An adaptive teosinte *mexicana* introgression modulates phosphatidylcholine levels and is associated with maize flowering time

Allison C. Barnes1,2, David Aguilar-Rangelb, David Jacksoni, Ruairidh J. H. Sawers b,1, and Rubén Rellán-Alvareza,b,2

Native Americans domesticated maize (*Zea mays* ssp. *mays*) from lowland teosinte *parviglumis* (*Zea mays* ssp. *parviglumis*) in the warm Mexican southwest and brought it to the highlands of Mexico and South America where it was exposed to lower temperatures that imposed strong selection on flowering time. Phospholipids are important metabolites in plant responses to low-temperature and phosphorus availability and have been suggested to influence flowering time. Here, we combined linkage mapping with genome scans to identify *High PhosphatidylCholine 1* (*HPC1*), a gene that encodes a phospholipase A1 enzyme, as a major driver of phospholipid variation in highland maize. Common garden experiments demonstrated strong genotype-by-environment interactions associated with variation at *HPC1*, with the highland *HPC1* allele leading to higher fitness in highlands, possibly by hastening flowering. The highland maize *HPC1* variant resulted in impaired function of the encoded protein due to a polymorphism in a highly conserved sequence. A meta-analysis across *HPC1* orthologs indicated a strong association between the identity of the amino acid at this position and optimal growth in prokaryotes. Mutagenesis of *HPC1* via genome editing validated its role in regulating phospholipid metabolism. Finally, we showed that the highland *HPC1* allele entered cultivated maize by introgression from the wild highland teosinte *Zea mays* ssp. *mexicana* and has been maintained in maize breeding lines from the Northern United States, Canada, and Europe. Thus, *HPC1* introgressed from teosinte *mexicana* underlies a large metabolic QTL that modulates phosphatidylcholine levels and has an adaptive effect at least in part via induction of early flowering time.

Elevation gradients are associated with changes in environmental factors that impose substantial physiological constraints on an organism. Adaptation to highland environments is achieved via the selection of genetic variants that improve their ability to withstand lower oxygen availability (1, 2), increased ultraviolet (UV) radiation (3), and lower temperatures (4). In particular, cold temperatures reduce thermal time accumulation, measured in growing degree days (GDDs) (5), and select for accelerated development and maturity as a compensatory mechanism (6). Following domestication from teosinte *parviglumis* (*Zea mays* ssp. *parviglumis*) (7) in the lowland, subtropical environment of the Bahías River basin (Guerrero, Mexico), cultivated maize (*Zea mays* ssp. *mays*) expanded throughout Mexico and reached the highland valleys of central Mexico around 6,500 y ago (8).

In Mexico, highland adaptation of maize was aided by substantial adaptive introgression from a second teosinte subspecies, teosinte *mexicana* (*Zea mays* ssp. *mexicana*), that had already adapted to the highlands of Mexico thousands of years after its divergence from teosinte *parviglumis* (9, 10). Adaptation to low temperature and soils with low phosphorus content in highland environments drove *mexicana* genetic divergence from the lowland *parviglumis* (11). Phenotypically, the most evident signs of *mexicana* introgression into maize are the high levels of stem pigmentation and pubescence (12) that are thought to protect against high UV radiation and low temperatures. The ability to withstand low temperatures and efficiently photosynthesize during the early stages of seedling development are key factors in maize highland adaptation (13). Indeed, recent transcriptome deep sequencing (RNA-seq) analysis showed that the inversion *Inv4m*, introgressed from *mexicana*, strongly affects the expression of genes involved in chloroplast physiology and photosynthesis (14). Given the slow accumulation of GDDs in typical highland environments, selection has favored shorter generation times in highland-adapted maize (15).

Significance

Despite more than a century of genetic research, our understanding of the genetic basis of the astounding capacity of maize to adapt to new environments is in its infancy. Recent work in many crops has pointed to the potentially important role for introgression in underpinning adaptation, but clear examples of adaptive loci arising via introgression are lacking. Here, we elucidate the evolutionary history of a major metabolic quantitative trait locus (QTL) that we mapped down to a single gene, *HPC1*. Alterations in highland *HPC1* are the result of a teosinte *mexicana* introgression in maize, leading to high phosphatidylcholine levels and improving fitness by accelerating flowering.
By the time maize reached the Mexican highlands, its range had already expanded far to the South, including the colonization of highland environments in the Andes (16, 17). Andean maize adaptation occurred largely independently of *mexicana* introgression (18, 19), and there is no known wild teosinte relative in South America. These multiple events of maize adaptation to highland environments make maize a good system to study the evolutionary and physiological mechanisms of convergent adaptation (18, 19).

In comparison to its southward expansion, the northward migration of maize into the modern-day United States, where summer daylengths are longer, occurred at a much slower pace (20, 21) due to delayed flowering of photoperiod-sensitive tropical maize lines (22). A host of evidence suggests that maize cultivation in northern latitudes was enabled by the selection of allelic variants that led to a reduction in photoperiod sensitivity to allow flowering under longer photoperiods (22–28). Some of the early-flowering alleles that conferred an adaptive advantage in highland environments are the result of *mexicana* introgressions into highland maize (24). Maize first entered into the United States via the Mexican highlands (20), and these early-flowering alleles show further evidence of selection in northern latitudes (24), consistent with a likely role for *mexicana* introgression(s) in maize adaptation to shorter daylength. When introduced into Northern Europe, photoperiod-insensitive maize from the Northern United States and Canada thrived as it was already preadapted to northern latitudes and lower temperatures (29). The genetic, physiological, and phenotypic basis of these adaptations, however, is quite limited.

Plant phospholipids, as well as other glycerolipids such as sulfolipids, galactolipids, and nonpolar lipids such as triacylglycerols, are involved in plant responses to low temperatures. Phospholipid levels are increased in plants exposed to low temperatures (30) and levels of unsaturated fatty acids in glycerolipids are reduced (31, 32), which may help maintain the fluidity of cell membranes. Under stressful conditions, the proportions of differently shaped lipids are modulated to maintain membrane flexibility while preventing membrane leakage. For instance, phosphatidylicholines (PCs) are rectangular polar lipids that are well suited for the formation of bilayer membranes because the size of their glycerol backbone, choline headgroup, and fatty acid tails are similar. By contrast, lyso-phosphatidylincholine (LPC) is a triangular PC with a single acyl group that cannot form a bilayer because its headgroup is much larger than its fatty acid (33). LPCs do allow for some membrane movement, but high LPC concentrations act as a detergent (34) and can facilitate cell leakage and damage at low temperatures, effects that would be prevented by higher PC levels. In cold-adapted maize temperate lines and *Tripsacum* species (a distant maize relative), genes involved in phospholipid biosynthesis show accelerated rates of protein sequence evolution, further supporting an important role for phospholipid metabolism across several species during cold adaptation (35). Finally, multiple phospholipids can bind to *Arabidopsis* (*Arabidopsis thaliana*) FLOWERING LOCUS T (FT) and accelerate flowering. Recent work has shown that phosphatidylglycerol binds and sequesters FT in companion cells in low temperatures, while higher temperatures release it to the shoot apical meristem (36). There, it interacts with certain species of PC, the most abundant phospholipid in plant cells (37), through an unknown mechanism (38). Consistent with this observation, glycerolipid levels in maize have predictive power for flowering time (39).

Here, we identified an adaptive teosinte *mexicana* introgression that alters highland maize phospholipid metabolism and leads to early flowering. Using genome scans and linkage mapping, we identified *High PhosphatidylCholine1* (HPC1), a gene encoding a phospholipase A1, as a driver of high PC levels in highland maize. Data from thousands of genotyped landrace test crosses grown in common garden experiments at different elevations in Mexico showed a strong genotype-by-environment effect at the HPC1 locus, where the highland allele leads to higher fitness in the highlands and reduced fitness at lower elevations. Furthermore, we determined that the highland HPC1 allele, which was introgressed from teosinte *mexicana*, was carried northward and is now present in maize cultivars grown in the Northern United States and European Flint lines. These results suggest that the HPC1 highland allele has a beneficial effect in cold, high-latitude environments, where early flowering is advantageous.

2. Results

A. Highland Mesoamerican Maize Shows High PC/LPC Ratios and Selection of Highly Unsaturated PCs.

As lipids play an important role in adaptation to adverse environments, we quantified the glycerolipid levels of 120 highland and lowland landraces from Mesoamerica and South America (Fig. 1 *A and B* and Dataset S1).* This diversity panel, hereafter referred to as the HiLo diversity panel, was grown in highland (2,650 m above sea level [masl]) and lowland (20 masl) common garden experiments in Mexico. We determined that Mesoamerican highland landraces have high PC/LPC ratios, particularly when grown in the highlands (Fig. 1 *A and B*).

The differences observed in phospholipid levels between highland and lowland maize may be the result of adaptive natural selection or random genetic drift during maize colonization of highland environments. To distinguish between these two possibilities, we compared the variance of each phenotype across the population with the genetic variance of neutral markers using a $Q_{ST}−F_{ST}$ comparison (40). We calculated $Q_{ST}−F_{ST}$ using diversity array technology sequencing (DartSeq) genotypes (41) from the same plants phenotyped for glycerolipid levels and calculated the $Q_{ST}−F_{ST}$ values for each glycerolipid species for highland/lowland populations from each continent (*SI Appendix, Fig. S1*). Mean Q_{ST} was greater than mean F_{ST} in both Mesoamerican and South American comparisons. We identified PC and LPC species with higher Q_{ST} values than the neutral F_{ST} in both continents (Fig. 1 *C and D*). The species with the highest Q_{ST} value included long-chain PCs with more than one unsaturation such as PC-36:2.

B. Genes Involved in PC/LPC Conversion Show Strong Highland Selection Signals.

We selected a set of 597 maize glycerolipid genes from their functional annotations (*Materials and Methods*) to identify selection signals using the population branch excess (PBE) (42) statistic across four highland populations: Southwestern United States (SWUS), Mexican highlands (MH), Guatemalan highlands (GH), and Andes (AN) (Fig. 1E) (19). We identified a significant excess of genes that are targets of selection in more than two populations ($P < 3 \times 10^{-5}$, Fig. 1F). The most overrepresented intersection of selected glycerolipid genes was between the SWUS, MH, and GH populations ($P = 1 \times 10^{-15}$, Fig. 1F), suggesting that genes were specifically selected in these three populations relative to the AN population and/or that there was closer kinship among SWUS, MH, and GH populations than the AN population and thus weaker statistical

Open-pollinated varieties that have been selected for specific uses and environments by smallholder farmers; they are characterized by similar morphotypes. Landraces typically show as much diversity within individuals from the same landrace group as between groups.
independence. From all annotated glycerolipid genes, 23 were consistently PBE outliers across all four highland populations (\(P < 1 \times 10^{-10} \), Fig. 1F). We then assigned a PBE value to each of the 30 glycerolipid metabolism pathways (using a 10-kb window around each constituent gene) and compared their average PBE value with a genome-wide random sampling distribution of PBE values within genic regions. From these, we established that 'phospholipid remodeling' and 'PC acyl editing' exhibit significantly higher PBE values in all four populations, indicating a possible role for phospholipid remodeling in maize highland adaptation (Fig. 1G).

We considered two possible explanations for the extent of convergent selection in highland populations (explanations in refs. 19 and 43). Adaptation may be conferred by a small number of genes, thereby imposing a physiological constraint on the sources of adaptation leading to convergence. Alternatively, adaptation may be the result of many genes, but deleterious pleiotropic effects restrict the number of genes that can be targeted by selection, also leading to convergence. Using Yeaman et al.'s (43) \(C_{\text{hyper}} \) statistic, which quantifies these two modes of convergent adaptation, we determined that the overlap among putative adaptive genes in the four highland populations cannot be explained merely by physiological constraints (\(C_{\text{hyper}} = 3.96; \text{SI Appendix, Table S1} \)). A certain degree of pleiotropic constraint is therefore likely. Overlap between adaptation candidates was higher for the SWUS, MH, and GH population pairs (\(C_{\text{hyper}} = 4.79 \)) than between the Andean and SWUS, MH, and GH pairs (\(C_{\text{hyper}} = 3.14 \)).

To further understand selection at the gene level, we used genotyping by sequencing (GBS) data from 2,700 Mexican maize landraces, generated by the SeeD project (15, 44), to run a \texttt{pcaadapt} (45) analysis to determine how loci might contribute to observed patterns of differentiation along major principal components of genetic variation. The first \texttt{pcaadapt} principal component separated Mexican landraces based on the elevation of their geographical origin (Fig. 2B). Using this first principal component, we identified outlier single-nucleotide polymorphisms (SNPs) across the genome that are significantly associated with genetic variation along elevation and potentially involved in local adaptation (Fig. 2A). From the list of \(\approx \)600 maize glycerolipid-related genes, 85 contained SNPs that were \texttt{pcaadapt} outliers for association with the first genetic principal component [top 5% = \(-\log_{10}(P) \)] and of which 8 were also PBE outliers for Mexican highlands (Fig. 2A and SI Appendix, Table S2 and Dataset S2). These eight selection candidates, supported by two different sources of evidence, included two genes coding for putative enzymes whose orthologs are known to directly catalyze PC/LPC interconversion reactions. The first gene, Zm00001d039542, with a \(-\log_{10}(P) \) of 110.28, encoded a putative phospholipase A1 that we name \textit{High Phosphatidyl-Choline 1} (HPC1). The second gene, Zm00001d017584, with a \(-\log_{10}(P) \) of 99.31, encoded a predicted Lyso-Phosphatidylcholine Acyl Transferase 1 that we refer to as ZmLPCAT1 (Fig. 2C).

Although these two types of enzymes catalyze broadly opposite reactions (degradation vs. biosynthesis of PC) they are unlikely to catalyze strictly reverse reactions in the Lands cycle. A1 phospholipases attack the phosphatidylcholine at the sn-1 carbon, while LPC acyl transferases usually acylate sn-2 (46, 47). Instead, plant PLA1 enzymes like HPC1 are better known for their role in the first step of jasmonic acid biosynthesis (48, 49).

Both genes showed strong changes in elevation-dependent allele frequency (Fig. 2D) across Mexican landraces. HPC1 was not an outlier for branch excess between the Andean and the South American lowland accessions. By contrast, ZmLPCAT1 was indeed a PBE outlier for all four populations, which may indicate parallel/convergent selection for this gene between Mesoamerican and Andean landraces. Importantly, both HPC1 and ZmLPCAT1 are annotated as part of pathways with outlier PBE values in all highland populations for phospholipid remodeling and PC acyl editing (Fig. 1F and Dataset S2). Taken together, these two
independent population genetic approaches show that pathways involved in phospholipid remodeling, including genes controlling the PC/LPC ratio like HPC1 and ZmLPCAT1, show strong selection signals in highland maize. These results indicate that selection on phospholipid metabolite levels (Fig. 1 B–D) is supported at the gene level by outlier PBE and principal component analysis pcdadapt values in genes controlling phospholipid biosynthesis and degradation.

C. A Major QTL Explaining PC to LPC Conversion Overlaps HPC1.

To further characterize the genetic architecture of phospholipid biosynthesis in highland maize, we developed a recombinant inbred line (RIL) BC1S5 population derived from a cross between the temperate inbred line B73 and the Mexican highland landrace Palomero Toluqueño (PT), using B73 as the recurrent parent (75% B73, 25% PT) (50).

The parental PT accession is a popcorn landrace (palomero means popcorn in Spanish) from the Toluca Valley in Mexico (Mexi5 CIMMYTMA 2233) (Fig. 3A). We grew the HiLo diversity panel and the B73 × PT BC1S5 RIL population in the same highland and lowland common gardens and collected samples for glycerolipid analysis. The locally adapted PT landrace displayed higher fitness than B73 in the highland field (Fig. 3A), probably due to adaptation to lower temperatures in this highland environment. In the Mexican highlands, values of 5 GDDs per day are typical, while 15 to 20 GDDs per day are common in lowland environments.

We detected major quantitative trait loci (QTLs) for the sum of LPC species levels, PC species levels, and the PC/LPC ratio that all mapped to the same locus on chromosome 3, around 8.5 Mb (Fig. 3B). We tested for epistatic interactions for LPC levels, PC levels, and the PC/LPC ratio through a combination of R/qtl scan two and stepwise functions (51). The three QTLs qLPCS3@8.5, qPCs3@8.5, and qPCs/LPCs3@8.5 were robust against environmental effects and were detected in both the highland and lowland environments. The additive effect of the PT allele at these QTLs was associated with high levels of PCs, low levels of LPCs, and consequently high PC/LPC ratios, while the B73 allele had the opposite effect (Fig. 3C, Top). Individual PC and LPC species QTLs at this locus (SI Appendix, Fig. S2) showed the same additive effect for the PT allele as the sum of each class (PCs, LPCs, and PCs/LPCs) of species (Fig. 3C, Top). All individual LPC QTLs at the qLPCs3@8.5 locus corresponded to LPCs that contained at least one double bond in their fatty acid (SI Appendix, Fig. S2 and Dataset S3). qPCs3@8.5 was driven mainly by PC species with more than two fatty acid double bonds, such as PC 36:5 (Fig. 3D and SI Appendix, Fig. S2 A–D and File 3). We then sought to identify candidate genes underlying the QTLs on chromosome 3. The PC/LPC ratio QTL had the highest significance, with a logarithm of the odds (LOD) of 24.5, and explained the most phenotypic variance (87%). The underlying QTL interval contained 72 genes within its 1.5-LOD drop CI (7.9 to 10 Mb). We hypothesized that the metabolic phenotypes we observed might be due to a gene involved in PC-LPC conversion. The maize genome encodes 75 putative phospholipases (SI Appendix, Fig. S3A), of which half are predicted to be phospholipase A1 type (PLA1) (SI Appendix, Fig. S3B). Notably, HPC1 mapped within the interval (position on chromosome 3: 8,542,107 to 8,544,078 bp), making it a high-confidence candidate causal gene (Fig. 3B). HPC1 was predicted to have phospholipase A1-γamman activity and can be classified as a PC-hydrolyzing PLA1 class I.
Fig. 3. HPC1 defines a major QTL explaining PC/LPC conversion. (A) PT and B73 plants growing in the highland Metepec field. Picture was taken 64 days after planting. (B) QTL analysis identified overlapping major QTLs around 8.5 Mb on chromosome 3 for PC and LPC levels and PC/LPC ratio, using data collected from plants grown in highland and lowland fields. The QTL peaks coincide with the physical location of HPC1. (C) Effect sizes for PCs, LPCs, and PC/LPC ratios (z-score normalized) in RILs that are either homozygous for B73 or PT at 8.5 Mb on chromosome 3 (Top Row) and CRISPR-Cas9 hpc1 Tins mutant and wild-type plants (Bottom Row). Significant differences were tested by t test; the resulting P values are shown. (D) Effect sizes for individual PC and LPC species (z-score normalized) in RILs at 8.5 Mb on chromosome 3 (Left) or the CRISPR-Cas9 hpc1 Tins mutant (Right). *Significant difference at P < 0.05 (t test, after Benjamini and Hochberg correction); ns, not significant. (E) HPC1 expression analysis in B73, PT, and their F1 hybrids grown in standard and cold temperatures in a growth chamber. Significant differences were tested by t test with Benjamini and Hochberg correction; the resulting P values are shown. (F) PC/LPC ratio for several RILs. RIL B042 (indicated by the black arrow) bears a recombination event 500 bp upstream of the HPC1 translation start codon. In C–F, phenotypes associated with the B73 haplotype are in red; the equivalent values for the PT haplotype are in blue.

HPC1 phospholipase based on its two closest Arabidopsis orthologs (encoded by At1g06800 and At2g30550) (52). PLA1-type phospholipase hydrolyzes phospholipids in the m-1 position and produces a lyso-phospholipid and a free fatty acid (SI Appendix, Fig. S3B). In B73, HPC1 was one of the most highly expressed phospholipase genes, with expression almost exclusively restricted to vegetative leaves (V4 to V9) (SI Appendix, Fig. S4A) (53), which was the biological material we sampled for glycolipid analysis. In B73 leaves, HPC1 was also the most highly expressed gene within the QTL interval (SI Appendix, Fig. S3C) (53). Class I phospholipases are chloroplast-localized proteins; in agreement, we identified a chloroplast transit peptide (CTP) at the beginning of the predicted HPC1 sequence using the online tool ChloroP (54). We validated the chloroplast localization of HPC1 by transiently expressing a construct encoding the HPC1 CTP fragment fused to green fluorescent protein (GFP) in Nicotiana benthamiana leaves (SI Appendix, Fig. S5).

The effect of HPC1 on PC/LPC levels may be caused by misregulation of HPC1 expression in highland landraces and/or by a mutation affecting HPC1 enzymatic activity. To distinguish between these two possibilities, we analyzed HPC1 expression in B73, PT, and the corresponding F1 hybrid plants grown at high and low temperatures to simulate highland and lowland conditions, respectively (Fig. 3E). Under cold conditions, HPC1-B73 was up-regulated, but HPC1-PT was not (Fig. 3E). The lack of up-regulation in cold conditions of HPC1 may explain the high PC/LPC levels in PT. However, HPC1 expressed to the same levels in B73 and PT under control conditions. In the F1 hybrids, HPC1 expression was consistent with a dominant B73 effect. We also observed a dominant B73 effect at the metabolic level when we analyzed B73 × PT RILs that are heterozygous at the HPC1 locus (SI Appendix, Fig. S3D). Variation in HPC1 may also affect enzymatic activity of the HPC1-PT variant. To test this hypothesis we sequenced three B73 × PT RILs (B021, B042, B122) that are homozygous for the HPC1-PT allele. We discovered a recombination point between 493 and 136 bp upstream of the HPC1 translation start codon (Fig. 3F and SI Appendix, Fig. S6) in RIL B042, resulting in a chimeric locus with the coding region from PT combined with a promoter segment from B73. PC/LPC levels in RIL B042 were similar to other RILs that are homozygous for the PT haplotype at the 8.54-Mb marker at the QTL peak (Fig. 3F). This result supports the hypothesis that the metabolic effect in the B73 × PT RILs is likely due to an impaired function of the HPC1-PT enzyme rather than to changes in the HPC1-PT regulatory region. However, regulatory variants in the first 500 bp of the promoter may also impact expression levels in RIL B042.

If HPC1 is the underlying causal gene of this QTL, the observed metabolic phenotypes would be consistent with a reduction or loss of HPC1-PT enzyme function, leading to higher levels of PCs and lower levels of LPCs in the PT background. To test this hypothesis we generated mutants in HPC1 via CRISPR/Cas9-mediated genome editing (SI Appendix, Fig. S7A) in the B104 inbred, a temperate stiff-stalk inbred derived from the Iowa Stiff Stalk Synthetic population like B73. We identified two transgenic mutants, hereafter designated hpc1 CR T ins and hpc1 CR T del (SI Appendix, Fig. S7A). We then measured PC and LPC species in wild-type and mutant plants grown under long day conditions. The phospholipid profiles...
of the hpc1^{CR} plants replicated those of the PT allele in the RILs (Fig. 3 C and D, Bottom and SI Appendix, Fig. S7B), confirming that the HPC1-PT allele impairs HPC1 function and thus underlies the QTL on chromosome 3 around 8.5 Mb. Finally, we in vitro translated HPC1-B73 and HPC1-PT versions of the protein in a cell-free system and incubated them with various phospholipid substrates. We then measured the amount of phospholipid substrate and lyso-phospholipid product for each compound (SI Appendix, Fig. S8). This experiment confirmed that both HPC1 variants have PLA₁ activity and suggested that HPC1-B73 may have higher activity on substrates like PC36:4 that both HPC1 variants have PLA₁ activity and suggested that HPC1-B73, overlaid on chain B of the crystal structure of phospholipase A1 from Arabidopsis (PDB 2YIJ, tan), Residues that differ between the PT and B73 phospholipase are shown in yellow and some are labeled.

D. Identification of the Putative Causal SNP in HPC1. We Sanger sequenced the HPC1 locus from several RILs harboring the PT haplotype at HPC1 and identified several nonsynonymous SNPs within the coding sequence that might influence HPC1 function (SI Appendix, Fig. S11).

We focused our attention on SNP 631 affecting the flap-lid domain, which led to a conservative replacement of valine by isoleucine (V211I, Fig. 4A). The flap-lid domain is important for phospholipase activity and is located in a lipase class 3 domain (Protein Families (PFAM) database domain PF01764) that is highly conserved across the tree of life (55). We recovered 982 observations of the lipase class 3 PFAM domain from 719 prokaryotic species using PfamScan (56, 57) and estimated optimal growth temperatures from their tRNA sequences (58). We then tested whether genetic variation in the sequence encoding the lipase class 3 domain was significantly associated with optimal growth temperature in bacteria (59). We detected several significant associations, all of which were located in the flap-lid region (Fig. 4A, letters in boldface type). Notably, the presence of a valine at residue 211, as observed in the PT allele, was accompanied by lower optimal growth temperatures relative to an isoleucine at residue 211, as observed in B73 (Fig. 4B), suggesting that the PT allele may be better adapted to the low temperatures to which highland maize is exposed.

We used the crystal structure of phospholipase A1 from Arabidopsis (Protein Data Bank [PDB] 2YIJ) to model the structure of HPC1-B73 by Iterative Threading Assembly Refinement (I-TASSER) (Fig. 4C). Residues that differ between HPC1-PT and HPC1-B73 are shown in yellow. The catalytic triad and H400 identified from the conserved domain database (CDD) conservation analysis are also labeled. Our models placed H416 rather than H400 in the catalytic triad. Among the residues that differ between HPC1-PT and HPC1-B73, residues 211, 448, and 449 were the closest to the catalytic triad. I211 was positioned on the N terminus of the flap-lid domain and is well suited to stabilize binding of a lipid substrate through hydrophobic interactions. Replacement of I211 with V211 results in the loss of a methyl group that may influence the strength of these hydrophobic interactions, affect substrate binding, and/or affect the dynamics of the flap-lid domain. These results strongly point to the mutation in the flap-lid domain as the most likely underlying mutation affecting HPC1 activity.

E. HPC1 Shows Strong Elevation-Dependent Antagonistic Pleiotropy in Mexican Landrace Fitness Phenotypes. Our selection and QTL analysis provided strong evidence that HPC1 is under selection in highland maize and controls phospholipid metabolism. To evaluate the possible fitness effects of HPC1 variation in locally adapted landraces across Mexico, we reanalyzed phenotypic data from a previously reported F₂ association mapping panel (15, 44) composed of about 2,000 landrace F₂ plants grown in 23 common garden environments across an elevation range.
gradient. We then fitted a model to estimate the effect of variation at *HPC1-PT* on the relationship between fitness traits and elevation (60). *HPC1* was a clear outlier in a genome-wide association study (GWAS) of genotype-by-elevation fitness traits like flowering time and yield (SI Appendix, Fig. S9 A and B), indicating that elevation-dependent variation at *HPC1* has an effect not only on phospholipid levels but also on fitness traits. Indeed, variation at *HPC1* showed significant genotype × elevation effects for several fitness traits (Fig. 5A). The effect of *HPC1* on flowering time revealed antagonistic pleiotropy between highland and lowland environments (Fig. 5A). The highland *HPC1-PT* allele was associated in low elevations with delayed flowering, increasing days to anthesis (DTA) by about 1 d. Meanwhile the same allele exhibited accelerated flowering at high elevation (with a decrease in DTA of almost 1 d; Fig. 5A). Variation at *HPC1* also displayed conditional neutrality on fresh ear weight and grain weight per hectare traits: The highland allele had no effect in lowland environments but was associated with greater values in highland environments (Fig. 5A). Other known domestication and flowering-time genes did not show a clear genotype-by-environment (*G × E*) effect (SI Appendix, Fig. S10). We also checked previous reports for associations between *HPC1* and flowering time in other populations through the MaizeGDB (61) genome browser. We in fact found a significant flowering-time SNP in the *HPC1* coding sequence (Fig. 5B) for the nested association mapping (NAM) population (62). This additive flowering-time locus is only 6 bp from the focal SNP we used to test *G × E* at *HPC1* in the SEEDs panel (Fig. 4). Variation at this SNP correlated with a reduction in flowering time of 8.5 h, relative to B73, and explained 1.12% of the trait variance, which is about one-third of the largest effect observed for flowering-time variation in the NAM population.

We then used genetic marker data from the HapMap 3, which includes the NAM parents (63), to analyze linkage disequilibrium (LD) of the *HPC1* region (Fig. 4B). We detected a strong LD block of about 150 bp in length in the coding sequence that includes the focal SNP mentioned above (Fig. 5 A and B). We identified another LD block covering the 5' region of *HPC1* and the promoter region up to 2 kb upstream of *HPC1* (Fig. 5B). Interestingly, this second LD block on the promoter overlapped with two strong ATAC-seq (assay for transposase-accessible chromatin followed by sequencing) peaks identified in B73 (64) (Fig. 5B).

These results confirmed that the SNPs associated with fitness traits like flowering time on the *HPC1* coding sequence are not linked to other SNPs upstream of the *HPC1* coding sequence. However, the SEEDs dataset lacks GBS markers for several kilobases upstream of *HPC1*, raising the possibility of a second regulatory variant in the promoter (Fig. 4B) that might have an effect on *HPC1* expression. We further evaluated the possible effect of *HPC1* on flowering using both *hpc1* mutants in long-day conditions during the summer of 2021 in Raleigh, NC. Although the mutants showed high PC/LPC ratios, we observed no significant difference in flowering time relative to the wild type (SI Appendix, Fig. S7 C). As shown in Fig. 4A the effect of the *HPC1* allele on flowering time has a strong *G × E* pattern and we observe a significant effect only in very high or low elevations. We speculate that the absence of significant differences in the B104 CRISPR mutants in Raleigh conditions could partly be explained by the strong *G × E* effect of *HPC1* and/or genetic background effects.

In summary, the SNPs in the short, lipase-domain-encoding LD block of *HPC1* show strong genotype × elevation fitness effects in both Mexican landraces grown across multiple altitudes and the NAM population. The phospholipid changes induced by *HPC1* have physiological effects that may explain the strong selection of *HPC1* in highland environments.

F. *HPC1-PT* Was Introgressed from Teosinte *mexicana* and Is Conserved in Flint Inbred Lines. We explored the segregation of the V211I SNP among other highland maize varieties. We detected the PT allele at high frequencies in highland landraces...
from Mexico and Guatemala. In addition, the PT allele segregated in Southwestern US landraces. The B73 allele was fixed in lowland Mexican, South American, and Andean landraces (Fig. 6A). These results were consistent with our PBE results (Fig. 2F). The PT allele was also present in one-fourth of all teosinte *parviglumis* accessions tested and in both *mexicana* accessions reported in HapMap 3 (63) (Fig. 6A). This observation prompted us to examine whether the PT allele was the result of postdomestication introgression from teosinte *mexicana* during maize highland colonization or whether it was selected from *parviglumis* standing variation. To test for introgression from *mexicana*, we used *f*_{st} data from ref. 10 and established that the genomic region containing HPC1 shows signatures of introgression from *mexicana* into highland maize (Fig. 6B). We then performed a haplotype network analysis using SNP data from the HPC1 coding region of 1,160 Mexican accessions from the SeeD dataset (44) (Fig. 6C) together with highland landraces primarily collected in the Trans-Mexican Volcanic Belt (30/36 from the highlands of Jalisco, Michoacán, México, Puebla, and Veracruz). We then observed significant associations between *HPC1* expression levels in aerial tissues and several flowering-time traits (SI Appendix, Fig. S12). The magnitude of these associations was similar to that seen for other well-characterized flowering-time genes (SI Appendix, Fig. S12) such as ZEA CENTRORADIALIS8 (ZCN8) and the APETAL2A2/AP2/ETHYLENE RESPONSE FACTOR (ERF) transcription factor gene RELATED TO AP2.7 (ZmRAP2.7). In *Arabidopsis*, florigen (FT) has recently been shown to interact with both PC and phosphatidylglycerol (PG), depending on the ambient temperature and the cellular location of FT (36, 38). As ZCN8 is a homolog of FT, it may mediate the hastening of flowering time seen in highland maize. Recent work improved upon the crystal structure of *Arabidopsis* FT, onto which we modeled ZCN8 and compared

Fig. 6. Introgression of teosinte *Mexicana* into maize HPC1. (A) Alignments around the V211I polymorphism in the flap-lid domain of HPC1 in B73, *mexicana*, and *parviglumis* and landraces of the SWUS, MH, Mexican lowlands (ML), GH, AN, and South American lowlands (SAL). (B) *f*_{st} analysis of the *mexicana* introgression. Data were obtained from ref. 10. (C) Haplotype network analysis of SNPs within the HPC1 coding region, using 1,060 Mexican homozygous individuals from the SeeD dataset. Haplotypes are color coded by elevation: red, 0 to 1,000 masl; green, 1,000 to 2,000 masl; blue, >2,000 masl. (D) Cluster analysis of the HPC1 coding region using a sample of HapMap3 inbred lines and the PT landrace. (E) Correlation between HPC1-PT expression and DTA in plants grown in short or long days. Inbreds lines from the PT lineage shown in C are indicated in blue and inbred lines from the B73 lineage are in red; data are from ref. 65.

G. *HPC1/Phosphatidylcholine Interactions with Maize Flowering-Time Protein ZCN8*. Using the same expression dataset from the 282 panel (65), we discovered that HPC1 and ZmLPCAT1 expression levels are inversely correlated in most tissues (SI Appendix, Fig. S12), further supporting the idea that these two enzymes are coordinately regulated. We observed significant associations between *HPC1* expression levels in aerial tissues and several flowering-time traits (SI Appendix, Fig. S12). The magnitude of these associations was similar to that seen for other well-characterized flowering-time genes (SI Appendix, Fig. S12) such as ZEA CENTRORADIALIS8 (ZCN8) and the APETAL2A2/AP2/ETHYLENE RESPONSE FACTOR (ERF) transcription factor gene RELATED TO AP2.7 (ZmRAP2.7). In *Arabidopsis*, florigen (FT) has recently been shown to interact with both PC and phosphatidylglycerol (PG), depending on the ambient temperature and the cellular location of FT (36, 38). As ZCN8 is a homolog of FT, it may mediate the hastening of flowering time seen in highland maize. Recent work improved upon the crystal structure of *Arabidopsis* FT, onto which we modeled ZCN8 and compared
the PC binding sites (*SI Appendix, Fig. S13 A and B*) (66). Using AutoDock Vina to simulate docking and the sites from ref. 66, we identified sites 2 and 4 and 1 and 4 as potential binding sites of PC34:2 and PC36:2 with site 4 heavily favored in both cases (*SI Appendix, Fig. S13 A–C*). As maize ZCN8 and *Arabidopsis* FT are highly conserved, the predicted binding-site similarity is not surprising (*SI Appendix, Fig. S13D*). We next heterologically produced and purified ZCN8 fused to a SPOT tag from yeast (*Saccharomyces cerevisiae*) cells to assess lipid binding to ZCN8 in vivo. We extracted and analyzed all lipids copurifying with the recombinant protein following the same lipidomics pipeline used for maize lipids. We identified PC34:2 in the purified ZCN8 protein in all samples, confirming experimentally that ZCN8 effectively bound PC species (*SI Appendix, Fig. S14*).

3. Discussion

Understanding the genetic, molecular, and physiological basis of crop adaptation to different environments and the role that wild relatives have played in these processes is relevant for the identification of favorable genetic variation that can be used to improve modern crops. The repeated events of maize adaptation to highland environments constitute an excellent natural experiment to study local adaptation. Recent studies (14, 18, 19) have helped expand our understanding of the genetic basis underlying maize highland adaptation. However, the responsible molecular, physiological, and genetic mechanisms underlying maize highland adaptation and the possible role of highland maize traits in modern, commercial varieties remain largely unknown. Phospholipids are key structural components of plant membranes that also function as signaling molecules during adaptation to stresses that would be prevalent in highland environments (52, 67) such as low phosphorus availability (68–70) and low temperatures (30, 31, 71). In *Arabidopsis* and rice (*Oryza sativa*), phospholipid species regulate flowering time via interactions with *Arabidopsis* FT and rice Heading date 3a (Hd3a), respectively (36, 38, 72). Flowering time is a major driver of maize adaptation to different environments and the role that alterations in PC amounts and PC/LPC ratios affect overall plant fitness. The *qPC/LPC3* QTL is driven by individual QTLs for PC and LPC species with high levels of unsaturated fatty acids (Fig. 3D). Several of these species, like PC 36:5 and LPC 18:1 (Fig. 3D and Dataset S3), have been shown to display similar patterns during *Arabidopsis* cold acclimation (31) and sorghum (*Sorghum bicolor*) low-temperature responses (71). PC 36:5 also showed high QST values when comparing highland and lowland landraces from both Mesoamerica and South America (Fig. 1 C and D and Dataset S5). In maize, *HPC1* expression is under the control of the circadian clock (78) with a peak at the end of the day. In *Arabidopsis*, highly unsaturated PC (34:3, 34:4, 36:5, 36:6) species increase in the dark (79). This peak in contents coincides in maize with low *HPC1* expression levels during the same dark hours (78). PC, and lipid metabolism in general, is also intimately connected to flowering time. For instance, PCs were shown to bind to *Arabidopsis* FT in the shoot apical meristem to hasten flowering (38, 66) by unknown cellular mechanisms. Similarly, PG species can sequester FT in phloem companion cells in low temperatures (36) and then release FT into the phloem later after temperatures increase, allowing FT to reach the shoot apical meristem. In agreement with an effect of lipids on flowering time, overexpression of a gene encoding a secretory phospholipase D delayed heading time in rice (72). In line with a role for phospholipids in flowering, we established that genetic variation at SNPs within the region of *HPC1* encoding the lipase domain exhibits a strong interaction with elevation for the highland *HPC1-PT* allele. This variation leads to a delay in flowering time in low elevations and an acceleration at high elevations, both of which are close to 1 day in amplitude. Interestingly, the effect of the highland *HPC1* allele exhibited typical conditional neutrality in yield-related traits, with higher fitness conferred by the *HPC1-PT* allele in highlands (Fig. 4A). In the NAM population, we identified another SNP mapping to the region encoding the lipase domain that is associated with a hastening of flowering time by 8 h with respect to B73 (62), further supporting the role of *HPC1* in controlling flowering time. Analysis of *HPC1* CRISPR mutant alleles in the B104 background grown in Raleigh displayed a PC/LPC phenotype that mimicked the highland allele but not a flowering-time phenotype (*SI Appendix, Fig. S7*), probably due to the strong G × E effect of *HPC1* and/or genetic background effects.
The strong G × E effect we observed in HPC1 is similar to the well-known teosinte mexitana introgression inv4m (14). In fact, our analysis showed that HPC1 is indeed another introgression from teosinte mexicana (Fig. 6 A–C). Recent analysis using sympatric teosinte and maize populations across elevation gradients in Mexico further supports the introgression of mexicana at HPC1 and shows that the mexicana ancestry of HPC1 increases at a rate of +0.079 per 100 m of elevation (80). We further demonstrated that the mexicana introgression at HPC1 is conserved in high-latitude–adapted Flint lines from both Europe and the United States (Fig. 6D). HPC1 in inbred lines carrying the highland ZincHPC1 mexicana haplotype was expressed at low levels and resulted in earlier flowering (Fig. 6E) (65).

Adaptation to higher latitudes involved a reduction of photoperiod sensitivity and flowering time that enabled maize to thrive in longer-day conditions characteristic of the growing season at high latitudes (21, 22, 26, 27). Additive mutations in the regulatory region of the gene ZCN8 (81), including a teosinte mexicana introgression, lead to higher expression of ZCN8, which contributes to maize adaptation to long days in temperate conditions (82). ZCN8 is a close ortholog of Arabidopsis FT, whose encoding protein interacts with several species of phospholipids to modulate flowering time (36, 38). A similar interaction was also demonstrated for the rice FT ortholog Hd3a (72), and we hypothesize that the same may be occurring in maize. Comparison of docking simulations of phospholipids with ZCN8 using the Arabidopsis FT crystal structures as a model (66) showed similar PC interactions in ZCN8 (SI Appendix; Fig. S13). We corroborated this interaction via mass spectrometry analysis of lipids bound to ZCN8 heterologously produced in yeast (SI Appendix, Fig. S14).

In summary, we used a combination of genomic scans, linkage mapping, lipidomics, and reverse genetics to identify and clone the adaptive gene HPC1, introgressed from teosinte mexicana, in highland maize landraces. HPC1 variants lead to a major reorganization of phosphatidylcholine metabolism. We showed that the fitness advantage conferred by the HPC1 highland mexicana allele is due, at least in part, to its association with flowering time. This effect may have contributed to adaptation of maize to colder, higher latitudes.

Our work identifies the important role of a gene controlling phospholipid metabolism in plant local adaptation and further supports the emerging role of phospholipid metabolism in fine-tuning flowering time across different plant species (36, 38, 82). This study highlights the largely underappreciated role of highland maize and highland teosinte mexicana in modern maize.

4. Materials and Methods

The diversity panels and mapping populations used in this paper for population genetics measures of selection, QTL mapping, and G × E analysis have been described previously by refs. 15, 19, 41, 44, and 50. Lipidomics analyses were performed with high-resolution mass spectrometry UPLC-MS (Ultra Performance Liquid Chromatography - Mass Spectrometry). Mutant alleles of HPC1 were obtained using CRISPR-Cas9 editing. Full description and details of all materials and methods are provided in SI Appendix. All the data and code are contained within this paper, SI Appendix, and the associated GitHub repository of the project.

Data Availability. Code and data have been deposited in https://github/sawerrellan-labs/High-P1C1-paper (84). The mass spectrometry data has been deposited in the metabolights repository at www.ebi.ac.uk/metabolights/MTBLS5074 (85). All other data are included in this article and/or supporting information. Previously published data were used for this work (https://hdl.handle.net/11529/10548233) (86).

ACKNOWLEDGMENTS. This work was supported by Conacyt Young Investigator (CB-238101), Consejo Nacional de Ciencia y Tecnologia National Problems (APN-2983), University of California-Mexus, and North Carolina State startup funds awarded to R.R.-A. Fieldwork and mapping population development were supported by NSF-Plant Genome Research (PGR) Award 1546719 to D.R., J.R.I., M.B.H., and R.J.H.S. A.C.B. was supported by NSF-Plant Genome Research Program, Postdoctoral Research Fellowships in Biology (PGRP PRFB) Grant 2010703. A.K. was supported as an Agricultural Biotechnology in Our Evolving Food, Energy, and Water Systems fellow by NSF Award 1828820. F.R.-Z. was supported by the Science and Technologies for Phosphorus Sustainability Center, a NSF Science and Technology Center (CBET-2019435). This study made use of NM-Rbox. National Center for Biomolecular NMR Data Processing and Analysis, a Biomedical Technology Research Resource, which is supported by NIH Grant P41GM111133 (National Institute of General Medical Sciences). This work was performed in part by the Molecular Education, Technology and Research Innovation Center at North Carolina State University, which is supported by the State of North Carolina. We thank Josh Strable, Peter Balint-Kurti, Luis Herrera-Estrella, and James Holland for critical review of the manuscript and feedback. We thank the members of the M.B.H., R.J.H.S., R.R.-A., and Flint-Garcia laboratories for their help developing and evaluating mapping populations. We thank Cruz Robledo and the Puerto Vallarta Agricultural Invernal team, including members of the local Wixarika community for their work in our lowland field. We thank Fernando Delgado, Denise Costich, and Cristian Galvez and the staff of the International Maize and Wheat Improvement Center (CIMMYT) Metepec field station and the CIMMYT Germplasm bank for their assistance in genetic nursery and field evaluation. We thank the CIMMYT and Puerto Vallarta Winter Nursery crews that have helped generate and evaluate the mapping populations used in this paper. We thank the crew of the Central Crops Research Station at North Carolina State for their help and assistance with field experiments. We specially acknowledge the indigenous people of the Americas and the ingenuity through which they domesticated and made the spread and adaptation of maize throughout the continent possible. We acknowledge the painful history of Native American peoples dispossession and honor the ongoing connection of Native American peoples, past and present, to the lands and waters where the field experiments described here were performed. This work would not have been possible without the international maize research community and the willingness of so many colleagues to support the development of new research programs.

Author affiliations: “Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695; 2National Laboratory of Genomics for Biodiversity 36821, Irapuato, Mexico; “Department of Evolution and Ecology, Center for Population Biology, and Genome Center, University of California, Davis, CA 95616; “Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011; “Department of Plant Biology, University of Georgia, Athens, GA 30602; “US Department of Agriculture– Agricultural Research Service, Cornell University, Ithaca, NY 14853; “Department of Plant Sciences, University of California, Davis, CA 95616; “Department of Chemistry, North Carolina State University, Raleigh, NC 27695; “Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724; “Molecular Education, Technology and Research Innovation Center, North Carolina State University, Raleigh, NC 27695; “West Coast Metabolomics Center, University of California, Davis, CA 95618; and “Department of Plant Science, The Pennsylvania State University, PA 16802.

et al.

32. D.V.Lynch, P.L.Steponkus, Plasmamembranelipidalterationsassociatedwithcoldacclimationof

33. J.Jouhet, Importanceofthehexagonallipidphaseinbiologicalmembraneorganization.

34. J.R.Henriksen, T.L.Andresen, L.N.Feldborg, L.Duelund, J.H.Ipsen, Understandingdetergent

35. L.Yan, ParallelevolutionofcoldtolerancewithinDrosophilamelanogaster.

37. Y.Gu, Plasmamembranelipidalterationsassociatedwithcoldacclimationof

38. S.Yeaman, A.C.Gerstein, K.A.Hodgins, M.C.Whitlock, Quantifyinghowconstraintslimitthe

39. C.Riedelsheimer, Y.Brotman, M. ´Meret, A.E.Melchinger, L.Willmitzer, Themeizeleaflipidome

40. E.Omanuelsson, H.Nielsen, G von Heijne, ChloroP, a neural network-basedmethodforpredicting

41. P.R.Proctor, J.M.Ross, H.Lambers, C.S.Potter, R.Cornelissen, Detectionofhigh-endophyteusefficiencyin

43. S.Yeaman, A.C.Gerstein, K.A.Hodgins, M.C.Whitlock, Quantifyinghowconstraintslimitthe

44. H.-Y.Hung, ParallelevolutionofcoldtolerancewithinDrosophilamelanogaster.

45. K.-J.shin, S.J.Hearne, D.J.Gates, Phenotypicdatafor"Single-generesolutionof

46. D.Coles, et al., Genomespecificassociationofcoldadaptationtogetherwiththereliefofselection.

49. S.N.Tavares, et al., Aparadigmfordiscerningtherelativeimportanceofphenotypicexpressionandgenetic

51. S.C.Steffljug et al., AnexpandedmaizegeneticmapbasedonRNASequencinganditsuseforhelping

52. O.Emanuelsson, H.Nielsen, G von Heijne, ChloroP, a neural network-based method for predicting

54. S.Perez-Limon et al., AB73 × Palomero Toluqueño mapping population reveals local adaptation in

55. S.E.Jensen, L.Johnson, C.Tave, E.S.Buckler, Predictingproteindomaintemperatureadaptationacrossthe

56. S.C.Potter, et al., Pfamdomainadaptationprofilesreflectplantspecies'evolutionary

59. S.E.Jensen, L.C.Richardson, X.C.S. Ramírez, Pfamdomainadaptationprofilesreflectplantspecies'evolutionary

60. S.C.Potter, et al., Pfamdomainadaptationprofilesreflectplantspecies'evolutionary

61. S.E.Jensen, L.C.Johnson, E.S.Buckler, Predictingproteindomaintemperatureadaptationacrossthe

62. S.E.Jensen, L.Johnson, C.Tave, E.S.Buckler, Predictingproteindomaintemperatureadaptationacrossthe

63. S.E.Jensen, L.Johnson, C.Tave, E.S.Buckler, Predictingproteindomaintemperatureadaptationacrossthe

65. K.-J.shin, S.J.Hearne, D.J.Gates, Phenotypicdatafor"Single-generesolutionof

67. H.Lambers, et al., Proteacceasefromseverelyphosphorus-impoveryedsoilscreateextend phospholipids withgalactolipidsandsulfolipidsduringleafdevelopmenttoachieveaphoto

68. H.Lambers, et al., Proteacceasefromseverelyphosphorus-impoveryedsoilscreateextend phospholipids withgalactolipidsandsulfolipidsduringleafdevelopmenttoachieveaphoto

69. A.Cruz-Ramírez, et al., Thee7oletopcorrespondsitoseseedlingsofEuropeanmaizeanditsAmericancounterparts.

70. H.Lambers, et al., Proteacceasefromseverelyphosphorus-impoveryedsoilscreateextend phospholipids withgalactolipidsandsulfolipidsduringleafdevelopmenttoachieveaphoto

71. S.R.Marla et al., Linkagedisequilibriumasasignatureofselectivesweeps.

72. L.Qu, Y.J.Chu, W.H.Lin, H.W.Xue, AsecretoryphospholipaseDhydrolyzesphosphatidylchinoloto

73. J.R.Henriksen, T.L.Andresen, L.N.Feldborg, L.Duelund, J.H.Ipsen, Understandingdetergent

74. L.Salvi et al., Conservednoncodinggenomicsequencesassociatedwithaflorescingenome
traitdistributioninmaize.

75. M.C.Willcox, J.Burgueño, S.J.Hearne, D.J.Gates, Phenotypicdatafor"Single-generesolutionof

76. S.Perez-Limon et al., AB73 × Palomero Toluqueño mapping population reveals local adaptation in

77. Y.Kim, R.Nielsen, Linkagedisequilibriumasasignatureofselectivesweeps.

80. S.E.Jensen, et al., Quantifyinghowconstraintslimitthe

81. S.Perez-Limon et al., AB73 × Palomero Toluqueño mapping population reveals local adaptation in

82. S.Perez-Limon et al., AB73 × Palomero Toluqueño mapping population reveals local adaptation in

84. S.E.Jensen, et al., Quantifyinghowconstraintslimitthe

85. S.Perez-Limon et al., AB73 × Palomero Toluqueño mapping population reveals local adaptation in

86. M.C.Willcox, J.Burgueño, S.J.Hearne, D.J.Gates, Phenotypicdatafor"Single-generesolutionof