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Extreme purifying selection against point mutations
in the human genome
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Large-scale genome sequencing has enabled the measurement of strong purifying selection

in protein-coding genes. Here we describe a new method, called ExtRaINSIGHT, for mea-

suring such selection in noncoding as well as coding regions of the human genome. ExtRa-

INSIGHT estimates the prevalence of “ultraselection” by the fractional depletion of rare

single-nucleotide variants, after controlling for variation in mutation rates. Applying ExtRa-

INSIGHT to 71,702 whole genome sequences from gnomAD v3, we find abundant ultra-

selection in evolutionarily ancient miRNAs and neuronal protein-coding genes, as well as at

splice sites. By contrast, we find much less ultraselection in other noncoding RNAs and

transcription factor binding sites, and only modest levels in ultraconserved elements. We

estimate that ~0.4–0.7% of the human genome is ultraselected, implying ~ 0.26–0.51 strongly

deleterious mutations per generation. Overall, our study sheds new light on the genome-wide

distribution of fitness effects by combining deep sequencing data and classical theory from

population genetics.
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Like a gambler, an evolving species has to pay for the chance
to win. As in most games of chance, the majority of “draws”
(mutations) result in a loss (decrease in fitness), with an

occasional pay-off (adaptive mutation). Thus, in Haldane’s words,
loss of fitness owing to deleterious mutation is the “price paid by
a species for its capacity for further evolution”1.

Understanding the impact of new mutations on fitness has
been a major focus of evolutionary genetics for at least a
century1–3, with implications for a wide variety of fundamental
problems, ranging from revealing the genetic architecture of
complex traits and the effects of mutational load to under-
standing the emergence of recombination and sex4,5. Never-
theless, it is notoriously difficult to characterize the full
distribution of fitness effects (DFE) of new mutations. Naturally
occurring mutations are rare, often difficult to detect, and have
fitness effects that are generally hard to measure. Innovative
experimental techniques have been developed to measure the
DFE in model organisms, but these methods have important
limitations4 and, in any case, they cannot be applied to humans,
nor to any other organism that cannot be experimentally
manipulated and monitored in relatively large numbers.

For these reasons, many recent efforts to characterize the DFE
have focused on the study of naturally occurring mutations using
statistical modeling, population genetic theory, and DNA
sequencing6–9. Patterns of genetic variation are strongly influ-
enced by demographic history, however, so careful demographic
modeling is required to isolate the effects of selection. In addition,
most available population panels—consisting of hundreds to a
few thousand individuals—are informative about only a relatively
narrow slice of the DFE. For example, in humans strong purifying
selection (such that s > ~1%) will tend to hold variants below a
detectable frequency in these panels, whereas weak purifying
selection (such that s < ~10−4) will be indistinguishable from
random genetic drift10,11. Thus, only in approximately the range
10−4 < s < 10−2 can purifying selection be accurately measured.

Recently, exome or whole-genome sequence data has become
available for tens of thousands of individuals12,13, allowing quite
rare variants (with relative frequencies < 10−3) to be identified
with reasonable confidence. These data have enabled the appli-
cation of statistical methods that can measure high levels of
purifying selection against predicted loss-of-function (pLoF)
mutations for protein-coding genes by comparing the frequencies
of pLoF variants to their mutation-rate-based expectation11–16.
For example, the widely used “probability of being loss-of-
function intolerant” (pLI) measure, and its successor, the “loss-of-
function observed/expected upper bound fraction” (LOEUF)
measure, have been shown to reliably distinguish among null
(unconstrained), autosomal recessive, and haploinsufficient
genes12,13.

While such measures are correlated with dominance effects, the
frequency of rare pLoF variants is strictly informative only about
the strength of selection against hetereozygous mutations, shet17.
Indeed, if purifying selection is strong, near-complete recessivity
can be excluded, and mutation-selection balance holds, then the
equilibrium frequency for a rare variant should occur at q � μ

shet
,

where μ is the deleterious mutation rate1,17. Cassa et al.11 (see
also18) have argued that this relationship holds quite well for
pLoF variants in the ExAC exome data12 from large values of shet
down to shet ≈ 0.01 (but see ref. 19). Importantly, estimation of shet
based on mutation-selection balance is independent of demo-
graphy because, in this regime, mutant alleles persist in the
population for at most a few generations and genetic drift makes
a negligible contribution to their allele frequencies.

In this article, we extend and generalize these ideas for appli-
cation to the entire genome, including noncoding regions, in a

new method called Extremely Rare INSIGHT (ExtRaINSIGHT).
Similar to our previous Inference of Natural Selection from
Interspersed Genomically coHerent elemenTs (INSIGHT)
method20,21, ExtRaINSIGHT can be used to measure the influ-
ence of natural selection on any designated set of genomic
sequences, by contrasting patterns of variation in a designated set
of “target” sequences with those in matched sequences that are
putatively neutrally evolving. However, ExtRaINSIGHT focuses
on rare variants only, in order to obtain a measure that reflects
particularly large selective effects—that is, purifying selection
sufficiently strong that new point mutations do not appear even
as rare variants in a panel of tens of thousands of individuals. As
shorthand, we refer to such selection as “ultraselection.” ExtRa-
INSIGHT does not directly estimate shet but rather a parameter,
denoted λs, that represents the fractional depletion of rare var-
iants owing to purifying selection. However, we show that, if
mutation-selection balance can be assumed and λs is sufficiently
large, approximate estimates of shet can be obtained based on a
simple relationship with λs. We apply ExtRaINSIGHT to more
than 70,000 whole genome sequences from the Genome Aggre-
gation Database (gnomAD) project (https://gnomad.
broadinstitute.org/)13 and perform a comprehensive analysis of
ultraselection in the human genome, considering both coding and
noncoding elements. Our findings reveal both similarities and
striking differences in measures of ultraselection and weaker
purifying selection, shed light on the rate of strongly deleterious
mutations in humans, and highlight challenges in accurately
modeling mutation rates in upstream regions of genes.

Results
Overview of ExtRaINSIGHT. ExtRaINSIGHT measures the
fractional reduction in the incidence of rare variants in a target set
of sites relative to nearby sites that are putatively free from
(direct) natural selection. In this way, it is analogous to classical
strategies for measuring selection in protein-coding genes22–24, as
well as to newer methods that compare target sets of noncoding
elements with suitable background sequences21,25–27. The focus
on rare variants (here, variants with minor allele frequencies
of < 0.1%), however, enables the method to focus in particular on
point mutations of large selective effect.

The main challenge in this approach stems from the high
sensitivity of relative rates of rare variants to variation in
mutation rate. To address this problem, we follow refs. 12,15 in
building a mutational model that accounts for both sequence
context and regional variation in mutation rate. In our case, we
condition the rate of each type of nucleotide substitution on the
identity of the three flanking nucleotides on each side. In
addition, following our earlier work20,21, we use a local control for
overall mutation rate based on nearby sites identified as likely to
be neutrally evolving. We also consider G+C content, sequencing
coverage, and CpG islands as covariates (see Methods). With this
strategy, we are able to predict with high accuracy the probability
that a rare variant will occur at each site (Supplementary Fig. 1).
Notably, this mutation model is also predictive of de novo
variants from ref. 28 (Supplementary Fig. 3), which should be
even less influenced by selection than the rare variants in
gnomAD.

In the absence of natural selection, we assume a Bernoulli
sampling model for the presence (probability Pi) or absence
(probably 1− Pi) of a rare variant at each site i, where Pi reflects
the local sequence context and overall rate of mutation. We ignore
sites at which common variants occur (similar to refs. 12,15). We
then assume that natural selection has the effect of imposing a
fractional reduction on the rate at which rare variants occur. To a
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first approximation, we maximize the following likelihood
function,

Lðλs;Y;PÞ ¼PðY; λs;PÞ
¼

Y
i

ð1� λsÞPi

� �Yi 1� ð1� λsÞPi

� �1�Yi ð1Þ

where Yi is an indicator variable for the presence of a rare variant
at position i in the sample, λs is a scale factor capturing a depletion
of rare genetic variation, Y ¼ fYig, P ¼ fPig, and the product
excludes sites having common variants. By maximizing this
function we can obtain a maximum-likelihood estimate (MLE) of
λs conditional on pre-estimated values Pi. (In practice, we use a
slighly more complicated likelihood function that distinguishes
among the possible alternative alleles at each site; see “Methods”
for complete details.) Assuming the Pi values are pre-estimated, an
approximate, unbiased maximum-likelihood estimator (MLE) for
λs and an estimator for its variance can be obtained in closed form
(see “Methods”). Importantly, this variance has almost no
sensitivity to variance in the pre-estimated Pi values in the regime
of interest (see Supplementary Fig. 4), making the model highly
robust to uncertainty in mutation rate estimates provided they are
unbiased.

When λs falls between 0 and 1 it can be interpreted as a
measure of the prevalence of ultraselection. In this case, λs can be
thought of as the fraction of sites intolerant to heterozygous
mutations, although in practice, some sites may be more, and
some sites less, intolerant. Notice, however, that λs can also take
values < 0 if rare variants occur at a higher-than-expected rate in
the target set of sites. As we discuss below, we do observe a
systematic tendency for λs to take negative values in particular
classes of sites, likely reflecting the difficulty of precisely
specifying the mutational model at these sites. Across most of
the genome, however, estimates of λs fall between 0 and 1 and
show general qualitative agreement with other measures of
purifying selection.

Notably, in the case of strong selection against heterozygotes
and mutation-selection balance (as detailed by refs. 11,17), a
relatively simple relationship can be established between λs and
the site-specific selection coefficient against heterozygous muta-
tions, shet (see Eq. (12) in “Methods” and Supplementary Fig. 5).
To test this relationship, following ref. 18, we simulated data sets
under a realistic human demographic model with various values
of shet and estimated λs from each one. We found that this
approach led to highly accurate estimates of the true value down
to about shet= 0.03, and somewhat elevated but acceptable
estimates down to about shet= 0.02 (Supplementary Fig. 6),
which corresponds to λs ≈ 0.45 with our data set. As it turns out,
most of our estimates from real data do not exceed this threshold
but when they do, we use this approach to estimate shet.
Importantly, it is only these approximate estimates of shet, not λs
itself, that depend on the assumption of mutation-selection
balance.

Ultraselection in and around protein-coding genes. We applied
ExtRaINSIGHT to 19,955 protein-coding genes from GENCODE
v. 38 29 as well as to a variety of proximal coding-associated
sequences, including 50 and 30 untranslated regions (UTRs),
promoters, and splice sites (Fig. 1). For comparison, we applied
INSIGHT to the same sets of elements. As expected, we obtained
considerably higher estimates of λs at 0-fold degenerate (0d) sites
in coding sequences, at which each possible mutation results in
an amino-acid change (λs= 0.22), than at 4-fold degenerate (4d)
sites, at which every mutation is synonymous (λs=−0.008). The
corresponding INSIGHT-based estimates of ρ were 0.80 and
0.39, respectively. Together, we can interpret these estimates as

indicating that 22% of 0d sites are ultraselected, meaning that
any mutation at these sites would be strongly deleterious, and
another 80− 22= 58% are under weaker purifying selection—
although the ExtRaINSIGHT and INSIGHT estimates are not
precisely comparable in all respects (see “Discussion”). By con-
trast, at 4d sites, ultraselection is estimated to be completely
absent, but 39% of 4d sites experience weak purifying selection
(see ref. 9 for an estimate of 26% for synonymous sites). Overall,
about 15% of coding sites (CDS) experience ultraselection
(λs= 0.15) and another 47% experience weaker selection
(ρ= 0.62).

Among coding-related sites, the strongest selection, by far,
occurred in splice sites (see also ref. 30), where almost half of sites
were subject to ultraselection (λs= 0.45; corresponding to shet ≈
0.02), with another 43% subject to weaker selection (ρ= 0.88). By
contrast, 30 UTRs showed little evidence of ultraselection
(λs= 0.028) despite considerable evidence of weaker selection
(ρ= 0.24). Interestingly, we observed a persistent tendency for
negative estimates of λs at regions near the 50 ends of genes, at
both 50 UTRs and promoter regions, despite non-neglible
estimates of ρ (0.22 and 0.13, respectively). As we discuss in a
later section, these estimates appear to be a consequence of
unusual mutational patterns in these regions that are difficult to
accommodate using even our regional and neighbor-dependent
mutation model.

To see whether ExtRaINSIGHT was capable of distinguishing
among protein-coding sequences experiencing different levels of
selection against heterozygous loss-of-function (LoF) variants, we
compared it with the recently introduced “loss-of-function
observed/expected upper bound fraction” (LOEUF) measure13.
LOEUF is similarly based on rare variants but differs from
ExtRaINSIGHT in that it is computed separately for each gene by
pooling together all mutations predicted to result in loss-of-
function of that gene (including nonsense mutations, mutations
that disrupt splice sites, and frameshift mutations). In contrast to
λs and ρ, lower LOEUF scores are associated with stronger
depletions of LoF variants and increased constraint, and higher
LOEUF scores are associated with weaker depletions and reduced
constraint. To compare the two measures, we partitioned 80,950
different isoforms of 19,677 genes into deciles by LOEUF score
and ran ExtRaINSIGHT separately on the pooled coding sites
corresponding to each decile. Again, we computed ρ values using
INSIGHT together with the λs values. We found that both ρ and λs
decreased monotonically with LOEUF decile, with λs ranging from
0.28 for the genes having the lowest LOEUF scores to 0.008 for the
genes having the highest LOEUF scores, and ρ similarly ranging
from 0.77 to 0.43 (Fig. 1). These results suggest that in the 10% of
genes under the weakest selection against heterozygous LoF
mutations, only 0.8% of sites are subject to ultraselection, but over
40% still experience weaker purifying selection; whereas in the
10% of genes under the strongest selection against LoF mutations,
almost 30% of sites are under ultraselection and another ~ 40% are
under weaker purifying selection.

Finally, we considered an alternative grouping of genes by
biological pathway, using the top-level annotation from the
Reactome pathway database31 (Fig. 2). Again, we ran both
ExtRaINSIGHT and INSIGHT on each group of genes and
observed similar trends in the two measures, with λs ranging from
10% to 27%, and ρ ranging from 61% to 75%. We found genes
annotated as belonging to the “Neuronal System” to be
experiencing the most ultraselection (λs= 0.27), consistent with
other recent findings9. Genes annotated as being involved in
“Reproduction” showed the least ultraselection (λs= 0.10).
Notably, the estimates of λs exhibited considerably greater
variation, as a fraction of the mean, than did estimates of ρ.
The ratio λs/ρ—which can be interpreted as the fraction of
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selected sites experiencing ultraselection—was also highest for
“Neuronal System” genes (at 0.36) and lowest for “Reproduction”
genes (at 0.18). An analysis of genes exhibiting tissue-specific
expression produced similar results, with several brain tissues
exhibiting the most ultraselection and vagina exhibiting the least
(Supplementary Fig. 7).

Ultraselection in noncoding elements. We carried out a similar
analysis on noncoding sequences, including a variety of non-
coding RNAs, transcription factor binding sites (TFBS) supported
by chromatin-immunoprecipitation-and-sequencing (ChIP-seq)
data (from ref. 21), and unannotated intronic and intergenic
regions. Among these sequences, we observed the strongest
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signature of ultraselection in microRNAs (miRNAs), particularly
in evolutionarily “old” miRNAs broadly shared across mammals
(designated as “conserved” by TargetScan; see “Methods”), where
we estimated λs= 0.34 (Fig. 3). We found that the seed regions of
these miRNAs had even slightly higher values of λs= 0.39.
Interestingly, however, the prevalance of ultraselection was
greatly reduced at evolutionarily “new” miRNAs that are not
shared across mammals ("nonconserved” in TargetScan), where
we estimated only λs= 0.031.

Other types of noncoding RNAs also showed little indication of
ultraselection: our estimates for long noncoding RNAs
(lncRNAs), small nuclear RNAs (snRNAs), and small nucleolar
RNAs (snoRNAs) were all close to zero or negative. In an attempt
to identify regions within these RNAs that might be subject to
stronger selection, we intersected them with conserved elements
identified by phastCons25. However, we found that even these
putatively conserved portions of noncoding RNAs exhibited at
most λs ≈ 0.05 (in lncRNAs).

When we analyzed a pooled set of all ~ 2M TFBSs from ref. 21,
we obtained a negative estimate of λs=−0.08, despite that the
same elements yielded a nonnegligible estimate of ρ= 0.23. We
therefore examined only the binding sites of the 10 TFs whose
binding sites showed the largest ρ estimates (ρ= 0.61 overall; see
“Methods”), but even for this putatively conserved set, we
obtained an estimate of only λs= 0.03. Thus, of the noncoding
RNA and TFBSs we considered, only “old” miRNAs appear to
experience high levels of ultraselection.

We also evaluated ultraconserved noncoding elements
(UCNEs)32 and noncoding human accelerated regions
(HARs)33–35—two types of elements that have been widely
studied for their unusual patterns of cross-species conservation,
and have been shown to function in various ways, including as
enhancers36,37 and noncoding-RNA transcription units33.

Interestingly, despite their extreme levels of cross-species
conservation, UCNEs show only modest levels of ultraselection,
with λs= 0.09. This observation suggests that what is unusual
about these elements is not the strength of selection acting on
them (which is considerably weaker than that at protein-coding
sequences or “old” miRNAs), but instead the uniformity of
selection acting at each nucleotide (see “Discussion”). Notably,
HARs display only slightly lower levels of ultraselection than
UCNEs (λs= 0.04) and levels comparable to those of conserved
sequences in introns. Thus, despite their rapid evolutionary
change during the past 5–7 million years, HARs now appear to
contain many nucleotides that are under strong purifying
selection in human populations.

A genome-wide accounting of sites subject to ultraselection. To
account genome-wide for the incidence of strongly deleterious
mutations, we ran ExtRaINSIGHT on a collection of mutually
exclusive and exhaustive annotations. For this analysis, we con-
sidered CDSs, UTRs, splice sites, lncRNAs, introns, and inter-
genic regions, but excluded smaller classes of noncoding RNAs,
which make negligible genome-wide contributions (Table 1). As
above, we intersected the lncRNA, intron, and intergenic classes
with phastCons elements, and separately considered the con-
served and nonconserved partitions of each class. For each
category, we multiplied our estimate of λs by the number of sites
in the category to estimate category-specific expected numbers of
sites subject to ultraselection. To account for potential mis-
specification of the mutational model, we conservatively sub-
tracted from the category-specific estimates of λs the estimate for
nonconserved intronic regions (0.009). Thus, by construction, the
expected number of ultraselected sites in these and similar regions
(including nonconserved intergenic and lncRNA sites) was zero.
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Overall, we estimated that 0.374% ± 0.002% of the human
genome is ultraselected, with 44% of ultraselected sites falling in
CDSs, 13% in conserved introns, 11% in conserved intergenic
regions, 12% in conserved lncRNAs, 5% in 30 UTRs and 3% in
splice sites. Notably, ultraselected sites are overrepresented 37-
fold in CDSs, but CDSs still account for less than half of
ultraselected sites. Splice sites are overrepresented 121-fold but
make a minor overall contribution owing to their small number.

Our assumption is that any point mutation at these
ultraselected sites will be strongly deleterious, and simulations
indicate that the detected sites are indeed subject to extreme
purifying selection (see Discussion). Thus, if we multiply the
expected numbers of sites by twice (allowing for heterozygous
mutations) the estimated per-generation, per-nucleotide muta-
tion rate (here assumed to be 1.2 × 10−8 ref. 38), we obtain
expected numbers of de novo strongly deleterious mutations per
potential zygote ("potential” because some mutations will act
prior to fertilization). By this method, we estimate
0.258 ± 0.001 strongly deleterious mutations per potential zygote.
By construction, these strongly deleterious mutations occur in the
same category-specific proportions as the ultraselected sites (44%
from CDS, 23% from introns, etc.). Thus, we expect about
0.11 strongly deleterious coding mutations per potential zygote
and about another 0.15 such mutations at various
noncoding sites.

If we carry out a less conservative version of these calculations,
by subtracting the λs estimate for nonconserved intergenic regions
(0.003) rather than the one for intronic regions, we estimate
0.732% ± 0.004% of the genome to be ultraselected, with 23%
falling in CDSs (Supplementary Table 1). The expected number
of strongly deleterious mutations per potential zygote increases to
0.505 ± 0.003, of which 0.12 fall in CDSs. Taking these
calculations together, we estimate a range of 0.26–0.51 strongly
deleterious mutations per potential zygote, implying a high
genetic burden but one that appears to be roughly compatible
with other lines of evidence (see “Discussion”).

We performed a parallel analysis using INSIGHT, to estimate
the numbers and distribution of more weakly deleterious
mutations (Table 2). In this case, we estimate that 3.2% of sites
are under selection and the expected number of de novo
deleterious mutations per fertilization is 2.21. The fraction of
deleterious mutations from CDS is 22%, with most of the
remainder coming from introns and intergenic regions. lncRNAs

and 30 UTRs also make significant contributions. Taking the
ExtRaINSIGHT and INSIGHT estimates together, we estimate
that each potential fertilization event is associated with 0.26–0.51
new strongly deleterious mutations and an additional 1.70–1.95
new mutations that are more weakly deleterious. One way to
interpret these numbers is that, conditional on a threshold level of
fitness (i.e., the existence of no strongly deleterious mutations),
each person contains an expected ~2 new mutations that are
sufficiently deleterious that they would tend to be eliminated
from the population on the time-scale of human-chimpanzee
divergence (as measured by INSIGHT), at least if humans
continued to experience historical levels of purifying selection.
That person’s genetic load would derive from both these new
mutations and similar weakly deleterious mutations passed down
from his or her ancestors.

Local misspecification of the mutation model. As noted above,
we observed a consistent tendency to estimate negative values of
λs at the 50 ends of genes, including in 50 UTRs and core pro-
moters (Fig. 1), as well as at TFBSs and some noncoding RNAs
from across the genome (Fig. 3). In an attempt to bound the
genomic regions near protein-coding genes that give rise to these
negative estimates, we applied ExtRaINSIGHT in a series of
windows near the 50 and 30 ends of genes, pooling data from
all ~ 20,000 genes (Fig. 3b). We found that the effect was most
pronounced in the 50 UTR, where we estimated λs=−0.16 (see
Fig. 1) and in the 250bp immediately upstream of the TSS
(λs=−0.13). As we looked farther upstream, it diminished fairly
rapidly, with λs=−0.05 in the (−500,−250) window and λs=
−0.02 in the (−1000,−500) window. By the (−2000, −1000)
window, the estimates had returned to slightly positive values. We
did not observe negative estimates near the 30 ends of genes, and
the estimate for 4d sites within the CDS was only slightly nega-
tive. Therefore, the tendency to estimate λs < 0 near genes appears
to be limited to the 50 UTR and the ~1 kb region upstream of
the TSS.

We hypothesized that, despite being well-calibrated across the
majority of the genome (Supplementary Fig. 1), our mutation
model is misspecified in promoter regions, perhaps owing to
correlations of mutation rates with features such as chromatin
accessibility or hypomethylation. We therefore adapted our
model to consider the predicted state from an application of
the 25-state ChromHMM model39,40 to Roadmap Epigenomics

Table 1 Ultraselection across the human genome (based on ExtRaINSIGHT).

Feature λs ± (stderr)a no. sites (M) prop. sites exp. no.
(M)b

exp. prop.c fold enrich. exp.
s-del.d

shet

CDS 0.148 0.0004 33.8 1.18% 4.7 43.5% 36.9 0.11 –
50 UTR −0.161 0.0006 8.2 0.29% 0.0 0.0% 0.0 0.00 –
30 UTR 0.028 0.0002 36.1 1.26% 0.7 6.2% 5.0 0.02 –
splice 0.464 0.0012 0.8 0.03% 0.4 3.3% 121.3 0.01 2.0%
nonconserved lncRNAe 0.009 0.0001 453.6 15.78% 0.0 0.0% 0.0 0.00 –
conserved lncRNAf 0.055 0.0003 23.3 0.81% 1.1 9.8% 12.1 0.03 –
nonconserved introne 0.009 0.0000 972.6 33.83% 0.0 0.0% 0.0 0.00 –
conserved intronf 0.058 0.0002 44.3 1.54% 2.2 20.1% 13.1 0.05 –
nonconserved
intergenice

0.003 0.0000 1255.5 43.67% 0.0 0.0% 0.0 0.00 –

conserved intergenicf 0.048 0.0002 46.9 1.63% 1.8 17.0% 10.5 0.04 –
Total 2875.1 100.00% 10.8 100.0% 0.26

aThe similar values of the standard errors (equal after rounding) reflect the maximum of 1M sites used for estimation.
bExpected number of ultraselected sites after adjusting for background. In this case, the estimate for nonconserved introns (0.009) was subtracted from each estimate of λs (see Supplementary Table 1
for a less conservative correction).
cExpected proportion of ultraselected sites after adjusting for background.
dExpected number of new strongly deleterious mutations per diploid individual, assuming a mutation rate of 1.2 × 10−8 per generation per site.
eSites not classified as conserved by phastCons.
fSites classified as conserved by phastCons.
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data41 as a categorical covariate and refitted it to the data, trying
ChromHMM predictions for several cell types. However, we
found that this approach did not eliminate the tendency for
negative estimates of λs, perhaps because the available epigenomic
data has too coarse a resolution or is not well matched by
cell type.

Having observed negative estimates of λs also at TFBSs outside
of promoter regions, however, we wondered if the effect could be
driven, at least in part, by TF binding itself, which has been
shown to be mutagenic in melanoma42,43. In an attempt to isolate
the effects of TF binding, we applied ExtRaINSIGHT separately to
predicted TFBS in extended promoter regions, using predictions
from the Ensembl Regulatory Build44, and to the immediate
flanking 10bp on either side of these predictions, excluding
flanking sequences that themselves included TFBSs. Interestingly,
we found that estimates of λs were significantly more negative in
the TFBSs than in the immediate flanking sites (Fig. 3c);
p= 2.8 × 10−13, likelihood ratio test), suggesting a possible
influence from the mutagenic effects of TF binding (see
“Discussion”). In the end, we were not able to eliminate this
apparent problem with our mutation model, but its effects appear
to be generally quite local to TSSs and TFBSs and therefore are
likely to have a limited impact on our genome-wide analyses.

Discussion
In this article, we have introduced a new method, called ExtRa-
INSIGHT, for measuring the prevalence of strong purifying
selection, or “ultraselection,” on any collection of sites in the
human genome, including noncoding as well as coding sites.
ExtRaINSIGHT enables maximum-likelihood estimation of a
parameter, denoted λs, that represents the fractional depletion in
rare variants in a target set of sites relative to matched “neutral”
sites, after accounting for neighbor-dependence and local varia-
tion in mutation rate. We have surveyed the prevalence of
ultraselection in both coding and non-coding regions of the
human genome and found it to be particularly strong in splice
sites, 0-fold degenerate (0d) coding sites, and evolutionarily
ancient miRNAs. On the other hand, ultraselection is mostly
absent in other noncoding RNAs, untranslated regions of protein-
coding genes, and transcription factor binding sites, as well as in
fourfold degenerate (4d) coding sites. We have also shown that
neural-related genes and genes expressed in the brain are enri-
ched for large estimates of λs in their coding sequences, whereas
reproduction-related genes are enriched for small estimates of λs.

Perhaps the most challenging aspect of our analysis is fully
accounting for variation in mutation rate, so that our estimates of

λs truly reflect the action of purifying selection alone. We made
use of a model that accounts for several known correlates of true
or apparent mutation rate, including neighboring nucleotides,
genomic position, G+C content, and sequencing coverage. We
also excluded CpGs entirely, owing to their highly atypical
mutational patterns. Overall, we found that our mutation model
provides a good fit to the observed numbers of rare variants in
putatively neutral regions (Supplementary Fig. 1; see also Sup-
plementary Fig. 3), but we did find that some classes of sites
display clear excesses of rare variants (Supplementary Fig. 2). The
clearest example of this phenomenon was the promoter regions of
genes, consistent with our tendency to observe negative estimates
of λs in these regions (as discussed further below), although we
also observed slight excesses in repetitive regions. When we
exclude repeats and promoter regions, the observed numbers of
rare variants match our model reasonably well, in terms of both
the mean and the variance (Supplementary Fig. 1). Importantly,
as far as we can tell, the misspecification of our model always
seems to result in an under-prediction, rather than an over-pre-
diction, of the number of rare variants under neutrality, which
will tend to make our estimates of λs conservative. In addition, we
find that our estimator for λs is highly insensitive to variance in
the sitewise mutation rates, as long as they are unbiased (Sup-
plementary Fig. 4). Therefore, some overdispersion of mutation
rates relative to our model should have a negligible effect on our
analysis, as long as the sites in a target class do not tend to be
skewed in the same direction. For these reasons, we have not
attempted to extend our model to explicitly account for over-
dispersion, as in studies of somatic mutations in cancer45,46,
although this could be an area worth exploring in future work.

While our study focuses primarily on λs, a measure of depletion
of rare variants, we also show that when λs is sufficiently large
(approximately > 0.45 for our data) and mutation-selection bal-
ance is assumed, 1− λs is expected to have an inverse relationship
with the selection coefficient against heterozygous mutations,
which allows shet to be approximately estimated for a target col-
lection of sites. Simulations indicate that this approximation is
reasonably good when selection is strong and uniform, although
it is biased upward near the boundary of λs ≈ 0.45 (Supplementary
Fig. 5). In addition, when selection is variable across sites this
estimator will describe the harmonic mean, rather than the
arithmetic mean, of the true values (see “Methods”, Supplemen-
tary Fig. 6). Consequently, it will have a predictable downward
bias, meaning that it can be interpreted as a lower-bound on the
true arithmetic mean. For these reasons, we focus our analysis
primarily on λs and use corresponding estimates of shet only for

Table 2 Weaker selection across the human genome (based on INSIGHT).

Feature ρ ± (stderr) no. sites (M) prop. sites exp. no. (M)a exp. prop.b fold enrich. exp. del.c

CDS 0.624 0.020 33.8 1.18% 19.7 21.5% 18.2 0.47
50 UTR 0.222 0.035 8.2 0.29% 1.5 1.6% 5.6 0.04
30 UTR 0.237 0.033 36.1 1.26% 7.0 7.7% 6.1 0.17
splice 0.883 0.013 0.8 0.03% 0.7 0.7% 26.3 0.02
nonconserved lncRNAd 0.025 0.020 453.6 15.78% 0.0 0.0% 0.0 0.00
conserved lncRNAe 0.412 0.019 23.3 0.81% 8.6 9.4% 11.6 0.21
nonconserved intrond 0.042 0.022 972.6 33.83% 0.0 0.0% 0.0 0.00
conserved introne 0.426 0.019 44.3 1.54% 17.0 18.5% 12.0 0.41
nonconserved intergenicd 0.059 0.036 1255.5 43.67% 21.7 23.6% 0.5 0.52
conserved intergenice 0.376 0.020 46.9 1.63% 15.7 17.0% 10.4 0.38
Total 2875.1 100.00% 91.9 100.0% 2.21

aExpected number of deleterious sites after adjusting for background. In this case, the estimate for nonconserved introns (0.022) was subtracted from each estimate of ρ.
bExpected proportion of deleterious sites after adjusting for background.
cExpected number of new deleterious mutations per diploid individual, assuming a mutation rate of 1.2 × 10−8 per generation per site.
dSites not classified as conserved by phastCons.
eSites classified as conserved by phastCons.
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context and interpretation when λs is sufficiently large. It is worth
emphasizing that our estimates of λs do not depend on the
assumption of mutation-selection bias. These estimates do,
however, have a quantitative dependence on the size of the data
set and subjective choices regarding the allele-frequency threshold
for rare variants and the criteria for putatively neutral sequences,
among other features.

Interestingly, we found only a modest prevalence of ultra-
selection in ultraconserved noncoding elements (UCNEs), despite
their near-complete sequence conservation over hundreds of
millions of years of evolution32. It has been suggested that this
extreme conservation is indicative of strong purifying selection
(e.g., ref. 32), although most such observations have not been
accompanied by direct estimation of selection coefficients. One
exception is an early study by Katzman et al.47, where ultra-
conserved elements in humans were estimated to be experiencing
substantially stronger selection (by about 3-fold) than non-
synonymous sites in protein-coding sequences, although the
absolute strength of selection was estimated to be modest (mean
of 2Nes ≈− 5) and the analysis was based on only 72 individuals.
The assumption of strong levels of selection has been difficult to
reconcile with observations that organisms often appear to
function normally after deletion of UCNEs, as when complete
deletion of several UCNEs in mice failed to produce detectable
phenotypes48 (see also ref. 49). More recently, Snetkova et al.
found that UCNEs were remarkably resilient to mutation, with a
majority continuing to function as enhancers in transgenic mouse
reporter assays even after being subjected to substantial levels of
mutagenesis50. Our observations suggest that these apparently
contradictory observations—high sequence conservation and
resilience to mutation—can be reconciled if UCNEs are pre-
dominantly under relatively weak selection, that is, selection
strong enough to prohibit fixation of new mutations on the time
scales of interspecies divergence but weak enough that rare var-
iants are not substantially depleted. Our simulations suggest that
values of shet between about 0.003 and 0.005 result in such
behavior (Supplementary Fig. 8). Indeed, we find considerably
lower levels of ultraselection in UCNEs (λs= 0.09) than in 0d
sites in coding regions (λs= 0.22) or in ancient miRNAs (λs=
0.34). At the same time, these other classes of sites tend not to
show perfect conservation in cross-species comparisons, pri-
marily because they tend to be interspersed with less conserved
sites (e.g., 4d sites or non-pairing sites in miRNAs). Thus, what
seems to be most unusual about UCNEs is not the extreme level
of purifying selection they experience but rather the uniformity of
purifying selection across hundreds of bases and across many
different species. In most cases it is still unknown what causes this
uniformity, although it has been speculated that it may result
from overlapping functional roles, such as overlapping binding
sites, structural RNAs, and coding regions32.

It is instructive to compare our estimates of λs in and around
protein-coding genes with previous estimates of the DFE for these
regions. Our estimate of λs= 0.45 for splice sites corresponds to
shet ≈ 0.02, which is reasonably concordant with Cassa et al.’s11

mean estimate of shet= 0.059 for predicted loss-of-function
(pLoF) variants in protein-coding genes, assuming that many
but not all splice-site-disrupting mutations result in loss of
function, and allowing for our possible under-estimation of shet in
the presence of variability across sites. However, our estimate of
λs= 0.22 for missense mutations at 0d sites appears to be
somewhat larger than expected in comparison to studies based on
the site-frequency-spectrum5–8. For example, the best-fitting such
model in a representative recent study by Kim et al.8, based on a
fairly large sample size (432 Europeans from the 1000 Genomes
Project), implied a mean selection coefficient against amino-acid
replacements of shet= 0.007. If we apply ExtRaINSIGHT to data

simulated under Kim et al.’s DFE, we obtain an estimate of only
λs= 0.08, or about one third of our estimate of λs= 0.22 for real
0d sites (Supplementary Table 2, Supplementary Fig. 9). Thus, the
patterns of rare variants present in the deeply sequenced gno-
mAD data set do not seem to be consistent with the DFEs
inferred from smaller data sets. Our methods do not allow for
estimates of shet in these regions (because λs is too low), but this
discrepancy in λs estimates from the real and simulated data
suggests that the SFS-based methods have under-estimated the
weight of the tail of the DFE, which is well known to be difficult
to measure based on the SFS particularly with samples of modest
size (e.g., ref. 7).

A possible concern with our approach is that, in estimating λs
from the rare variants missing from the target sites, ExtRaIN-
SIGHT inevitably will pick up not only on strongly deleterious
mutations but also, to a degree, on selection on a large class of
more weakly deleterious mutations. Even if these more weakly
deleterious mutations are inefficiently eliminated over the short
time scale relevant for rare variants, their cumulative effect could
still be substantial relative to that from strongly deleterious
mutations if they are much larger in number—which is plausible
if the weight in the tail of the true DFE is not too large. Such a
scenario could potentially lead to overestimation of λs and, con-
sequently, of shet and of the numbers of strongly deleterious
mutations per potential fertilization.

We attempted to examine this question by simulating data
under four different DFEs, representing scenarios from quite
weak selection to quite strong selection, applying ExtRaINSIGHT
to the simulated data, and then decomposing the DFE into a
component associated with the rare variants removed by selection
and a component associated with the remaining rare variants
(which we can trace in simulation; see Supplementary Fig. 9 and
Supplementary Table 2). The first simulated DFE was based on
the model inferred by Kim et al.8 for coding regions, and the
other three were adapted from it to generate values of λs similar to
what we observed in coding regions, evolutionary ancient miR-
NAs, and TFBSs (Supplementary Table 2). We found, overall,
that the missing variants detected by ExtRaINSIGHT are heavily
enriched for strong purifying selection. In the case of quite strong
selection, they predominantly have shet > 0.01, with mean values
of shet ranging from 0.016–0.027. Even in the case of Kim et al.’s
inferred DFE (which, as discussed above, may under-estimate the
tail), the mean shet= 0.016 for the missing rare variants, although
in this case substantially more of them have shet < 0.01. Overall,
we find that, with mean shet ≈ 0.02, these rare variants are indeed
under quite strong purifying selection, although our power to
separate strong and weak purifying selection does depend on the
original DFE.

Throughout this article, we have compared λs estimates from
ExtRaINSIGHT with ρ estimates from INSIGHT, in order to
evaluate the relative fractions of sites subject to ultraselection and
weaker forms of purifying selection. It is worth noting, however,
that the two methods are not based on precisely the same
assumptions and therefore are not exactly comparable. Unlike
ExtRaINSIGHT, INSIGHT measures natural selection on the
time scale of the human-chimpanzee divergence (5–7 MY),
assuming that functional roles are relatively constant during that
time period. It also incorporates positive selection as well as
purifying selection into its model, although positive selection
appears to make at most a minor contribution to ρ in this setting
(see “Methods”). Finally, INSIGHT makes use of a much simpler
Jukes-Cantor mutation model, with no accounting for neighbor-
dependence in mutation rate (although it does account for
regional variation across the genome). As a result, differences
between λs and ρ could result in part from matters such as gain
and loss of functional elements on human/chimp time scales,
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misspecification of the Jukes-Cantor mutation model, or con-
tributions from positive selection. Nevertheless, we expect these
differences to have relatively minor effects, and the estimates
from INSIGHT and ExtRaINSIGHT appear to be fairly consistent
overall, with ρ and λs well correlated but ρ > λs in all cases.
Therefore, we believe it is reasonable to approximately char-
acterize the DFE by treating λs as a measure of ultraselection and
the difference λs− ρ as a measure of selection that is weaker but
sufficiently strong to result in removal of deleterious variants on
the time scale of human/chimpanzee divergence.

What are the implications of our estimates of ~ 0.26–0.51 for
the number of strongly deleterious mutations and of ~ 2 more
weakly deleterious mutations per diploid genome per generation?
These estimate imply a fairly high genetic burden but one that
appears to be in the plausible range. For comparison, Eyre-
Walker and Keightley51 estimated 1.6 (±0.8) deleterious muta-
tions per generation for coding regions only based on a com-
parison with the chimpanzee genome; Morten et al.52 estimated
3–5 lethal equivalents for the entire genome based on con-
sanguineous marriages; and Muller53 estimated 0.2–1.0 de novo
deleterious mutations per diploid genome per generation, which
would correspond to a range of 0.9–4.5 based on a modern
estimate of the number of human genes30. Notably, our estimate
is depressed by our conservative correction for model mis-
specification, which results in a prediction that only 3.2% of the
genome is under selection, compared with our previous
INSIGHT-based estimate of 4.2–7.5%54 and an alternative esti-
mate of 8.2%55. A less conservative correction could increase our
estimate for the total number of deleterious mutations by as much
as a factor of 2.5, bringing it more in line with some of the larger
previous estimates. Another rough point of comparison is the rate
of spontaneous abortion, which has been estimated to be as high
as 50% for mothers of prime reproductive age56,57. This quantity,
of course, is not directly comparable to the estimates of deleter-
ious mutations per generation for a variety of reasons but the
observation is consistent with a fairly high mutational load. It is
worth recalling that, according to classical arguments1,24,53, esti-
mates of greater than one lethal equivalent per fertilization are
inconsistent with population survival under a model where each
mutation makes an independent contribution to reduction in
fitness.

Despite several attempts, we were not able to eliminate the
apparent misspecification of our mutation model in promoter
regions as well as at other TFBSs and at some noncoding RNAs.
This misspecification is unlikely to be explained by unusual base
or word composition in these regions, nor by regional variation in
overall mutation rate, because these features are explicitly
addressed by our model. We also could not eliminate it by
explicitly conditioning on chromatin state, using the
ChromHMM model39,40, although it is possible that our
approach was limited by the resolution and cell-type-specificity of
the available epigenomic data. Interestingly, the best predictor we
could identify for elevated mutation rates was TF binding itself.
There is accumulating evidence from melanoma that TF binding
may be mutagenic, likely because it interferes with DNA
repair42,43, so it seems possible that TF binding is, at least in part,
a driver of elevated germ-line mutation rates in these regions. It is
worth noting that if TF binding indeed itself significantly alters
mutation rates, this phenomenon would considerably complicate
efforts to measure natural selection on TFBS, which is generally
accomplished by contrasting rates of polymorphism and/or
divergence within binding sites relative to nearby flanking sites,
under the assumption that mutation rates are approximately
equal in these regions (e.g., refs. 21,27,58). However, the strength of
this mutagenic effect in the germline remains unknown, and
unless it is particularly pronounced, it likely has a minor effect on

analyses at longer evolutionary time scales, where natural selec-
tion probably dominates in determining patterns of polymorph-
ism and divergence. In any case, more work will be needed to
develop a full understanding of these potential mutational biases
and account for them in analyses of selection on binding sites.

Methods
Data for neutral model. The data for our neutral model consisted of rare variants
(MAF < 0.001) from gnomAD (v3) within the genomic regions identified by Arbiza
et al.21 as putatively free from selection, unduplicated, non-repetitive, and reliably
mappable. These regions were mapped to the hg38 human assembly using
liftOver59. We further removed all CpG sites, which we expected to be difficult to
model owing to methylation-induced hypermutation, and all sites having an an
average sequencing coverage across individuals of <20 reads.

Mutation model. To fit the mutation model to these putatively neutral sites, we
first calculated the relative frequencies of each type of mutation a→ b and of the
absence of a mutation (a→ a), conditional on the identities of a, b, and the three
flanking nucleotides on each side. This required collecting 48= 65536 distinct
counts (minus the excluded CpGs) and normalizing them to sum to one separately
for each a and flanking nucleotides. We then obtained adjusted rates by combining
the (logits of) these raw relative rates with a collection of covariates likely to be
correlated with real or apparent rates of mutation in a linear-logistic model. In
particular, we used four covariates: the raw relative frequency, the logarithm of the
reported average sequencing coverage from gnomAD, the fractional G+C content
in a 200bp window, and an indicator for whether or not each site fell in a CpG
island (based on the UCSC Genome Browser track of the same name59). We fitted
this model to the observed rates of mutation at variable and nonvariable sites,
sampling 1% of putatively neutral sites for efficiency. Finally, we further adjusted
the estimated rates for regional variation in mutation rate by sliding a 150kb
window along the genome in 50kb increments, and fitting a linear-logistic model to
the neutral sites in each window, with the logit of the previously estimated rate as a
covariate with coefficient one and a free intercept term, which could be interpreted
as a local scaling factor. Together, these steps allowed us to estimate an absolute
rate for the emergence of each allele at each site in the genome. When we compare
the predicted rates with actual rates within the neutral regions, we can see that the
model is quite well calibrated (Supplementary Fig. 1).

To validate our mutation model, we quantified the occurrence of de novo
mutations and compared them to the predicted probability of mutation. Each de
novo variant characterized in ref. 28 includes the site at which the mutation
occurred and the specific allele change. We first mapped these variants from hg19
to hg38 using liftOver59, resulting in 174,122 mapped mutations. Using this
information we mapped each de novo variant to the probability of observing that
specific mutation according to our model. We counted the number of de novo
variants that occurred conditional on ranges of predicted mutation rate.
Comparing these counts to the predicted mutations rates, we observed a clear
correlation (Supplementary Fig. 3).

Approximate model for ultraselection. Following Eq. (1), the log likelihood
function is given by,

‘ðλs;Y;PÞ ¼ ∑
i
Yi logð1� λsÞ þ log Pi

� �þ ð1� YiÞ log 1� ð1� λsÞPi

� �
¼ R logð1� λsÞ þ ∑

i:Yi¼1
log Pi þ ∑

i:Yi¼0
log 1� ð1� λsÞPi

� �
;

ð2Þ

where R=∑iYi is the number of rare variants. When the Pi values are small (as is
typical), it is possible to obtain a reasonably good closed-form estimator for λs by
making use of the approximation logð1� xÞ � �x. In this case,

‘ðλs;Y;PÞ � R logð1� λsÞ þ ∑
i:Yi¼1

logPi þ∑i:Yi¼0 � ð1� λsÞPi

¼ R logð1� λsÞ þ ∑
i:Yi¼1

logPi � N �P0ð1� λsÞ;
ð3Þ

where N=∑i(1− Yi) is the number of invariant sites and �P0 is the average value of
Pi at the invariant sites. It is easy to show that this approximate log likelihood is
maximized at,

λ̂s ¼ 1� R
N �P0 : ð4Þ

However, this procedure leads to a biased estimator for λs. A correction for the
bias leads to the following, intuitively simple, unbiased estimator:

λ̂s ¼ 1� R
M�P

; ð5Þ

where M=N+ R is the total number of sites and �P is the average value of Pi at all
sites. In other words, λ̂s is given by 1 minus the observed number of rare variants
divided by the expected number of rare variants under neutrality, which is simply
the total number of sites multiplied by the average rate at which rare variants
appear, �P.
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Full allele-specific model. In practice, we use a model that distinguishes among
the alternative alleles at each site and exploits our allele-specific mutation rates.
This model behaves similarly to the simpler one described above, but yields slightly
more precise estimates in the presence of multi-allelic rare variants.

In the full model, we assume separate indicator variables, Y ð1Þ
i , Y ð2Þ

i , and Y ð3Þ
i , for

the three possible allele-specific rare variants at each site, and corresponding allele-
specific rates of occurrence, Pð1Þ

i , Pð2Þ
i , and Pð3Þ

i (which, notably, sum to the quantity
previously denoted Pi). We further make the assumption that the different rare
variants appear independently. Thus, the likelihood function generalizes to (cf.
equation (1)),

Lðλs;Y;PÞ ¼
Y
i

Y3
j¼1

ð1� λsÞPð jÞ
i

h iY ð jÞ
i

1� ð1� λsÞPð jÞ
i

h i1�Y ð jÞ
i ð6Þ

where we redefine Y ¼ fY ð jÞ
i g and P ¼ fPð jÞ

i g for j∈ {1, 2, 3}. Notice that, when

more than one alternative allele is present, Y ð jÞ
i will be 1 for more than one value of j.

As for the simplified model above (Eqs. (2)–(5)), the log likelihood can be
approximated as,

‘ðλs;Y;PÞ ¼ ∑
i
∑
3

j¼1
Y ð jÞ
i log 1� λs

� �þ log Pð jÞ
i

h i
þ 1� Y ð jÞ

i

� �
log 1� 1� λs

� �
Pð jÞ
i

h i

� log 1� λs
� �

∑
i
∑
3

j¼1
Y ð jÞ
i

� 	
� 1� λs

� �
∑
i
∑
3

j¼1
1� Y ð jÞ

i

� �
Pð jÞ
i

� 	
þ Z

¼ R0 log 1� λs
� �� N 0 �Q0 1� λs

� �þ Z

ð7Þ

where R0 ¼ ∑i ∑
3
j¼1 Y

ð jÞ
i is the total number of rare variants, now allowing for more

than one per site; N 0 ¼ ∑i ∑
3
j¼1

�
1� Y ð jÞ

i

� ¼ 3M � R0 ;
�Q0 ¼ 1

N 0 ∑i ∑
3
j¼1

�
1� Y ð jÞ

i

�
Pð jÞ
i ; and Z is a term that does not depend on λs. This

function is maximized at,

λ̂s ¼ 1� R0

N 0 �Q0 ; ð8Þ

and a correction for the bias yields an estimator of,

λ̂s ¼ 1� R0

ðN 0 þ R0Þ�Q ¼ 1� R0

M�P
; ð9Þ

where �Q is the average of all Pð jÞ
i values and we use the facts that N 0 þ R0 ¼ 3M and

�P ¼ 3�Q.
When comparing Eqs. (5) and (9), notice that, by construction, R0 ≥R; thus, the

full model will generally lead to slightly smaller estimates of λs with a difference
that reflects the number of multi-allelic rare variants. The two estimators are
identical if there are no such sites.

Assuming the Pð jÞ
i values are known, the variance of λ̂s follows from the

variance of R0 , which—because R0 is a sum of independent Bernoulli variables—is
given by,

Var ðR0Þ ¼ ∑
i
∑
3

j¼1
1� λs
� �

Pð jÞ
i 1� 1� λs

� �
Pð jÞ
i

h i

¼ ð1� λsÞM�P � 1� λs
� �2

T;

ð10Þ

where T ¼ ∑i ∑
3
j¼1

�
Pð jÞ
i

�2
. Thus,

Varðλ̂sÞ ¼
� 1
M�P

�2h
ð1� λ̂sÞM�P � ð1� λ̂sÞ

2
T
i

¼ 1� λ̂s
M�P

� ð1� λ̂sÞ
2
T

ðM�PÞ2
ð11Þ

The standard errors we report for estimates of λs are obtained by taking the
positive square root of this quantity.

When data is simulated under the assumed model, we find that the estimator for
λs (Eqs. (5) and (9)) and the predicted variance (Eq. (11)) agree very well with the

truth (Supplementary Fig. 4). Furthermore, if the Pð jÞ
i values are assumed to be

random but unbiased, then λ̂s and its standard error have almost no dependency on

the variance of Pð jÞ
i , at least in the regime of interest. For this reason, we ignore the

variance in the mutation-rate estimates when estimating the standard errors for λs.
ExtRaINSIGHT also reports a p-value based on a likelihood ratio test of an

alternative hypothesis of λs ≠ 0 relative to a null hypothesis of λs= 0, assuming
twice the log likelihood ratio has an asymptotic χ2 distribution with one degree of
freedom under the null hypothesis.

Relationship between shet and λs. When selection against heterozygotes is strong,
the equilibrium allele frequency at mutation-selection balance is given by q ¼ μ

shet
(reviewed in ref. 17). The frequency of mutant alleles in a random sample of 2N
chromosomes (where N is the number of diploid individuals) will be Poisson-
distributed with mean 2N � μ

shet
(c.f. ref. 11), and the expected number of polymorphic

sites in a collection of M sites is E½X� ¼ Mð1� e�2Nμ=shet Þ. Ignoring common var-
iants for the moment, the same expectation under the ExtRaINSIGHT model is

given by E½X� ¼ ∑ið1� λsÞPi ¼ Mð1� λsÞ�P, where �P is the mean value of Pi over
the sites in question. By setting these quantities equal to one another, we obtain,

Mð1� e�2Nμ=shet Þ ¼ Mð1� λsÞ�P
2Nμ

shet
¼ � logð1� ð1� λsÞ�PÞ � ð1� λsÞ�P

shet �
2Nμ=�P
1� λs

¼ 2N=c
1� λs

;

ð12Þ

where c ¼ �P=μ. With our data, we find that �P varies little from one set of sites to
another, hovering close to �P ¼ 0:162. Assuming μ= 1.2 × 10−8, we obtain
c= 1.35 × 107.

This derivation can be adjusted to accommodate common variants (with
MAF > 0.001, under our assumptions), but this correction has little effect in
practice with our data, because only about 3% of variants are common. Since the
relationship is approximate anyway, we use the simpler version above.

It is instructive also to consider the case where shet varies across sites. In this
case, if si is the selection coefficient against heterozygotes at site i and if each si is
sufficiently strong for mutation-selection balance to hold, then,

Mð1� λsÞ�P � ∑i2N � μ
si
¼ 2MNμ

H½s�
ð1� λsÞ�P � 2Nμ

H½s� ;
ð13Þ

where H½s� ¼ 1
M

�
∑i

1
si

��1
is the harmonic mean of the si values. This relationship is

equivalent to the one above but with H[s] in place of shet. Therefore, in this case,
equation (12) yields an estimator not for the arithmetic mean, but for the harmonic
mean of the variable si values across sites. It will therefore tend to under-estimate
the arithmetic mean in the presence of variable selection. This observation provides
an explanation for the downward bias observed in Supplementary Fig. 1.

A further generalization of interest is to assume that a fraction π0 of the sites of
interest are not under selection at all. In this case, the rare variants will arise as a
mixture of sites under selection (and at mutation-selection balance) and sites at
which the neutral rate applies. Thus,

ð1� λsÞ�P � ð1� π0Þ
2Nμ

H½s� þ π0�P

ð1� λs � π0Þ�P � ð1� π0Þ
2Nμ

H½s�
H½s� � 2N=c � 1� π0

1� λs � π0
:

ð14Þ

Consequently, if the sites of interest are known to include a component of neutrally
evolving sites, and if the fraction π0 can be estimated, then a portion of the
downward bias in estimation of the selection coefficient can be removed. In
particular, the quantity ρ estimated by INSIGHT should function as a fairly good
estimate of 1− π0. Therefore, if estimates of ρ̂ and λ̂s are both available, one can
obtain an adjusted estimate of the harmonic mean of s as,

H½s� � 2N=c � ρ̂

ρ̂� λ̂s
: ð15Þ

Application of INSIGHT. To estimate the total fraction of sites under selection we
applied INSIGHT20,21 in parallel to ExtRaINSIGHT, using the same sets of fore-
ground and background (“neutral”) sites. INSIGHT reports a maximum-likelihood
estimate of a quantity ρ that measures the fraction of all sites subject to selection on
the time scale of the human-chimpanzee divergence (5–7 MY). This quantity
includes sites under positive selection as well as those under purifying selection, but
for large collections of sites in the human genome the contribution of positive
selection is generally negligible (see refs. 21,54). For efficiency, we used a faster, re-
engineered version of INSIGHT, called INSIGHT2, that is mathematically
equivalent to the original but performs numerical optimization using the BFGS
algorithm rather than expectation maximization60. INSIGHT2 is currently only
available for the hg19 assembly so we first mapped annotations from hg38 to hg19
using liftOver, ignoring sites outside of regions of one-to-one mapping. We ran-
domly sampled one million sites from larger data sets, to improve efficiency.
Notably, INSIGHT makes use of data from Complete Genomics rather than the
gnomAD data set for allele-frequency information (see ref. 21). INSIGHT calculates
the standard error of its estimates of ρ by taking the inverse of the corresponding
diagonal term of the negative Hessian matrix of the log likelihood function at
the MLE.

Genomic annotations and data processing. Annotations for CDS, 50 UTR, 30

UTR, and introns were defined using the ensembldb Bioconductor package, which
interfaces directly with Ensembl. We included only autosomal protein-coding
genes. Splice sites were defined as the two nucleotide sites at each of the 50 and 30

ends of introns. Within the promotor regions, we used the Ensembl Regulatory
Build to locate transcription factor binding sites, which are inferred from experi-
mental data. Flanking regions of TFBS were defined as the 10 bases on either side of

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-31872-6

10 NATURE COMMUNICATIONS |         (2022) 13:4312 | https://doi.org/10.1038/s41467-022-31872-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


each TFBS. We obtained annotations for lncRNA, snRNA, snoRNA, miRNA also
using Ensembl, again restricting them to the autosomes. For all of these annota-
tions, we excluded any regions included in the CDS annotations.

Human accelerated regions (HARs) were obtained from Supplementary Table 1
of ref. 61, a compilation from five previous studies. Ultraconserved noncoding
elements (UCNEs) were obtained from UCNEbase62. These HARs and UCNEs
were defined with respect to hg19, so we mapped them to hg38 using liftOver.

Functional categories were obtained from the Reactome database31, considering
only “top-level” human terms that included at least 100 genes. Tissue specific genes
expression data were obtained from Supplementary Table 1 in ref. 63. Genes were
classified as tissue-specific if they had a TS score of greater than three, indicating
that they are expressed in that tissue at a level roughly 23 times as high as the
average expression level in all other tissues. Note that this definition allows a gene
to be “tissue-specific” in more than one tissue. For each category of interest (based
on pathway or gene expression), we applied ExtRaINSIGHT to the union of CDS
exons of all associated protein-coding gene.

Simulations. To test our ability to estimate shet from λs (as shown in Supple-
mentary Fig. 6), we conducted simulations under a realistic demographic model
and various “true” values of shet. We then estimated λs for each data set, converted
λs to shet via equation (12), and compared this estimate to the true value. In each
case, we used the simulator developed by Weghorn et al.18 to generate 100,000
independent nucleotide sites for a population of 71,702 diploid individuals with
bottlenecks and growth patterns matching based on a European demographic
history. We carried out an initial round of simulations assuming a constant value of
shet per simulated data set, with shet ranging from 0.0001 to 0.5, and a second round
in which sitewise values of shet were drawn from an exponential distribution with a
mean equal to each of the same values. When applying equation (12), we used the
mean rate of rare variant occurrence, �P, observed in each simulated data set, which
tended to be similar, but not identical, to that from the real data. We assumed a
mutation rate of 1.2 × 10−8 per generation per site.

In a second series of experiments, we simulated data from DFEs based on real
data and evaluated the DFE associated with the “missing” rare variants measured
by ExtRaINSIGHT, as well as the quality of the λs and shet estimators
(Supplementary Table 2 and Supplementary Fig. 6). We used four DFEs: (1) one
derived from ref. 8 based on data from the 1000 Genomes Project, consisting of a
mixture of a point-mass at zero (3.1% weight) and a Gamma distribution with
α=0.1930 and θ=0.0168 (“Kim et al.” in Table 2); (2) a version of the same DFE
with a larger value of the shape parameter (α= 0.75) to better mimic the patterns
we observed at 0d sites (“0d CDS” in Table 2); (3) a version with even stronger
selection (no point-mass at zero and α= 0.99) to mimic the patterns at miRNAs
(“miRNA” in Table 2); and (4) a version with substantially weaker selection (a 70%
point-mass at zero and α= 0.45) to mimic the patterns at TFBSs (“TFBS” in
Table 2).

When selecting the DFE from ref. 8, we chose the parameters estimated with a
lower mutation rate (1.5 × 10−8), which was close to the one assumed for this
study. In addition, when defining DFEs in terms of shet, we reduced the reported
DFE by a scale factor of 2Ne (using the estimated value of Ne=12,378) to account
for the population-scaled DFE inferred in ref. 8. This scaling was accomplished by
reducing the value of θ in the inferred Gamma distribution from 820.6 to 0.0331.
Notably, the mean of the DFE estimated for the 1000 Genomes Project data was
intermediate between those estimated for the ESP European and LuCAMP data
sets in ref. 8.

In each case, we simulated data with the assumed DFE for new mutations,
denoted f(x), and then traced the DFE for the rare variants that remained in each
data set after selection had been applied, denoted g(x). We then could estimate the
DFE for the missing rare variants measured by ExtRaINSIGHT as
hðxÞ ¼ 1

λ ½ f ðxÞ � ð1� λsÞgðxÞ�, assuming that the full DFE can be expressed as a
mixture of g(x) with weight 1− λs and h(x) with weight λs. This mixture must also
account for common variants, but we omit them because they occur at only a small
fraction of sites in our setting.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
ExtRaINSIGHT and INSIGHT2 scores can be computed for any user-defined set of
annotations using the ExtRaINSIGHT web portal at http://compgen.cshl.edu/
extrainsight. Auxilarly data sources included gnomAD v. 3 (ref. 13), GENCODE v.
38 (ref. 29), Reactome31, the UCSC Genome Browser (hg38)59, UCNEbase62, and ref. 61.
Key data files used in our analysis are provided at https://github.com/CshlSiepelLab/
extraINSIGHT.

Code availability
The source code for the ExtRaINSIGHT server and scripts used for data analysis are
available at https://github.com/CshlSiepelLab/extraINSIGHT (ref. 64).
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