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Abstract

Tridimensional microscopy and algorithms for automated segmentation and tracing are rev-

olutionizing neuroscience through the generation of growing libraries of neuron reconstruc-

tions. Innovative computational methods are needed to analyze these neuronal traces. In

particular, means to characterize the geometric properties of traced neurites along their tra-

jectory have been lacking. Here, we propose a local tridimensional (3D) scale metric derived

from differential geometry, measuring for each point of a curve the characteristic length

where it is fully 3D as opposed to being embedded in a 2D plane or 1D line. The larger this

metric is and the more complex the local 3D loops and turns of the curve are. Available

through the GeNePy3D open-source Python quantitative geometry library (https://

genepy3d.gitlab.io), this approach termed nAdder offers new means of describing and com-

paring axonal and dendritic arbors. We validate this metric on simulated and real traces. By

reanalysing a published zebrafish larva whole brain dataset, we show its ability to character-

ize different population of commissural axons, distinguish afferent connections to a target

region and differentiate portions of axons and dendrites according to their behavior, shed-

ding new light on the stereotypical nature of neurites’ local geometry.

Auhor summary

To study how brain circuits are formed and function, one can extract neuron traces, i.e.

the precise path that neuron arbors take in the brain to connect to other neurons. New

techniques enable to do so with increasingly higher throughput, up to every single neuron

with so called ‘connectomic’ approaches. Up to now, the geometry of those traces has not

been a focus of study and has mainly been analysed in bulk/on average. Here, we propose

to quantitatively analyse the local 3D geometry of the curves that comprise neuron arbors.

We introduce an algorithm that determines whether a locally-defined curve is best fit to a

line, a plane or a 3D structure. We use it to compute a single number at each point of the

trace, termed local 3D scale, that measures the characteristic size of the local 3D structure:

the larger this local 3D scale metric, the more the neuron’s curve meanders in 3D locally.
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We reanalyse published neuronal traces to demonstrate that our local geometry approach

enables to better characterize a neuron’s morphology, with direct relevance to under-

standing its development and function. The local 3D scale metric will be useful in all neu-

roscience research that works with neuronal traces, bringing a new, geometric layer of

information.

1 Introduction

Throughout the history of neuroscience, the analysis of single neuron morphologies has played

a major role in the classification of neuron types and the study of their function and develop-

ment. The NeuroMorpho.Org database [1, 2], which collects and indexes neuronal tracing

data, currently hosts more than one hundred thousand arbors of diverse neurons from various

animal species. Technological advances in large-scale electron [3–6] and fluorescence micros-

copy [7–11] facilitate the exploration of increasingly large volumes of brain tissue with ever

improving resolution and contrast. These tridimensional (3D) imaging approaches are giving

rise to a variety of model-centered trace sharing efforts such as the MouseLight (http://

mouselight.janelia.org/, [8]), Zebrafish brain atlas (https://fishatlas.neuro.mpg.de/, [12]) and

drosophila connectome projects (https://neuprint.janelia.org/, [13]). Crucially, the coming of

age of computer vision through advances in deep learning is now offering ways to automate

the extraction of neurite traces [14–16], a process both extremely tedious and time consuming

when performed manually. This is currently resulting in a considerable increase in the amount

of 3D neuron reconstructions from diverse species, brain regions, developmental stages and

experimental conditions, holding the key to address multiple neuroscience questions [17].

Methods from quantitative and computational geometry play a major role in handling and

analyzing this growing body of data in its full 3D complexity, a requisite to efficiently and

accurately linking neuronal anatomy with other properties such as function, development, and

pathological or experimental alteration. Furthermore, morphological information is of crucial

importance to address the issue of neuronal cell type classification, in addition to molecular

data [18, 19].

An array of geometric algorithmic methods and associated software has already been devel-

oped to process neuronal reconstructions [20–23]. Morphological features enabling the con-

struction of neuron ontologies, described for instance by the Petilla convention [24], have

been used for machine learning-based automated neuronal classification [25]. These features

have also been exploited to address more targeted questions, such as comparing neuronal

arbors across different experimental conditions in order to study the mechanisms controlling

their geometry [26]. Morphological measurements are also employed for an expanding range

of purposes in the context of large-scale tracing efforts based on sparse fluorescent labeling or

dense microscale connectomic reconstructions with 3D electron microscopy, e.g. to proofread

reconstructions [27], probe changes in neuronal structure and connectivity during develop-

ment [28] or identify novel neuron subtypes [10].

So far however, metrics classically used to study neuronal traces tend to rely on elementary

parameters such as length, direction and branching; as such, they do not enable to finely char-

acterize and analyze neurite trajectories. One particularly interesting parameter to fill that gap

is their local geometrical complexity, i.e. whether they adopt a straight or convoluted path at a

given point along their trajectory. This parameter is of particular relevance for circuit studies,

as it is tightly linked to axons’ and dendrites’ development and their role in information pro-

cessing: indeed, axons typically follow simple paths within tracts while adopting a more

PLOS COMPUTATIONAL BIOLOGY nAdder: A scale-space approach for the 3D analysis of neuronal traces

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010211 July 5, 2022 2 / 22

python librery, described here: https://genepy3d.

gitlab.io/.

Funding: EB received funding from Agence

Nationale de la Recherche (https://anr.fr/) under

contract ANR-11-EQPX-0029 Morphoscope2 and

ANR-10-INBS-04 France BioImaging JL received

funding from Fondation pour la Recherche

Médicale (https://www.frm.org/)

(DBI20141231328) and Agence Nationale de la

Recherche (https://anr.fr/) under contracts LabEx

LIFESENSES (ANR-10-LABX-65) and IHU

FOReSIGHT (ANR-18-IAHU-01) EB and JL

received funding from European Research Council

(Horizon 2020 programme, grant No 951330

HOPE) The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

http://mouselight.janelia.org/
http://mouselight.janelia.org/
https://fishatlas.neuro.mpg.de/
https://neuprint.janelia.org/
https://doi.org/10.1371/journal.pcbi.1010211
https://genepy3d.gitlab.io/
https://genepy3d.gitlab.io/
https://anr.fr/
https://www.frm.org/
https://anr.fr/


complex structure at the level of terminal arbor branches that form synapses. Moreover, the

sculpting of axonal arbors by branch elimination during circuit maturation can result in con-

voluted paths [29, 30]. A neurite segment thus provides information on both its function and

developmental history. Available metrics such as tortuosity (the ratio of curvilinear to Euclid-

ean distance along the path of a neurite) are generally global and average out local characteris-

tics; moreover, traces from different neuronal types, brain regions or species can span vastly

different volumes and exhibit curvature motifs over a variety of scales, making it difficult to

choose which scale is most relevant for the analysis. One would therefore benefit from a

generic method enabling to analyze the geometrical complexity of neuronal trajectories 1)

locally, i.e. at each point of a trace, and 2) across a range of scales rather than at a single, arbi-

trary scale.

Methods based on differential geometry have been very successfully applied in pattern rec-

ognition and classic computer vision [31, 32]. In particular, the concept of scale-space has led

to thorough theoretical developments and rich practical applications. The key idea is that start-

ing from an original signal (an image, a curve, a time series, etc.), one can derive a family of

related signals that estimate the original one as viewed at various spatial or temporal scales.

This enables to select and focus the analysis on a specific scale of interest, or to remove noise

or a low frequency background signal; in addition, scale-space analysis also provides multi-

scale descriptions [33]. On 2D curves, the mean curvature motion is a well-defined and

broadly applied scale-space computation algorithm [32]. So far, however, comparatively little

has been proposed concerning 3D curves, such data being less common [34]. Applications of

curvature and torsion scale-space analyses for 3D curves have been reported [35] but remain

few and preliminary; the inherent mathematical difficulty represents another reason for this

gap. Neuronal trace analysis clearly provides an incentive to further investigate the issue.

Here, we present a complete framework for scale-space analysis of 3D curves and apply it to

neuronal arbors. This method, which we name nAdder for Neurite Analysis through Dimen-

sional Decomposition in Elementary Regions, allows us to compute the local 3D scale along a

curve, which is the size in micrometers of its 3D structure, i.e. the size at which the curve

locally requires the three dimensions of space to be described. This scale is quite small for a

very straight trace, and larger when the trace displays a complex and convoluted pattern over

longer distances. We then propose examples and applications on several published neuronal

trace datasets that demonstrate the interest of this metric to describe arbors, compare the

arbors of individual neurons and extract morphological features reflecting local changes in

neurite behavior. Finally we use it for a more thorough analysis of the local morphology of sin-

gle neurites across the region of the whole brain of a zebrafish larvae. Implementation of the

nAdder algorithms along with an array of geometry routines and functions are made available

in the recently published GeNePy3D Python library [36], available at https://genepy3d.gitlab.

io. Code to reproduce all figures in this study, exemplifying its use, is available at https://gitlab.

com/msphan/multiscale-intrinsic-dim.

2 Results

2.1 Computation of the local 3D scale of neuronal traces from their

multiscale intrinsic dimensionality

Given a neuronal arbor, we decompose each of its branches into a sequence of local curved

fragments, each of a constant intrinsic dimensionality, defined by combining computations of

both curvature and torsion of the curves. Briefly, a portion of curve with low torsion and cur-

vature would be considered a 1D line, one with high curvature but low torsion would be

approximately embedded within a 2D plane, and a curve with high torsion could only be
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described by taking into account the three spatial dimensions. This results in a hierarchical

decomposition, capturing the fact that a 1D line is basically embedded in a 2D plane (Fig 1A

and Fig A in S1 Text).

Such decomposition of traces in intrinsic dimension depends on the “scale” at which the

analysis is performed. The notion of scale can be abstractly interpreted as the level of detail

that an observer takes into account when considering an object, varying from a high level

(when observing a trace up close i.e. at a small scale), to low level (when observing it from afar

i.e. at larger scales). A scale-space is the computation of all versions of a given curve across spa-

tial scales. Several mathematical and computational frameworks have been proposed to com-

pute such ensemble of curves; the simplest one used here consists of smoothing the studied

trace by convolutions (local averaging) of its coordinates with Gaussian kernels of increasing

size. The dimensionality of such a curve element, as we analyze it at increasing scales, is typi-

cally best described as 3D at the smallest scales (i.e. taking in account a high level of detail),

and becomes 2D or 1D at larger scales (i.e. low level of detail) as more and more details are

smoothed out (Fig 1B, middle panel). Here, in the context of neuronal arbors, scales are mea-

sured in micrometers, by computing the radius of curvature of the smallest detail kept at that

scale (see Methods for details). We first use a scale-space to compute a more robust intrinsic

dimension decomposition at a given scale, by looking in a small interval of scale around that
scale for the most stable decomposition (see Methods for details).

Fig 1. Computation of the 3D local scale of neuronal traces from their multiscale dimensionality decomposition. (A) (left) Variation of the

intrinsic dimensionality along a portion of 3D curve; (right) evaluation of the decomposition on simulated trajectories comparing to a baseline method

[37, 38]. Shown is the accuracy of the decomposition of each method for each dimension as additional noise is added on the simulated curve. (B)

Schematic presentation of the processing of 3D curves by the nAdder algorithm.

https://doi.org/10.1371/journal.pcbi.1010211.g001

PLOS COMPUTATIONAL BIOLOGY nAdder: A scale-space approach for the 3D analysis of neuronal traces

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010211 July 5, 2022 4 / 22

https://doi.org/10.1371/journal.pcbi.1010211.g001
https://doi.org/10.1371/journal.pcbi.1010211


To validate the proposed decomposition, we applied it on simulated traces presenting dif-

ferent noise levels. Our algorithm reached accuracies above 90% with respect to the known

dimensionality of the simulations at low noise level and still above 80% at high noise level,

while an approach not based on space-scale which we took as baseline [37, 38] was strongly

affected by noise (Fig 1A, and Fig B and C in S1 Text; details on the simulation of traces, noise

levels and algorithm are available in the Methods section).

To make use of the local dimensionality decomposition across multiple scales and compute

a simpler and more intuitive metric, we define the local 3D scale at a given position as the high-

est scale at which the trace still remains locally 3D around that position. The trace will then

locally transform to 2D or 1D for scales higher than that local 3D scale. An example of local

3D scale calculation is shown in Fig 1B. This computation is done at the level of curves; to

apply it to whole neuronal arbors, we decompose these arbors into curves by considering, for

each ‘leaf’ (terminals), the curves that link it to the root (i.e. the cell body), averaging values

when needed (Fig F in S1 Text). The result is an algorithm that computes a local 3D scale met-

ric for full neuronal arbors, which we term nAdder (see Methods for more details on the

algorithm).

Having defined a new metric and evaluated it on simulated traces, we subsequently used

our algorithm to reanalyze published datasets in order to explore its capacity to extract biologi-

cally meaningful anatomical insights.

2.2 Application of nAdder to characterize neuronal arbors

To test our approach, we first examined the local 3D scales of different types of neurons pre-

senting dissimilar arbor shapes, using traces from the NeuroMorpho.Org database (Fig 2A).

We studied a mouse striatal D2-type medium spiny neuron reconstructed by [39] (Fig 2A1

and S1 Movie), and the reconstruction of a mouse retinal ganglion cell [40] (Fig 2A2 and S2

Movie), and a mouse cerebellar Purkinje neuron from [41] (Fig 2A3 and S3 Movie).

The local 3D scale computed with nAdder showed a range of values coherent with local

neurite behavior, like a lower local 3D scale in straight vs. curved neurites (compare for

instance region (i) and (ii) of the spiny neuron in Fig 2A1, with respective values of�40 μm

and�100 μm), or a small local 3D scales in different axon portions (�35 μm in region (iii) of

the retinal ganglion neuron axon in Fig 2A2, as it runs directly towards the optic nerve head to

leave the retina, compared to�160 μm in the proximal region (iv)). Interestingly, while most

of the Purkinje neuron dendritic arbor in Fig 2A3 was characterized by low local 3D scales

(�45 μm on average), in accordance with the stereotyped planar orientation of these neuron’s

dendrites, and hence transformed quickly to a 2D plane when scanning the scale space, one

region (v) presented local 3D scales higher than the mean value (�80 μm), corresponding to

the fact that dendrites in this region protruded in an unusual manner out of the main plane of

the arbor (see S3 Movie)

We also compared our local 3D scale metric with two classic local descriptors of 3D traces,

curvature and torsion (Fig G in S1 Text). Mapping of the three parameters in the Purkinje neu-

ron presented in Fig 2A3) showed that the local 3D scale provided the most informative mea-

sure of the geometric complexity of neuronal arbors, since curvature and torsion yielded

representations that were difficult to interpret as they were highly discontinuous because of

local variations of the curves.

To evaluate the relevance and usefulness of the local 3D scale measure to answer more bio-

logically meaningful questions, we then applied nAdder to compare neuronal arbors at differ-

ent stages of their development and in normal vs. experimentally altered contexts. We selected

data from [26] hosted in the NeuroMorpho.Org database which describe the expansion of the
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Fig 2. Local 3D scale analysis of various neuronal traces. (A) Application of nAdder to three types of mouse neurons with different arbor shape and

size: (A1) striatal D2 medium spiny neuron [39], (A2) retinal ganglion cell [40], (A3) cerebellar Purkinje neuron [41]. The first three columns show the

intrinsic dimensionality decompositions of the neurons at small, medium and large scales. The local 3D scale, computed from suites of such

decomposition across multiple scales, is shown in the last column. The maximum scale is set at 160 μm based on the longest branch analyzed. Dotted

line boxes (i-v) frame areas of interest discussed in the text. (B) Dendritic arbor traces from X. laevis tectal neurons were obtained from [26]. (B1)

Examples of local 3D scale maps from control (left) and DSCAM-overexpressing (DSCAM overexpr) neurons at Stage 45, and 48 hr after initial

imaging. The maximum scale is set to 60 μm based on the mean length of the arbor’s longest branch (highlighted in gray). The cell body’s position is

indicated by a black square. (B2) Mean local 3D scale (above) and tortuosity (bellow) of the longest branch. Two-way ANOVA, Student’s t-test with

Holm-Sidak for multiple comparisons were used, � p�0.05, �� p�0.01, ��� p�0.005, ���� p�0.001.

https://doi.org/10.1371/journal.pcbi.1010211.g002
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dendritic arbors of the Xenopus laevis tectal neuron during development and the effect of

altering the expression of Down syndrome cell adhesion molecule (DSCAM). In this study, the

authors showed that downregulation of DSCAM in tectal neuron dendritic arbors increases

the total dendritic length and number branches, while overexpression of DSCAM lowers

them. We reanalyzed neuronal traces generated from the dendritic arbors in this study by

computing their local 3D scale using nAdder.
Our analysis showed that the mean local 3D scale of developing X. laevis tectal neurons

overexpressing DSCAM is smaller than that of control neurons, with a significant difference

between the two conditions, 48 hr after the start of the observations at Stage 45 (Fig 2B1 and

2B2, above); this result is consistent with the original analysis by [26], indicating that DSCAM

overexpression leads to more simple arbor morphologies, as measured by the number of

branches and length of reconstructed arbors. In their paper, the authors also studied tortuosity,

the ratio of curvilinear to Euclidean length of a trace, a global morphological metric classically

used to measure geometric complexity. While the authors show that DSCAM downregulation

increases the tortuosity of the neuron’s longest dendritic branch (see Fig 4 of [26]), they did

not report this parameter for DSCAM overexpression. We computed the tortuosity of the lon-

gest branch and indeed observed no significant difference between control and DSCAM over-

expressing neurons at any stage of the analysis (Fig 2B2, below). On the contrary, computation

of the local 3D scale show a significant difference (Fig 2B2, above). Overall, the local 3D scale

metric computed with nAdder offers a new local measure of the geometric complexity of neu-

ronal traces, and provides information robust across neuron types, shapes and sizes. Our anal-

ysis shows that measuring the neurites’ local 3D scale provides biologically relevant

information and can measure subtle differences in the complexity of their trajectory that are

not apparent with classic metrics.

2.3 Local 3D scale of individual neurites across the whole larval zebrafish

brain

We next sought to test nAdder over a large-scale 3D dataset encompassing entire long-range

axonal projections. A database including 1939 individual neurons traced across larval zebrafish

brains and co-registered within a shared framework has been published by [12]. Here, we

reanalyzed this dataset by computing the local 3D scales of all available neuronal traces, focus-

ing on projections linking distinct brain regions (i.e. that terminated in a region distinct from

that of the cell body), interpreted as axons. We then explored the resulting whole-brain map of

the geometric complexity of projection neurons.

Local 3D scale variations across brain regions. Processing of the 1939 traces of the larval

zebrafish atlas with nAdder resulted in a dataset where the local 3D scale of each inter-region

projection (i.e. projecting across at least two distinct regions), when superimposed in the same

referential, could be visualized (Fig 3A and Fig H panel A in S1 Text). Coordinated variations

in local 3D scale values among neighboring traces were readily apparent on this map, such as

in the retina (see region (i) in Fig 3A) and torus semicircularis (ii) which presented high local

3D scale values, or the octaval ganglion (iii) characterized by low values.

To quantify these local differences, we computed the mean local 3D scale of inter region

projections for each of the 36 brain regions defined by Kunst et al. This enabled us to establish

an atlas of the local 3D scale of fish axons highlighting variations of their geometric complexity

in different brain regions (Fig 3B and Fig H panel B in S1 Text). Similar atlases could be

derived for all projection subsets originating from (Fig I panel A in S1 Text), passing through

(Fig J panel A in S1 Text) or terminating in a region (Fig K panel B in S1 Text), again showing

inter-regional variations. The distributions of local 3D scale within each region nevertheless
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Fig 3. Local 3D scale mapping across the whole larval zebrafish brain. Traces analyzed correspond to those presented in [12]. (A) Local 3D scale

analysis of all axonal traces originating from neurons in the left hemisphere; the maximum scale is set to 100 μm based on the width of the largest

brain region. (B) Mean local 3D scale by brain regions. Regions with fewer than 15 traces were excluded (in gray). Values were clipped from the 5th to

95th percentiles for clearer display. (C) Distribution of the local 3D scale values in each brain region (see Table A of S1 Text for abbreviation

definitions). (D) Mean local 3D scale in fore-, mid- and hindbrain regions (E) Mean local 3D scale of axons originating from, passing through, and

arriving in each brain region. (F) Example of axonal arbors with many branches crossing the midline. (G) Diagram summarizing computation of the

local 3D scale at the midline. (H) Local 3D scale (top) and length (bottom) of all axons crossing the midline vs. those crossing only once and more

than five times. (I) View of the midline sagittal plane showing the local 3D scale of axons crossing only once and more than five times. The maximum

scale is set to 100 μm based on the width of the largest brain region analyzed. Wilcoxon tests with Holm-Sidak correction for multiple comparison

was used, � p�0.05, �� p�0.01, ��� p�0.005, ���� p�0.001. Color scale in C corresponds to that used in B.

https://doi.org/10.1371/journal.pcbi.1010211.g003
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showed a high variance (Fig 3C, and panel B of Figs I,J and K of S1 Text), reflecting the diver-

sity of neuronal types and variations in the local structure of their axons as they exit or enter a

brain region. This variability is illustrated in Fig L of S1 Text, showing three regions, the

Medulla Oblongata Strip 3 (MOS3), Subpallium (SP) and Torus semicircularis (TS), respec-

tively presenting different patterns exhibited by axons originating from, passing through and

arriving in these regions.

It was observed in [12] that the connectivity strength in the mid- and hindbrain are stron-

ger than that in forebrain. The distributions of local 3D scale computed in the fore-, mid- and

hindbrain regions show a higher average value in mid- compared to fore- and hindbrain

regions (Fig 3D), although the difference in not significant due to the small number of regions.

The difference is clearer (while still not statistically significant) for axons terminating in a

region (Fig K panel C of S1 Text), and all but absent for axons with soma in these regions and

passing axons (Figs I and J panel C of S1 Text).

Comparing the local 3D scale of the three types of axons showed that inter-regional axons

terminating in a region had on average higher local 3D scales than those originating from or

passing through a region (Fig 3E). This observation is consistent with the idea that the proxi-

mal axonal path and terminal arbor differ in their complexity, as related to their developmental

assembly and function.

When comparing local 3D scale with number of branching points and axonal length across

brain regions, we found potentially significant correlations for axons having soma in the

region (Fig I panel D-E of S1 Text), but not for passing axons (Fig J panel D-E of S1 Text) and

axons terminating in the region (Fig K panel D-E of S1 Text). This suggests that highly

branched and long axons could exhibit more complex shapes than short and no-branched

axons.

Another class of axons we chose to focus on are commissural axons, that cross the midline.

They play a major role by interconnecting the two hemispheres and have been well studied, in

particular for the specific way by which they are guided across the midline [42]. Examining

axonal arbors intersecting the midline in the whole larval fish dataset, we found that a majority

(71%) crossed only once, making a one-way link between hemispheres, while a significant pro-

portion crossed multiple times, with 10% traversing the midline more than 5 and up to 24

times (Fig 3F and Fig M of S1 Text). Most individual branches (i.e. neuronal arbor segments

between two branching points, or between a branching point and the cell body/terminal)

crossed the midline just once, meaning that neurons crossing multiple times did not do so

with long meandering axons but with many distinct branches of their arbor (Fig M panel B of

S1 Text). Examples of such axonal arbors crossing the midline more than 10 times are shown

in Fig 3F. Measuring the local 3D scale of crossing axon branches in a 20 μm range centered

on the midline (Fig 3G), we observed higher values for the ones traversing the midline several

times compared to those only crossing once (Fig 3H, top). Axon branches crossing the midline

multiple times were also much shorter than those crossing only once (Fig 3H, bottom). They

localized mostly in the hindbrain in a ventral position, while single crossings were frequent in

the forebrain commissures (Fig 3I). This is consistent with the existence of two populations of

commissural axons in the vertebrate brain, the hindbrain being home to neurons following

complex trajectories across the midline with many short and convoluted branches, and fore-

brain commissural neurons forming longer and straighter axons crossing fewer times and

often only once. Given the lack of clear link between the length and local 3D scale of crossing

branches (Fig M panel C of S1 Text) the full picture is most likely more complex and would

need more complete study including functional data to be clarified.

Together, these results show that the local 3D scale computed with nAdder is informative at

the whole brain level, adding a new level of description for analyzing connectomic datasets.
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Characterization of axon behavior at defined anatomical locations and along specific

tracts. A key feature of our metric is its local nature, i.e. its ability to inform on the geometry

of single neurites not only globally, but at each point of their trajectory. To illustrate this, we

used nAdder to analyze the trajectories of Mitral cell axons originating in the olfactory bulb

(OB) and projecting to multiple destinations in the pallium (P), subpallium (SP) or habenula

(Hb) [43]. Here again we found variations in axonal complexity across regions (Fig 4A), with

relatively low local 3D scales in the OB (�40 μm) and Hb formation (�37 μm) compared to

higher values in the P (�50 μm) and SP (�47 μm).

Fig 4. Local 3D scale along different axonal populations. (A) Local 3D scale variation along axons of mitral cells. (B)

nAdder analysis of TS-terminating axons originating from the Optic Tectum (TeO) (top) and Medial Octavolateral

Nucleus (MON) or Medulla Oblongata Strip 5 (MOS5) (middle). Comparison of the distributions of local 3D scale of

axons coming from the two regions (bottom). (C) Local 3D scale variations along axons coming from MON/MOS5.

Left, example view of one axon indicating different segments of interest. Right, quantification (n = 32 axons). The

maximum scale in A is set to 100 μm based on the width of the largest brain region analyzed. The maximum scale in B

is set to 175 μm based on the mean length of the longest branch. Only the longest branches are included in the

computation. Wilcoxon tests with Holm-Sidak corrections for multiple comparison were used, � p�0.05, �� p�0.01,
��� p�0.005, ���� p�0.001.

https://doi.org/10.1371/journal.pcbi.1010211.g004
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Finally, we investigated local 3D scale across different axonal populations innervating a

given brain region. We performed this analysis in the Torus Semicircularis (TS) which pres-

ents a high average local 3D scale, with many complex axonal traces (Fig L of S1 Text, last

row). Most of these traces corresponded to axons with terminations in the TS (70% vs. 5%

axons emanating from TS and 25% axons passing through TS). Focusing on this population,

we selected three groups of axons originating from the Tectum (TeO), Medial Octavolateral

Nucleus (MON) and Medulla Oblongata Stripe 5 (MOS5), respectively, excluding other

regions from which only a small number (< 10) of incoming axons had been traced (a detailed

list of all regions with traces terminating in the TS is in Table B of S1 Text). Examining the dis-

tribution of local 3D scale inside the TS, we observed that tectal axons overall had a simpler

structure, characterized by lower local 3D scale values than those coming from the MON/

MOS5 (Fig 4B). In particular, complex axons with a local 3D scale above 150 μm mostly origi-

nated from the MON/MOS5 (Fig 4B, below). This difference, revealed by nAdder, points to

the existence of divergent developmental mechanisms of pathfinding and/or synaptogenesis

for these two populations of axons within a shared target area.

We then focused on axons projecting from the MON/MOS5 to the TS. We computed the

local 3D scale of these axons at all coordinates of their trajectory from the MON/MOS5 to the

TS, normalized with respect to total length (Fig 4C). We found that these axons’ local 3D scale

was highly correlated and that its average value varied widely along their course from the

MON/MOS5 to the TS: low at the start, it increased inside the MON/MOS5 before dropping

when the axons crossed the midline. It then increased again as they made a sharp anterior

turn, dropped again within the straight tract heading to the TS, before rising to maximum val-

ues inside the TS. This result provides a striking example of stereotyped geometrical behavior

among individual axons linking distant brain areas, likely originating from a same type of neu-

rons, that our metric is able to pick up and report.

Overall, our analysis of the larval zebrafish brain atlas using nAdder highlight both the wide-

spread heterogeneity of the local geometrical complexity of axons and its correlation with

brain areas, neuron type or position within a trace.

3 Materials and methods

3.1 Intrinsic dimension decomposition of neurite branches based on

scale-space theory

Intrinsic dimension decomposition. Let’s consider a 3D parametric curve γ(u) = (x(u),

y(u), z(u)) for u 2 [0, 1]; the intrinsic dimensionality of that curve can be defined as the smallest

dimension in which it can be expressed without significant loss of information. An intrinsic
dimension decomposition is a decomposition of a 3D curve into consecutive fragments of dif-

ferent intrinsic dimensionality, i.e. lying intrinsically on a 1D line, 2D plane or in 3D. Note

that such decomposition needs not be unique. For example, not taking scales into account,

two consecutive lines followed by one plane can in theory be decomposed into one 3D frag-

ment, one 1D and one 3D fragments, two consecutive 1D and one 2D fragments, or two conse-

cutive 2D fragments (Fig A of S1 Text). The last two decomposition schemes are both

meaningful and their combination represents a hierarchical decomposition of γ where linear

fragments are parts of a larger planar fragment.

Here, we compute the decomposition of a curve intrinsically by looking at the curvature

and torsion. Let us define the curvature κ of γ by κ = kγ0 × γ00k/kγ0k3, corresponding to the

inverse of the radius of the best approximation of the curve by a circle locally, the osculating

circle. The torsion τ of γ is τ = ((γ0 × γ00)�γ000)/kγ0 × γ00k2 and corresponds to the rate of change

of the plane that includes the osculating circle. We then determine that if κ is identically equal
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to zero on a fragment then that fragment is a 1D line; similarly τ being identically equal to zero

defines a 2D arc curve. Thus we define a linear indicator L of γ:

LðuÞ ¼
1; if kðuÞ � εk

0; otherwise;

(

and a planar indicator H of γ:

HðuÞ ¼
1; if jtðuÞj � εt

0; otherwise;

(

where εκ and ετ are the tolerances for computed numerical errors. We note that only using the

H indicator is not sufficient to estimate the 2D plane. For example, a 2D plane fragment com-

posed of a 1D line followed by a 2D arc cannot be entirely identified as 2D since the torsion

is not defined as the curvature tends to 0. We therefore consider the planar-linear indicator

T = L [ H instead of H for characterizing the curve according to such hierarchical order.

Scale space. In practice, the resulting dimension decomposition is closely tied to a ‘scale’

at which the curve is studied, i.e. up-close all differentiable curves are well approximated by

their tangent and thus would be linear. That property have been formalised through Scale-
spaces, which have been described for curves in 2D [44] or 3D [35] in particular, to give a

robust meaning to that intuition. A scale-space is typically defines as a set of curves γs such

that γ0 = γ and increasing s leads to increasingly simplified curves. The scaled curve can be cal-

culated by convolving γ with a Gaussian kernel of standard deviation s [45], or by using mean

curvature flow [46]. In 2D, it has been shown for example that a closed curve under a mean

curvature motion scale space will roundup with increasing s and eventually disappear into a

point [47]. In the following we use a gaussian scale-space on each coordinate, i.e. γs is com-

puted by convolving γ by a 1D gaussian function of width s, N ð0; sÞ.
We first use the scale space to compute the defined decomposition “around” a scale of inter-

est to have a more stable solution. Let S be a given set of scales around a scale of interest sμ (for

example S = [sμ−δs, sμ + δs]), we compute first, for all s 2 S, Ls and Ts by calculating the curva-

tures κs and the torsions τs. We then exclude fragments (pieces of the curve with a given, con-

stant dimentionality) smaller than a length threshold εω to eliminate small irrelevant

fragments. From Ls and Ts, the linear fragments denoted as DLs
and planar-linear fragments

denoted as DTs
are deduced across all s 2 S.

In a second step, we estimate the most durable combination of fragments from the linear

segments DLs
and linear-planar segments DTs

calculated in the first step. We compute the

number of fragments at every s 2 S, to measure how long each combination of fragments

exists. We then select the combination of fragments remaining for the longest subinterval of S.

Knowing that each fragment in the combination can have different lengths among that subin-

terval, we thus select the longest candidate. In cases where fragments overlap, we split the over-

lap in half. Of note, we repeat this step twice, first to estimate the best combination of linear-

planar segments from DTs
input and mark the corresponding subinterval, then to estimate the

best combination of linear fragments from DLs
input within that subinterval. The final result is

the hierarchical dimension decomposition of the curve γ around a given scale of interest sμ.

Fig D of S1 Text show an illustration of the decomposition of a curve across s in consecutive

planar/nonplanar fragments, then the linear fragments are identified within each planar

fragment.
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However, the definition of S via a scale of interest and its neighborhood is not straightfor-

ward. A scale defined as the standard deviation of the Gaussian kernel as above for example

will be influenced by the kernel length and the curve sampling rate, and would be unintuitive

to set, and fixed values of δs would be arbitrary. To make the scales become a more relevant

physical/biological measurement, we employ as scale parameter the radius of curvature rκ,

defined as the inverse of the curvature κ, in μm. For a given curve at a given scale, the level of

detail kept at that scale can be characterized by the maximal rκ along that curve; it would corre-

spond to the smallest bump, or tighter turn, of the curve. Scales keeping small rκ represent

high level of detail looking at small objects such as small bumps and tortuosity, while scales

smoothing the curve out and keeping only larger rκ represent lower level of detail, keeping

only larger object and features such as plateaus or turns.

Thus, to ease the interpretation and usage of scale spaces, we index them in micrometer by

associating to a scale in micron r̂k a set S of standard deviation of the gaussian scale space. We

determine, for a given curve, for each point u whose rkðuÞ < r̂k the standard deviation s such

that rksðuÞ ¼ r̂k. This therefore associates, for each curve, the anatomically relevant scale of

interest in micron r̂k with the list S of standard deviations that lead to the points of that curve

to have a curvature radius smaller than r̂k. We can now define the scale r̂k in μm and use S to

estimate the dimension decomposition of γ as define above.

3.2 Evaluation of dimension decomposition on simulated curve

The simulated curve consists of consecutive 1D lines, 2D planes and 3D regions. The simula-

tion of 1D lines is done by simply sampling a sequence of points on an arbitrary axis (e.g. x
axis), then rotating it in a random orientation in 3D. The simulation of random yet regular 3D

fragments embedded in a 2D plane is more challenging. We tackle this issue by using the active

Brownian motion model [48]. Active Brownian motion of particles is an extended version of

the standard Brownian motion [49] by adding two coefficients the translational speed to con-

trol directed motion and the rotational speed to control the orientation of the particles. At

each time point, we generate the new coordinates (x, y, 1) by the following formulas:

DT ¼
kB T

6p ZR

DR ¼
kB T

8 p ZR3

d
dt

φðtÞ ¼ Oþ
ffiffiffiffiffiffiffiffiffi
2DR

p
Wφ

d
dt

xðtÞ ¼ v cos φðtÞ þ
ffiffiffiffiffiffiffiffiffi
2DT

p
Wx

d
dt

yðtÞ ¼ v sin φðtÞ þ
ffiffiffiffiffiffiffiffiffi
2DT

p
Wy;

where DT and DR are the translational and rotational coefficients, kB the Boltzmann constant,

T the temperature, η the fluid viscosity, R particle radius, φ rotation angle, O angular velocity

and Wφ, Wx, Wy independent white noise. After generating the simulated intrinsic 2D frag-

ment, a random rotation is applied. For simulating a 3D fragment, we extended the Active
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Brownian motion model in 2D [48] to 3D as follows:

d
dt

φðtÞ ¼ cosOþ
ffiffiffiffiffiffiffiffiffi
2DR

p
Wφ

d
dt
yðtÞ ¼ sinOþ

ffiffiffiffiffiffiffiffiffi
2DR

p
Wy

d
dt

xðtÞ ¼ v cos yðtÞ sin φðtÞ þ
ffiffiffiffiffiffiffiffiffi
2DT

p
Wx

d
dt

yðtÞ ¼ v sin yðtÞ sin φðtÞ þ
ffiffiffiffiffiffiffiffiffi
2DT

p
Wy

d
dt

zðtÞ ¼ v cos φðtÞ þ
ffiffiffiffiffiffiffiffiffi
2DT

p
Wz;

where (φ, θ) are spherical angles. We simulate the curve γ with a sequence of nω consecutive

fragments of varying random intrinsic dimensions. The curve γ is then resampled equally with

nγ points and white noise N ð0; s2Þ is added. We set nω� 5, nγ = 1000 points and vary σ
between 1 and 30 μm. The upper value of σ = 30μm is high enough to corrupt local details of a

simulated fragment with about 100 μm of length in our experiment.

The metric used to measure the accuracy of the intrinsic dimension decomposition, defined

to be between 0.0 and 1.0 and measures an average accuracy across fragments, is given by

ð1=noÞ
P

i maxjxðoi; ô jÞ; where fo1;o2; . . . ;ono
g are the simulated intrinsic fragments,

fô1; ô2; . . . ; ônôg the estimated intrinsic fragments and ξ(., .) the F1 score [50] calculated by:

2�
Precision� Recall
Precisionþ Recall

;

where

Precision ¼
jo [ ôj

joj
and Recall ¼

jo [ ôj

jôj
:

To evaluate the intrinsic dimensions decomposition algorithm independently of the nAd-

der algorithm we have to choose a scale at which to compute the decomposition. We either

take the one corresponding to the largest accuracy (optimal scale, Fig B of S1 Text) or one at a

fixed scale (Fig C of S1 Text), rk = 20 μm, small enough to avoid deforming the simulated

curve. Our method is then compared with a baseline method [37, 38] that first iteratively

assigns each point on the curve as linear/nonlinear by a collinearity criterion, then characterize

nonlinear points as planar/nonplanar by a coplanarity criterion. For both methods, the curve

was first denoised based on [51].

3.3 Local 3D scale computation

Assuming a set of scale of interest, the local 3D scale of a point along a curve is the smallest

scale at which the local scale is not 3D anymore, computed by checking at each scale the intrin-

sic dimension of that point. While the dimension of most points decrease with scales, it does

not have to be monotonous and in some cases the dimension of a point revert back to 3D from

being 2D/1D, as we increase scales. We therefore select the first scale of the longest 2D/1D sub-

interval as local 3D scale. In case no subintervals are found, it means that the point remains 3D

across the whole interval and its local 3D scale is set as the highest scale.
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An example of this sequence of dimension decompositions is illustrated in Fig D of S1 Text

where DLs
and DTs

are superimposed. The curve is completely 3D at low s value, several linear

and planar fragments then appear at higher s, progressively fuse to form larger linear and pla-

nar fragments and eventually converge to one unique line at very high value of s. Thus An

interpretation of the local 3D scale is that it is the size of the largest motif left at the scale at

which the 3D structure has disappeared. In the following experiments, we took regularly

spaced scale of interests from 0 to a maximum, indicated in each case. A summary descritpion

of the nAdder algorithm is available in Algorithm A in S1 Text.

The nAdder algorithm is theoretically influenced by the initial sampling of the curve used

in practice for numerical computation. Fig E of S1 Text shows that while specific values are

affected by changes in sampling rate, the overall behavior as well as local differences are robust

to those changes. In all the following experiments we took a constant sampling equal to 1μm.

3.4 Local 3D scale analysis of neuronal traces

We consider a neuronal trace as a 3D tree and first resample it with a spacing distance between

two points equal to 1 μm. B-spline interpolation [52] of order 2 is used for the resampling. We

then decompose the neuronal arbor into potentially overlapping curves, since the intrinsic

dimension decomposition and local 3D scale are computed on individual neuronal branches.

Several algorithms are available for tree decomposition. We explored three, functioning either

by longest branch (first taking the longest branch, then repeating this process for all subtrees

extracted along the longest branch), by node (taking each curve between two branching

nodes) or by leaf (taking, for each leaf, the curve joining the leaf to the root). Local scales were

computed for all three considered decompositions and the ‘leaf’ decomposition was found to

give the most robust and meaningful results as shown in Fig F of S1 Text. That method gives

partially overlapping curves; thus, we compute the average of the values when needed; we veri-

fied that the standard deviations were small.

Next, the local 3D scale is computed for each extracted sub-branch within a scale interval of

interest. The scale is defined as the radius of curvature and can be selected based on the size of

the branches or that of the region studied. For example, in the case of Xeonopus Laevis tadpole

neurons (Fig 2B), we selected scales from 1 to 60 μm which was sufficient to study neuronal

branches of about 180 μm in length (i.e. a 60 μm radius of curvature corresponds to a semicir-

cle with length equal to 60π� 180 μm). In the case of the zebrafish brain dataset (Fig 3), we

selected scales from 1 to 100 μm based on the length of the largest region, which was about 300

μm. When studying axons arriving to the Torus Semicircularis (Fig 4), we set the maximum

scale to 175 μm as the neuronal branches are on average 525 μm long. Moreover, we excluded

the sub-branches whose lengths are smaller than a threshold set to 5 μm, which is half the size

of the smallest brain region. Branches shorter than 5 μm contribute very little to the local 3D

scale result.

3.5 Toolset for neuronal traces manipulation

We provide an open source Python toolset for seamless handling of 3D neuronal traces data. It

supports reading from standard formats (swc, csv, etc), visualizing, resampling, denoising,

extracting sub-branches, calculating basic features (branches, lengths, orientations, curvatures,

torsions, Strahler order [53], etc), computing the proposed intrinsic dimension decomposi-

tions and the local 3D scales. The toolset is part of the open source Python library GeNePy3D

[36] available at https://genepy3d.gitlab.io/ which gives full access to manipulation and inter-

action of various kinds of geometrical 3D objects (trees, curves, point cloud, surfaces).
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3.6 Analyzed neuronal traces datasets

The traces used in our studies are all open and available online for downloading. They consist

of neuronal reconstructions from NeuroMorpho.Org and the Max Planck Zebrafish Brain

Atlas listed in the Table 1.

4 Discussion

We presented a novel method for the multiscale estimation of intrinsic dimensions along an

open 3D curve and used it to compute a local 3D scale, which we propose as a new local metric

to characterize the geometrical complexity of neuronal arbors. We demonstrated that our

method, dubbed nAdder, is accurate and robust, and applied it to published trace data, show-

ing its relevance and usefulness to study neurite trajectories from the level of single neurons to

the whole brain.

Our new approach provides a solution to the problem of measuring the geometrical com-

plexity of 3D curves not just globally but also locally, i.e. at successive points of their trajectory.

It enables to compute the dimensionality of such curves at any position, for a given scale of

analysis. By scanning the scale space, one can then determine the value at which the curve

requires all three dimensions of space for its description, a sampling-independent local metric

which we term the local 3D scale. Mathematically, scale spaces of curves are trickier to imple-

ment in 3D than in 2D and have been much less studied. In 2D for example, scale spaces based

on curvature motion are known to have advantageous properties compared to Gaussian ones:

they arise naturally from principled axiomatic approaches, are well described mathematically

and can be computed through well characterized numerical solutions of partial differential

equations [32]. They are readily extended to 3D surfaces by using principal curvatures [54],

but no simple equivalent is known for 3D curves. One theoretical issue is that using only the

curvature to determine the motion of 3D curves would not affect the torsion, and for example

a set of increasingly tighter helices would have increasingly higher curvature but identical tor-

sion. Here, we provided and thoroughly evaluated a practical solution to this problem by asso-

ciating a spatial scale to an ensemble of Gaussian kernels. In future work, additional

theoretical studies of 3D scale spaces of curves could potentially lead to simpler and more

robust scale space algorithms with solid mathematical foundations which could advanta-

geously replace Gaussian scale space.

The nAdder approach fills a gap in the methodologies available to analyze neuronal traces,

which until now were lacking a straightforward way to measure their geometrical complexity

and its variations, both within and between traces. It is complementary to techniques classi-

cally used to study the topology of dendritic and axonal arbors (number and position of

branching points, for example), providing a geometrical dimension to the analysis that is a

both simpler and more robust than the alternative direct computation of curvature and torsion

Table 1. Origin of the traces reanalysed in this study.

Name Source article Donwload page Search key Note

Medium spiny neuron [39] http://neuromorpho.org by neuron name: 3817_CPi_PHAL_Z001_app2_split_34 Section 2.1

Purkinje neuron [41] http://neuromorpho.org by neuron name: Purkinje-slice-age P43–6 Section 2.1

Retina ganglion cell [40] http://neuromorpho.org by neuron name: Badea2011Fig2Ca-R Section 2.1

Xenopus laevis [26] http://neuromorpho.org by archive: Cohen-Cory Section 2.2

Zebrafish atlas [12] https://fishatlas.neuro.mpg.de/neurons/download by neuron groups: Kunst et al Section 2.3

https://doi.org/10.1371/journal.pcbi.1010211.t001
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[23]. In practice, the local 3D scale of neurons (as measured with nAdder and observed in this

study) ranges from 0 to 100–200 μm. The lowest values are typically found in axonal tracts that

follow straight trajectories, or in special cases such as the planar dendritic arbor of cerebellar

Purkinje neurons shown in Fig 2A3. Higher, intermediate values are for instance observed at

inflexion points along tracts where axons change course in a concerted manner. The highest

values of local 3D scale typically characterize axonal arbor portions where their branches

adopt a more exploratory behavior, in particular in their most distal segments where synapses

form. A striking example is given in Fig 4C, showing the trajectory of an axon from the MON/

MOS5 to the torus semicircularis, where changes in local 3D scale correlate with distinct suc-

cessive patterns: a straight section through the midline, a sharp turn followed by another

straight section before more complex patterns in the target nucleus. Importantly, nAdder not

only enables to quantify how geometric complexity varies along a single axon trace, but also to

compare co-registered axons of a same type and to characterize coordinated changes in their

behavior (Fig 4C, right panel). It thus offers a way to identify key points and stereotyped pat-

terns along traces. This will be of help to study and hypothesize on the developmental pro-

cesses at the origin of these patterns, such as guidance by attractive or repulsive molecules [55],

mechanical cues [56], or pruning [57, 58].

The high values of local 3D scale near-systematically observed in the most distal part of axo-

nal arbors are also of strong interest, as these segments typically undergo significant activity-

based remodeling accompanied by branch elimination during postnatal development [57],

resulting in complex, convoluted trajectories in adults [29, 30]. Further integrating topological

and geometrical analysis and linking these two aspects with synapse position could then be a

very beneficial, if challenging, extension of nAdder. To this aim, one would greatly benefit

from methods enabling both faithful multiplexed axon tracing over long distances and map-

ping of the synaptic contacts that they establish. Progress in volume electron [5], optical [9] or

X-ray holographic microscopy [59] will be key to achieve this in vertebrate models.

Beyond neuroscience, we also expect nAdder to find applications in analyzing microscopy

data in other biological fields wherever 3D curves are obtained. For example, it could help

characterizing the behavior of migrating cells during embryogenesis [60], or be used beside

precise biophysical models to interpret traces from single-particle tracking experiments [61].

Importantly, an implementation of the proposed algorithms, along with all codes to repro-

duce the figures, is openly available, making it a potential immediate addition to computa-

tional neuroanatomy studies. Specifically, nAdder is part of GeNePy3D, a larger quantitative

geometry Python package providing access to a range of methods for geometrical data man-

agement and analysis. More generally, it demonstrates the interest of geometrical mathemati-

cal theories such as spatial statistics, computational geometry or scale-space for providing

some of the theoretical concepts and computational algorithms needed to transform advanced

microscopy images into neurobiological understanding.

Supporting information

S1 Text. Supporting information. Fig A: Different schemes for the intrinsic decomposition

of 3D traces. (A) The green trace is entirely 3D. (B) The trace is decomposed by 1D line (pink)

followed by 3D fragment (green). (C) The trace is decomposed by suite of 1D lines and 2D

plane. (D) The trace is decomposed as sucsessive 2D planes. The decompositions are hierar-

chial as a 1D line is lying on a 2D plane, and the 2D plane itself is lying within a 3D portion.

Fig B: Evaluation of intrinsic dimensional decomposition on simulated 3D traces. (A) Pre-

cision and Recall of the proposed nAdder algorithm and the baseline [37, 38] as a function of

the noise level σ varying between 1 and 30 μm. The algorithms are applied at various scales
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from 1 to 100 μm and the scale with the largest accuracy (optimal scale) is chosen. (B) Compar-

ison of estimated intrinsic dimensions at four different noise levels. Compared with the base-

line approach, the nAdder is more robust to noise and gives much higher accuracies in both

Precision and Recall. Details of the algorithms and simulations are shown in Methods. Fig C:

Evaluation of the dimensionality decomposition algorithm at a fixed scale. Accuracy, Preci-

sion and Recall of the nAdder algorithm and the baseline approach from [37, 38] as a function

of the noise level σ varying between 1 and 30 μm. The algorithms are applied at a fixed

scale = 20 μm, which is small enough to avoid deforming the simulated curve. The accuracies

of both algorithms are not as high as in the case of an optimal scale (Figure S1), but our

approach still achieves�85% of accuracy at σ = 5 (medium noise) and�80% of accuracy at σ
= 10 (high noise) for both 1D, 2D and 3D, compared to much lower accuracies for the baseline

in 2D and 3D. Fig D: Intrinsic dimensional decomposition of the axonal trace of a retinal

ganglion cell [40] across multiple scales. Positions on the 3D trace are indexed by the curvi-

linear distance u (x axis) and the scaled trace is calculated by Gaussian convolution with vari-

ous standard deviations s (y axis). An example of trace seen at different scales and

superimposed with its decomposition is shown on the right. The trace exhibits mostly 3D at

small scales, then decomposes into a combination of 1D/2D/3D portions at higher scales and

finally transforms into a 1D line at a very high scale. The local 3D scale at each position u is

then measured as the minimal scale s from that the dimension at u is not 3D any more. Fig E:

Effect of sampling on local 3D scale computation. Given a neuronal arbor (see Fig 2 for

details) whose original sampling is around 6μm, the local 3D scale was compued for several

different value of over and under sampling. While we clearly see a difference, the overall

behaviour is robust to changes in sampling rate. Fig F: Computation of local 3D scales in dif-

ferent decomposition modes on the cerebellar Purkinje neuron shown in Fig 2A3. (Left)

neurite portions located between any two branching nodes were extracted. (Middle) the lon-

gest branch originating from the cell body (root tree) was first extracted, and the process

repeated for all subtrees extracted from that longest branch. (Right) branches connecting the

cell body to each dendrite termination (’leaf’) were extracted. The mean and standard devia-

tion of the local 3D scale was computed. The “leaves” mode (right) produces more stable local

3D scales with high and homogenous values in region (i) where the dendrites are sticking out

of plane compared to the “branching nodes” (left) and “longest branch” modes (middle) (See

S3 Movie). Fig G: Comparison between different local metrics of geometrical complexity.

Three parameters, curvature (left), torsion (middle) and local 3D scale (right) were mapped on

the cerebellar Purkinje neuron shown in Fig 2A3. The local 3D scale gives smoother values

than those of curvature and torsion since it was computed using a scale space approach, and

better contrasts different regions of the Purkinje cell’s dendritic arbor. Fig H: Local 3D scales

mapping across the whole larval zebrafish brain. The traces analyzed correspond to those

presented in [12]. (A) Coronal (top) and sagittal (bottom) views shiwing local 3D scale analysis

of all axonal traces originating from the left hemisphere. (B) Mean local 3D scale by brain

regions (values were clipped from 5th to 95th percentiles for clearer display). A transparency

effect was applied to help visualizing inter-regional variations. Fig I: Whole brain local 3D

scale analysis of axons originating from different region of the larval zebrafish brain.

Traces analyzed correspond to those presented in [12]. (A) Mean local 3D scale by brain region

(values were clipped in the same range as in Figure S6B for comparison). (B) Distribution of

the local 3D scale values in each brain region. (C) Mean local 3D scale in fore- mid- and hind-

brain. A Wilcoxon test with Holm-Sidak for multiple comparison was used, ns = not signifi-

cant. (D, E) Correlation between the mean local 3D scales and average number of branching

points (D) or trace length (E) in different brain regions. Spearman correlation was used. Fig J:

Whole brain local 3D scale analysis of axons passing through different region of the larval
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zebrafish brain. Traces analyzed correspond to those presented in [12]. (A) Mean local 3D

scale by brain region (values were clipped in the same range as in Figure S6B for comparison).

(B) Distribution of the local 3D scale values in each brain region. (C) Mean local 3D scale in

fore- mid- and hindbrain. A Wilcoxon test with Holm-Sidak for multiple comparison was

used, ns = not signficant. (D, E) Correlation between the mean local 3D scales and average

number of branching points (D) or trace length (E) in different brain regions. Spearman corre-

lation was used. Fig K: Whole brain local 3D scale analysis of axons terminating in different

region of the larval zebrafish brain. Traces analyzed correspond to those presented in [12].

(A) Mean local 3D scale by brain region (values were clipped in the same range as in

Figure S6B for comparison). (B) Distribution of the local 3D scale values in each brain region.

(C) Mean local 3D scale in fore- mid- and hindbrain. A Wilcoxon test with Holm-Sidak for

multiple comparison was used, ns = not signficant. (D, E) Correlation between the mean local

3D scales and average number of branching points (D) or trace length (E) in different brain

regions. Spearman correlation was used. Fig L: Variability of local 3D scale for axons origi-

nating from, passing through or arriving in three brain regions (MOS3, SP, TS). The

regional local 3D scale differs the three axons subset. Fig M: Local 3D scale of axons crossing

the midline. (A) Distribution of the number of midline crosses made by individual axon

arbors. (B) Distribution of the number of ‘zigzags’ through the midline, i.e. total number of

crossings minus the number of crossing branches, for axons crossing more than 2 times. (C)

Relation between the local 3D scale and length of crossing branches at the midline. A branch is

defined as a neurite segment located between two branching points, or a branching point and

a leaf or the root of the arbor. Algorithm A: A pseudo-code explanation of the nAdder compu-

tation algorithm. Table A: Summary of 36 annotated brain regions from [12]. Table B: List

of regions having axons originating from and arriving to the Torus Semicircularis (TS)

from [12]. Index 0 corresponds to axons not starting from any regions.
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S1 Movie. Visualisation in 3D of a mouse striatal D2-type medium spiny neuron recon-

structed by [39].

(MP4)

S2 Movie. Visualisation in 3D of a mouse retinal ganglion cell [40].

(MP4)

S3 Movie. Visualisation in 3D of a mouse cerebellar Purkinje neuron from [41].

(MP4)
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