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Abstract

Genome sequencing of tens of thousands of humans has enabled the measurement of large selective
effects for mutations to protein-coding genes. Here we describe a new method, called ExtRaINSIGHT,10

for measuring similar selective effects in noncoding as well as in coding regions of the human genome.
ExtRaINSIGHT estimates the prevalance of strong purifying selection, or “ultraselection” (λs), as the
fractional depletion of rare single-nucleotide variants in target genomic sites relative to matched sites
that are putatively free from selection, after controlling for local variation and neighbor-dependence in
mutation rate. We show using simulations that λs is closely related to the average site-specific selection15

coefficient against heterozygous point mutations, as predicted at mutation-selection balance. Applying
ExtRaINSIGHT to 71,702 whole genome sequences from gnomAD v3, we find strong evidence of ul-
traselection in evolutionarily ancient miRNAs and neuronal protein-coding genes, as well as at splice
sites. By contrast, we find weak evidence in other noncoding RNAs and transcription factor binding
sites, and only modest evidence in ultraconserved elements and human accelerated regions. We estimate20

that∼0.3–0.5% of the human genome is ultraselected, implying∼0.3–0.4 lethal or nearly lethal de novo
mutations per potential human zygote. Overall, our study sheds new light on the genome-wide distribu-
tion of fitness effects for new point mutations by combining deep new sequencing data sets and classical
theory from population genetics.
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Introduction25

Like a gambler, an evolving species has to pay for the chance to win. As in most games of chance, the
majority of “draws” (mutations) result in a loss (decrease in fitness), with an occasional pay-off (adaptive
mutation). Thus, in Haldane’s words, loss of fitness owing to deleterious mutation is the “price paid by a
species for its capacity for further evolution” [1].

Understanding the impact of new mutations on fitness has been a major focus of evolutionary genetics30

for nearly a century [1–3], with implications for a wide variety of fundamental problems, ranging from
revealing the genetic architecture of complex traits and the effects of mutational load to understanding the
emergence of recombination and sex [4,5]. Nevertheless, characterizing the full distribution of fitness effects
(DFE) of new mutations is notoriously difficult. Naturally occurring mutations are rare, often difficult to
detect, and have fitness effects that are generally hard to measure. Innovative experimental techniques have35

been developed to measure of the DFE in model organisms, but these methods have important limitations [4]
and, in any case, they cannot be applied to humans, nor to any other organism that cannot be experimentally
manipulated and monitored in relatively large numbers.

For these reasons, many recent efforts to characterize the DFE have focused on the study of naturally
occurring mutations using statistical modeling, population genetic theory, and DNA sequencing [6–9]. Im-40

portantly, however, patterns of genetic variation are strongly influenced by demographic history, so careful
demographic modeling is required to isolate the effects of selection. In addition, most available population
panels—consisting of hundreds to a few thousand individuals—are informative about only a relatively nar-
row slice of the DFE. For example, in humans strong purifying selection (such that s >∼1%) will tend
to hold variants below a detectable frequency in these panels, whereas weak purifying selection (such that45

s <∼10−4) will be indistinguishable from random genetic drift [10, 11]. Thus, only in approximately the
range 10−4 < s < 10−2 can purifying selection be accurately measured.

Recently, exome or whole-genome sequence data has become available for tens of thousands of individ-
uals [12,13], allowing quite rare variants (with relative frequencies < 10−3) to be identified with reasonable
confidence. These data have enabled the application of statistical methods that can measure high levels of50

purifying selection against predicted loss-of-function (pLoF) mutations for protein-coding genes [11–16].
While such measures are correlated with dominance effects (e.g., [12,13]), the frequency of rare pLoF vari-
ants is strictly informative only about the strength of selection against hetereozygous mutations, shet [17].
When purifying selection is strong and near-complete recessivity can be excluded, mutation-selection bal-
ance is expected to hold with an equilibrium frequency for a rare variant of q ≈ µ

shet
, where µ is the dele-55

terious mutation rate [1, 17]. Cassa et al. [11] (see also [18]) have shown with extensive simulations that
this relationship holds quite well for pLoF variants in the ExAC exome data [12] down to shet ≈ 0.01.
Importantly, estimation of shet based on mutation-selection balance is independent of demography because,
in this regime, mutant alleles persist in the population for at most a few generations and genetic drift makes
a negligible contribution to their allele frequencies. Therefore, in addition to permitting estimation of larger60

selection coefficients than other statistical methods, this approach requires no demographic modeling.
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In this article, we extend and generalize these ideas for application to the entire genome, including
noncoding regions, in a new method called Extremely Rare INSIGHT (ExtRaINSIGHT). Similar to our
previous Inference of Natural Selection from Interspersed Genomically coHerent elemenTs (INSIGHT)
method [19, 20], ExtRaINSIGHT can be used to measure the influence of natural selection on any des-65

ignated set of genomic sequences, by contrasting patterns of variation in a designated set of “target” se-
quences with those in matched sequences that are putatively neutrally evolving. However, ExtRaINSIGHT
focuses on rare variants only, in order to obtain a measure that reflects particularly large selective effects—
that is, purifying selection sufficiently strong that new point mutations are lethal or nearly lethal (here-
after, “nearly lethal”), and therefore do not appear even as rare variants in a panel of tens of thousands70

of individuals. As shorthand, we refer to such selection as “ultraselection.” We apply ExtRaINSIGHT to
more than 70,000 whole genome sequences from the Genome Aggregation Database (gnomAD) project
(https://gnomad.broadinstitute.org/) [13] and perform a comprehensive analysis of ultraselection in the hu-
man genome, considering both coding and noncoding elements. Our findings reveal both similarities and
striking differences in measures of ultraselection and weaker purifying selection, shed light on the rate of75

nearly lethal mutations in humans, and highlight challenges in accurately modeling mutation rates in up-
stream regions of genes.

Results

Overview of ExtRaINSIGHT

ExtRaINSIGHT measures the fractional reduction in the incidence of rare variants in a target set of sites80

relative to nearby sites that are putatively free from (direct) natural selection. In this way, it is analogous
to classical strategies for measuring selection in protein-coding genes [21–23], as well as to newer methods
that compare target sets of noncoding elements with suitable background sequences [20, 24–26]. The focus
on rare variants (here, variants with minor allele frequencies of < 0.1%), however, enables the method to
focus in particular on point mutations of large selective effect.85

The main challenge in this approach stems from the high sensitivity of relative rates of rare variants to
variation in mutation rate. To address this problem, we follow refs. [12, 15] in building a mutational model
that accounts for both sequence context and regional variation in mutation rate. In our case, we condition the
rate of each type of nucleotide substitution on the identity of the three flanking nucleotides on each side. In
addition, following our earlier work [19,20], we use a local control for overall mutation rate based on nearby90

sites identified as likely to be neutrally evolving. We also consider G+C content, sequencing coverage, and
CpG islands as covariates (see Methods). With this strategy, we are able to predict with high accuracy the
probability that a rare variant will occur at each site (Supplemental Fig. S1).

In the absence of natural selection, we assume a Bernoulli sampling model for the presence (probability
Pi) or absence (probably 1− Pi) of a rare variant at each site i, where Pi reflects the local sequence context95

and overall rate of mutation. We ignore sites at which common variants occur (similar to [12, 15]). We
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then assume that natural selection has the effect of imposing a fractional reduction on the rate at which rare
variants occur. To a first approximation, we maximize the following likelihood function,

L(λs;Y,P) = P (Y;λs,P) =
∏
i

[(1− λs)Pi]Yi [1− (1− λs)Pi]1−Yi (1)

where Yi is an indicator variable for the presence of a rare variant at position i in the sample, λs is a scale
factor capturing a depletion of rare genetic variation, Y = {Yi}, P = {Pi}, and the product excludes100

sites having common variants. In this way, we obtain a maximum-likelihood estimate (MLE) of λs condi-
tional on pre-estimated values Pi. (In practice, we use a slighly more complicated likelihood function that
distinguishes among the possible alternative alleles at each site; see Methods for complete details.)

When λs falls between 0 and 1 it can be interpreted as a measure of the prevalence of ultraselection.
In this case, λs can be thought of as the fraction of sites intolerant to heterozygous mutants, although in105

practice, some sites may be more, and some sites less, intolerant. Notice, however, that λs can also take
values < 0 if rare variants occur at a higher-than-expected rate in the target set of sites. As we discuss
below, we do observe a systematic tendency for λs to take negative values in particular classes of sites,
likely reflecting the difficulty of precisely specifying the mutational model at these sites. Across most of the
genome, however, estimates of λs fall between 0 and 1 and show general qualitative agreement with other110

measures of purifying selection.

Notably, in the case of strong selection against heterozygotes and mutation-selection balance (as detailed
by [11, 17]), a relatively simple relationship can be established between λs and the site-specific selection
coefficient against heterozygous mutations, shet:

shet =
2N/c

1− λs
, (2)

where N is the number of diploid individuals sampled and c is the (constant for a given data set) ratio of115

the rate of presence of rare variants in the sample (Pi) to the per-generation mutation rate (see Methods and
Supplemental Fig. S2).

Following ref. [18], we simulated data sets under a realistic human demographic model with various
values of shet and estimated λs from each one using ExtRaINSIGHT. We found that equation 2 led to
fairly accurate estimates of the true value down to about shet = 0.03, and somewhat elevated but still120

useful estimates down to about shet = 0.013 (Supplemental Fig. S3). Therefore, throughout this article,
we use equation 2 to estimate shet when λs > 0.18, approximately the threshold corresponding to shet =

0.013 for our data set. Notably, our simulation study did indicate that variation across sites in shet leads
to some underestimation of the true average value, but even in this setting equation 2 remains useful as an
approximate guide (see Methods and Supplemental Fig. S3).125

Ultraselection in and around protein-coding genes

We applied ExtRaINSIGHT to 19,955 protein-coding genes from GENCODE v. 38 [27] as well as to a va-
riety of proximal coding-associated sequences, including 5′ and 3′ untranslated regions (UTRs), promoters,
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and splice sites (Figure 1). For comparison, we applied INSIGHT to the same sets of elements. As ex-
pected, we obtained considerably higher estimates of λs at 0-fold degenerate (0d) sites in coding sequences,130

at which each possible mutation results in an amino-acid change (λs = 0.22), than at 4-fold degenerate
(4d) sites, at which every mutation is synonymous (λs = −0.008). The corresponding INSIGHT-based
estimates of ρ were 0.80 and 0.39, respectively. Together, we can interpret these estimates as indicating
that 22% of 0d sites are ultraselected, meaning that any mutation at these sites would be nearly lethal, and
another 80− 22 = 58% are under weaker purifying selection—although the ExtRaINSIGHT and INSIGHT135

estimates are not precisely comparable in all respects (see Discussion). Our estimate of λs for 0d sites
corresponds to a selection coefficient of shet ≈ 0.014, assuming mutation-selection balance. Notably, this
estimate is substantially larger than previous estimates for amino-acid replacing mutations based on the
site-frequency-spectrum from smaller samples, probably in part because those methods are less sensitive to
strong purifying selection (see Discussion). By contrast, at 4d sites, ultraselection is estimated to be com-140

pletely absent, but 39% of 4d sites experience weak purifying selection (see [9] for an estimate of 26% for
synonymous sites). Overall, about 15% of coding sites (CDS) experience ultraselection (λs = 0.15) and
another 47% experience weaker selection (ρ = 0.62).

Among coding-related sites, the strongest selection, by far, occurred in splice sites (see also [28]), where
almost half of sites were subject to ultraselection (λs = 0.46; corresponding to shet ≈ 0.020), with another145

42% subject to weaker selection (ρ = 0.88). By contrast, 3′ UTRs showed little evidence of ultraselection
(λs = 0.023) despite considerable evidence of weaker selection (ρ = 0.24). Interestingly, we observed a
persistent tendency for negative estimates of λs at regions near the 5′ ends of genes, at both 5′ UTRs and
promoter regions, despite non-neglible estimates of ρ (0.22 and 0.13, respectively). As we discuss in a later
section, these estimates appear to be a consequence of unusual mutational patterns in these regions that are150

difficult to accommodate using even our regional and neighbor-dependent mutation model.

To see whether ExtRaINSIGHT was capable of distinguishing among protein-coding sequences expe-
riencing different levels of selection against heterozygous loss-of-function (LoF) variants, we compared
it with the recently introduced loss-of-function observed/expected upper bound fraction (LOEUF) mea-
sure [13]. LOEUF is similarly based on rare variants but differs from ExtRaINSIGHT in that it is computed155

separately for each gene by pooling together all mutations predicted to result in loss-of-function of that gene
(including nonsense mutations, mutations that disrupt splice sites, and frameshift mutations). In contrast to
λs and ρ, lower LOEUF scores are associated with stronger depletions of LoF variants and increased con-
straint, and higher LOEUF scores are associated with weaker depletions and reduced constraint. To compare
the two measures, we partitioned 80,950 different isoforms of 19,677 genes into deciles by LOEUF score160

and ran ExtRaINSIGHT separately on the pooled coding sites corresponding to each decile. Again, we
computed ρ values using INSIGHT together with the λs values. We found that both ρ and λs decreased
monotonically with LOEUF decile, with λs ranging from 0.28 for the genes having the lowest LOEUF
scores to 0.005 for the genes having the highest LOEUF scores, and ρ similarly ranging from 0.77 to 0.43
(Figure 2). These results suggest that in the 10% of genes under the weakest selection against heterozygous165

LoF mutations, only 0.5% of sites are subject to ultraselection, but over 40% still experience weaker purify-
ing selection; whereas in the 10% of genes under the strongest selection against LoF mutations, almost 30%
of sites are under ultraselection and another ∼40% are under weaker purifying selection.
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Finally, we considered an alternative grouping of genes by biological pathway, using the top-level an-
notation from the Reactome pathway database [29] (Figure 3). Again, we ran both ExtRaINSIGHT and170

INSIGHT on each group of genes and observed similar trends in the two measures, with λs ranging from
10% to 26%, and ρ ranging from 61% to 75%. We found genes annotated as belonging to the “Neuronal
System” to be experiencing the most ultraselection (λs = 0.26), consistent with other recent findings [9].
Genes annotated as being involved in “Reproduction” showed the least ultraselection (λs = 0.10). Notably,
the estimates of λs exhibited considerably greater variation, as a fraction of the mean, than did estimates of175

ρ. The ratio λs/ρ—which can be interpreted as the fraction of selected sites experiencing ultraselection—
was also highest for “Neuronal System” genes (at 0.36) and lowest for “Reproduction” genes (at 0.17). An
analysis of genes exhibiting tissue-specific expression produced similar results, with several brain tissues
exhibiting the most ultraselection and vagina exhibiting the least (Supplemental Fig. S4).

Ultraselection in noncoding elements180

We carried out a similar analysis on noncoding sequences, including a variety of noncoding RNAs, transcrip-
tion factor binding sites (TFBS) supported by chromatin-immunoprecipitation-and-sequencing (ChIP-seq)
data (from [20]), and unannotated intronic and intergenic regions. Among these sequences, we observed the
strongest signature of ultraselection in microRNAs (miRNAs), particularly in evolutionarily “old” miRNAs
broadly shared across mammals (designated as “conserved” by TargetScan; see Methods), where we esti-185

mated λs = 0.34 (Figure 4). This estimate corresponds to shet = 0.016, indicating nearly a 2% reduction
in fitness associated with each point mutation in these regions. We found that the seed regions of these
miRNAs had even slightly higher values of λs = 0.39 (not shown). Interestingly, however, the prevalance
of ultraselection was greatly reduced at evolutionarily “new” miRNAs that are not shared across mammals
(“nonconserved” in TargetScan), where we estimated only λs = 0.031.190

Other types of noncoding RNAs also showed little indication of ultraselection: our estimates for long
noncoding RNAs (lncRNAs), small nuclear RNAs (snRNAs), and small nucleolar RNAs (snoRNAs) were
all close to zero or negative. In an attempt to identify regions within these RNAs that might be subject to
stronger selection, we intersected them with conserved elements identified by phastCons [24]. However, we
found that even these putatively conserved portions of noncoding RNAs exhibited at most λs ≈ 0.05 (in195

lncRNAs and snRNAs).

When we analyzed a pooled set of all ∼2M TFBSs from ref. [20], we obtained a negative estimate of
λs = −0.08, despite that the same elements yielded a nonnegligible estimate of ρ = 0.23. We therefore
examined only the binding sites of the 10 TFs whose binding sites showed the largest ρ estimates (ρ = 0.61

overall; see Methods), but even for this putatively conserved set, we obtained an estimate of only λs = 0.03.200

Thus, of the noncoding RNA and TFBSs we considered, only “old” miRNAs appear to experience high
levels of ultraselection.

We also evaluated ultraconserved noncoding elements (UCNEs) [30] and noncoding human accelerated
regions (HARs) [31–33]—two types of elements that have been widely studied for their unusual patterns
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of cross-species conservation, and have been shown to function in various ways, including as enhancers205

[34, 35] and noncoding-RNA transcription units [31]. Interestingly, despite their extreme levels of cross-
species conservation, UCNEs show only modest levels of ultraselection, with λs = 0.09. This observation
suggests that what is unusual about these elements is not the strength of selection acting on them (which is
considerably weaker than that at protein-coding sequences or “old” miRNAs), but instead the uniformity of
selection acting at each nucleotide (see Discussion). Notably, HARs display only slightly lower levels of210

ultraselection than UCNEs (λs = 0.04) and levels comparable to those of conserved sequences in introns.
Thus, despite their rapid evolutionary change during the past 5–7 million years, HARs now appear to contain
many nucleotides that are under strong purifying selection in human populations.

A genome-wide accounting of sites subject to ultraselection

To account genome-wide for the incidence of nearly lethal mutations, we ran ExtRaINSIGHT on a collection215

of mutually exclusive and exhaustive annotations. For this analysis, we considered CDSs, UTRs, splice
sites, lncRNAs, introns, and intergenic regions, but excluded smaller classes of noncoding RNAs, which
make negligible genome-wide contributions (Table 1). As above, we intersected the lncRNA, intron, and
intergenic classes with phastCons elements, and separately considered the conserved and nonconserved
partitions of each class. For each category, we multiplied our estimate of λs by the number of sites in the220

category to estimate category-specific expected numbers of sites subject to ultraselection. To account for
potential misspecification of the mutational model, we conservatively subtracted from the category-specific
estimates of λs the estimate for nonconserved intronic regions (0.008). Thus, by construction, the expected
number of ultraselected sites in these and similar regions (including nonconserved intergenic and lncRNA
sites) was zero.225

Overall, we estimated that 0.31% of the human genome is ultraselected, with 53% of ultraselected
sites falling in CDSs, 24% in conserved introns, 22% in conserved intergenic regions, 12% in conserved
lncRNAs, 6% in 3′ UTRs and 4% in splice sites. Notably, ultraselected sites are overrepresented 45-fold
in CDSs, but CDSs still account for only about half of ultraselected sites. Splice sites are overrepresented
146-fold but make a minor overall contribution owing to their small number.230

Our assumption is that any point mutation at these ultraselected sites will be nearly lethal, and simu-
lations indicate that the detected sites are indeed subject to extreme purifying selection (see Discussion).
Thus, if we multiply the expected numbers of sites by twice (allowing for heterozygous mutations) the esti-
mated per-generation, per-nucleotide mutation rate (here assumed to be 1.2×10−8 [36]), we obtain expected
numbers of de novo nearly lethal mutations per potential zygote (“potential” because some mutations will235

act prior to fertilization). By this method, we estimate 0.26 nearly lethal mutations per potential zygote. By
construction, these nearly lethal mutations occur in the same category-specific proportions as the ultrase-
lected sites (53% from CDS, 24% from introns, etc.). Thus, we expect 0.11 nearly lethal coding mutations
per potential zygote and another 0.15 such mutations at various noncoding sites.

If we carry out a less conservative version of these calculations, by subtracting the λs estimate for240
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nonconserved intergenic regions (0.003) rather than the one for intronic regions, we estimate 0.54% of the
genome to be ultraselected, with 32% falling in CDSs (Supplemental Table S1). The expected number
of nearly lethal mutations per potential zygote increases to 0.43, of which 0.12 fall in CDSs. Taking these
calculations together, we estimate a range of 0.26–0.43 nearly lethal mutations per potential zygote, imply-
ing a high genetic burden but one that appears to be roughly compatible with other lines of evidence (see245

Discussion).

We performed a parallel analysis using INSIGHT, to estimate the numbers and distribution of more
weakly deleterious mutations (Table 2). In this case, we estimate that 3.2% of sites are under selection and
the expected number of de novo deleterious mutations per fertilization is 2.21. The fraction of deleterious
mutations from CDS is 22%, with most of the remainder coming from introns and intergenic regions. lncR-250

NAs and 3′ UTRs also make significant contributions. Taking the ExtRaINSIGHT and INSIGHT estimates
together, we estimate that each potential fertilization event is associated with 0.26–0.43 new lethal mutations
and an additional 1.78–1.94 new mutations that are more weakly deleterious. One way to interpret these
numbers is that, conditional on a threshold level of fitness (i.e., the existence of no nearly lethal mutations),
each person contains an expected∼2 new mutations that are sufficiently strongly deleterious that they would255

tend to be eliminated from the population on the time-scale of human-chimpanzee divergence (as measured
by INSIGHT), at least if humans continued to experience historical levels of purifying selection. That per-
son’s genetic load would derive from both these new mutations and similar weakly deleterious mutations
passed down from his or her ancestors.

Persistent misspecification of the mutation model at promoter regions and TFBSs260

As noted above, we observed a consistent tendency to estimate negative values of λs at the 5′ ends of
genes, including in 5′ UTRs and core promoters (Figure 1), as well as at TFBSs and some noncoding
RNAs from across the genome (Figure 4). In an attempt to bound the genomic regions near protein-coding
genes that give rise to these negative estimates, we applied ExtRaINSIGHT in a series of windows near
the 5′ and 3′ ends of genes, pooling data from all ∼20,000 genes (Figure 5a). We found that the effect265

was most pronounced in the 5′ UTR, where we estimated λs = −0.16 (see Figure 1) and in the 250bp
immediately upstream of the TSS (λs = −0.13). As we looked farther upstream, it diminished fairly
rapidly, with λs = −0.05 in the (−500,−250) window and λs = −0.02 in the (−1000,−500) window.
By the (−2000,−1000) window, the estimates had returned to slightly positive values. We did not observe
negative estimates near the 3′ ends of genes, and the estimate for 4d sites within the CDS was only slightly270

negative. Therefore, the tendency to estimate λs < 0 near genes appears to be limited to the 5′ UTR and the
∼1kb region upstream of the TSS.

We hypothesized that, despite being well-calibrated across the majority of the genome (Supplemental
Fig. S1), our mutation model is misspecified in promoter regions, perhaps owing to correlations of mutation
rates with features such as chromatin accessibility or hypomethylation. We therefore adapted our model to275

consider the predicted state from an application of the 25-state ChromHMM model [37, 38] to Roadmap
Epigenomics data [39] as a categorical covariate and refitted it to the data, trying ChromHMM predictions
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for several cell types. However, we found that this approach did not eliminate the tendency for negative es-
timates of λs (results not shown), perhaps because the available epigenomic data has too coarse a resolution
or is not well matched by cell type.280

Having observed negative estimates of λs also at TFBSs outside of promoter regions, however, we
wondered if the effect could be driven, at least in part, by TF binding itself, which has been shown to be mu-
tagenic in melanoma [40,41]. In an attempt to isolate the effects of TF binding, we applied ExtRaINSIGHT
separately to predicted TFBS in extended promoter regions, using predictions from the Ensembl Regula-
tory Build [42], and to the immediate flanking 10bp on either side of these predictions, excluding flanking285

sequences that themselves included TFBSs. Interestingly, we found that estimates of λs were significantly
more negative in the TFBSs than in the immediate flanking sites (Figure 5b; p = 2.8 × 10−13, likelihood
ratio test), suggesting a possible influence from the mutagenic effects of TF binding (see Discussion). In
the end, we were not able to eliminate this apparent problem with our mutation model, but its effects appear
to be generally quite local to TSSs and TFBSs and therefore are likely to have a limited impact on our290

genome-wide analyses.

Discussion

In this article, we have introduced a new method, called ExtRaINSIGHT, for measuring the prevalence of
strong purifying selection, or “ultraselection,” on any collection of sites in the human genome, including
noncoding as well as coding sites. ExtRaINSIGHT enables maximum-likelihood estimation of a parameter,295

denoted λs, that represents the fractional depletion in rare variants in a target set of sites relative to matched
“neutral” sites, after accounting for neighbor-dependence and local variation in mutation rate. We have
shown that when λs is sufficiently large (approximately >0.2 for our data) and mutation-selection balance
is assumed, 1−λs is expected to have an inverse relationship with the selection coefficient against heterozy-
gous mutations, shet ∝ 1

1−λs , which allows shet to be estimated for a target collection of sites. Simulations300

indicate that this approximation is reasonably good, although it is biased downward when selection is vari-
able across sites (see Methods, Supplemental Fig. S3) and biased upward near the boundary of λs ≈ 0.2

(Supplemental Fig. S2). We have surveyed the prevalence of ultraselection in both coding and non-coding
regions of the human genome and found it to be particularly strong in splice sites, 0-fold degenerate (0d)
coding sites, and evolutionarily ancient miRNAs. On the other hand, ultraselection is mostly absent in305

other noncoding RNAs, untranslated regions of protein-coding genes, and transcription factor binding sites,
as well as in fourfold degenerate (4d) coding sites. We have also shown that neural-related genes and
genes expressed in the brain are enriched for large estimates of λs in their codings sequences, whereas
reproduction-related genes are enriched for small estimates of λs.

Interestingly, we found only a modest prevalence of ultraselection in ultraconserved noncoding elements310

(UCNEs), despite their near-complete sequence conservation over hundreds of millions of years of evolu-
tion [30]. It has been suggested that this extreme conservation is indicative of strong purifying selection
(e.g., [30]), although most such observations have not been accompanied by direct estimation of selection
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coefficients. One exception is an early study by Katzman et al. [43], where ultraconserved elements in
humans were estimated to be experiencing substantially stronger selection (by about 3-fold) than nonsyn-315

onymous sites in protein-coding sequences, although the absolute strength of selection was estimated to be
modest (mean of 2Nes ≈ −5) and the analysis was based on only 72 individuals. The assumption of strong
levels of selection has been difficult to reconcile with observations that organisms often appear to func-
tion normally after deletion of UCNEs, as when complete deletion in mice of megabase-long gene deserts
containing UCNEs failed to produce detectable phenotypes [44]. More recently, Snetkova et al. found320

that UCNEs were remarkably resilient to mutation, with a majority continuing to function as enhancers in
transgenic mouse reporter assays even after being subjected to substantial levels of mutagenesis [45]. Our
observations suggest that these apparently contradictory observations—high sequence conservation and re-
silience to mutation—can be reconciled if UCNEs are predominantly under relatively weak selection, that
is, selection strong enough to prohibit fixation of new mutations on the time scales of interspecies diver-325

gence but weak enough that rare variants are not substantially depleted. Indeed, we find considerably lower
levels of ultraselection in UCNEs (λs = 0.09) than in 0d sites in coding regions (λs = 0.22) or in ancient
miRNAs (λs = 0.34). At the same time, these classes of sites tend not to show perfect conservation in
cross-species comparisons, primarily because they tend to be interspersed with less conserved sites (e.g., 4d
sites or non-pairing sites in miRNAs). Thus, what seems to be most unusual about UCNEs is not the extreme330

level of purifying selection they experience but rather the uniformity of purifying selection across hundreds
of bases. In most cases it is still unknown what causes this uniformity, although it has been speculated
that it may result from overlapping functional roles, such as overlapping binding sites, structural RNAs, and
coding regions [30].

It is instructive to compare our estimates of shet with Cassa et al.’s [11] mean estimate of shet = 0.059335

for predicted loss-of-function (pLoF) variants in protein-coding genes. Our estimate for splice sites (λs =

0.46, shet = 0.020) is reasonably concordant with this estimate, assuming that many but not all splice-site-
disrupting mutations result in loss of function, and allowing for our possible underestimation of shet in the
presence of variability across sites. Our estimate of λs = 0.22, shet = 0.014 for missense mutations at
0d sites is plausible—e.g., it is roughly comparable with experimentally derived estimates for shet of 1–3%340

for strongly deleterious mutations in yeast and flies [11, 46, 47]—but it seems at first glance to be high in
comparison to Cassa et al’s pLoF estimates, given that a majority of missense mutations are presumably
neutral or only mildly deleterious.

Studies based on the site-frequency-spectrum have tended to infer long-tailed distributions—such as
gamma or lognormal distributions—for the DFE for new amino-acid replacements, often augmented with345

point-masses at zero [5–8]. The best-fitting such model in a representative recent study by Kim et al.
[8], based on a fairly large sample size (432 Europeans from the 1000 Genomes Project), implied a mean
selection coefficient against amino-acid replacements of s = 0.007. These methods assume additivity, so
this estimate corresponds to only shet = 1

2s = 0.0035, about one fourth of our estimate for 0d sites. It is
therefore possible that our estimate is too large, particularly since it falls near the boundary of the regime350

where mutation-selection balance holds. At the same time, it is also possible that these SFS-based methods
have systematically underestimated the weight of the tail of the DFE, which is well known to be difficult to
measure based on the SFS and samples of modest size (e.g., [7]). Notably, if we apply ExtRaINSIGHT to
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data simulated under Kim et al.’s DFE, we obtain an estimate of only λs = 0.04, compared with λs = 0.22

for real 0d sites (Supplemental Table S2, Supplemental Fig. S5). Thus, the patterns of rare variants present355

in the deeply sequenced gnomAD data set do not seem to be consistent with the DFEs inferred from smaller
data sets, likely because these inferred DFEs have failed to accurately describe the tail of the distribution. It
therefore seems plausible that our fourfold higher estimate of shet ≈ 1.4% is closer to the true mean value
than these SFS-based estimates.

One particular challenge with our method is accommodating variation across sites in shet. Because360

our likelihood function is based simply on the presence or absence of rare variants across a collection of
exhangeable sites, it carries limited information about the second moment of the DFE. Unlike ref. [11], we
cannot aggregate together all mutations likely to result in loss-of-function of a gene, which permits inference
of the genewise distribution of shet. Notably, however (see Methods), in the presence of variation in shet, our
approximate estimator will describe the harmonic mean, rather than the arithmetic mean, of the true values.365

Consequently, it will have a predictable downward bias, meaning that it can be interpreted as a lower-bound
on the true arithmetic mean. This downward bias is consistent with our observations in splice sites. For 0d
sites and ancient miRNAs, it provides additional confidence in our seemingly high estimates, suggesting that
the true values could be even larger. It may be possible in future work to extend our methods to consider a
distribution of shet values, for example, by introducing a scheme for grouping sites into elements analogous370

to the genes in ref. [11].

Another possible concern with our approach is that, in estimating λs from the rare variants missing from
the target sites, ExtRaINSIGHT inevitably will pick up not only on strong selection against nearly lethal
mutations but also, to a degree, on selection on a large class of more weakly deleterious mutations. Even
if these more weakly deleterious mutations are inefficiently eliminated over the short time scale relevant375

for rare variants, their cumulative effect could still be substantial relative to that from strongly deleterious
mutations if they are much larger in number—which is plausible if the weight in the tail of the true DFE is
not too large. Such a scenario could potentially lead to overestimation of λs and, consequently, of shet and
of the numbers of nearly lethal mutations per potential fertilization.

We attempted to examine this question by simulating data under four different DFEs, representing sce-380

narios from quite weak selection (as we observe in TFBSs) to quite strong selection (as we observe at
evolutionarily ancient miRNAs), applying ExtRaINSIGHT to the simulated data, and then decomposing the
DFE into a component associated with the rare variants removed by selection and a component associated
with the remaining rare variants (which we can trace in simulation; see Supplemental Fig. S5 and Supple-
mental Table S2). We found, overall, that the missing variants detected by ExtRaINSIGHT are strongly385

enriched for strong purifying selection. In the case of quite strong selection (similar to what we infer at 0d
sites or miRNAs), they predominantly have shet > 0.01, with mean values of shet ≈ 0.03. Even in the case
of Kim et al.’s inferred DFE (which, as discussed above, may underestimate the tail), the mean shet = 0.03

for the missing rare variants, although in this case substantially more of them have shet < 0.01. Overall,
we find that, with mean shet ≈ 0.03, these rare variants are indeed under quite strong purifying selection,390

although our power to separate strong selection from nearly neutral evolution does depend on the original
DFE. At this selection coefficient, some rare variants may persist for a few generations, but, according to
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Kimura and Ohta’s [48] formulas, the expected number of generations until extinction will be no more than
about half of the neutral expectation, which itself is quite low (see Supplemental Text). Thus, it seems
reasonable to regard these variants as “nearly lethal.”395

What are the implications of our estimate of ∼0.3–0.4 for the number of nearly lethal mutations per
potential fertilization? This estimate implies a fairly high genetic burden for severely deleterious mutations
(not to mention the additional burden imposed by weakly deleterious mutations), but one that appears to be
in the plausible range (e.g., [23, 28]). One rough point of comparison is the rate of spontaneous abortion,
which has been estimated to be as high as 50% for mothers of prime reproductive age [49,50]. This quantity,400

of course, is not the same as the rate of nearly lethal mutations, for a variety of reasons—spontaneous
abortion typically describes death prior to birth conditional on a detectable pregnancy, whereas our measure
includes mutations that are lethal near the time of fertilization or even prior to fertilization, and also includes
mutations that cause death after birth, that do not cause death but prevent an organism from reproducing,
or that severely reduce fitness over several generations. In addition, many of the mutations that cause405

spontaneous abortion in the fetus are not point mutations, but instead major structural variants that often
alter karyotype [49]. At the same time, spontaneous abortion is only partly a consequence of the genetics of
the embryo, also depending strongly on the environment and the genetics of the mother. Nevertheless, it is
notable that these quite different estimates are in rough agreement with one another, suggesting an overlap
in what they are measuring, perhaps with other factors approximately cancelling.410

Throughout this article, we have compared λs estimates from ExtRaINSIGHT with ρ estimates from
INSIGHT, in order to evaluate the relative fractions of sites subject to ultraselection and weaker forms of
purifying selection. It is worth noting, however, that the two methods are not based on precisely the same
assumptions and therefore are not exactly comparable. Unlike ExtRaINSIGHT, INSIGHT measures natural
selection on the time scale of the human-chimpanzee divergence (5–7 MY), assuming that functional roles415

are relatively constant during that time period. It also incorporates positive selection as well as purifying
selection into its model, although positive selection appears to make at most a minor contribution to ρ in this
setting (see Methods). Finally, INSIGHT makes use of a much simpler Jukes-Cantor mutation model, with
no accounting for neighbor-dependence in mutation rate (although it does account for regional variation
across the genome). As a result, differences between λs and ρ could result in part from matters such as gain420

and loss of functional elements on human/chimp time scales, misspecification of the Jukes-Cantor mutation
model, or contributions from positive selection. Nevertheless, we expect these differences to have relatively
minor effects, and the estimates from INSIGHT and ExtRaINSIGHT appear to be fairly consistent overall,
with ρ and λs well correlated but ρ > λs in all cases. Therefore, we believe it is reasonable to approximately
characterize the DFE by treating λs as a measure of ultraselection and the difference λs− ρ as a measure of425

selection that is weaker but sufficiently strong to result in removal of deleterious variants on the time scale
of human/chimpanzee divergence.

While our mutation model fits the data well across most of the genome, we were not able to eliminate
an apparent misspecification of this model in promoter regions as well as at other TFBSs and at some
noncoding RNAs. This misspecification is unlikely to be explained by unusual base or word composition430

in these regions, nor by regional variation in overall mutation rate, because these features are explicitly
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addressed by our model. We also could not eliminate it by explicitly conditioning on chromatin state, using
the ChromHMM model [37, 38], although it is possible that our approach was limited by the resolution and
cell-type-specificity of the available epigenomic data. Interestingly, the best predictor we could identify
for elevated mutation rates was TF binding itself. There is accumulating evidence from melanoma that TF435

binding may be mutagenic, likely because it interferes with DNA repair [40,41], so it seems possible that TF
binding is, at least in part, a driver of elevated germ-line mutation rates in these regions. It is worth noting
that if TF binding indeed itself significantly alters mutation rates, this phenomenon would considerably
complicate efforts to measure natural selection on TFBS, which is generally accomplished by contrasting
rates of polymorphism and/or divergence within binding sites relative to nearby flanking sites, under the440

assumption that mutation rates are approximately equal in these regions (e.g., [20, 26, 51]). However, the
strength of this mutagenic effect in the germline remains unknown, and unless it is particularly pronounced,
it likely has a minor effect on analyses at longer evolutionary time scales, where natural selection probably
dominates in determining patterns of polymorphism and divergence. In any case, more work will be needed
to develop a full understanding of these potential mutational biases and account for them in analyses of445

selection on binding sites.

Methods

Data for neutral model

The data for our neutral model consisted of rare variants (MAF <0.001) from gnomAD (v3) within the ge-
nomic regions identified by Arbiza et al. [20] as putatively free from selection, unduplicated, non-repetitive,450

and reliably mappable. These regions were mapped to the hg38 human assembly using liftOver [52]. We
further removed all CpG sites, which we expected to be difficult to model owing to methylation-induced
hypermutation, and all sites having an an average sequencing coverage across individuals of < 20 reads.

Mutation model

To fit the mutation model to these putatively neutral sites, we first calculated the relative frequencies of each455

type of mutation a → b and of the absence of a mutation (a → a), conditional on the identities of a, b, and
the three flanking nucleotides on each side. This required collecting 48 = 65536 distinct counts (minus the
excluded CpGs) and normalizing them to sum to one separately for each a and flanking nucleotides. We then
obtained adjusted rates by combining the (logits of) these raw relative rates with a collection of covariates
likely to be correlated with real or apparent rates of mutation in a linear-logistic model. In particular, we460

used four covariates: the raw relative frequency, the logarithm of the reported average sequencing coverage
from gnomAD, the fractional G+C content in a 200bp window, and an indicator for whether or not each
site fell in a CpG island (based on the UCSC Genome Browser track of the same name [52]). We fitted this
model to the observed rates of mutation at variable and nonvariable sites, sampling 1% of putatively neutral
sites for efficiency. Finally, we further adjusted the estimated rates for regional variation in mutation rate465
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by sliding a 150kb window along the genome in 50kb increments, and fitting a linear-logistic model to the
neutral sites in each window, with the logit of the previously estimated rate as a covariate with coefficient
one and a free intercept term, which could be interpreted as a local scaling factor. Together, these steps
allowed us to estimate an absolute rate for the emergence of each allele at each site in the genome. When we
compare the predicted rates with actual rates within the neutral regions, we can see that the model is quite470

well calibrated (Supplemental Fig. S1).

Approximate model for ultraselection

Following equation 1, the log likelihood function is given by,

`(λs;Y,P) =
∑
i

Yi [log(1− λs) + logPi] + (1− Yi) log [1− (1− λs)Pi]

= R log(1− λs) +
∑
i:Yi=1

logPi +
∑
i:Yi=0

log [1− (1− λs)Pi] , (3)

whereR =
∑

i Yi is the number of rare variants. When the Pi values are small (as is typical), it is possible to
obtain a reasonably good closed-form estimator for λs by making use of the approximation log(1−x) ≈ −x.
In this case,

`(λs;Y,P) ≈ R log(1− λs) +
∑
i:Yi=1

logPi +
∑
i:Yi=0

−(1− λs)Pi

= R log(1− λs) +
∑
i:Yi=1

logPi −NP̄ ′(1− λs), (4)

where N =
∑

i(1 − Yi) is the number of invariant sites and P̄ ′ is the average value of Pi at the invariant
sites. It is easy to show that this approximate log likelihood is maximized at,

λ̂s = 1− R

NP̄ ′
. (5)

However, this procedure leads to a biased estimator for λs. A correction for the bias leads to the follow-475

ing, intuitively simple, unbiased estimator:

λ̂s = 1− R

(N +R)P̄
, (6)

where P̄ is the average value of Pi at all sites. In other words, λ̂s is given by 1 minus the observed number
of rare variants divided by the expected number of rare variants under neutrality, which is simply the total
number of sites, N +R, multiplied by the average rate at which rare variants appear, P̄ .

Full allele-specific model480

In practice, we use a model that distinguishes among the alternative alleles at each site and exploits our allele-
specific mutation rates. This model behaves similarly to the simpler one described above, but yields slightly
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more precise estimates, because the mutation rates for different alternative alleles can differ appreciably, and
because multiple alternative alleles are often present at a single site in the gnomAD data.

In the full model, we assume separate indicator variables, Y (1)
i , Y (2)

i , and Y (3)
i , for the three possible

allele-specific rare variants at each site, and corresponding allele-specific rates of occurrence, P (1)
i , P (2)

i ,
and P (3)

i . We further make the assumption that the different rare variants appear independently. Thus, the
likelihood function generalizes to (cf. equation 1),

L(λs;Y,P) =
∏
i

[
(1− λs)P (1)

i

]Y (1)
i
[
1− (1− λs)P (1)

i

]1−Y (1)
i
[
(1− λs)P (2)

i

]Y (2)
i
[
1− (1− λs)P (2)

i

]1−Y (2)
i

×
[
(1− λs)P (3)

i

]Y (3)
i
[
1− (1− λs)P (3)

i

]1−Y (3)
i

(7)

where we redefine Y = {Y (j)
i } and P = {P (j)

i } for j ∈ {1, 2, 3}. Notice that, when more than one485

alternative allele is present, Y (j)
i will be 1 for more than one value of j.

ExtRaINSIGHT simply maximizes this function with respect to λs numerically. To improve efficiency, it
considers at most one million sites, subsampling down to one million if more are provided. Standard errors
for λs are estimated by taking the square root of the inverse of the negative second derivative of the log
likelihood function. ExtRaINSIGHT also reports a p-value based on a likelihood ratio test of an alternative490

hypothesis of λs 6= 0 relative to a null hypothesis of λs = 0, assuming twice the log likelihood ratio has an
asymptotic χ2 distribution with one degree of freedom under the null hypothesis.

Relationship between shet and λs under mutation-selection balance

When selection against heterozygotes is strong, the equilibrium allele frequency at mutation-selection bal-
ance is given by q = µ

shet
(reviewed in [17]). The frequency of mutant alleles in a random sample of

2N chromosomes (where N is the number of diploid individuals) will be Poisson-distributed with mean
2N · µ

shet
(c.f. [11]), and the expected number of polymorphic sites in a collection of M sites is E[X] =

M(1 − e−2Nµ/shet). Ignoring common variants for the moment, the same expectation under the ExtRaIN-
SIGHT model is given by E[X] =

∑
i(1 − λs)Pi = M(1 − λs)P̄ , where P̄ is the mean value of Pi over

the sites in question. By setting these quantities equal to one another, we obtain,

M(1− e−2Nµ/shet) = M(1− λs)P̄
2Nµ

shet
= − log(1− (1− λs)P̄ ) ≈ (1− λs)P̄

shet ≈
2Nµ/P̄

1− λs
=

2N/c

1− λs
, (8)

where c = P̄ /µ. With our data, we find that P̄ varies little from one set of sites to another, hovering close
to P̄ = 0.162. Assuming µ = 1.2× 10−8, we obtain c = 1.35× 107.495

This derivation can be adjusted to accommodate common variants (with MAF > 0.001, under our as-
sumptions), but this correction has little effect in practice with our data, because only about 3% of variants
are common. Since the relationship is approximate anyway, we use the simpler version above.
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It is instructive also to consider the case where shet varies across sites. In this case, if si is the selection
coefficient against heterozygotes at site i and if each si is sufficiently strong for mutation-selection balance
to hold, then,

M(1− λs)P̄ ≈
∑
i

2N · µ
si

=
2MNµ

H[s]

(1− λs)P̄ ≈
2Nµ

H[s]
, (9)

where H[s] = 1
M

(∑
i
1
si

)−1
is the harmonic mean of the si values. This relationship is equivalent to the

one above but with H[s] in place of shet. Therefore, in this case, equation 8 yields an estimator not for500

the arithmetic mean, but for the harmonic mean of the variable si values across sites. It will therefore tend
to underestimate the arithmetic mean in the presence of variable selection. This observation provides an
explanation for the downward bias observed in Supplemental Fig. S1.

A further generalization of interest is to assume that a fraction π0 of the sites of interest are not under
selection at all. In this case, the rare variants will arise as a mixture of sites under selection (and at mutation-
selection balance) and sites at which the neutral rate applies. Thus,

(1− λs)P̄ ≈ (1− π0)
2Nµ

H[s]
+ π0P̄

(1− λs − π0)P̄ ≈ (1− π0)
2Nµ

H[s]

H[s] ≈ 2N/c · 1− π0
1− λs − π0

. (10)

Consequently, if the sites of interest are known to include a component of neutrally evolving sites, and if the
fraction π0 can be estimated, then a portion of the downward bias in estimation of the selection coefficient505

can be removed. In particular, the quantity ρ estimated by INSIGHT should function as a fairly good estimate
of 1− π0. Therefore, if estimates of ρ̂ and λ̂s are both available, one can obtain an adjusted estimate of the
harmonic mean of s as,

H[s] ≈ 2N/c · ρ̂

ρ̂− λ̂s
. (11)

Calculating the fraction of sites under selection using INSIGHT

To estimate the total fraction of sites under selection we applied INSIGHT [19, 20] in parallel to ExtRaIN-510

SIGHT, using the same sets of foreground and background (“neutral”) sites. INSIGHT reports a maximum-
likelihood estimate of a quantity ρ that measures the fraction of all sites subject to selection on the time scale
of the human-chimpanzee divergence (5–7 MY). This quantity includes sites under positive selection as well
as those under purifying selection, but for large collections of sites in the human genome the contribution
of positive selection is generally negligible (see [20, 53]). For efficiency, we used a re-engineered version515

of INSIGHT, called INSIGHT2, that is mathematically equivalent to the original but performs numerical
optimization using the BFGS algorithm rather than expectation maximization [54]. INSIGHT2 is currently
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only available for the hg19 assembly so we first mapped annotations from hg38 to hg19 using liftOver,
ignoring sites outside of regions of one-to-one mapping. As with ExtRaINSIGHT, we randomly sampled
one million sites from larger data sets, to improve efficiency. Notably, INSIGHT makes use of data from520

Complete Genomics rather than the gnomAD data set for allele-frequency information (see [20]). INSIGHT
calculates the standard error of its estimates of ρ by taking the inverse of the corresponding diagonal term
of the negative Hessian matrix of the log likelihood function at the MLE.

Genomic annotations and data processing

Annotations for CDS, 5′ UTR, 3′ UTR, and introns were defined using the ensembldb Bioconductor pack-525

age, which interfaces directly with Ensembl. We included only autosomal protein-coding genes. Splice sites
were defined as the two nucleotide sites at each of the 5′ and 3′ ends of introns. Within the promotor regions,
we used the Ensembl Regulatory Build to locate transcription factor binding sites, which are inferred from
experimental data. Flanking regions of TFBS were defined as the 10 bases on either side of each TFBS. We
obtained annotations for lncRNA, snRNA, snoRNA, miRNA also using ensembldb, again restricting them530

to the autosomes. For all of these annotations, we excluded any regions included in the CDS annotations.

Human accelerated regions (HARs) were obtained from Supplemental Table 1 of ref. [55], a compilation
from five previous studies. Ultraconserved noncoding elements (UCNEs) were obtained from UCNEbase
[56]. These HARs and UCNEs were defined with respect to hg19, so we mapped them to hg38 using
liftOver.535

Functional categories were obtained from the Reactome database [29], considering only “top-level”
human terms that included at least 100 genes. Tissue specific genes expression data were obtained from
Supplemental Table 1 in ref. [57]. Genes were classified as tissue-specific if they had a TS score of greater
than three, indicating that they are expressed in that tissue at a level roughly 23 times as high as the av-
erage expression level in all other tissues. Note that this definition allows a gene to be “tissue-specific”540

in more than one tissue. For each category of interest (based on pathway or gene expression), we applied
ExtRaINSIGHT to the union of CDS exons of all associated protein-coding gene.

Simulations

To test our ability to estimate shet from λs (as shown in Supplemental Fig. S3), we conducted simulations
under a realistic demographic model and various “true” values of shet. We then estimated λs for each545

data set, converted λs to shet via equation 2, and compared this estimate to the true value. In each case,
we used the simulator developed by Weghorn et al. [18] to generate 100,000 independent nucleotide sites
for a population of 71,702 diploid individuals with bottlenecks and growth patterns matching based on a
European demographic history. We carried out an initial round of simulations assuming a constant value of
shet per simulated data set, with shet ranging from 0.0001 to 0.5, and a second round in which sitewise values550

of shet were drawn from an exponential distribution with a mean equal to each of the same values. When
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applying equation 2, we used the mean rate of rare variant occurrence, P̄ , observed in each simulated data
set, which tended to be similar, but not identical, to that from the real data. Similarly we used the mutation
rate employed in the simulations (2.2 × 10−8 per generation per site), which had been adjusted upward to
make the frequency of rare variants in the simulated data similar to that in the real data.555

In a second series of experiments, we simulated data from DFEs based on real data and evaluated the
DFE associated with the “missing” rare variants measured by ExtRaINSIGHT, as well as the quality of the
λs and shet estimators (Supplemental Table S2 and Supplemental Fig. S3). We used four DFEs: (1) one
derived from ref. [8] based on data from the 1000 Genomes Project, consisting of a mixture of a point-mass
at zero (3.1% weight) and a Gamma distribution with α=0.1930 and θ=0.0168 (“Kim et al.” in Table S2);560

(2) a version of the same DFE with a larger value of the shape parameter (α = 0.87) to better mimic the
patterns we observed at 0d sites (“0d CDS” in Table S2); (3) a version with even stronger selection (no
point-mass at zero and α = 1.07) to mimic the patterns at miRNAs (“miRNA” in Table S2); and (4) a
version with substantially weaker selection (a 70% point-mass at zero and α = 0.55) to mimic the patterns
at TFBSs (“TFBS” in Table S2).565

When selecting the DFE from ref. [8], we chose the parameters estimated with a lower mutation rate
(1.5× 10−8), which was close to the one assumed for this study. In addition, when defining DFEs in terms
of shet, we reduced the reported DFE by a scale factor of 4Ne (using the estimated value of Ne=12,378) to
account for both that a population-scaled DFE was inferred in ref. [8] (accounting for a factor of 2Ne) and
that the inferred values of s are equivalent to 2shet under an additive model. This scaling was accomplished570

by reducing the value of θ in the inferred Gamma distribution from 820.6 to 0.0168. Notably, the mean
of the DFE estimated for the 1000 Genomes Project data was intermediate between those estimated for the
ESP European and LuCAMP data sets in ref. [8].

In each case, we simulated data with the assumed DFE for new mutations, denoted f(x), and then
traced the DFE for the rare variants that remained in each data set after selection had been applied, denoted575

g(x). We then could estimate the DFE for the missing rare variants measured by ExtRaINSIGHT as h(x) =
1
λ [f(x) − (1 − λs)g(x)], assuming that the full DFE can be expressed as a mixture of g(x) with weight
1 − λs and h(x) with weight λs. This mixture must also account for common variants, but we omit them
because they occur at only a small fraction of sites in our setting.

Data Availability580

ExtRaINSIGHT and INSIGHT2 scores can be computed for any user-defined set of annotations using the
ExtRaINSIGHT web portal at http://compgen.cshl.edu/extrainsight. The source code for the ExtRaIN-
SIGHT server is available at https://github.com/CshlSiepelLab/extraINSIGHT.
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Figure 1: Measures of purifying selection at coding and coding-proximal genomic elements. Estimates
are shown for both ExtRaINSIGHT (λs) and INSIGHT (ρ). Error bars indicate one standard error (see
Methods).
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Figure 2: Measures of purifying selection in protein-coding genes by LOEUF decile. The full set
of 80,950 isoforms of 19,677 genes was partitioned into deciles according to the loss-of-function ob-
served/expected upper bound fraction (LOEUF) measure [13]. An estimates for each decile is shown for
both ExtRaINSIGHT (λs) and INSIGHT (ρ). Notice that lower LOEUF scores are associated with stronger
depletions of LoF variants, so λs and ρ tend to decrease as LOEUF increases. Error bars indicate one
standard error (see Methods).
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Figure 3: Measures of purifying selection in protein-coding genes by biological pathway. Genes were
assigned coarse-grained functional categories using the top-level annotation from the Reactome pathway
database [29]. An estimates for each category is shown for both ExtRaINSIGHT (λs) and INSIGHT (ρ).
Error bars indicate one standard error (see Methods).
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Figure 4: Measures of purifying selection at noncoding elements. Estimates are shown for both ExtRaIN-
SIGHT (λs) and INSIGHT (ρ). Error bars indicate one standard error (see Methods).
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Figure 5: Ultraselection in genomic intervals upstream and downstream of protein-coding genes.
(A) Windows upstream of the transcription start site (TSS) and downstream of the polyadenylation site
(PAS) are labeled on the x-axis. The 5′ and 3′ UTRs are also shown, as are fourfold degenerate (4d) cod-
ing sites (CDS). Estimates of λs with error bars indicating one standard error are shown on the y-axis.
(B) Estimates for the extended promoter region (2kb upstream of the TSS) within transcription factor bind-
ing sites (TFBS) annotated in the Ensembl Regulatory Build [42] and in the immediate flanking sequences
(10bp on each side). The difference is highly statistically significant by a likelihood ratio test based on the
ExtRaINSIGHT likelihood model (p = 2.8× 10−13).
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