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Abstract Genetic ancestry-oriented cancer research requires the ability to perform accurate12

and robust ancestry inference from existing cancer-derived data, including whole exomes,13

transcriptomes and targeted gene panels, very often in the absence of matching cancer-free14

genomic data. In order to optimize and assess the performance of the ancestry inference for any15

given input cancer-derived molecular profile, we develop a data synthesis framework. In its core16

procedure, the ancestral background of the profiled patient is replaced with one of any number17

of individuals with known ancestry. Data synthesis is applicable to multiple profiling platforms18

and makes it possible to assess the performance of inference separately for each19

continental-level ancestry. This ability extends to all ancestries, including those without20

statistically sufficient representation in the existing cancer data. We further show that our21

inference procedure is accurate and robust in a wide range of sequencing depths. Testing our22

approach for three representative cancer types, and across three molecular profiling modalities,23

we demonstrate that global, continental-level ancestry of the patient can be inferred with high24

accuracy, as quantified by its agreement with the golden standard of the ancestry derived from25

matching cancer-free molecular data. Our study demonstrates that vast amounts of existing26

cancer-derived molecular data potentially are amenable to ancestry-oriented studies of the27

disease, without recourse to matching cancer-free genomes or patients’ self-identification by28

ancestry.29

30
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Introduction33

There is ample epidemiological evidence that race and/or ethnicity are important determinants of34

incidence, clinical course and outcome in multiple types of cancer (Siegel et al., 2020; Cronin et al.,35

2018; Ashktorab et al., 2017; Huang et al., 2019; Tan et al., 2016). As such, these categories must36

be taken into account in the analysis of molecular data derived from cancer. A number of recently37

published large-scale genomic studies of cancer (Mahal et al., 2020; Carrot-Zhang et al., 2020; Yuan38
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et al., 2018; Sinha et al., 2020;Bhatnagar et al., 2021; Carrot-Zhang et al., 2021) point to differences39

in the molecular make-up of the disease among groups of different ancestral background and to40

the need for more molecular data to power discovery of such differences.41

Ancestry annotation of cancer-derived data largely draws on two sources. One is a patient’s42

self-identified race and/or ethnicity (SIRE). SIRE is often missing, sometimes inaccurate and usually43

incomplete. As a recent analysis (Nugent et al., 2019) of PubMed database entries since 201044

reveals, patients’ SIRE is massively under-reported in genome and exome sequencing studies of45

cancer, with only 37% of these reporting race, and 17% reporting ethnicity. Furthermore, SIRE is46

not always consistent with genetic ancestry. Finally, a self-declaring patient is often given a choice47

from a small number of broad racial or ethnic categories, which fail to capture complete ancestral48

information, especially in cases of mixed ancestry (Mersha and Abebe, 2015).49

A far more accurate and detailed ancestral characterization may be obtained by genotyping50

a patient’s DNA from a cancer-free tissue. Powerful methods exist for ancestry inference from51

germline DNA sequence (Pritchard et al., 2000; Price et al., 2006; Alexander et al., 2009; Diaz-52

Papkovich et al., 2019). These methods were recently used to determine ancestry of approxi-53

mately 10,000 patients profiled by The Cancer Genome Atlas (TCGA) (Carrot-Zhang et al., 2020;54

Yuan et al., 2018). However, genotyping of DNA from patient-matched cancer-free specimens is55

not part of standard clinical practice, where the purpose of DNA profiling is often identification56

of mutations with known oncogenic effects, such as those in the Catalog Of Somatic Mutations In57

Cancer (COSMIC) database (Tate et al., 2018). As a result, it is not performed routinely outside aca-58

demic clinical centers or major research projects. There also are studies yielding sequence data59

from tumors, whose purpose does not require germline profiling. RNA sequencing (RNA-seq) for60

expression quantification is in this category. Finally, peripheral blood is most often the source of61

germline DNA in the clinic, but this is not always the case for diseases of the hematopoietic system,62

such as leukemia, wherein cancer cells are massively present in circulation. In summary, matched63

germline DNA sequence is not universally available for cancer-derived molecular data. In such64

cases, it is necessary to infer ancestry from the nucleic acid sequence of the tumor itself.65

Standard methods of ancestry inference commonly rely on population specificity of germline66

single-nucleotide variants (SNV).Whole-genome (WGS) orwhole-exome sequences (WES), at depths67

sufficient for reliably calling single-nucleotide variants, and readouts from genotypingmicroarrays,68

are therefore data types most suitable for this purpose. However, such detailed DNA profiling is69

often not performed in molecular studies of cancer. In such cases, it is necessary to infer ancestry70

from other types of tumor-derived data, including RNA sequence and DNA sequence for a small71

panel of genes, e.g., FoundationOne® CDx (Frampton et al., 2013).72

For all types of tumor-derived sequence, accurate inference of ancestry is a potential challenge.73

Tumor genome is often replete with somatic alterations, including loss of heterozygosity (LOH),74

copy number variants (CNV), translocations, microsatellite instabilities and SNV. Of these, struc-75

tural variants, especially LOH and CNV, are the most likely to affect the genetic ancestry calls, but76

other types of of alterations also are, to various degrees, potential obstacles to accurate ancestry77

inference. Tumor RNA-seq presents additional challenges, namely, extremely uneven coverage of78

the transcript due to a broad range of RNA expression levels and distortions due to allele-specific79

expression. Gene panels represent a very small fraction of the genome, whose sufficiency for an-80

cestry inference is not clear and may vary from panel to panel. In addition, cancer gene panels are81

enriched in cancer driver genes, which tend to undergo somatic alteration more frequently than82

other parts of the genome.83

Important recent publications on ancestral effects in cancer reported patient ancestry inferred84

from matching cancer-free DNA (Carrot-Zhang et al., 2020; Yuan et al., 2018; Carrot-Zhang et al.,85

2021). At the same time, there has beenmuch less work on ancestry inference from tumor-derived86

nucleic acids. A recent analysis of tumor genomes from TCGA and GEO repositories, profiled by87

SNP microarrays, demonstrated a high degree of coincidence between patient ancestries inferred88

from these data and those inferred from SNP profiles of matching germline genomes (Huang and89
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Baudis, 2020). This study did not report inference results from othermolecular profilingmodalities.90

Similar agreement has been found, for a set of over 300 cancer cell lines, between the self-declared91

race/ethnicity of the donors and ancestry inferred from the SNP array data (Yuan et al., 2018), but92

that finding was not validated against matching cancer-free data. Ancestry was also inferred in93

two large collections of cancer cell lines using SNPmicroarray data (Dutil et al., 2019; Kessler et al.,94

2019). In the absence of matching cancer-free genotypes or self-declared ancestry of the donor95

the inference accuracy could not be assessed in these two studies. Ancestry inference from RNA96

sequences, 174 of which were derived from cancer tissue specimens, was considered in a recent97

study (Barral-Arca et al., 2019). However, these inferred ancestries were neither compared to98

ancestry calls from germline sequence nor to self-declared ancestries for accuracy assessment.99

Ancestry has been inferred for a large set of patient cases profiled with the FoundationOne® CDx100

gene panel (Frampton et al., 2013), but these ancestry calls were neither compared to those from101

the germline sequence nor to the patients’ SIRE. A more recent study (Carrot-Zhang et al., 2021)102

compared, with encouraging results, ancestry inference from cancer-derived FoundationOne® CDx103

data to matching cancer-free ancestry calls, but this analysis was confined to lung cancer in mixed104

American super-population. To our knowledge, no systematic computational framework for an-105

cestry inference from cancer-derived molecular data, across assay and cancer types, has been106

developed to date. There is presently no ability to assess the inference accuracy specifically for107

a given input tumor-derived molecular profile with all its attendant properties, including the data108

quality and the depth of coverage. Reliable and accurate ancestry inference from tumor-derived109

nucleic acids thus represents an unmet need, which the present work aims to address.110

For this purpose, we designed an inference procedure having in mind a scenario, likely to occur111

in studies of existing data or of archived tissue specimens, with an input molecular profile of a tu-112

mor from a single patient, and nomatching cancer-free sequence available. The profile in question113

may have its unique set of sequence properties. These include the target sequence and uniformity114

of its coverage, depth, read length and sequencing quality. These profile-specific propertiesmay be115

vastly dissimilar from those in the available public data sets with reliably known genetic ancestry of116

the patients. Furthermore, not all ancestries are equally easy to infer: for example, a Mixed Amer-117

ican ancestral category is sometimes difficult to distinguish either from African or from European118

ancestry. This profile specificity would make it impossible to confidently assess the accuracy of the119

inference procedure for the input profile from its performance with the public cancer-derived data120

in aggregate. In order to overcome this difficulty, we develop a computational technique, which is121

described schematically in Figure 1 wherein the ancestral background of the patient is supplanted122

in the input profile by one of an unrelated individual with known ancestry. We next apply estab-123

lishedmethods of ancestry inference to this synthetic profile and compare the result to that known124

ancestry. Generatingmultiple such synthetic profiles allows us to assess how accurate the ancestry125

inference is for the patient, both overall and as a function of the profile’s continental-level ancestry.126

Furthermore, using synthetic data, we are able optimize the inference procedure with respect to127

parameters on which it depends. Importantly, this assessment and optimization procedure does128

not require the profile in question to be part of a larger data set from a cohort of patients with a129

similar diagnosis. Very often in public cancer-derived data, such cohorts do not provide statistically130

meaningful representation of non-European ancestries. This insufficiency is not an impediment to131

the application our methodology.132

In the following, we assess the accuracy of global ancestry calls from tumor exomes, narrowly133

targeted gene panels and RNA sequences, in comparison to such calls from matching germline134

genotypes, as profiled by exome sequencing or SNP microarrays. We do so for three cancer types,135

namely, pancreatic adenocarcinoma (PDAC) and ovarian cystadenocarcinoma (OV) as representa-136

tive types of epithelial tumors, and acute myeloid leukemia (AML), as an example of hematopoietic137

malignancy. Each of these data sets represents a unique challenge for patients’ ancestry inference.138

OV is characterized bymassive copy number alterations, often spanningmuch of the genome. Our139

PDAC data originate frompatient-derived organoid (PDO)models of the disease (Tiriac et al., 2018).140
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Figure 1. An overview of genetic ancestry inference from cancer-derived molecular data using data synthesis.
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In PDO, near-100% tumor purity is achieved, exacerbating effects of copy number loss and loss of141

heterozygosity on the sequence. In AML the peripheral blood, the usual source of cancer-free DNA,142

may be severely contaminated by the cancer.143

Results144

We assessed the performance of genetic ancestry inference from three genomic data types: whole145

exomes, gene panels targeting exomes of several hundred cancer-related genes each and RNA se-146

quences. Throughout the study, we used the 1000 Genomes (1KG) data set, with no relatives for147

the individuals included (Altshuler et al., 2010; Fairley et al., 2019), as reference, against which pa-148

tient molecular data were compared to infer continental-level global ancestry. The latter is defined149

as a categorical variable taking five values: African (AFR), East Asian (EAS), European (EUR), Mixed150

American (AMR) and South Asian (SAS). These are called super-populations in the 1KG terminology.151

Each super-population comprises a number of subcontinental-level populations ( (Fairley et al.,152

2019)).153

Our assessment relied on molecular data collected from three patient cohorts, each represent-154

ing a cancer type, namely, tissue donors to the Cold Spring Harbor Laboratory (CSHL) pancreatic155

ductal adenocarcinoma (PDAC) library of patient-derived organoids; acutemyeloid leukemia (AML)156

patients enrolled in Beat AML clinical trial; and patients comprising TCGA ovarian cancer cohort157

(TCGA-OV) (The Cancer Genome Atlas Research Network, 2011). In these cohorts, patient molecu-158

lar data were available from tissue specimens both of cancer and cancer-free. Figure 2 and Sup-159

plementary Table S2 contain a summary of molecular data underlying the study.160

We employed principal-component analysis (PCA) as our inference tool of choice, and applied161

it as follows (Figure 3) (Alexander et al., 2009).162

As a basis for the analysis, we used genotypes at genomic positions where single-nucleotide se-163

quence variants occurred with a frequency above a threshold in at least one super-population as164

sampled by 1KG. This basis was further reduced, for each individual cancer-derived molecular pro-165

file, to genotypes at positions with high sequence coverage by high-quality reads in the profile. We166

then computed singular-value decomposition of the reduced 1KG genotype matrix and projected167

the genotype of the cancer-derived profile onto the first D of the resulting principal components.168

The ancestry for the profile was determined as that of themajority among the nearestK 1KG neigh-169

bors of the profile in this D-dimensional space (Yuan et al., 2018). For a subset of patients in each170

cohort we individually assessed the performance of the ancestry inference, as a function of the171

parameters D and K . This assessment was based, for each patient in the subset, on a large num-172

ber of synthetic cancer-derived molecular profiles, as outlined in the Introduction, schematically173

described in Figure 5 and explained in greater detail in the Methods section. The result was quan-174

tified, for a given D,K pair of parameters, as the area under receiver operating characteristic (AU-175

ROC) (Robin et al., 2011; Sun and Xu, 2014;Hand and Till, 2001). Both super-population-specific and176

overall AUROC values were computed in a range ofD,K pairs, as illustrated in Figure 4 for 10 PDAC177

patients and AMR-specific AUROC (the similar figures for all the cohorts and super-populations are178

in Figure S1). Optimal D,K pairs maximizing the overall AUROC were chosen. From this subset of179

patients we observed, for each cancer type considered and for each of the three molecular profil-180

ing modalities, an optimal range of D and K parameters where the performance of inference was181

consistently high in the subset and only weakly dependent on these parameters (Figure S1). We182

then selected and used, for the remainder of the patients with this cancer type and for this profiling183

modality, a pair D and K values from within the optimal range. As an additional validation of our184

parameter optimization procedure, we applied it to a set of cancer-free WES profiles of TCGA-OV185

patients. Comparing the resulting ancestry calls to the consensus calls (C5) by TCGA (Carrot-Zhang186

et al., 2020), we find the two to be in excellent agreement Table S3.187

Wealso assessed the cohort-wide performanceof our ancestry calls fromoriginal cancer-derived188

molecular data, by comparison to the gold standard of ancestry as determined from the match-189

ing cancer-free genotypes. For Beat AML and TCGA-OV patients, we performed ancestry inference190
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Figure 2. Summary of the molecular data used in this study. These originate from three patient cohorts: A)TCGA ovarian cancer B) acute myeloid leukemia and C) pancreatic ductal adenocarcinoma library ofpatient-derived organoids. D) The distribution of the patients by SIRE for Beat AML, PDAC and TCGA-OVcohorts. UNK means not reported or unknown.
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Figure 3. A flowchart of the inference of genetic ancestry.
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Figure 4. Dependence of AMR-specific AUROC on the inference parameters D and K , computed using datasynthesis for 10 PDAC patients and the three profiling modalities: WES, RNA-seq and FoundationOne® CDxpanels. The central AUROC values are shown in solid, and the 95% CI in dashed, lines.
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Study D K Accuracy 95% CI AUROC 95% CI
TCGA-OV WES 5 13 0.998 0.994-1 0.993 0.992-0.994
TCGA-OV Panel 4 12 0.984 0.972-0.996 0.966 0.965-0.967
TCGA-OV RNA-seq 7 12 0.993 0.983-1 0.977 0.975-0.979
BeatAML WES 5 13 0.989 0.978-1 0.978 0.976-0.980
BeatAML Panel 4 13 0.991 0.981-1 0.999 0.999-0.999
BeatAML RNA-seq 4 13 0.992 0.981-1 0.999 0.999-0.999
PDAC WES 8 13 1 NA NA NA
PDAC Panel 6 5 0.952 0.861-1 0.958 NA
PDAC RNA-seq 4 13 1 NA NA NA

Table 1. Cohort-wide performance measures for super-population calls from cancer-derived molecular data,as compared to the matching cancer-free WES or (in the case of PDAC) WGS. A reliable estimate of theconfidence intervals (CI) was not possible in the case of PDAC, due to the small number of cases withmatching cancer-free genotypes.

from cancer-free patient exomes, using the samemethodology as as we did for the cancer-derived191

sequences of these patients. In the case of PDAC, cancer-freewhole-genome sequencing datawere192

available, and used for the same purpose for a portion of the patient cohort. For all three cohorts,193

we summarize our cohort-wide findings in Table 1 (we include similar tables for the synthetic data194

Table S9-S11). Ancestry calls from both microarray- and exome-derived genotypes were recently195

published by TCGA consortium (Carrot-Zhang et al., 2020), and we also used these so-called con-196

sensus (C5 in the following) calls in our performance assessment for TCGA-OV (Table S3).197

We note that in the three patient cohorts we analyze here the sampling of patients with non-198

European ancestries is statistically insufficient for a purely cohort-based assessment of perfor-199

mance (Table 2 and Table S5). We therefore report cohort-wide overall but not super-population200

specific AUROC values. Using data synthesis, we are able to compensate for this data shortfall201

in non-European ancestries and estimate super-population specific AUROC, as explained above202

(Tables S6,S7 and S8 and Figure S1).203

The results of our analysis as presented in Tables S6,S7 and S8, lead to the following key observa-204

tions. First, we demonstrate a consistently high performance of our inference procedure across all205

cohorts and profiling modalities. Second, the super-population specific performance was the high-206

est for the European and both Asian super populations. The slightly lower accuracy as observed207

for the African and mixed American super-populations is likely due to a greater genetic variability208

within the African super-population and to a higher degree of (the predominantly European) ad-209

mixture in both super-populations. Third, the optimal choice of the D,K inference parameters, in210

general, depends on an individual cancer-derived molecular profile, even within the same cancer211

type and profiling modality (Figure S1 B,G,L).212

In order to examine whether our inference procedure is robust against variation in the se-213

quence target coverage, we re-computed the ancestry calls for a subset of ten OV patients, with214

the cancer-derived whole-exome and RNA sequences of these patients down-sampled to between215

75% and 10% of the original coverage. The results, presented in (Figure S2) exhibit no substantial216

sensitivity of the inference accuracy to the depth of coverage in this range.217

Discussion218

With this work, we introduce a systematic approach to ancestry inference from cancer-derived219

molecular data. The approach is rooted in a combination of an established, extensively used PCA-220

based technique of ancestry inference with a central idea of inference parameter optimization us-221

ing data synthesized in silico. Crucially, this combination permits a statistically rigorous assessment222

of inference accuracy for an individual cancer-derived molecular profile, with its unique biological223
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(a) TCGA-OV WES
Inferred

pop EAS EUR AFR AMR SAS

Can
cer

-fre
eW

ES EAS 10 0 0 0 0
EUR 0 378 0 0 0
AFR 0 0 29 0 0
AMR 0 1 0 16 0
SAS 0 0 0 0 7
UNK 0 2 0 0 0

(b) BeatAML WES
Inferred

pop EAS EUR AFR AMR SAS
EAS 11 0 0 0 0
EUR 0 283 0 6 0
AFR 0 0 14 0 0
AMR 0 0 0 27 0
SAS 0 0 0 0 2
UNK 0 0 0 0 0

(c) TCGA-OV Panel
Inferred

pop EAS EUR AFR AMR SAS

Can
cer

-fre
eW

ES EAS 10 0 0 0 0
EUR 0 376 0 2 0
AFR 0 0 28 1 0
AMR 0 4 0 13 0
SAS 0 0 0 0 7
UNK 0 2 0 0 0

(d) BeatAML Panel
Inferred

pop EAS EUR AFR AMR SAS
EAS 11 0 0 0 0
EUR 0 286 0 3 0
AFR 0 0 14 0 0
AMR 0 0 0 27 0
SAS 0 0 0 0 2
UNK 0 0 0 0 0

(e) TCGA-OV RNA
Inferred

pop EAS EUR AFR AMR SAS

Can
cer

-fre
eW

ES EAS 4 0 0 0 0
EUR 0 242 0 0 0
AFR 0 0 21 0 0
AMR 1 1 0 9 0
SAS 0 0 0 0 4
UNK 0 1 0 0 0

(f) BeatAML RNA
Inferred

pop EAS EUR AFR AMR SAS
EAS 10 0 0 0 0
EUR 0 210 0 2 0
AFR 0 0 9 0 0
AMR 0 0 0 24 0
SAS 0 0 0 0 1
UNK 0 0 0 0 0

Table 2. Confusion matrices comparing TCGA-OV or Beat AML patients’ super-population calls from thecancer-derived molecular profiles for the three profiling modalities (rows) to those from the matchingcancer-free WES.

(e.g. cancer type) and technical (e.g., sequencing depth and quality) properties. Synthetic data224

here are used as a substitute for a real-world set of molecular profiles sharing these properties225

and with known ground-truth genetic ancestry. It is unrealistic to expect such a real-world set to226

be available in all cases. Our tests of the resulting computational methodology on a representative227

subset of cancer-derived data demonstrate its accurate and robust performance. As we describe228

in detail in the Methods section, our data synthesis method relies on heuristic components for an229

estimate of the allele fractions throughout the cancer-derived profile. This estimate can be made230

more rigorous by using haplotypes in future implementations of the method, but the present ver-231

sion produces allele fractions in good agreement with published allele fractions (ASCAT2 results in232

(Grossman et al., 2016; NCI, 2021)).233

A line of research and development initiated with this work must be extended in several direc-234

tions. First, the performance of the methods presented must be examined more comprehensively235

across cancer types, and sequence properties, such as quality and depth. This task is computing-236

intensive but feasible given extensive, well annotated repositories of cancer-derived data, such237

as those resulting from TCGA Research Network (Network, 2021) and ICGC (Zhang et al., 2019)238

projects. For these, the genetic ancestry of the patients either is known or can be readily es-239
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tablished using matching cancer-free molecular data. Second, an extension of our approach to240

additional profiling modalities should be examined. Chief among these are low-coverage whole-241

genome sequences commonly used for copy-number analysis and single-molecule, long-read se-242

quences. Each of these presents unique challenges and opportunities for the ancestry inference:243

in the former, the sparsity of coverage is compensated by its whole-genome breadth; in the lat-244

ter, the trade-off is between the high sequence error rate and the long-distance phasing afforded245

by long reads. Third, while the present work relied on PCA followed by nearest-neighbor classifi-246

cation for ancestry assessment, alternatives including UMAP for the former and Random Forest247

or Support Vector Machine for the latter exist and should be evaluated. Third, future method de-248

velopment should be extended beyond inference of global ancestry to that of local ancestry and249

ancestral admixture. Such an extension is particularly important in the study of cancer in strongly250

admixed populations, such as African and Latin Americans and may require more extensive refer-251

ence data, in addition to the 1KG reference used here. Finally, beyond cancer, our methodology252

can be applied to inference from genomic data originating in any kind of fragmentary or damaged253

nucleic-acid specimens, such as those encountered in forensic, archaeological or paleontological254

contexts.255

We anticipate the computational approach described here to have a major, two-fold, impact256

on investigation of links between ancestry and cancer. First, it will become possible to massively257

boost the statistical power of such studies by leveraging existing tumor-derived molecular data258

sets without matching germline sequences or ancestry annotation. Our search of the Gene Ex-259

pression Omnibus (GEO) database alone has identified over 1,250 such data sets, containing RNA260

expression data for nearly 48,000 cancer tissue specimens. Such resources dwarf those of fully an-261

notated repositories, such as TCGA and International Cancer Genome Consortium (ICGC) (Zhang262

et al., 2019). Other molecular data repositories are likely to contain resources of this category on a263

similar order of magnitude. Second, hundreds of thousands of tumor tissue specimens stored at264

multiple clinical centers constitute anothermajor resource for ancestry-awaremolecular studies of265

cancer. Here again, matching normal tissue specimens are often absent, and so is ethnic or racial266

annotation for the patients. According to a recent estimate (Polubriaginof et al., 2019) such anno-267

tation is missing in electronic health records of over 50% of patients. Inferential tools presented268

here will make these massive resources of archival tissues available for ancestry-oriented cancer269

research.270

Methods and Materials271

Data sets and pre-processing272

The data sets used in this work originate from three sources: TCGA collection for ovarian cystadeno-273

carcinoma (The Cancer Genome Atlas Research Network, 2011), Beat AML clinical trial (Tyner et al.,274

2018), and a study of pancreatic ductal adenocarcinoma (PDAC) using patient-derived organoids275

(Tiriac et al., 2018). For all three, the data used are summarized, in the form of Venn diagrams and276

included cancerDNA (whole-exomeorwhole-genome) sequence, cancer RNA sequence andmatch-277

ing DNA (whole-exome or whole-genome) sequence. In all cases, read data mapped to the hg38278

version of the human genome were used. In order to study ancestry inference from targeted pan-279

els, the cancer-derived whole-exome data were reduced to readsmapping to the FoundationOne®280

CDx cancer-related gene panel (INC, 1999). Reads in the cancer-derived data were filtered for qual-281

ity using a cutoff phred score of 20. Following this filter, single-nucleotide substitutions were called282

at all positions with read coverage of at least 10, using Varscan version 2.4.4 (Koboldt et al., 2013).283

This set of positions is called the high-confidence substitution (HCS) set in the following. From the284

1000 Genomes (1KG) variant call data in the Variant Call Format (VCF) (Lowy-Gallego et al., 2019),285

genomic positions where substitution variants occur at a frequency of at least 0.01 in at least one286

of the super-populations comprising 1KG were selected as a basis for the ancestry inference. This287

set is referred to as the high-frequency substitution (HFS) set in the following. At the HFS positions288
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in the cancer-derived profile with the coverage above 10, the genotype was called. This set of po-289

sitions is referred to as high-confidence genotype (HCG) set in the following. In the HCG set, the290

total read count and the read counts for the reference and the alternative (according to HFS) alleles291

were determined. A genotype at an HCG position was considered undetermined if the excess of292

the total read count over the sum of the reference and alternative counts was inconsistent with the293

error of 0.001 at the p = 0.001 level of significance. The same rule was used to call a heterozygous294

genotype. The HCG genomic positions were pruned to reduce correlation between neighboring295

genotypes using Bioconductor SNPRelate package version 1.22.0 (Zheng et al., 2012)), resulting in296

the pruned high-confidence genotype (PHCG) set of positions.297

Ancestry inference298

Figure 3 lays out the workflow for ancestry inference. For a given cancer-derived profile, principal299

component analysis of the 1KG genotypes reduced to the PHCG was performed, and D top princi-300

pal components retained. The patient genotype reduced to PHCGwas projected onto the subspace301

spanned by theseD components. Within this subspace, the patient’s ancestry was called as that of302

the 1KG super-population with the highest number of 1KG individuals amongK nearest neighbors303

of the patient’s genotype, using Euclidean distance in the D-dimensional subspace. If two or more304

super-populations were found tied in the nearest-neighbor count, no ancestry call was made for305

the patient. Only two such ties were observed in this work.306

Measures of performance307

We evaluate the performance of the ancestry inference by comparison to the ancestry inferred308

from the matching cancer-free data, wherever the latter are available. This is the case for the en-309

tirety of Beat AML and the OV data. For both, we infer the ancestry from the matching cancer-free310

exome profiles. In the case of OV data, we also compare the results to the consensus ancestry call311

(Carrot-Zhang et al., 2020). In the case of PDAC matching cancer-free WGS data are available for312

22 patient cases (Figure 2), and our assessment of accuracy is based on this subset of the data. We313

compute, for each dataset, the 5 × 5 confusion matrix (CM) for the 1KG superpopulation calls from314

the cancer-derived and cancer-free data sources. From the CM, the call accuracy is computed as315

the sum of the diagonal terms divided by that of the whole CM. Since the ancestral composition of316

all data sets considered here is heavily skewed towards the European super-population, we also317

compute the multi-class version of the area under the receiver operating characteristic curve (AU-318

ROC) (Hand and Till, 2001). AUROC is a measure of the call quality which compensates for the319

asymmetry in the class sizes. We use an R package pROC (CRAN version 1.16.2) (Robin et al., 2011)320

for this purpose, and compute both the class-specific AUROC for each super-population and the321

5-class AUROC. In the class-specific case, we use a version DeLong’s algorithm Sun and Xu (2014);322

DeLong et al. (1988) as implemented in the pROC package to compute the AUROC confidence in-323

tervals. In the 5-class case the confidence intervals are computed using bootstrap with 100-fold324

sampling.325

Data synthesis326

Data synthesis is defined here as replacement of the sequence variants detected in a cancer-327

derived profile P by those found in the genome of an unrelated individual U . Ingredients required328

for this procedure are: (a) allele fraction (AF) estimates in P and (b) the haplotype ofU in the portion329

of the genome covered by P . With this knowledge, the procedure, depicted in Figure 5, consists330

of the following steps. First, sequence reads comprising P are distributed at random among the331

alleles with probabilities equal to the observed allele fractions. Second, in each haplotype block in332

the genome of U that is covered by P , allele assignment is made at random, yielding variant and333

reference read counts for each substitution in the genome of U within the scope of P .334
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Figure 5. A schematic overview of the data synthesis process.

Inference parameter optimization using synthetic data335

In order to optimize ancestry inference parameters D and K for a given cancer-derived molecular336

profile, we generate a synthetic data set by repeatedly pairing the profile with 1KG genomes. A337

subset of 780 1KG genomes is set aside for this purpose by drawing at random 30 genomes from338

each of the 26 ancestral populations represented in 1KG. Genetic ancestry is then inferred for each339

of the 780 synthetic profiles following the procedure described in the Ancestry Inference subsec-340

tion, each time with the 1KG genome used for synthesis removed from the reference data set.341

The inference performance is then assessed as the 5-class AUROC, as explained in the Measures342

of Performance subsection. AUROC is computed for the D,K pairs in a range of values of these343

parameters, and the optimal D,K pairs yielding the highest accuracy are identified. Throughout344

this work, AUROC was computed for all D and K in the rectangle 3 ≤ D ≤ 11; 3 ≤ K ≤ 15. For all345

combinations of data sources and profiling modalities considered, a set of D,K pairs was found346

where the performance was optimal or differed from the optimum by no more than 3% (Figure 4).347

Determination of allele fractions348

As the Data Synthesis subsectionmakes clear, knowledge of allele fractions (AF) in a cancer-derived349

profile is a prerequisite for data synthesis. We describe a 3-step AF estimate procedure which350

relies exclusively on the cancer-derivedmolecular profile, in the absence of amatching cancer-free351

genotype from the patient, as would be the case for the intended application of our methods. First352

(step 1), the loss-of-heterozygosity (LOH) regions are delineated. Next (step 2), the regions of allele353

imbalance where AF differs significantly from 1/2 are identified. Finally (step 3), AF are computed354

throughout the regions of allele imbalance. These steps are implemented differently, depending355

on whether the profile originates in the cancer DNA or RNA. We now discuss these steps, in turn356

for the DNA- and the RNA-derived profiles (Figure S3).357

For the DNA-derived profiles, the LOH regions (step 1) are detected as follows. An LOH region
in P must fit into a gap G between any two consecutive HCS positions, where all the observed
genotypes are consistent with homozygosity. Any regionwithinG is then considered an LOH region
(see Figure S3 b) if it contains k1 PHCG positions with k1 ≥ kmin and for which the 1KG frequencies
Fi, 1 ≤ i ≤ k1 of the alleles observed in the cancer-derived profile P satisfy

log10

( k1
∏

i=1

F 2
i

max
[

F 2
i , (1 − Fi)2, 2Fi(1 − Fi)

]

)

< �.

PHCG positions only are used for this purpose, to reduce correlations due to linkage. The values358

of kmin and � were chosen so as to maximize, in TCGA OV data set, the overlap between the re-359

gions found to be LOH by these criteria and the published LOH regions ASCAT2 files from NCI’s360
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Genomic Data Commons ((Grossman et al., 2016; NCI, 2021)). The latter were determined with full361

knowledge of the patient’s cancer-free genotype. The optimal values were found to be kmin = 3 and362

� = −3.363

Step 2 is based on the notion of an "empty box" (see Figure S3 b). By this, wemean a contiguous
region where the allele fraction of 1/2 is inconsistent with the read counts for the reference and
alternative alleles at the HCS positions it contains. An empty box is constructed as follows. First,
we consider sliding windows, each encompassing k2 consecutive HCS positions not separated by
an LOH region. A window is called asymmetric if (a) for no less than k2−1 of the positions theminor
allele count is outside the inner-quartile range (IQR) of the binomial distribution with the minor AF
of f0 = 1∕2 and (b) satisfy

log10

( k2
∏

i=1

2Pi
(1 − 2Pi)

)

< �.

where Pi = P(Xi ≤ number of reads covering the minor allele at position i) and, Xi is the binomial364

distribution with the number of trials equals the coverage at the position i and the probability of365

success � = 1∕2. In this work, � = −3. A polymorphic position is called asymmetric if it belongs366

to at least one asymmetric window. An empty box is a region with no less than k2 polymorphic367

positions, all of which are asymmetric. We used k2 = 10 throughout this work.368

At step 3, in the case of DNA, we consider contiguous genome regions of allele asymmetry iden-369

tified at step 2. Each of these may consist of sub-regions with differing allele fractions. To detect370

these sub-regions, we "seed" the first sub-region with k3 HCS positions at the region’s boundary371

and, in this window, estimate the minor allele fraction. We consider the adjacent window W of372

k3 HCS positions k3 + 1 through 2k3 and apply to it the empty box criteria as described for step 2,373

with f0 set to the estimated minor allele fraction of the first window. If the criteria are satisfied,W374

becomes the seed of the next sub-region, and the process is repeated. Otherwise, HCS position375

k3 + 1 is added the first sub-region andW is shifted to start at k3 + 2, etc.376

In the case of a cancer-derived RNA profile, the expressed allele fractions are, in general, gene377

specific. Therefore the steps 1 and 2 (condition b), as described above, are performed separately378

for each gene, assuming the minor allele fraction to be constant throughout the gene. Step 3 is379

then reduced to an empirical estimate of the minor allele fraction using read counts from all HCS380

positions within the gene.381

Down-sampling of sequence data382

In order to down-sample the sequence data to a desired fraction f of the original coverage, we sam-383

pled reads from the original patient profile P with the Bernoulli probability f without replacement.384

The ancestry inference procedure was then performed with the resulting sample of reads.385

Schematic overviews and figures386

All schematic overviewshavebeen generatedwith draw.io version 15.7.3 (http://www.diagrams.net).387

The Venn diagrams in Figure 2 have been generated with CRAN packages VennDiagram version388

1.6.20 (Chen, 2018) and multipanelfigure version 2.1.2 (Graumann and Cotton, 2018).389

The bar plot graph in Figure 2 has been generated with CRAN package ggplot2 version 3.3.5390

(Wickham, 2016).391

The AUROC graphs in Figure 4 have been generated with CRAN packages ggplot2 version 3.3.5392

(Wickham, 2016) and cowplot version 1.1.1 (Wilke, 2020).393
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