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SUMMARY
The cerebrovasculature and its mural cells must meet brain regional energy demands, but how their spatial
relationship with different neuronal cell types varies across the brain remains largely unknown. Here we apply
brain-wide mapping methods to comprehensively define the quantitative relationships between the cerebro-
vasculature, capillary pericytes, and glutamatergic and GABAergic neurons, including neuronal nitric oxide
synthase-positive (nNOS+) neurons and their subtypes in adult mice. Our results show high densities of
vasculature with high fluid conductance and capillary pericytes in primary motor sensory cortices compared
with association cortices that show significant positive and negative correlations with energy-demanding
parvalbumin+ and vasomotor nNOS+ neurons, respectively. Thalamo-striatal areas that are connected to pri-
marymotor sensory cortices also show high densities of vasculature and pericytes, suggesting dense energy
support for motor sensory processing areas. Our cellular-resolution resource offers opportunities to examine
spatial relationships between the cerebrovascular network and neuronal cell composition in largely under-
studied subcortical areas.
INTRODUCTION

The brain meets its uniquely high metabolic demand through an

intricate web of vascular and mural cells that dynamically supply

blood and clear metabolic waste (Hartmann et al., 2015; Swee-

ney et al., 2016; Vergara et al., 2019; Zhao et al., 2015). Pericytes,

a key mural cell type, wrap around microvessels and have been

proposed to regulate blood flow and vascular permeability (Hall

et al., 2014; Hartmann et al., 2021; Hill et al., 2015; Nikolakopou-

lou et al., 2019; Sweeney et al., 2016). Neuronal activity can also

regulate local energy supply by controlling vascular diameter

directly or indirectly (via astrocytes), which is referred to as neu-

rovascular coupling (Attwell et al., 2010; Cauli and Hamel, 2010;

Kaplan et al., 2020; Lecrux et al., 2011; Schaeffer and Iadecola,

2021). Neuronal health and function critically depend on efficient

vascular support (Hall et al., 2012; Vergara et al., 2019). Impair-

ment of the cerebrovasculature, pericytes, and neurovascular

coupling has been widely implicated in many neurological disor-

ders, such as stroke and neurodegenerative disorders, and even

neurodevelopmental disorders (Ouellette et al., 2020; Zhao et al.,
This is an open access article und
2015). Despite its significance, we have limited knowledge of the

cellular architecture of the vasculature and pericytes, especially

with respect to their quantitative relationship with neuronal cell

types across the whole brain. This relationship is likely of critical

importance for the heterogeneous coupling of neural activity to

blood flow described across different brain regions (Devonshire

et al., 2012; Huo et al., 2014; Shih et al., 2009; Zhang et al., 2019).

Generation of action potentials and synaptic transmission are

energetically demanding (Harris et al., 2012; Howarth et al.,

2012), and, accordingly, brain energy consumption has been

proposed to be linearly correlated with the number of neurons

in the brain across different animal species, including humans

(Herculano-Houzel, 2011). However, neurons comprise highly

distinct subtypes with different morphological, electrophysiolog-

ical, and molecular characteristics (Kepecs and Fishell, 2014;

Tasic et al., 2018). For example, the major classes of

GABAergic neurons in the cortex include neurons expressing

parvalbumin (PV), somatostatin (SST), and vasoactive intestinal

peptide (VIP), each of which make distinct synaptic connections

with pyramidal neurons and each other (Kepecs and Fishell,
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2014). These neuronal cell types are expressed at different den-

sities across cortical areas; PV interneurons have high density in

sensory cortices and low density in association cortices,

whereas SST neurons show the opposite density pattern in

mice (Kim et al., 2017). Different neuronal subtypes also have

differential energy demands and regulation. For instance, the

fast-spiking PV neurons are among the neuronal types with the

highest energy demand (Inan et al., 2016). Another neuronal

type, neurons expressing neuronal nitric oxide synthase

(nNOS), can actively regulate blood supply by causing vasodila-

tion (Echagarruga et al., 2020; Krawchuk et al., 2020; Lee et al.,

2020). These data suggest that determining specific spatial rela-

tionships between neuronal cell types and the vascular network

is critically important for understanding differences among brain

regions in terms of energy demand and the mechanism of

distinct blood flow regulation across different brain regions.

Toaddress the relationshipbetweencerebrovasculatureand the

aforementioned cell types, we have devised high-resolution 3D

mappingmethods to derive a cellular architecture atlas containing

cerebrovasculature, capillary pericytes, and several major neu-

ronal cell types, including PV interneurons and vasomotor nNOS

neurons, in the adult mouse brain. Our data resource allowed us

to uncover key organizational principles of the brain, including a

dense cerebrovascular network in primary motor sensory cortical

areas and related thalamic and dorsal striatal areas and a positive

correlation between vascular and capillary pericyte densities with

energy-demanding PV interneurons in the isocortex.

RESULTS

Comprehensive vascular mapping in the intact mouse
brain
Our first goal was to map spatial arrangements of the cerebro-

vasculature in the whole intact mouse brain to understand the

anatomical variation in the vascular network. We filled microves-

sels from 2-month-old C57BL/6 mice with a cardiac perfusion of

fluorescein isothiocyanate (FITC)-conjugated albumin gel (Fig-

ure 1A; Blinder et al., 2013; Tsai et al., 2009) and used serial

two-photon tomography (STPT) imaging in combination with

two-photon optical scans and serial sectioning to image the

whole mouse brain at 1 3 1 3 5 mm (x, y, z; medial-lateral, dor-

sal-ventral, rostral-caudal) (Figure 1B). We also developed a

stitching algorithm to correct optical aberrations, bleaching in

overlapped tile areas, and z stack alignments (Figures 1C and

1D; Figure S1). We also developed a computational pipeline to

quantitatively analyze cerebrovascular arrangement across the

whole brain (Figures 1E–1G; see STAR Methods for more de-

tails). Individual brains were then registered to the Allen Common

Coordinate Framework (Allen CCF) (Figures 1H–1L; Table S1;

Video S1; Wang et al., 2020). We implemented an additional

quality control step to reject data from areas with potentially

incomplete labeling or imaging artifacts (Figure S1). We also

confirmed that our approach closely reflects vasculature

structure, including diameter, in vivo by directly comparing

STPT results with in vivo two-photon measurements of the

same vasculature acquired in the same mice (Figure S2).

We then focused on mapping the density distribution of capil-

lary pericytes, using transgenic labeling of platelet-derived
2 Cell Reports 39, 110978, June 21, 2022
growth factor receptor b (PDGFRb), and nNOS-expressing neu-

rons as vasomodulatory cell types and major cortical cell types

(pan glutamatergic, pan GABAergic, PV, SST, and VIP neurons)

with different energy demands. We employed cell-type-specific

reporter mice to genetically label 11 target cell types (Table S2).

Then we developed deep learning algorithms to specifically

count capillary pericytes and detect neurons, including densely

packed nNOS neurons, in the cerebellum (Figures 1M–1N and

1P–1Q; Figure S3; Table S3; seeSTARMethods formore details).

Detected signals were then registered onto the Allen CCF to

quantify the 3D density of the target cell type distribution across

the whole brain (Figures 1O and 1R; Tables S3, S4, S5, and S6;

Videos S2, S3, and S4; Kim et al., 2017; Wang et al., 2020).

Primary motor sensory cortices show denser
vasculature than association cortices
We focused our analysis on the isocortex. To examine the spatial

distribution intuitively while maintaining high-resolution informa-

tion, we devised an isocortical flatmap based on Laplace’s equa-

tion (Figures 2A–2D; see STAR Methods for more details). We

grouped isocortical areas into 5 subregions based on their

anatomical connectivity and cell type composition: motor so-

matosensory, audio visual, medial association, medial prefron-

tal, and lateral association (Kim et al., 2017; Zingg et al., 2014;

Figure 2D). When averaged vessel length density is plotted in

the cortical flatmap, primary motor and sensory (auditory, so-

matosensory, and visual) cortices show overall higher vascular

densities than association areas (medial prefrontal, medial, and

lateral association) (Figures 2D–2H). For example, densely vas-

cularized areas are tightly aligned with anatomical borders in

the somatosensory (SS) and primary auditory (AUDp) cortices

(Figure 2E, gray and white arrowheads). One notable exception

is the ventral retrosplenial cortex (RSPv), which shows remark-

ably high vascular density compared with other cortical areas

(Figure 2E, black arrowhead). Although the RSPv was included

as a part of the medial association group, this area receives

spatial navigation information from the dorsal subiculum (Zingg

et al., 2014) and, thus, can be considered a sensory processing

region. Cortical layer-specific maximum projection of the length

density shows that sharp boundaries between cortical areas are

strongly driven by layer 2/3/4 (specifically layer 4 for primary sen-

sory regions) vascular distribution (Figure 2H).

Next we analyzed the vascular branching density and radius.

Branching density closely followed the pattern of the vessel

length density (Figures 2E–2G). In contrast, the average vessel

radius did not show a significant correlation with the vessel

length density (Figures 2E–2G). However, plotting vessel radius

against vessel length densities unveiled distinct patterns be-

tween the five cortical groups. For instance, motor sensory areas

showed overall high vascular density and radii, whereas the

medial prefrontal group was low in both measurements (Fig-

ure 2G). The lateral association group showed a high vascular

radius with relatively lower vascular density, and the medial as-

sociation regions showed the opposite pattern (Figure 2G). the

RSPv showed an overall low average vascular radius despite a

high vascular length density (Figures 2E–2G).

We then examined whether a relatively large vasculature

(radius > 3 mm) also showed regional variabilities. First we



Figure 1. High-resolution 3D mapping of the cerebrovasculature, pericytes, and neuronal cell types

(A) Fluorescent dye (FITC)-conjugated albumin gel perfusing the mouse brain through the heart to label cerebrovasculature.

(B) Combination of physical and optical sectioning to achieve lossless imaging of a sample.

(C and D) Stitching with optical aberration and tile line correction (D) from uncorrected images (C).

(E–G) Example outputs from each stage of the analysis pipeline. Top row: 100-mm-thick 3D volume from the white boxed areas from the center row. Center row:

an example coronal section. Bottom row: whole-brain results.

(E) The raw image volume of FITC-labeled vasculature.

(F) The binarized vasculature.

(G) The traced vasculature. Large (radius > 5 mm) and small vessels are colored red and green, respectively. The bottom image shows the vasculature density.

(H–J) The averaged vasculature length density (H), branching density (I), and radii (J) from four C57bl/6 mouse brains.

(K and L). The correlation between vessel density and branching density (K) and the correlation between vessel density and the averaged radius (L). The size of

each ROI is displayed according to the relative volume of the area. See Table S1 for abbreviations.

(M–O). Pericyte density mapping. Shown is an example of tdTomato labeling from PDGFRb-Cre; Ai14 mice (M), a pericyte detection algorithm (red stars, N), and

brain-wide pericyte density (n = 10 brains) (O).

(P–R) Pan nNOS neuronal mapping using nNOS-CreER; Ai14 mice (n = 10 brains). Shown is artificial intelligence (AI)-based detection of nNOS cells with two

distinct shapes (green and red crosses) in the cerebellum (P, from the white box in Q) and brain-wide nNOS density (R).
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Figure 2. Heterogeneous vascular arrangements in the isocortex

(A–C) Creating an isocortical flatmap.

(A) Anatomical border lines of the Allen CCF.

(B) Gradient vectors from solving the Laplace equation by setting cortical layer 1 and layer 6 as endpoints.

(C) The flattened projected profile.

(D) The cortical flatmap with Allen CCF border lines. y axis: bregma anterior-posterior (AP) coordinates; x axis, azimuth coordinate representing the physical

distance by tracing the cortical surface on the coronal cut.

(legend continued on next page)
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examined whether surface vasculature is stereotypically orga-

nized between samples and even between hemispheres of the

same brain. We observed that the position of large surface

vasculature differs considerably between brains and even be-

tween hemispheres from the same brain (Figures 2I and 2J).

When we plotted the distribution of the large vessels from 8

hemispheres from 4 animals in our layer-specific flatmap, the

layer 1 map including the surface vessels showed that the large

vessels, including the middle cerebral artery (MCA), closely sur-

round the somatosensory (SS) area (Figure 2K, layer 1).A high

density of large penetrating vasculature was clearly observed

in the primary motor sensory areas and the RSPv in layers 2–4,

with a gradual decrease in deeper layers (Figure 2K).

These data provide strong evidence that cortical vasculariza-

tion is not uniform but distinctly organized in functionally different

cortical areas.

Structure-based simulation reveals regional
heterogeneity of microvascular directionality and fluid
conductance
To examine the link between microvessel structure and its

influence on blood perfusion in the brain, we applied a mathe-

matical approach to estimate the fluid conductance and direc-

tionality of the microvascular network (Figures 3A and 3B; Video

S5; Table S7).

We first examined how the geometry of microvascular net-

works can influence the directionality of blood flow by calculating

the microvessel anisotropy using the tensor in the isocortex (Fig-

ure 3C). We used three axes according to the cortical column di-

rection: the penetrating (P) axis along the cortical column as a

main blood input direction from surface vessels and the ante-

rior-posterior (AP) and medial-lateral (ML) axes as two vascular

communication directions within areas (Figure 3C). Our analysis

showed that microvessels oriented along the P axis dominated

in the anterior (e.g., prefrontal and motor area) and posterior

cortical areas (e.g., visual area), whereas mid-cortical areas

(e.g., the SS area) showed vasculature orientation along the P

and AP axes dominating the superficial layer and the deep layers,

respectively (Figure 3C). For instance, the secondary motor cor-

tex (MOs) shows dominant P axis vasculature (magenta), whereas

the primary SS barrel field (SSp-bfd) shows a clear switch to AP

axis (cyan) vasculature, preferentially between layers 4–6 (Figures

3D and 3E). This result suggests that mid-cortical areas contain-

ing many primary motor sensory areas have a high degree of AP

vascular communication in deep layers to facilitate blood perfu-

sion across these hypervascularized areas.

Next we applied the fluid conductance measurement across

the isocortex and plotted the result in the cortical flatmap (Fig-

ure 3F). Overall, motor sensory groups showed higher fluid
(E) The averaged vasculature length and branching density as well as vessel radius

(gray arrowhead), auditory (white arrowhead), and retrosplenial (black arrowhead

(F) Examples of cortical areas with different vasculature structures. Large (radius

(G) Correlation between average vessel density and branching density (top) or a

(H) Cortical layer-specific max projection of vasculature length density.

(I) Large surface vessels from the left (green) and right (red) hemisphere from two

(J) Large surface vessels from 4 different brains with different colors (red, green,

(K) Large surface and P vessels (8 hemispheres from 4 animals) in a cortical laye
conductance than association groups in correlation with vascular

density (Figures 3F–3H; Table S7). Noticeable exceptions include

the RSPv with relatively low fluid conductance despite having the

highest cortical vessel density because of small vessel radius and

a few lateral association areas (e.g., the ectorhinal cortex [ECT])

which has relatively high fluid conductance because of large

vessel radius (Figures 3G and 3H).

Our data suggest that microvessels in primary motor sensory

cortices are structured to provide a high degree of blood perfu-

sion compared with other cortical areas.

Pericyte and nNOS neuron density mapping reveals
differential vasoregulation between cortical areas
Pericytes, a mural cell type, are primarily located within the

microvasculature and play important roles to regulate microvas-

cular integrity and permeability (Attwell et al., 2016; Bennett and

Kim, 2021; Hartmann et al., 2021; Nelson et al., 2020; Nikolako-

poulou et al., 2019).

Wewanted to determinewhether capillary pericyte distribution

shows distinct densities across brain areas in support of local

brain functions in a similar fashion to cortical vasculature. We

found that capillary pericyte density across cortical areas

showed a distribution pattern similar to the vascular density

(Figures 4A–4C; Tables S3; Video S2). Overall, primary sensory

areas as well as the RSPv showed higher pericyte densities

than association groups (Figures 4A–4C). A very strong positive

correlation between capillary pericyte and vascular densities

suggests that the number of pericytes per length of microvessel

is overall constant across different cortical areas (Figure 4C).

However, when we examined layer-specific differences in the

density of capillary pericytes and vasculature, we observed that

relative pericyte density as well as the ratio between capillary

pericyte and vascular densities were highest in layer 5 and lowest

in layer 1 (Figures 4Dand4E; TableS4). This suggests that layer 5,

characterized by its large pyramidal neurons, may require higher

capillary pericyte coverage per microvessel to finely tune the

regulation of blood flow compared with other cortical layers.

Next we examined the relationship between the cerebrovas-

cular network with capillary pericytes and the distribution of

cortical nNOS-expressing neurons, whose activity has been

shown to cause vasodilation (Echagarruga et al., 2020; Kraw-

chuk et al., 2020; Lee et al., 2020). Based on our results so far,

our expectation was that the density distribution of nNOS neu-

rons may follow the distinct patterns of vasculature and pericyte

densities in providing more robust blood flow support for the

motor sensory versus prefrontal association cortical areas. Alth-

ough we did observe up to 2-fold differences in nNOS neuronal

density across isocortical regions (Figure 4F; Table S5; Video

S3), nNOS neuron density was higher in the association cortical
plotted onto the cortical flatmap. Note the high density of vasculature in the SS

) cortices; there is a low density in the lateral association cortex (white arrow).

> 5 mm) and small vessels are colored red and green, respectively.

verage radius (bottom) in the isocortex. See Table S1 for abbreviations.

different animals.

blue, and cyan) in each hemisphere.

r-specific flatmap based on their radius.
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Figure 3. Anisotropy of the cerebral microvascular network and its fluid conductance

(A) Flow chart of the fluid conductance simulation. From left to right: original traced data (red for large vessels with radius > 5 mm and green for small vessels),

applying a pressure profile on the surface of the control volume with a gradient profile and solving the coincide flux equation set for the flow tensor, the annotation

rule of the flow tensor, and the sampling dots of the numerical spherical integration. l, perfusing length; P, pressure;Q, fluid flux; R, resistance; m, viscosity; k, fluid

conductance;D, changing of the quantity; $, dot product;V, gradient;%s, spherical integral;S, spherical surface; n, normal direction; bold font, vector; double top

bar, tensor.

(B) Examples illustrating how the structure of the vasculature network affects the flow tensor.

(C–E) Microvessel anisotropy measurement in the isocortex.

(C) Microvessel directionality in cortical layers. Only the dominant direction is displayed for simplicity. Microvessels are colored based on their orientation:

magenta for penetrating (P), cyan for anterior-posterior (AP), and yellow for medial-lateral (ML). Shown are examples from the secondary motor cortex (MOs; D)

and primary SS barrel field (SSp-bfd; E) cortices. Left: coronal view. Right: sagittal view. The color of individual vessels in the top panel (full-resolution images of

the yellow boxed areas in the bottom left panel) represents three directions as in (C). White lines in the top panel denote anatomical annotations from the bottom

right. Note the differences in dominant vessel directions based on brain regions and cortical layers.

(F) Fluid conductance results in the cortical flatmap.

(G and H) Relationship between fluid conductance and vessel length density (G) or average radius (H). See Table S7 for full data and abbreviations.
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areas compared with the motor sensory areas—the opposite

pattern than that of the vascular and pericyte densities

(Figures 4F and 1H–1J). We also noted that the highest density

of nNOS neurons was found in layer 6 in all cortical areas
6 Cell Reports 39, 110978, June 21, 2022
compared with the highest densities of vasculature and peri-

cytes in layer 5 (Figure 4F). For nNOS subtypes, the nNOS/neu-

ropeptide Y (NPY), nNOS/SST, and nNOS/VIP subtypes showed

similar density patterns as the pan nNOS neurons (Figure 4G). In



Figure 4. Cortical pericyte and nNOS neuron densities display opposite correlation with vascular density

(A) Example images of areas showing variability in pericyte density from PDGFRb-Cre; Ai14 mice with the pericyte detection algorithm (red stars).

(B) Cortical flatmap of averaged pericyte density across the isocortex in comparison with the vessel length density.

(C) Scatterplot demonstrating significantly positive correlation between pericyte density and vascular length density in isocortical regions (R = 0.859,

p = 1.86 3 10�12). See Table S4 for abbreviations.

(D) Layer-specific pericyte distribution.

(E) Relative pericyte (green) and vessel (red) density (normalized against maximum value within the area) in cortical regions without (left) or with layer 4 (right).

(legend continued on next page)
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contrast, nNOS/PV neurons, despite having much lower density,

showed relatively higher expression in the RSPv (Figure 4G),

suggesting a subtype-specific role in this cortical area. The con-

trasting nNOS distribution is also evident from a correlation anal-

ysis of the relationship between nNOS neuronal densities and

vascular density across different areas, which revealed a signif-

icant negative correlation in the isocortex that is true for all

subtypes except nNOS/PV (Figures 4I and 4J). Similarly, nNOS

neurons, including the nNOS/NPY and nNOS/VIP subtypes,

showed significant negative correlation with pericyte density

(Figure 4J). In contrast, nNOS neurons and all of their subtypes

did not show any correlation with average vasculature radius

(Figure 4J). These data show a surprisingly distinct distribution

of nNOS neurons across cortical areas, with overall stronger

nNOS-based vasomotor regulation in association cortices than

in primary motor sensory cortices.

Cortical PV interneurons and glutamatergic neurons
show positive correlation with the vascular network
Glutamatergic and GABAergic neuronal cell types have different

energy consumption and metabolic costs (Buzsáki et al., 2007).

We examined whether glutamatergic neurons and specific

GABAergic neuronal subtypes show any significant correlation

with vascular and capillary pericyte distribution in the isocortex

(Figure 5; Table S6; Video S4). Density plotting using our isocort-

ical flatmap allowed us to visualize distinct neuronal cell type dis-

tributions and localizations across the isocortex, revealing a

clear pattern compared with the vessel length and pericyte den-

sities (Figure 5A). First, pan-glutamatergic neurons (vGlut1+), but

not pan GABAergic (Gad2+) neurons, showed modest but signif-

icant positive correlation with vascular and pericyte density

(Figures 5A–5D). However, among different GABAergic cell

types, PV+ interneurons showed a strikingly strong positive

correlation with the vascular length density, whereas the other

interneuron subtypes (SST+ and VIP+) did not show a significant

correlation with vascular density (Figure 5C). All motor sensory

groups and the RSPv showed high PV+ interneuron density

comparable with the vascular density (Figures 5A and 5C). As ex-

pected, the pericyte distribution followed similar correlation pat-

terns as the vessel length density with all neuronal subtypes

studied (Figure 5D). Importantly, cortical PV neurons are involved

in generation of gamma band oscillations (Cardin et al., 2009;

Sohal et al., 2009; Takada et al., 2014), which are linked to

increased vasodilation and blood flow in the brain (Drew et al.,

2020). Thus, our results suggest that correlated vascular, peri-

cyte, and PV+ interneuron densities may act to support local

gamma-band oscillation neural activity during rapid signal pro-

cessing in sensory cortices.

Our data suggest that the isocortex in mice is composed of

two domains with distinct vascular/pericyte and neuronal cell

type composition: (1) the primary motor sensory domain (motor,
(F and G). Averaged density of pan nNOS neurons (F) or nNOS subtypes (G) on t

lateral association areas.

(H) Representative STPT images of nNOS cell types from the primary SS cortex

(I) Scatterplot showing significant negative correlation between total nNOS dens

(J) Correlation matrix between nNOS cell types and vascular/pericyte measurem

correlation.
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SS, audio, and visual cortices and the RSPv) with a high density

of vessels and pericytes positively correlated to the density of

PV+ inhibitory neurons and, less prominently, vGlut1+ excitatory

neurons but negatively correlated with the density of nNOS

neurons and (2) the association domain (lateral, medial, and

medial prefrontal), which comprises the opposite pattern of

vasculature, pericytes, and neuronal density distribution (Fig-

ure 5E; Table S8).

The motor sensory thalamo-cortico-striatal circuit
shares high densities of vasculature and capillary
pericytes
Next we wanted to determine whether the high vascular and

pericyte density specific to primary motor-sensory versus asso-

ciation cortices is also shared across thalamo-cortico-striatal

pathways. We used thalamo-cortical and cortico-striatal con-

nectivity datasets to identify clusters of thalamic and dorsal stria-

tal areas that are well connected with the five cortical domains

(Foster et al., 2021; Harris et al., 2019; Hintiryan et al., 2016; Hun-

nicutt et al., 2014). In the thalamus, sensory thalamic areas

processing SS (e.g., ventral posteromedial thalamus [VPM]),

auditory (e.g., medial geniculate complex [MG]), and visual

(e.g., dorsal lateral geniculate complex [LGd]) information as

well as the anteroventral nucleus of thalamus (AV), which is

strongly connected with the RSPv, showed higher densities of

vasculature and pericytes than non-sensory thalamic areas con-

nected tomedial prefrontal and other association cortical groups

(e.g., nucleus of reuniens [RE]) (Figures 6A and 6B).

We then examined vascular and pericyte densities in subre-

gions of the dorsal striatum (caudate putamen [CP]) using

detailed anatomical segmentations established in the Allen

CCF (Chon et al., 2019). The intermediate CP (Cpi) receives topo-

graphically segregated projections from cortical domains,

whereas the rostral (CPr) and caudal (CPc) areas have inter-

mixed projections from many cortical domains (Foster et al.,

2021; Hintiryan et al., 2016). Our analysis revealed that Cpi areas

receiving inputs from primarymotor sensory cortices such as the

Cpi ventral lateral (Cpi.vl) had relatively higher vascular and peri-

cyte densities than the Cpi ventral medial (Cpi.vm) areas con-

nected with medial prefrontal and lateral association cortical

projections (Figures 6C and 6D; Table S9). Heatmap plots of rela-

tive vascular and pericyte densities with each anatomical region

showed a clear pattern of primary motor sensory processing

areas comprising overall higher vascular and pericyte densities

compared with association areas throughout the thalamo-cor-

tico-striatal pathways (Figure 6E).

Data resources to further examine brain energy supply
and regulation
Our brain-wide high-resolution vasculature and cell type map-

ping data open new opportunities to understand global and local
he cortical flatmap. Note the higher nNOS density in the medial prefrontal and

and the agranular insular cortex.

ity and vessel length density in the isocortex (R = �0.806, p = 6.9 3 10�7).

ents. *p < 0.05, **p < 0.005 after Bonferroni correction. (�) denotes negative



Figure 5. Cortical PV+ and vGlut1+ neurons positively correlated with vasculature density

(A) Cortical flatmap showing density distributions of neuronal subtypes as well as vessel length and pericyte densities.

(B) Examples of neuronal cell types and the vasculature and its tracing result (large vessels, red; microvasculature, green) from the densely vascularized primary

SS and sparsely vascularized infralimbic cortices.

(C) Correlation between vascular density and neuronal subtypes. Note the very strong positive correlation with PV density (R = 0.968, p = 8.53 10�22) and positive

correlation with vGlut1 excitatory neuronal density (R = 0.552, p = 5.9 3 10�3).

(D) Correlation matrix between neuronal subtypes, vessel length density, and pericyte density. *p < 0.05, **p < 0.005 after Bonferroni correction.

(E) Cortical organization of the vascular/pericyte network and neuronal cell types. Primary motor sensory cortices are characterized by relatively high density

of vessels, pericytes, PV interneurons, and vGlut1 excitatory neurons and low density of nNOS neurons. In contrast, association cortices show the opposite

pattern.
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Figure 6. High density of vascular/pericyte network in the motor sensory thalamo-cortico-striatal pathway

(A) Heatmap of vascular (top) and pericyte (bottom) densities in the thalamus (left side), with examples from the nucleus of reuniens (RE; low densities) and the

ventral posteromedial thalamus (VPM; high densities) (right).

(B) Density scatterplot of pericytes and vessel length densities. Colors of thalamic areas are assigned based on anatomical connectivity with specific cortical

groups.

(C) Heatmap of vascular (top) and pericyte (bottom) densities in the striatum (left), with examples from the intermediate CP ventral medial (CPi.vm; low densities)

and intermediate CP ventral lateral (CPi.vl; high densities) (right).

(D) Density scatterplot of pericytes and vessel length densities. The colors of striatal areas are the same as in (B).

(E) Heatmap of vascular and pericyte densities normalized within anatomical areas. The colors of boxes represent cortical groups and their connected thalamo-

cortical areas. Note that the motor sensory areas contain higher densities compared with association areas.

See Table S9 for abbreviations.
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energy supply and its regulation. For instance, we provide our

brain-wide flow conductance simulation result and its relation-

ship with capillary pericyte density and pericyte coverage (peri-

cyte per vessel length density) as a resource to elucidate regional

blood flow and vascular integrity (Figure S4).We noted thatmany

hippocampal areas, including the dentate gyrus (DG) and the

subiculum (SUB), showed low flow conductance, pericyte den-

sity, and pericyte coverage compared with other cortical and

subcortical areas, which may confer regional vulnerability under
10 Cell Reports 39, 110978, June 21, 2022
pathological conditions (Figure S4; Table S7; Video S5; Ballinger

et al., 2016; Sweeney et al., 2018).

We also include a freely downloadable simulation-ready data-

set to model vascular flow in the whole brain as well as high-res-

olution raw images in a publicly available database. To facilitate

ease of access and intuitive visualization to examine large-scale

imaging datasets, we created a web-based resource (https://

kimlab.io/brain-map/nvu/) that displays navigable z stacks of

full-resolution images for our STPT datasets. This web-based

https://kimlab.io/brain-map/nvu/
https://kimlab.io/brain-map/nvu/


Figure 7. Brain-wide density map of nNOS neurons and their subtypes

(A) Heatmaps demonstrating the distribution of total nNOS and nNOS subtype populations. See also Video S3 and Table S5.

(B) Representative raw images of nNOS, nNOS/NPY, nNOS/SST, nNOS/PV, and nNOS/VIP neurons in the olfactory bulb, hippocampus, medial amygdala (MEA),

dorsomedial hypothalamus (DMH), and cerebellum. Reference atlas images included in nNOS/VIP images show the area displayed for each region of interest.

MOB, main olfactory bulb; CA1, Ammon’s horn; DG, dentate gyrus; opt, optic tract; fx, fornix; gr, granular; mo, molecular.

(C). nNOS density by brain region for the total nNOS neurons and their subtypes. The size of a circle corresponds to density, as shown in the key at the bottom.

See Table S5 for full names of abbreviations.
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resource also provides interactive 3D visualizations, allowing

users to navigate our quantitative vascular and cell type mea-

surements registered in the Allen CCF.

One notable cell type resource is the nNOS neuronal subtype

brain-wide distribution data. In addition to cortical nNOS neu-

rons, nNOS neurons in subcortical areas, including the cere-

bellum, also powerfully regulate neurovascular coupling (Du

et al., 2015; Yang et al., 2003). Our results indicate that the total

nNOS neuronal density is highest in the accessory olfactory

bulb (AOB), followed by the cerebellum, medial amygdala

(MEA), and dorsal medial hypothalamus (DMH) (Figures 7A–

7C; Table S5). In contrast, the isocortex, hippocampus, and

thalamus showed overall low nNOS neuronal density (Fig-

ure 7C). Of the nNOS subtypes, nNOS/NPY neurons represent

the majority of nNOS subtypes in cerebral cortical, hippocam-

pal, and cerebral nucleus areas (Figures 7A–7C). The nNOS/

SST subtype showed overall similar density compared with

the nNOS/NPY subtype except in hippocampal regions, which
had noticeably low density (Figures 7A–7C). The nNOS/PV sub-

type showed overall low density across the whole brain, except

for very high density in the cerebellum (Figures 7A–7C). The

nNOS/VIP subtype had the lowest density compared with the

other nNOS+ subtypes, with sparse expression in a few areas,

such as the SUB of the hippocampus (Figures 7A–7C). Many

amygdala and hypothalamic areas as well as the AOB showed

high nNOS density that was not reflected in the nNOS inter-

neuron subtype populations, suggesting that nNOS neurons

in these areas may represent different nNOS subtypes (Cha-

chlaki et al., 2017). Thus, the current brain-wide nNOS subtype

mapping unveils region-specific distributions of the vasomotor

neurons.

DISCUSSION

The structural organization of regional vascular networks is

crucial to support local brain function and may reflect
Cell Reports 39, 110978, June 21, 2022 11
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susceptibility to different pathologies. Here we present cellular-

resolution maps of cerebral vasculature, capillary pericytes,

and neuronal subtypes in the mouse brain. Our cerebrovascular

map, in combination with flow conductance simulations, reveals

the organizational principles of microvessels and pericytes in re-

lationships with several key neuronal cell types, highlighting

regionally heterogenous vascular networks and potential differ-

ences in blood flow regulation across different brain regions.

Cortical neuronal cell types and the vascular network
A prevailing theory of cortical organization is that the cortex is

composed of repeating cortical columns with a common micro-

circuit motif (Douglas and Martin, 2004). However, this view has

been challenged by recent data showing that different cortical

domains showdistinct cell type compositions and hemodynamic

responses (Kim et al., 2017; Zhang et al., 2019). Results from the

current study provide further evidence that vascular networks,

including pericytes and vasomotor neurons, are organized in

distinct spatial patterns to meet energy demands from motor

sensory and association cortices (Howarth et al., 2012; Vergara

et al., 2019).

Motor and sensory signals require precise temporal and

spatial information processing in primary motor sensory

cortices to perceive dynamic external signals and execute mo-

tor commands. Although previously included as a part of the

association cortices, we consider the RSPv part of the sensory

area because of its role in processing rapid navigational infor-

mation from the dorsal SUB (Zingg et al., 2014). In contrast, as-

sociation cortices integrate information from broader areas with

slower temporal kinetics. We previously identified a higher

density of PV neurons in sensory cortices compared with

association cortices (Kim et al., 2017). Cortical PV neurons

are fast-spiking interneurons that participate in generating

gamma oscillations and are some of the most energy-

demanding neurons (Cardin et al., 2009; Hu and Jonas, 2014;

Inan et al., 2016; Kann, 2016; Takada et al., 2014). Thus, our

current results suggest that a high density of microvessels

and capillary pericytes in the sensory cortices provides an effi-

cient energy support system for PV-dominated local circuits to

accommodate high energy consumption and mediate local

functional hyperemia for rapid sensory processing. In contrast,

association cortices contain relatively high densities of nNOS

neurons despite low vascular, capillary pericyte, and PV den-

sities. Although nNOS interneurons represent only about 2%

of cortical neurons, activation of nNOS neurons robustly dilates

cerebral arterioles to generate increases in cerebral blood flow

(Echagarruga et al., 2020; Krawchuk et al., 2020; Lee et al.,

2020). Thus, the relatively higher density of nNOS neurons in

association areas suggests that this cell type can exert more

powerful vasodilation in larger areas to compensate for a lower

vascular density in these highly cognitive areas.

We found that areas of the thalamus and the dorsal striatum

heavily connected to motor-sensory cortices also contain high

densities of vasculature and pericytes compared with thalamo-

striatal areas linked with association cortices. Thus, our data

demonstrate that this dense network of vasculature and peri-

cytes is conserved throughout neural circuits processing primary

motor sensory information.
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Comprehensive data resources to understand
relationships between brain regional vascular
organization and energy homeostasis
Although recent approaches using light sheet microscopy to

examine fine cerebrovascular structure have provided advan-

tages in rapid data acquisition as well as 3D immunolabeling to

mark different vascular compartments (Kirst et al., 2020; To-

dorov et al., 2020), the required tissue clearing methods can

introduce microscopic volume distortions, which can lead to

inconsistent measurements (Ji et al., 2021). Here we used

STPT to visualize the whole cerebrovasculature at single-capil-

lary resolution in intact mouse brains, revealing a cerebrovascu-

lar map that closely represents physiological conditions, as

confirmed by in vivo two-photon microscopy. Thus, our dataset

allows us to perform precise computational simulations to esti-

mate fluid conductance based on structural arrangements of mi-

crovessels, including deep cortical layers as well as subcortical

areas, which are hard to access with in vivo two-photon micro-

scopy. Our high-resolution cerebrovascular maps combined

with vasoregulatory cell types can provide a detailed structural

basis of signals for functional neuroimaging modalities such as

functional magnetic resonance imaging or newly emerging

functional ultrasound imaging (Brunner et al., 2020; Lecrux

et al., 2019).

Our study also presents a brain-wide quantitative capillary

pericyte map. Previous functional studies identified that capillary

pericytes actively regulate the diameter and permeability of mi-

crovessels (Hartmann et al., 2021, 2022; Nikolakopoulou et al.,

2019; Rungta et al., 2018). Capillary dilation could have signifi-

cant effects on blood flow to mediate functional hyperemia

(Pfeiffer et al., 2021; Schmid et al., 2017). Our results comple-

ment previous mechanistic studies of a defined anatomical

area by providing capillary pericyte population density across

the brain. We observed a strong positive relationship between

capillary pericyte and vascular density in the cortex, suggesting

that pericyte coverage per microvessel remains similar across

different cortical areas in the normal adult mouse brain. We

found the highest pericyte coverage per vascular length in layer

5 across all cortices. Because large pyramidal neurons in layer 5

act as main cortical output to the rest of the brain, the high den-

sity of pericytes may confer extra control over blood flow in this

energy-demanding layer (Schmid et al., 2017). Our subcortical

mapping results provide opportunities to investigate pericyte ar-

rangements in largely understudied brain regions. For instance,

thalamic areas have overall higher pericyte density compared

with other areas (Figure S4). Interestingly, thalamic pericytes

have shown resistance to disrupted PDGFRb signaling, whereas

cortical and striatal pericytes were more vulnerable (Nikolako-

poulou et al., 2017). The combination of high density and cellular

resiliencemay confer extra protection tomaintain vascular integ-

rity in the thalamus. Conversely, relatively low pericyte density in

the hippocampal areas and association cortices can make these

areas more vulnerable to pathological conditions (Montagne

et al., 2015; Sengillo et al., 2013; Zhao et al., 2015).

Our nNOS results with added subtype specificity offer insights

to understand nNOS subtype coverage across the whole brain.

In contrast to well-studied cortical nNOS neurons, the functional

and vasomotor characteristics of subcortical nNOS neurons is
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largely unknown. Previous studies have suggested that nNOS

signaling in the cerebellum and the hypothalamus is linked to

neurovascular coupling (Du et al., 2015; Yang et al., 2003). Our

comprehensive nNOS and nNOS subtypemaps can guide future

research to determine which brain regions and nNOS subtypes

need to be examined to establish a causal relationship between

nNOS neuronal types and local hemodynamic response.

Limitations of the study
Caveats of the current study include a lack of separate labeling

for different vascular compartments (e.g., arteries versus veins)

to understand blood flow direction and relative simple fluid

conductance measurements without considering granule-like

properties in red blood cells. Future studies using discrete

vascular labeling and computational modeling considering addi-

tional information (e.g., blood pressure and viscosity) can help to

gain a more complete understanding of brain blood perfusion

and its change with additional risk factors, such as stroke (Ba-

logh and Bagchi, 2019; Blinder et al., 2010). Another limitation

of the current study is the lack of delineation for pericyte sub-

types in vascular subregions (Grant et al., 2019; Hill et al.,

2015). Future studies with a combination of markers (e.g.,

CD13, smoothmuscle actin) in the same brain will help to classify

and quantify these cell types in the precapillary arterioles, capil-

laries, and post-capillary venules in the whole brain.

Our quantitative information on cerebrovasculature and asso-

ciated cell types establishes a platform for future studies to gain

a deeper understanding of how energy demand and supply

maintain balance in a normal brain from a cellular architectural

perspective and how this homeostatic mechanism changes un-

der pathological conditions.
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Yongsoo Kim (yuk17@

psu.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Deposited data and codes are listed in the Key resources table. All dataset and codes can be used for non-profit research without

any restriction. Any additional information required to reanalyze the data reported in this paper is available from the lead contact

upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal experiments were approved by the Institutional Animal Care and Use Committee at Penn State University and Cold Spring

Harbor Laboratory. For all genotypes in this study, both adult male and female mice were used, unless otherwise specified. Adult

2-month-old C57BL/6 mice were bred from C57BL/6 mice directly obtained from the Jackson Laboratory and used for vascular

tracing experiments with FITC filling (n = 4). For pericyte specific experiments, male PDGFRb-Cre mice (Kind gift from the Volkhard

Lindner Lab) (Cuttler et al., 2011) were crossed with female Ai14 mice (Jax: Stock No: 007914) as previously described (Hartmann

et al., 2015). These PDGFRb-Cre;Ai14 mice exhibit PDGFRb-driven tdTomato expression in two distinct vascular cell types, peri-

cytes and vascular smooth muscle cells (vSMCs). For isocortical cell types, vGlut1-Cre (Jax: 023527) and Gad2-Cre (Jax: 010802)

mice were crossed with Ai75 reporter mice (Jax: 025106). nNOS-CreER mice were used to label nNOS neurons (Jax: Stock No:

014541)(Taniguchi et al., 2011). After nNOS-CreER mice were crossed with Ai14 mice, the nNOS-CreER;Ai14 offspring were

administered with an intraperitoneal (i.p.) tamoxifen (Sigma, cat.no. T5648-1G) injection (100mg/kg) at P16. Similarly, for nNOS-

subtypes, nNOS-CreER mice were initially crossed with Ai65 mice (Jax; Stock No: 021875), which were further crossed with

PV-flp (Jax Stock No: 022730), SST-flp (Jax Stock No: 028579), NPY-flp (Jax Stock No: 030211), or VIP-flp (Jax Stock No:

028578) mouse lines, to generate triple transgenic mice which allowed for tdTomato fluorescent labeling of nNOS expression

within these interneuron populations. To allow for postnatal specific expression of tdTomato in nNOS+ subtype populations,

tamoxifen injections dosed at 75mg/kg were given at P10, P12, and P14 timepoints. We used 10 animals for each PDGFRb;Ai14,

nNOS;Ai14, nNOS;VIP;Ai65, 9 animals for nNOS;NPY;Ai65 and nNOS;PV;Ai65, 8 animals for nNOS;SST;Ai65. For PV, SST, and

VIP neurons, we re-registered previously collected data on to the Allen CCF (Kim et al., 2017). For glutamatergic and gabaergic

neuronal populations, results were obtained from 7 animals (all males) for vGlut1;Ai75, and 9 animals (all males) for Gad2;Ai75. All

animals were used once to generate data. We used tail genomic DNA with PCR for genotyping. Brain samples were collected at

2 months old age for all mouse lines.

METHOD DETAILS

Perfusion and tissue processing for STPT imaging
Animals were deeply anesthetized with a ketamine-xylazine mixture (100 mg/kg ketamine, 10 mg/kg xylazine, i.p. injection) for both

regular perfusion and vascular labeling. Transcardiac perfusion with a peristaltic pump (Ismatec, cat.no.: EW-78018-02) was used

with 13 PBS followed by 4% paraformaldehyde at 0.3mLs/min, both injected through a small incision in the left ventricle, in order

to wash out blood and allow for tissue fixation, respectively. Brains were dissected carefully in order to preserve all structures.

For vessel labeling, transcardiac perfusion with a peristaltic pump (Welch, Model 3100) was used with 13 PBS followed by 4% para-

formaldehyde at 0.3 mL/min, in order to wash out blood and for tissue fixation, respectively. To ensure that the large surface vessels

would remain filled with the gel perfusate, the body of the mouse was tilted by 30� before gel perfusion (with the head tilted down), as

previously described (Tsai et al., 2009). Following the fixative perfusion, the mouse was perfused at 0.6 mL/min with 5 mL of a 0.1%

(w/v) fluorescein isothiocyanate (FITC) conjugated albumin (Sigma-Aldrich, cat.no.: A9771-1G) in a 2% (w/v) solution of porcine skin

gelatin (Sigma-Aldrich, cat.no: G1890-500G) in 13 PBS. Immediately after perfusion, the heart, ascending and descending aorta as

well as the superior vena cava, were all clamped with a hemostat (while the butterfly needle was simultaneously removed from the left

ventricle). This served to prevent any pressure changes in or gel leakage from the brain vasculature. Next, the entire mouse body was

submerged in an ice bath to rapidly solidify the gel in the vessels. Then, the head was fixed in 4% PFA for one week, followed by

careful dissection of the brain to avoid damage to pial vessels. After fixation and dissection, the brain was placed in 0.05M PB until

imaging. Any animals that had poor perfusion and/or possible air bubbles interfering with the gel perfusion were excluded from im-

aging and any further analysis.
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Serial two photon tomography (STPT) imaging
Prior to imaging, the brain sample was embedded in oxidized agarose and cross-linked in 0.05M sodium borohydrate at 4�C for at

least 2 days ahead of imaging (Kim et al., 2017; Newmaster et al., 2020). This procedure allows for seamless cutting of 50mm thick

sections using a built-in vibratome, while also preventing any tearing of the brain surface. The embedded brain sample was then

glued to the sample holder and fully submerged in 0.05M PB in an imaging chamber. For STPT imaging (TissueCyte 1000,

TissueVision), we used 910nm excitation using a femtosecond laser (Coherent Ultra II) for all samples. Signals in the green and

red spectrum were simultaneously collected using a 560 nm dichroic mirror (Chroma). For pericyte and neuronal subtypes, STPT

imaging was conducted with 1 3 1 mm (x,y) resolution in every 50 mm (z), with the imaging plane set at 40mm deep from the surface,

as previously described (Kim et al., 2017; Newmaster et al., 2020). For vascular imaging, optical imaging (5 mm z step, 10 steps to

cover 50mm in z) was added in the imaging, producing 1 3 1 3 5 mm (x,y,z) resolution beginning at 20mm deep from the surface.

Due to length of imaging time required for vascular imaging, each brain sample was imaged through multiple imaging runs to adjust

the imaging window size in order to reduce overall imaging time.

STPT image reconstruction
To measure and correct an optical aberration from the objective lens (Figure S1), we imaged a 25 mm EM-grid (SPI supplies, cat.no.:

2145C) as a ground truth for spatial data (Han et al., 2018). We annotated all cross points of the grid and computed the B-spline trans-

formation profile from the grid image to the orthogonal coordinate sets using ImageJ (Schneider et al., 2012). The pre-scripted pro-

gram then corrected every image tile by calling the ImageJ deformation function using that profile. Afterwards, we used the entire set

of imaged tiles (full mouse brain in this case) to map out the tile-wise illumination profile. The images were grouped according to the

stagemovement, which affects the photo-bleaching profile. The program avoids using pixels that are considered empty background

or dura artifacts using preset thresholds. Using those averaged profile tiles, the program normalized all the tile images. Please note,

this profile is unique for each sample. Finally, the program picked 16 equal-spacing subsampled coronal slices (out of the nearly

2,000) throughout the z stack and utilized ImageJ’s grid/collection stitching plugin to computationally stitch those 16 slides. The pro-

gram then automatically performs z-stack alignment through combining the transformation profiles from center to outer edge accord-

ing to the calculated pairwise shifting distance to perform the z-stack alignment. It used a tile-intensity weighted average to ensure

the empty tiles did not contribute to the final profile. This approach significantly reduced the computational time and allowed paral-

lelizationwith no communication overhead. After the aforementioned alignment, the program finally stitched the image set together. If

the sample was imaged throughmultiple runs during imaging acquisition, the program also aligns and combines each of these image

sets into one cohesive image stack.

Vessel digitization, tracing, and visualization
We started with interpolating the data into 13 13 1 mm resolution with cubic interpolation then subtracted the signal color channel

(green) with the background color channel (red) to remove auto-fluorescent backgrounds. Next we performed a voxel binarization.

The voxel with at least one of the following conditions passed as the foreground signal (vasculature), a. the voxel passed a fixed

threshold (63 that of the non-empty space average) or b. passed a threshold (2.43 that of the non-empty space average) after sub-

tracting a circular 35% local ranking filter. The binarized image was then skeletonized using 26-neighbor rule (Kollmannsberger et al.,

2017). The code then reconnected lose ends that were within 10 mmdistance and removed all the short stem/furs shorter than 50 mm,

starting with the short ones and iterated until nomore fur artifacts were found (Figure S1F). The threshold of 10 mmwas chosen based

on the FITC vessel labeling quality and stitching quality. Most of faulty disconnection is less than 5 mm. The 50 mm threshold was

chosen based on the 1:10 aspect ratio for capillaries to be consider too stubby to be true. By using the binary image and the skeleton

(center-line), the radius for each skeleton pixel can bemeasured. The code then grouped all the skeleton pixels into segmentswith the

branching nodes, and all the segments shorter than 23 radius (or shorter than 10 mm) were further cleaned up with shortest graph

path (Figure S1G). ROIs with poorly connected (<250 mm/node) were excluded in further analysis as shown Figure S1H.Many of brain

stem regions do not pass this threshold due to imaging issues related to high myelination. Finally, the code documented and traced

all the segments and nodes with their connectivity, length, averaged radius, and raw skeleton locations. The full pipeline here is

programed to be fully automatic and the code was fully vectorized and parallelized with reasonable memory consumption per thread

(�8GB).

For 3D voxel visual rendering, we used 20 3 20 3 20mm3 as the bin size for voxelization with dataset registered onto the Allen

CCF. then the data array was processed with gaussian filter (s = 2) to achieve local averaging. The transparency was set linearly

between 85% and 100% (100% is fully transparent) respected to upper and lower threshold of the colormap. We used 3D

rendering tool (Avizo, ThermoFisher) to illustrate the voxel data for the spatial distribution of our 3-D measurements (e.g., volu-

metric length density).

Fluid conductance simulation
The goal of calculating and visualizing a flow tensor is to illustrate howwell fluid can flow through the local microvasculature of a given

volume in a given direction. Since the direction distribution of the microvasculature can be anisotropic, the fluid flow canmove with a

direction that is different from the pressure gradient direction, thus making the flow in a tensor form. Such a tensor can illustrate the

local microvascular performance and its directional characteristic.
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The equation of flow tensor is given by:
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where k is the flow tensor, P is the pressure, Q is the fluid flux, the subscript index is the Cartesian coordinate direction, and the

comma is partial differentiation. We chose a size of 4003 4003 400 mm as the local representative control volume. We then probed

the system with three VP that are the three unit-vectors in the Cartesian coordinate system. The pressure boundary condition with

gradient profile was applied on all size surfaces of the cubical control volume, then the network flow profile was calculated by solving

the system of equations of the Hagen–Poiseuille equation (with the viscosity set to unity for normalization) and conservation of flux.

We chose the center cut plan to measure the directional flux and consequently, the flow conductance. To illustrate the vascular

directionality of the isocortex, we projected the tensor onto penetrating, anterior-posterior, medial-lateral vectors according to their

location within the isocortex using the equation kpj =
��� k
=

$npj

���, where subscript pj indicates the direction of the projecting vessels. To

calculate overall fluid conductance in a given voxel (4003 4003 400 mm3), we integrated flow tensor through numerical approxima-

tion of two thousand points distributed by Fibonacci Sphere. The integrated results of voxels (20 mmspacing) were used for Figure 3F

and Video S5.

Deep learning neural network (DLNN) pericyte counting
We used a deep learning neural network (DLNN) to detect and classify cells. Instead of using a fully convoluted neural network like

Unet, we chose to use per-cell multi-resolution-hybrid ResNet classification with potential cell locations (He et al., 2016). This makes

the AI compute time significantly shorter. The potential cell locations were identified with local maximum within a radius of r = 8 mm.

The image around the potential cell locations was fed to the network with two different resolutions. One is 1013 101 mm (1013 101

pixel) and the other one is 501 3 501 mm (201 3 201 pixel). The two-window system allows the network to capture characteristics

from two zoom scales simultaneously. In order to use global maximum at the end of the network, we stacked an empty (value zero)

image onto the 3D direction of each image, which made them 1013 1013 2 and 2013 2013 2 pixels. We then assigned value 1 to

the location of the potential cell, in this case, the center. At the end of the two networks of those two images, the intermediate images

were flattened and concatenated into one. The classification was done with two bins, ‘pericytes’ and ‘everything else.’ The detailed

schematic describing the network is in Figure S3.

We deployed two human annotators with the same training to annotate the data, and only used themutually agreed data to train the

AI to eliminate human error and bias. We used a strict set of criteria to include only capillary pericytes. Cells were counted only when

the cell body was in the imaging plane and clear pericyte cell morphology could be detected. Cells associated with larger vessels,

often with vascular smooth muscle morphology, were not counted to prevent the inclusion of erroneous cell types. We also excluded

transitional cell types often referred to as either ensheathing pericytes or precapillary arteriolar smooth muscle cells, due to the con-

troversy in the field as to whether this should be included as a pericyte subtype and lack of additional markers to distinguish different

pericyte subtypes in our image dataset (Attwell et al., 2016; Hartmann et al., 2015). A total 12,000 potential cell locations frommultiple

anatomical regions across 4 different brains were annotated by both annotators. 90% of the data selected at random was used to

train the AI and the remaining 10%was used for validation. The 90%of the data taken for trainingwas further truncated down to 3,400

potential cell locations with half positive and half negative for training. The positive cell selections in the raw data were around 19.6%

(annotator #1) to 21.1% (annotator #2). The validation set was not truncated to represent actual performance. The performance can

be found in Table S3.

Deep learning neural network (DLNN) nNOS neuron counting
Themorphology and size of tdTomato positive cells in the granular layer of the cerebellum from nNOS-CreER; Ai14mice differs signif-

icantly from other tdTomato positive nNOS neurons in other brain regions. Thus, we developed new DLNN AI algorithms to consider

not only cell morphology but also the location of cells by putting additional zoomed-out, low-resolution images of whole coronal sec-

tions. The network set-up is similar to the pericyte classification with one more image containing the coronal section with the cell

location. The inputs are 101 3 101 mm (101 3 101 pixel), 501 3 501 mm (201 3 201 pixel), and the full frame low resolution

12 3 8 mm (201 3 201 pixels). Similar to the pericyte network, we made images 101 3 101 3 2, 202 3 202 3 2, and

2023 2023 2 pixels with the cell location marked as value 1. At the end, those three sub-networks were flattened and concatenated

into one. The classification is done with three bins, nNOS neurons, cerebellar granular nNOS neurons, and everything else. One hu-

man user created 10,000 annotations from 5 pan nNOS and 5 nNOS subtype brains. 5,000 cells from 5 brains were initially used to

train the AI. Another 5,000 cells from 5 new brains (one of each Cre mice, i.e. nNOS/nNOS-SST/nNOS-PV/nNOS-VIP/nNOS-NPY)

were used to evaluate the AI performance. The AI reached an F1 score = 0.96, which is comparable to human performance. The de-

tails for the network are in Figure S3. The performance can be found in Table S3.
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Isocortical flatmap
We started with Allen CCF annotation images to solve the Laplace equation by setting the surface of cortical layer 1 as potential ‘1,’

the surface of layer 6b as ‘0,’ and the surface of everything else as flux ‘0’ (Wang et al., 2020). We used the potential map to find the

gradient direction as the projecting direction. The projection was first traced to the cortical surface and then flattened at the Anterior-

Posterior (A-P) tangential plane, which later preserved the A-P coordinate on the flat map. The flattened map has the y axis mapped

as the original A-P coordinate at the surface, and the x axis was adjusted to represent the surface arc (azimuth) length to the reference

X-zero. The reference X-zero was defined on the cortical ridge in the dorsal direction (maximum Y point in 3D) with a straight cut in the

A-P direction. Finally, the projection profile was saved at two resolutions, 10 3 10 3 10 mm3 and 20 3 20 3 20 mm3. We created a

Matlab script that can map any signal (previously registered to the Allen CCF) into a 3D projected isocortical flatmap.

Conversion of 2D based counting to 3D cell density
STPT imaging has very accurate cutting and stage depth movement, which allows us to convert the 2D cell counting to 3D cell den-

sity. We used previously calculated 3D conversion factors for cytoplasmic (factor = 1.4) and nuclear signals (factor = 1.5) to generate

density estimates of nNOS neurons and other neuronal cell type datasets (Kim et al., 2017). To estimate the 3D conversion factor for

pericytes as we have done for Figure S1 from (Kim et al., 2017), we imaged one PDGFRb-Cre;Ai14 mouse brain with 13 13 5 mm, as

donewith vascular imaging (Figure 1B). Then, we cropped out 40 ROIs with 5003 5003 50 (x,y,z) mm3 in size randomly from different

areas including the cortex, hippocampus, midbrain, hypothalamus, and cerebellum. We then manually counted pericytes in 2D (5th z

slice from the stack) and 3D (total 10 z slices from the stack). We counted total 840 cells from 2D counting and 1769 cells from 3D

counting (3D/2D ratio = 2.13 ± 0.28, mean ± standard deviation), resulting in 3D conversion factor of 2.1, which was applied as a

conversion factor to estimate pericyte numbers in 3D.

To estimate the anatomical volume from each sample, the Allen CCF was registered to individual samples first using Elastix (Klein

et al., 2010). Anatomical labels were transformed based on the registration parameters and the number of voxels associated with

specific anatomical IDs were used to estimate the 3D volume of each anatomical area (Kim et al., 2017).

In vivo two-photon recording and comparison with STPT vascular measurement
Surgery

All surgeries were performed under isoflurane anesthesia (in oxygen, 5% for induction and 1.5–2% for maintenance). A custom-

machined titanium head bolt was attached to the skull with cyanoacrylate glue (#32002, Vibra-tite). The head bolt was positioned

along the midline and just posterior to the lambda cranial suture. Two self-tapping 3/32’’ #000 screws (J.I. Morris) were implanted

into the skull contralateral to themeasurement sites over the frontal lobe and parietal lobe. Formeasurements using two-photon laser

scanning microscopy (2PLSM), a polished and reinforced thin-skull (PoRTS) window was made covering the right somatosensory

cortex as described previously (Drew et al., 2010; Zhang et al., 2019). Following the surgery, mice were returned to their home

cage for recovery for at least one week, and then started habituation on experimental apparatus. Habituation sessions were per-

formed 2–4 times over the course of one week, with the duration increasing from 5 min to 45 min.

Measurements using two-photon laser scanning microscopy (2PLSM)

Micewere briefly anesthetized with isoflurane (5% in oxygen) and retro-orbitally injectedwith 50 mL 5% (weight/volume in saline) fluo-

rescein-conjugated dextran (70 kDa, Sigma-Aldrich, cat.no.: 46945), and then fixed on a spherical treadmill. Imaging was done on a

Sutter Movable Objective Microscope with a 203, 1.0 NA water dipping objective (Olympus, XLUMPlanFLN). A MaiTai HP (Spectra-

Physics, Santa Clara, CA) laser tuned to 800 nm was used for fluorophore excitation. All imaging with the water-immersion lens was

done with room temperature distilled water between the PoRTS window and the objective. All the 2PLSM measurements were

started at least 20 min after isoflurane exposure to reduce the disruption of physiological signals due to anesthetics. High-resolution

image stacks of the vasculature were collected across a 500 by 500 mmfield and up to a depth of 250 um from the pial surface. All the

images were acquired with increasing laser power up to 100 mW at a depth of�200 mm. Lateral sampling was 0.64 um per pixel and

axial sampling was at 1 um steps between frames. Shortly (within 20 min) after the imaging, the mouse was perfused with FITC filling

for STPT based ex vivo vasculature imaging.

In vivo and ex vivo comparison
In order to compare our measurements for vessel radii in STPT imaging datasets to vessel parameters measured in vivo, the same

animals that were used for 2PLSM (See In vivo two-photon recording and comparison with STPT vascular measurement) underwent

the FITC-fill perfusion and STPT imaging steps described above. However, STPT imaging was only conducted on the cortical hemi-

sphere used for 2PLSM, with imaging spanning from prefrontal regions to visual cortex regions, in order to appropriately capture the

primary somatosensory cortex limb region. Following stitching and tracing of the images, the raw imaging data was reconstructed in

3D in order to visualize the cortical surface. To find the 2PLSM imaging window, vessel landmarks used for navigation purpose in

2PLSM were again used to identify the same landmark vessels in the STPT imaging dataset (Figure S2). The region of interest

was further confirmed by anatomical landmarks (proximity to bregma, surface vessels, etc.) through overlay of STPT and 2PLSM

imaging window regions. Next, within a STPT imaging z stack, borders were inserted using ImageJ software to further outline the

in vivo imaging window region in the 3D data. Then the in vivo imaging z stack data were used to identify branch points along the

penetrating vessel tracked during 2PLSM. This provided identifiable characteristics to further locate the same vessel in the STPT
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imaging dataset. Once the exact vessel was identified in the STPT images, the precise 3D coordinates were tracked to accurately

obtain the radii measurements from the traced vessel data, see the Computational: Vessel digitization/tracing section for details.

In 2PLSM images, vessel diameter measurements were manually taken with adjusted pixel/micron distances using the straight-

line function in ImageJ. These vessel diameter measurements accounted for the lumen of the vessel, at half of the maximum fluores-

cence intensity profile and were adjusted for pixilation of 2PLSM data. These measurements have been further refined through

VasoMetrics ImageJ macro (McDowell et al., 2021). To identify the radii and diameter measurements from the STPT imaging

data, exact vessel coordinates were used to retrieve the associated vessel radii measurements using customMATLAB code. A min-

imum of 10 vessel diameter measurements were taken per imaging window (each animal contained 2 imaging regions of interest) per

animal.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analysis, including multi-region of interest (ROI) correlation analysis, was done in Matlab (Mathworks). We used an aver-

aged value of the experimented animals while treating each ROI as an individual data point to calculate the correlation coefficient R

between vascular and cell density measurements. The p value was calculated based on the null hypothesis that the two groups have

no correlation; the values were adjusted with the Bonferroni correction for multiple comparison correction.
e6 Cell Reports 39, 110978, June 21, 2022
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