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Abstract Genetic ancestry-oriented cancer research requires the ability to perform accurate
and robust ancestry inference from existing cancer-derived data, including whole exomes,
transcriptomes and targeted gene panels, very often in the absence of matching cancer-free
genomic data. In order to optimize and assess the performance of the ancestry inference for any
given input cancer-derived molecular profile, we develop a data synthesis framework. In its core
procedure, the ancestral background of the profiled patient is replaced with one of any number
of individuals with known ancestry. Data synthesis is applicable to multiple profiling platforms
and makes it possible to assess the performance of inference separately for each
continental-level ancestry. This ability extends to all ancestries, including those without
statistically sufficient representation in the existing cancer data. We further show that our
inference procedure is accurate and robust in a wide range of sequencing depths. Testing our
approach for three representative cancer types, and across three molecular profiling modalities,
we demonstrate that global, continental-level ancestry of the patient can be inferred with high
accuracy, as quantified by its agreement with the golden standard of the ancestry derived from
matching cancer-free molecular data. Our study demonstrates that vast amounts of existing
cancer-derived molecular data potentially are amenable to ancestry-oriented studies of the
disease, without recourse to matching cancer-free genomes or patients’ self-identification by
ancestry.

Keywords
genetic ancestry, cancer, secondary data analysis

Introduction

There is ample epidemiological evidence that race and/or ethnicity are important determinants of
incidence, clinical course and outcome in multiple types of cancer (Siegel et al., 2020; Cronin et al.,
2018; Ashktorab et al., 2017, Huang et al., 2019; Tan et al., 2016). As such, these categories must
be taken into account in the analysis of molecular data derived from cancer. A number of recently
published large-scale genomic studies of cancer (Mahal et al., 2020; Carrot-Zhang et al., 2020; Yuan
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etal., 2018; Sinha et al., 2020; Bhatnagar et al., 2021; Carrot-Zhang et al., 2021) point to differences
in the molecular make-up of the disease among groups of different ancestral background and to
the need for more molecular data to power discovery of such differences.

Ancestry annotation of cancer-derived data largely draws on two sources. One is a patient's
self-identified race and/or ethnicity (SIRE). SIRE is often missing, sometimes inaccurate and usually
incomplete. As a recent analysis (Nugent et al., 2019) of PubMed database entries since 2010
reveals, patients' SIRE is massively under-reported in genome and exome sequencing studies of
cancer, with only 37% of these reporting race, and 17% reporting ethnicity. Furthermore, SIRE is
not always consistent with genetic ancestry. Finally, a self-declaring patient is often given a choice
from a small number of broad racial or ethnic categories, which fail to capture complete ancestral
information, especially in cases of mixed ancestry (Mersha and Abebe, 2015).

A far more accurate and detailed ancestral characterization may be obtained by genotyping
a patient's DNA from a cancer-free tissue. Powerful methods exist for ancestry inference from
germline DNA sequence (Pritchard et al., 2000; Price et al., 2006; Alexander et al., 2009; Diaz-
Papkovich et al., 2019). These methods were recently used to determine ancestry of approxi-
mately 10,000 patients profiled by The Cancer Genome Atlas (TCGA) (Carrot-Zhang et al., 2020;
Yuan et al., 2018). However, genotyping of DNA from patient-matched cancer-free specimens is
not part of standard clinical practice, where the purpose of DNA profiling is often identification
of mutations with known oncogenic effects, such as those in the Catalog Of Somatic Mutations In
Cancer (COSMIC) database (Tate et al., 2018). As a result, it is not performed routinely outside aca-
demic clinical centers or major research projects. There also are studies yielding sequence data
from tumors, whose purpose does not require germline profiling. RNA sequencing (RNA-seq) for
expression quantification is in this category. Finally, peripheral blood is most often the source of
germline DNA in the clinic, but this is not always the case for diseases of the hematopoietic system,
such as leukemia, wherein cancer cells are massively present in circulation. In summary, matched
germline DNA sequence is not universally available for cancer-derived molecular data. In such
cases, it is necessary to infer ancestry from the nucleic acid sequence of the tumor itself.

Standard methods of ancestry inference commonly rely on population specificity of germline
single-nucleotide variants (SNV). Whole-genome (WGS) or whole-exome sequences (WES), at depths
sufficient for reliably calling single-nucleotide variants, and readouts from genotyping microarrays,
are therefore data types most suitable for this purpose. However, such detailed DNA profiling is
often not performed in molecular studies of cancer. In such cases, it is necessary to infer ancestry
from other types of tumor-derived data, including RNA sequence and DNA sequence for a small
panel of genes, e.g., FoundationOne® CDx (Frampton et al., 2013).

For all types of tumor-derived sequence, accurate inference of ancestry is a potential challenge.
Tumor genome is often replete with somatic alterations, including loss of heterozygosity (LOH),
copy number variants (CNV), translocations, microsatellite instabilities and SNV. Of these, struc-
tural variants, especially LOH and CNV, are the most likely to affect the genetic ancestry calls, but
other types of of alterations also are, to various degrees, potential obstacles to accurate ancestry
inference. Tumor RNA-seq presents additional challenges, namely, extremely uneven coverage of
the transcript due to a broad range of RNA expression levels and distortions due to allele-specific
expression. Gene panels represent a very small fraction of the genome, whose sufficiency for an-
cestry inference is not clear and may vary from panel to panel. In addition, cancer gene panels are
enriched in cancer driver genes, which tend to undergo somatic alteration more frequently than
other parts of the genome.

Important recent publications on ancestral effects in cancer reported patient ancestry inferred
from matching cancer-free DNA (Carrot-Zhang et al., 2020; Yuan et al., 2018; Carrot-Zhang et al.,
2021). At the same time, there has been much less work on ancestry inference from tumor-derived
nucleic acids. A recent analysis of tumor genomes from TCGA and GEO repositories, profiled by
SNP microarrays, demonstrated a high degree of coincidence between patient ancestries inferred
from these data and those inferred from SNP profiles of matching germline genomes (Huang and
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Baudis, 2020). This study did not report inference results from other molecular profiling modalities.
Similar agreement has been found, for a set of over 300 cancer cell lines, between the self-declared
race/ethnicity of the donors and ancestry inferred from the SNP array data (Yuan et al., 2018), but
that finding was not validated against matching cancer-free data. Ancestry was also inferred in
two large collections of cancer cell lines using SNP microarray data (Dutil et al., 2019; Kessler et al.,
2019). In the absence of matching cancer-free genotypes or self-declared ancestry of the donor
the inference accuracy could not be assessed in these two studies. Ancestry inference from RNA
sequences, 174 of which were derived from cancer tissue specimens, was considered in a recent
study (Barral-Arca et al., 2019). However, these inferred ancestries were neither compared to
ancestry calls from germline sequence nor to self-declared ancestries for accuracy assessment.
Ancestry has been inferred for a large set of patient cases profiled with the FoundationOne® CDx
gene panel (Frampton et al., 2013), but these ancestry calls were neither compared to those from
the germline sequence nor to the patients' SIRE. A more recent study (Carrot-Zhang et al., 2021)
compared, with encouraging results, ancestry inference from cancer-derived FoundationOne® CDx
data to matching cancer-free ancestry calls, but this analysis was confined to lung cancer in mixed
American super-population. To our knowledge, no systematic computational framework for an-
cestry inference from cancer-derived molecular data, across assay and cancer types, has been
developed to date. There is presently no ability to assess the inference accuracy specifically for
a given input tumor-derived molecular profile with all its attendant properties, including the data
quality and the depth of coverage. Reliable and accurate ancestry inference from tumor-derived
nucleic acids thus represents an unmet need, which the present work aims to address.

For this purpose, we designed an inference procedure having in mind a scenario, likely to occur
in studies of existing data or of archived tissue specimens, with an input molecular profile of a tu-
mor from a single patient, and no matching cancer-free sequence available. The profile in question
may have its unique set of sequence properties. These include the target sequence and uniformity
of its coverage, depth, read length and sequencing quality. These profile-specific properties may be
vastly dissimilar from those in the available public data sets with reliably known genetic ancestry of
the patients. Furthermore, not all ancestries are equally easy to infer: for example, a Mixed Amer-
ican ancestral category is sometimes difficult to distinguish either from African or from European
ancestry. This profile specificity would make it impossible to confidently assess the accuracy of the
inference procedure for the input profile from its performance with the public cancer-derived data
in aggregate. In order to overcome this difficulty, we develop a computational technique, which is
described schematically in Figure 1 wherein the ancestral background of the patient is supplanted
in the input profile by one of an unrelated individual with known ancestry. We next apply estab-
lished methods of ancestry inference to this synthetic profile and compare the result to that known
ancestry. Generating multiple such synthetic profiles allows us to assess how accurate the ancestry
inference is for the patient, both overall and as a function of the profile’s continental-level ancestry.
Furthermore, using synthetic data, we are able optimize the inference procedure with respect to
parameters on which it depends. Importantly, this assessment and optimization procedure does
not require the profile in question to be part of a larger data set from a cohort of patients with a
similar diagnosis. Very often in public cancer-derived data, such cohorts do not provide statistically
meaningful representation of non-European ancestries. This insufficiency is not an impediment to
the application our methodology.

In the following, we assess the accuracy of global ancestry calls from tumor exomes, narrowly
targeted gene panels and RNA sequences, in comparison to such calls from matching germline
genotypes, as profiled by exome sequencing or SNP microarrays. We do so for three cancer types,
namely, pancreatic adenocarcinoma (PDAC) and ovarian cystadenocarcinoma (OV) as representa-
tive types of epithelial tumors, and acute myeloid leukemia (AML), as an example of hematopoietic
malignancy. Each of these data sets represents a unique challenge for patients’ ancestry inference.
OVis characterized by massive copy number alterations, often spanning much of the genome. Our
PDAC data originate from patient-derived organoid (PDO) models of the disease (Tiriac et al., 2018).
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Figure 1. An overview of genetic ancestry inference from cancer-derived molecular data using data synthesis.
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In PDO, near-100% tumor purity is achieved, exacerbating effects of copy number loss and loss of
heterozygosity on the sequence. In AML the peripheral blood, the usual source of cancer-free DNA,
may be severely contaminated by the cancer.

Results

We assessed the performance of genetic ancestry inference from three genomic data types: whole
exomes, gene panels targeting exomes of several hundred cancer-related genes each and RNA se-
quences. Throughout the study, we used the 1000 Genomes (1KG) data set, with no relatives for
the individuals included (Altshuler et al., 2010; Fairley et al., 2019), as reference, against which pa-
tient molecular data were compared to infer continental-level global ancestry. The latter is defined
as a categorical variable taking five values: African (AFR), East Asian (EAS), European (EUR), Mixed
American (AMR) and South Asian (SAS). These are called super-populations in the 1KG terminology.
Each super-population comprises a number of subcontinental-level populations ( (Fairley et al.,
2019)).

Our assessment relied on molecular data collected from three patient cohorts, each represent-
ing a cancer type, namely, tissue donors to the Cold Spring Harbor Laboratory (CSHL) pancreatic
ductal adenocarcinoma (PDAC) library of patient-derived organoids; acute myeloid leukemia (AML)
patients enrolled in Beat AML clinical trial; and patients comprising TCGA ovarian cancer cohort
(TCGA-QV) (The Cancer Genome Atlas Research Network, 2011). In these cohorts, patient molecu-
lar data were available from tissue specimens both of cancer and cancer-free. Figure 2 and Sup-
plementary Table S2 contain a summary of molecular data underlying the study.

We employed principal-component analysis (PCA) as our inference tool of choice, and applied
it as follows (Figure 3) (Alexander et al., 2009).

As a basis for the analysis, we used genotypes at genomic positions where single-nucleotide se-
quence variants occurred with a frequency above a threshold in at least one super-population as
sampled by 1KG. This basis was further reduced, for each individual cancer-derived molecular pro-
file, to genotypes at positions with high sequence coverage by high-quality reads in the profile. We
then computed singular-value decomposition of the reduced 1KG genotype matrix and projected
the genotype of the cancer-derived profile onto the first D of the resulting principal components.
The ancestry for the profile was determined as that of the majority among the nearest K 1KG neigh-
bors of the profile in this D-dimensional space (Yuan et al., 2018). For a subset of patients in each
cohort we individually assessed the performance of the ancestry inference, as a function of the
parameters D and K. This assessment was based, for each patient in the subset, on a large num-
ber of synthetic cancer-derived molecular profiles, as outlined in the Introduction, schematically
described in Figure 5 and explained in greater detail in the Methods section. The result was quan-
tified, for a given D, K pair of parameters, as the area under receiver operating characteristic (AU-
ROC) (Robin et al., 2011; Sun and Xu, 2014; Hand and Till, 20017). Both super-population-specific and
overall AUROC values were computed in a range of D, K pairs, as illustrated in Figure 4 for 10 PDAC
patients and AMR-specific AUROC (the similar figures for all the cohorts and super-populations are
in Figure S1). Optimal D, K pairs maximizing the overall AUROC were chosen. From this subset of
patients we observed, for each cancer type considered and for each of the three molecular profil-
ing modalities, an optimal range of D and K parameters where the performance of inference was
consistently high in the subset and only weakly dependent on these parameters (Figure S1). We
then selected and used, for the remainder of the patients with this cancer type and for this profiling
modality, a pair D and K values from within the optimal range. As an additional validation of our
parameter optimization procedure, we applied it to a set of cancer-free WES profiles of TCGA-OV
patients. Comparing the resulting ancestry calls to the consensus calls (C5) by TCGA (Carrot-Zhang
et al., 2020), we find the two to be in excellent agreement Table S3.

We also assessed the cohort-wide performance of our ancestry calls from original cancer-derived
molecular data, by comparison to the gold standard of ancestry as determined from the match-
ing cancer-free genotypes. For Beat AML and TCGA-OV patients, we performed ancestry inference
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Figure 2. Summary of the molecular data used in this study. These originate from three patient cohorts: A)
TCGA ovarian cancer B) acute myeloid leukemia and C) pancreatic ductal adenocarcinoma library of
patient-derived organoids. D) The distribution of the patients by SIRE for Beat AML, PDAC and TCGA-OV
cohorts. UNK means not reported or unknown.
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Figure 4. Dependence of AMR-specific AUROC on the inference parameters D and K, computed using data
synthesis for 10 PDAC patients and the three profiling modalities: WES, RNA-seq and FoundationOne® CDx
panels. The central AUROC values are shown in solid, and the 95% Cl in dashed, lines.
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Study D K Accuracy 95%Cl AUROC 95% CI
TCGA-OV WES 5 13 0.998 0.994-1 0.993 0.992-0.994
TCGA-OV Panel 4 12 0984 0.972-0.996 0.966 0.965-0.967
TCGA-OVRNA-seq 7 12 0.993 0.983-1 0.977 0.975-0.979
BeatAML WES 5 13 0.989 0.978-1 0.978 0.976-0.980
BeatAML Panel 4 13 0.991 0.981-1 0.999 0.999-0.999
BeatAML RNA-seq 4 13 0.992 0.981-1 0.999 0.999-0.999
PDAC WES 8 13 1 NA NA NA

PDAC Panel 6 5 0952 0.861-1 0.958 NA

PDAC RNA-seq 4 13 1 NA NA NA

Table 1. Cohort-wide performance measures for super-population calls from cancer-derived molecular data,
as compared to the matching cancer-free WES or (in the case of PDAC) WGS. A reliable estimate of the
confidence intervals (Cl) was not possible in the case of PDAC, due to the small number of cases with
matching cancer-free genotypes.

from cancer-free patient exomes, using the same methodology as as we did for the cancer-derived
sequences of these patients. In the case of PDAC, cancer-free whole-genome sequencing data were
available, and used for the same purpose for a portion of the patient cohort. For all three cohorts,
we summarize our cohort-wide findings in Table 1 (we include similar tables for the synthetic data
Table S9-S11). Ancestry calls from both microarray- and exome-derived genotypes were recently
published by TCGA consortium (Carrot-Zhang et al., 2020), and we also used these so-called con-
sensus (C5 in the following) calls in our performance assessment for TCGA-OV (Table S3).

We note that in the three patient cohorts we analyze here the sampling of patients with non-
European ancestries is statistically insufficient for a purely cohort-based assessment of perfor-
mance (Table 2 and Table S5). We therefore report cohort-wide overall but not super-population
specific AUROC values. Using data synthesis, we are able to compensate for this data shortfall
in non-European ancestries and estimate super-population specific AUROC, as explained above
(Tables S6,57 and S8 and Figure S1).

Theresults of our analysis as presented in Tables S6,57 and S8, lead to the following key observa-
tions. First, we demonstrate a consistently high performance of our inference procedure across all
cohorts and profiling modalities. Second, the super-population specific performance was the high-
est for the European and both Asian super populations. The slightly lower accuracy as observed
for the African and mixed American super-populations is likely due to a greater genetic variability
within the African super-population and to a higher degree of (the predominantly European) ad-
mixture in both super-populations. Third, the optimal choice of the D, K inference parameters, in
general, depends on an individual cancer-derived molecular profile, even within the same cancer
type and profiling modality (Figure S1 B,G,L).

In order to examine whether our inference procedure is robust against variation in the se-
qguence target coverage, we re-computed the ancestry calls for a subset of ten OV patients, with
the cancer-derived whole-exome and RNA sequences of these patients down-sampled to between
75% and 10% of the original coverage. The results, presented in (Figure S2) exhibit no substantial
sensitivity of the inference accuracy to the depth of coverage in this range.

Discussion

With this work, we introduce a systematic approach to ancestry inference from cancer-derived
molecular data. The approach is rooted in a combination of an established, extensively used PCA-
based technique of ancestry inference with a central idea of inference parameter optimization us-
ing data synthesized in silico. Crucially, this combination permits a statistically rigorous assessment
of inference accuracy for an individual cancer-derived molecular profile, with its unique biological
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(a) TCGA-OV WES (b) BeatAML WES
Inferred Inferred
pop | EAS EUR AFR AMR SAS pop | EAS EUR AFR AMR SAS
“w EAS |10 O 0 0 0 EAS |11 O 0 0 0
= EUR | O 378 0 0 0 EUR | 0 283 0 6 0
g AR [0 0 29 0 0 AFR |0 0 14 o 0
5 AMR | 0 1 0 16 0 AMR | O 0 0 27 0
S SAS |0 0 0 0 7 SAS | 0 0 0 0 2
U UNK |0 2 0 0 0 UNK | 0 0 0 0 0
(c) TCGA-QOV Panel (d) BeatAML Panel
Inferred Inferred
pop | EAS EUR AFR AMR SAS pop | EAS EUR AFR AMR SAS
Vi EAS [ 10 0 0 0 0 EAS |11 O 0 0 0
% EUR | 0 376 0 2 0 EUR | O 286 0 3 0
g AR |0 0 28 1 0 AFR | O 0 14 0 0
5 AMR | 0 4 0 13 0 AMR | 0 0 0 27 0
§ SAS | O 0 0 0 7 SAS | 0 0 0 0 2
U UNK |0 2 0 0 0 UNK | 0 0 0 0 0
(e) TCGA-OV RNA (f) BeatAML RNA
Inferred Inferred
pop | EAS EUR AFR AMR SAS pop | EAS EUR AFR AMR SAS
Y EAS | 4 0 0 0 0 EAS |10 O 0 0 0
= EUR | O 242 0 0 0 EUR | O 210 0 2 0
E AFR | 0 0 21 0 0 AFR | 0 0 9 0 0
5 AMR | 1 1 0 9 0 AMR | 0 0 0 24 0
§ SAS | O 0 0 0 4 SAS | O 0 0 0 1
U UNK | O 1 0 0 0 UNK | 0 0 0 0 0

Table 2. Confusion matrices comparing TCGA-OV or Beat AML patients' super-population calls from the
cancer-derived molecular profiles for the three profiling modalities (rows) to those from the matching
cancer-free WES.

(e.g. cancer type) and technical (e.g., sequencing depth and quality) properties. Synthetic data
here are used as a substitute for a real-world set of molecular profiles sharing these properties
and with known ground-truth genetic ancestry. It is unrealistic to expect such a real-world set to
be available in all cases. Our tests of the resulting computational methodology on a representative
subset of cancer-derived data demonstrate its accurate and robust performance. As we describe
in detail in the Methods section, our data synthesis method relies on heuristic components for an
estimate of the allele fractions throughout the cancer-derived profile. This estimate can be made
more rigorous by using haplotypes in future implementations of the method, but the present ver-
sion produces allele fractions in good agreement with published allele fractions (ASCAT2 results in
(Grossman et al., 2016; NCI, 2021)).

Aline of research and development initiated with this work must be extended in several direc-
tions. First, the performance of the methods presented must be examined more comprehensively
across cancer types, and sequence properties, such as quality and depth. This task is computing-
intensive but feasible given extensive, well annotated repositories of cancer-derived data, such
as those resulting from TCGA Research Network (Network, 2021) and ICGC (Zhang et al., 2019)
projects. For these, the genetic ancestry of the patients either is known or can be readily es-
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tablished using matching cancer-free molecular data. Second, an extension of our approach to
additional profiling modalities should be examined. Chief among these are low-coverage whole-
genome sequences commonly used for copy-number analysis and single-molecule, long-read se-
quences. Each of these presents unique challenges and opportunities for the ancestry inference:
in the former, the sparsity of coverage is compensated by its whole-genome breadth; in the lat-
ter, the trade-off is between the high sequence error rate and the long-distance phasing afforded
by long reads. Third, while the present work relied on PCA followed by nearest-neighbor classifi-
cation for ancestry assessment, alternatives including UMAP for the former and Random Forest
or Support Vector Machine for the latter exist and should be evaluated. Third, future method de-
velopment should be extended beyond inference of global ancestry to that of local ancestry and
ancestral admixture. Such an extension is particularly important in the study of cancer in strongly
admixed populations, such as African and Latin Americans and may require more extensive refer-
ence data, in addition to the 1KG reference used here. Finally, beyond cancer, our methodology
can be applied to inference from genomic data originating in any kind of fragmentary or damaged
nucleic-acid specimens, such as those encountered in forensic, archaeological or paleontological
contexts.

We anticipate the computational approach described here to have a major, two-fold, impact
on investigation of links between ancestry and cancer. First, it will become possible to massively
boost the statistical power of such studies by leveraging existing tumor-derived molecular data
sets without matching germline sequences or ancestry annotation. Our search of the Gene Ex-
pression Omnibus (GEO) database alone has identified over 1,250 such data sets, containing RNA
expression data for nearly 48,000 cancer tissue specimens. Such resources dwarf those of fully an-
notated repositories, such as TCGA and International Cancer Genome Consortium (ICGC) (Zhang
et al., 2019). Other molecular data repositories are likely to contain resources of this category on a
similar order of magnitude. Second, hundreds of thousands of tumor tissue specimens stored at
multiple clinical centers constitute another major resource for ancestry-aware molecular studies of
cancer. Here again, matching normal tissue specimens are often absent, and so is ethnic or racial
annotation for the patients. According to a recent estimate (Polubriaginof et al., 2019) such anno-
tation is missing in electronic health records of over 50% of patients. Inferential tools presented
here will make these massive resources of archival tissues available for ancestry-oriented cancer
research.

Methods and Materials

Data sets and pre-processing

The data sets used in this work originate from three sources: TCGA collection for ovarian cystadeno-
carcinoma (The Cancer Genome Atlas Research Network, 2011), Beat AML clinical trial (Tyner et al.,
2018), and a study of pancreatic ductal adenocarcinoma (PDAC) using patient-derived organoids
(Tiriac et al., 2018). For all three, the data used are summarized, in the form of Venn diagrams and
included cancer DNA (whole-exome or whole-genome) sequence, cancer RNA sequence and match-
ing DNA (whole-exome or whole-genome) sequence. In all cases, read data mapped to the hg38
version of the human genome were used. In order to study ancestry inference from targeted pan-
els, the cancer-derived whole-exome data were reduced to reads mapping to the FoundationOne®
CDx cancer-related gene panel (INC, 7999). Reads in the cancer-derived data were filtered for qual-
ity using a cutoff phred score of 20. Following this filter, single-nucleotide substitutions were called
at all positions with read coverage of at least 10, using Varscan version 2.4.4 (Koboldt et al., 2013).
This set of positions is called the high-confidence substitution (HCS) set in the following. From the
1000 Genomes (1KG) variant call data in the Variant Call Format (VCF) (Lowy-Gallego et al., 2019),
genomic positions where substitution variants occur at a frequency of at least 0.01 in at least one
of the super-populations comprising 1KG were selected as a basis for the ancestry inference. This
setis referred to as the high-frequency substitution (HFS) set in the following. At the HFS positions
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in the cancer-derived profile with the coverage above 10, the genotype was called. This set of po-
sitions is referred to as high-confidence genotype (HCG) set in the following. In the HCG set, the
total read count and the read counts for the reference and the alternative (according to HFS) alleles
were determined. A genotype at an HCG position was considered undetermined if the excess of
the total read count over the sum of the reference and alternative counts was inconsistent with the
error of 0.001 at the p = 0.001 level of significance. The same rule was used to call a heterozygous
genotype. The HCG genomic positions were pruned to reduce correlation between neighboring
genotypes using Bioconductor SNPRelate package version 1.22.0 (Zheng et al., 2012)), resulting in
the pruned high-confidence genotype (PHCG) set of positions.

Ancestry inference

Figure 3 lays out the workflow for ancestry inference. For a given cancer-derived profile, principal
component analysis of the 1KG genotypes reduced to the PHCG was performed, and D top princi-
pal components retained. The patient genotype reduced to PHCG was projected onto the subspace
spanned by these D components. Within this subspace, the patient’s ancestry was called as that of
the 1KG super-population with the highest number of 1KG individuals among K nearest neighbors
of the patient’s genotype, using Euclidean distance in the D-dimensional subspace. If two or more
super-populations were found tied in the nearest-neighbor count, no ancestry call was made for
the patient. Only two such ties were observed in this work.

Measures of performance

We evaluate the performance of the ancestry inference by comparison to the ancestry inferred
from the matching cancer-free data, wherever the latter are available. This is the case for the en-
tirety of Beat AML and the OV data. For both, we infer the ancestry from the matching cancer-free
exome profiles. In the case of OV data, we also compare the results to the consensus ancestry call
(Carrot-Zhang et al., 2020). In the case of PDAC matching cancer-free WGS data are available for
22 patient cases (Figure 2), and our assessment of accuracy is based on this subset of the data. We
compute, for each dataset, the 5 x5 confusion matrix (CM) for the 1KG superpopulation calls from
the cancer-derived and cancer-free data sources. From the CM, the call accuracy is computed as
the sum of the diagonal terms divided by that of the whole CM. Since the ancestral composition of
all data sets considered here is heavily skewed towards the European super-population, we also
compute the multi-class version of the area under the receiver operating characteristic curve (AU-
ROC) (Hand and Till, 2007). AUROC is a measure of the call quality which compensates for the
asymmetry in the class sizes. We use an R package pROC (CRAN version 1.16.2) (Robin et al., 2011)
for this purpose, and compute both the class-specific AUROC for each super-population and the
5-class AUROC. In the class-specific case, we use a version DelLong's algorithm Sun and Xu (2014);
DeLong et al. (1988) as implemented in the pROC package to compute the AUROC confidence in-
tervals. In the 5-class case the confidence intervals are computed using bootstrap with 100-fold
sampling.

Data synthesis

Data synthesis is defined here as replacement of the sequence variants detected in a cancer-
derived profile P by those found in the genome of an unrelated individual U. Ingredients required
for this procedure are: (a) allele fraction (AF) estimates in P and (b) the haplotype of U in the portion
of the genome covered by P. With this knowledge, the procedure, depicted in Figure 5, consists
of the following steps. First, sequence reads comprising P are distributed at random among the
alleles with probabilities equal to the observed allele fractions. Second, in each haplotype block in
the genome of U that is covered by P, allele assignment is made at random, yielding variant and
reference read counts for each substitution in the genome of U within the scope of P.
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Figure 5. A schematic overview of the data synthesis process.

Inference parameter optimization using synthetic data

In order to optimize ancestry inference parameters D and K for a given cancer-derived molecular
profile, we generate a synthetic data set by repeatedly pairing the profile with 1TKG genomes. A
subset of 780 1KG genomes is set aside for this purpose by drawing at random 30 genomes from
each of the 26 ancestral populations represented in 1KG. Genetic ancestry is then inferred for each
of the 780 synthetic profiles following the procedure described in the Ancestry Inference subsec-
tion, each time with the 1KG genome used for synthesis removed from the reference data set.
The inference performance is then assessed as the 5-class AUROC, as explained in the Measures
of Performance subsection. AUROC is computed for the D, K pairs in a range of values of these
parameters, and the optimal D, K pairs yielding the highest accuracy are identified. Throughout
this work, AUROC was computed for all D and K in the rectangle 3 < D < 11; 3 < K < 15. For all
combinations of data sources and profiling modalities considered, a set of D, K pairs was found
where the performance was optimal or differed from the optimum by no more than 3% (Figure 4).

Determination of allele fractions

As the Data Synthesis subsection makes clear, knowledge of allele fractions (AF) in a cancer-derived
profile is a prerequisite for data synthesis. We describe a 3-step AF estimate procedure which
relies exclusively on the cancer-derived molecular profile, in the absence of a matching cancer-free
genotype from the patient, as would be the case for the intended application of our methods. First
(step 1), the loss-of-heterozygosity (LOH) regions are delineated. Next (step 2), the regions of allele
imbalance where AF differs significantly from 1/2 are identified. Finally (step 3), AF are computed
throughout the regions of allele imbalance. These steps are implemented differently, depending
on whether the profile originates in the cancer DNA or RNA. We now discuss these steps, in turn
for the DNA- and the RNA-derived profiles (Figure S3).

For the DNA-derived profiles, the LOH regions (step 1) are detected as follows. An LOH region
in P must fit into a gap G between any two consecutive HCS positions, where all the observed
genotypes are consistent with homozygosity. Any region within G is then considered an LOH region
(see Figure S3 b) if it contains k; PHCG positions with k, > k,,;, and for which the 1KG frequencies
F,, 1<i <k, of the alleles observed in the cancer-derived profile P satisfy

“ F?
lo : <A
B0 <H max [F2, (1 — F)%,2F,(1 - F)] )

PHCG positions only are used for this purpose, to reduce correlations due to linkage. The values
of k,,, and A were chosen so as to maximize, in TCGA OV data set, the overlap between the re-
gions found to be LOH by these criteria and the published LOH regions ASCAT2 files from NCl's
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se1 Genomic Data Commons ((Grossman et al., 2016; NCI, 2021)). The latter were determined with full
se2  knowledge of the patient's cancer-free genotype. The optimal values were found to be ,,,, = 3 and
363 A =-3.

Step 2 is based on the notion of an "empty box" (see Figure S3 b). By this, we mean a contiguous
region where the allele fraction of 1/2 is inconsistent with the read counts for the reference and
alternative alleles at the HCS positions it contains. An empty box is constructed as follows. First,
we consider sliding windows, each encompassing k, consecutive HCS positions not separated by
an LOH region. Awindow is called asymmetric if (a) for no less than k,—1 of the positions the minor
allele count is outside the inner-quartile range (IQR) of the binomial distribution with the minor AF

of f, =1/2 and (b) satisfy
ko 2P,
IOg]U (H m < A

i=1
s Where P, = P(X, < number of reads covering the minor allele at position i) and, X; is the binomial
3es  distribution with the number of trials equals the coverage at the position i and the probability of
366 success p = 1/2. In this work, 4 = —3. A polymorphic position is called asymmetric if it belongs
37 O at least one asymmetric window. An empty box is a region with no less than k, polymorphic
s positions, all of which are asymmetric. We used k, = 10 throughout this work.
360 At step 3, in the case of DNA, we consider contiguous genome regions of allele asymmetry iden-
370 tified at step 2. Each of these may consist of sub-regions with differing allele fractions. To detect
snn these sub-regions, we "seed" the first sub-region with k; HCS positions at the region’s boundary
372 and, in this window, estimate the minor allele fraction. We consider the adjacent window W of
a1z ky HCS positions k; + 1 through 2k, and apply to it the empty box criteria as described for step 2,
s7a  With £, set to the estimated minor allele fraction of the first window. If the criteria are satisfied, W
375 becomes the seed of the next sub-region, and the process is repeated. Otherwise, HCS position
sze  ky + 1 is added the first sub-region and W is shifted to start at k, + 2, etc.
377 In the case of a cancer-derived RNA profile, the expressed allele fractions are, in general, gene
s7s  specific. Therefore the steps 1 and 2 (condition b), as described above, are performed separately
370 for each gene, assuming the minor allele fraction to be constant throughout the gene. Step 3 is
ss0  then reduced to an empirical estimate of the minor allele fraction using read counts from all HCS
;1 positions within the gene.

;22 Down-sampling of sequence data

33 Inorderto down-sample the sequence data to a desired fraction f of the original coverage, we sam-
3sa pled reads from the original patient profile P with the Bernoulli probability f without replacement.
3ss  The ancestry inference procedure was then performed with the resulting sample of reads.

;s Schematic overviews and figures

ss7  All schematic overviews have been generated with draw.io version 15.7.3 (http://www.diagrams.net).
388 The Venn diagrams in Figure 2 have been generated with CRAN packages VennDiagram version
ss0  1.6.20 (Chen, 2018) and multipanelfigure version 2.1.2 (Graumann and Cotton, 2018).

300 The bar plot graph in Figure 2 has been generated with CRAN package ggplot2 version 3.3.5
301 (Wickham, 2016).

302 The AUROC graphs in Figure 4 have been generated with CRAN packages ggplot2 version 3.3.5
303 (Wickham, 2016) and cowplot version 1.1.1 (Wilke, 2020).
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