 to 34 on
Read 2 with a maximum of one mismatched base. Reads 1 and 2
were then both trimmed to remove 3′ bases that matched
Illumina adapter sequence or universal primer sequence. Read
pairs with both ends at least 100 bases after trimming were
retained for mapping. Reads were mapped to the UCSC hg19
reference genome using HISAT2 version 2.1.0 (Kim et al. 2015)
with default parameters except for the following: -3 25, -X 2000,
‐‐no-spliced-alignment. Aligning reads to genome assembly
GRCh38 would not impact our study, as the updates to the ge-
nome assembly are primarily related to population variation and
filling of gaps (Schneider et al. 2017). The identifying sequence
in the DNA protocol is on Read 2. The BAG barcode, base positions
one through six appended to base positions 22 through 26, and

the varietal tag, base positions 27 through 30, were appended
the read ID in the FASTQ file. This allowed read pair identity to
be tracked through subsequent processing.

The first three steps in the RNA data processing pipeline are as
follows: (1) select reads with valid sequence structure on Read 1 to
be included in the analysis, (2) extract identifying BAG barcode
and varietal tag sequences and append these to the read ID in
the FASTQ files, and (3) map reads. The different RNA libraries in
the paper were processed in slightly different ways.

Step 1 (check sequence structure)
For the SKN1, SK-BR-3 2 split-pool library, reads with GGG in
positions 38 through 40 and positions seven through 25 match-
ing the primer sequence, AGTGGAAAAGGAAGGTGGT, up to
two mismatches, were included in further processing. For the
HEK293 and the BNSTp libraries, reads with GGG in positions
38 through 40, allowing up to one mismatch, and positions one
through six and 26 through 31 having valid BAG barcodes were in-
cluded for further processing. For the SKN1, SK-BR-3 3 split-pool
sample, reads with GGG in positions 67 through 69, allowing up
to one mismatch, and positions one through six, 30 through 35,
and 55 through 60 having valid BAG barcodes were included for
further processing.

Step 2 (extract BAG barcode and varietal tag)
For the SKN1, SK-BR-3 2 split-pool, HEK293, and BNSTp libraries,
BAG barcodes are positions one through six and 26 through
31 from Read 1. Varietal tags are positions 32 through 37 and
43 through 48 from Read 1. For the SKN1, SK-BR-3 3 split-pool,
BAG barcodes are positions one through six, 30 through 35, and
55 through 60 from Read 1. Varietal tags are positions 61 through
66 and 72 through 77 from Read 1.

Step 3 (map to reference genome)
For the SKN1, SK-BR-3 2 split-pool, SKN1, SK-BR-3 3 split-pool, and
HEK293 libraries, 76 bases of Read 2 were mapped to the UCSC
hg19 reference genome with UCSC refGene annotations for
known splice sites using HISAT2 version 2.1.0 with default param-
eters. For the BNSTp library, 50 bases of Read 2 weremapped to the
UCSCmm9 reference genomewithUCSC refGene annotations for
known splice sites using HISAT2 version 2.1.0 with default param-
eters. The updates in GRCm38 (mm10) from mm9 mainly filled
gaps and finished the sequence of repetitive genomic regions, so
the genic sequence inmm9 is sufficiently complete for the analysis
presented here.

Copy number analysis
For the purpose of copy number analysis, the genome was divided
into either 5000 or 20,000 bins. The bin boundaries were deter-
mined empirically from the data to generate a uniform distribu-
tion for the number of tags mapping to each bin assuming a
constant copy number (Supplemental Fig. S1B). For this purpose,
all the reads from the good SKN1 single-cell libraries were used.

Bincount data for all BAG barcodes with at least 100,000
unique tags, based on varietal tag andmapping location, were nor-
malized by first computing log(bincount +1)/mean(bincount+1)
and then further normalized for GC content by lowess normaliza-
tion in R programming language (R Core Team 2018) with
parameter f=0.05. The normalized bincount vectors were then
segmented using DNAcopy version 1.50.5 (Olshen et al. 2004).
DNAcopy parameters used were alpha=0.02, nperm=1000,
undo.SD=0.5, and min.width=3. Copy number heatmaps
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were made using the heatmap function in R using the segmented
bin values. The distance function used was “manhattan,” and
the hierarchical clustering agglomeration method used was
“ward.D2.”

Individual genome plots were made after estimating ploidy.
After normalization, the segmentation vectors have a mean value
of one. Ploidy was estimated by multiplying these vectors by 1.5,
1.55, 1.6, …, 4.5 and using the multiplier that minimizes the
sum of square error from the multiplied vector to the multiplied
vector rounded to nearest integers. This multiplier is the ploidy es-
timate. The segmentation vector is multiplied by the ploidy esti-
mate to get a segmentation that has as much as possible of the
genome on segments close to integer values. For SKN1, the frozen
tumor sample, and the biopsy washes, these segmentation values
are the y-axis values on the genome plots. For the cell line samples
in the four-nuclei mixing library, there are copy number values
ranging from zero to almost 100. To visualize these values more
clearly, the y-axis values are log(y+1) with horizontal lines corre-
sponding to copy numbers 1, 2, 3, 4, 20, 50, and 80 displayed.

Base calling error rate analysis
To assess the sequence error in libraries made by the BAGmethod,
we used assays based on SKN1. This is a cell strain for which we
have the whole-genome sequence (WGS) of the donor from his
blood DNA. Illumina sequence data from the donor were mapped
to the reference genome using Bowtie 2 version 2.3.2-legacy
(Langmead and Salzberg 2012) with indel realignment using
GATK version 1.6-13 (McKenna et al. 2010).Mapped reads were se-
lected for error rate analysis provided they had a read mapping
quality at least 30, bases called with a base quality at least 30, ge-
nome positions with a read depth of at least 20, and no SNPs or
indels called in this region. This resulted in 1.25 Gb (1.25 billion
bases) used for this analysis. At these 1.25 Gb, the BAG data were
evaluated for mismatches to the reference genome, as follows.
We first determined “template read sets” as the set of reads sharing
identical BAG barcode, varietal tags, and map position. We called
positions from template read sets of at least twomembers and then
only if at least 80% of reads agreed.Most of the nonconsensus base
positions had exactly two reads, one of which did not match the
reference genome.

Cell source–specific SNVs
Cell-specific SNVs were called as follows. Illumina WGS data for
the cell sources SKN1 and SK-BR-3 were mapped using Bowtie 2
version 2.3.2-legacy. Variants are called using reads with mapping
quality of at least 30 where a nonreference base (with base quality
at least 20) is seen at least three times and in at least 5% of reads
covering this position. A variant is considered to be specific to
one cell line if the variant is not seen in the other cell line where
there are at least 12 reads of mapping quality at least 30 and requir-
ing a base quality at least 20. There were 617,608 SNVs specific to
SK-BR-3 and 561,443 specific to SKN1. BAG data were evaluated at
these SNV sites after removing six SNV sites prone to anomalous
mapping artifacts. These positions were Chr 1: 569874, Chr 6:
58777419, Chr 6: 58778584, Chr 6: 58779097, Chr 7: 61969087,
and Chr 10: 42385520.

Gene expression analysis
For bulk RNAanalysis, reads thatmapped completelywithin exons
for a transcript in UCSC refGene annotations were counted and as-
signed to that transcript. Values at reads per kilobase per million
reads (RPKM) were then computed for all transcripts. To get

RPKM values for a gene with multiple transcripts, the transcript
with the highest RPKM value was used.

For single-cell analysis, reads that mapped with ≥50% of the
read length within exons for a transcript in UCSC refGene annota-
tions were counted for that transcript’s gene.

RNA principal component analysis and clustering
For the SKN1, SK-BR-3 experiments, expression level values were
first normalized by the mean for each sample, and then the log
of the expression level +1was centered for each gene using the cen-
ter function in R with the scale parameter = F. The principal com-
ponents were computed using the “prcomp” function in R with
parameters center =T and scale =T. The coefficients of the first
two principal components were plotted in a scatter plot with
points colored according to their cell type as assessed by SNV anal-
ysis. The genes selected for the heatmapwere the 40 geneswith the
most extreme correlations (20most positive and 20most negative)
to the loadings on principal component 1. The data were clustered
by sample and displayed using the R heatmap function with clus-
tering parameters, distance function “Euclidean,” and hierarchical
clustering agglomeration method “complete.”

For the mouse BNSTp experiment, we used R package Seurat
v3 (Stuart et al. 2019) and UMAP clustering method (McInnes
et al. 2018) to cluster digital expression data for the 860 nuclei.
We used the default parameters for the Seurat package and used
the first 30 PCA components for the UMAP function.

All aspects of the research were performed with Institutional
Review Board approval.

Data access
The raw sequencing reads from the cell lines in this study
have been submitted to the NCBI Sequence Read Archive (SRA;
https://www.ncbi.nlm.nih.gov/sra/) under accession number
PRJNA566441.
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