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Abstract

All proteomes contain both proteins and polypeptide segments that don’t form a defined

three-dimensional structure yet are biologically active—called intrinsically disordered pro-

teins and regions (IDPs and IDRs). Most of these IDPs/IDRs lack useful functional annota-

tion limiting our understanding of their importance for organism fitness. Here we

characterized IDRs using protein sequence annotations of functional sites and regions avail-

able in the UniProt knowledgebase (“UniProt features”: active site, ligand-binding pocket,

regions mediating protein-protein interactions, etc.). By measuring the statistical enrichment

of twenty-five UniProt features in 981 IDRs of 561 human proteins, we identified eight fea-

tures that are commonly located in IDRs. We then collected the genetic variant data from

the general population and patient-based databases and evaluated the prevalence of popu-

lation and pathogenic variations in IDPs/IDRs. We observed that some IDRs tolerate 2 to

12-times more single amino acid-substituting missense mutations than synonymous

changes in the general population. However, we also found that 37% of all germline patho-

genic mutations are located in disordered regions of 96 proteins. Based on the observed-to-

expected frequency of mutations, we categorized 34 IDRs in 20 proteins (DDX3X, KIT,

RB1, etc.) as intolerant to mutation. Finally, using statistical analysis and a machine learning

approach, we demonstrate that mutation-intolerant IDRs carry a distinct signature of func-

tional features. Our study presents a novel approach to assign functional importance to

IDRs by leveraging the wealth of available genetic data, which will aid in a deeper understat-

ing of the role of IDRs in biological processes and disease mechanisms.
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Author summary

Intrinsically disordered regions (IDRs) in proteins are typically not considered to be func-

tionally as important as the structured parts. However, it is becoming evident that both

structured and disordered regions are essential for the repertoire of protein functions.

Nevertheless, most of these largely flexible and functionally dynamic protein regions

remain uncharacterized. Here, informed by human genetic diversity (i.e., genetic varia-

tions from the general population and patients), we identified the IDRs that are more fre-

quently mutated in patients than in relatively healthy individuals, and further show that

they carry a set of characteristic functional features. This approach provides a different

and effective means to identify unannotated disordered protein segments that are biologi-

cally important and lead to pathogenesis upon mutation.

Introduction

In contrast to the standard protein structure-function paradigm, it is now recognized that

many proteins, in their entirety or partly in regions, lack a defined three-dimensional (3D)

structure under physiological conditions, but still carry out a wide range of cellular functions

[1,2]. These biologically active, dynamic proteins and regions in proteins are known as

intrinsically disordered proteins (IDPs) or regions (IDRs) [3]. Several sequence-based (i.e.,

physicochemical) and structural properties of IDPs and IDRs are now well-established, such as

high net-charge, low hydrophobicity, high propensity to form pliable coils, depletion of aro-

matic residues, low sequence complexity [4–6]. While different combinations of these proper-

ties can hint to disordered regions’ functional flavors and preferential conformations [7,8],

biophysical and biochemical experiments are essential for a reliable characterization of their

functions. However, experimental methods are mostly low-throughput and impose many

technical challenges due to these proteins’ disordered nature and tendency to be involved in

promiscuous and transient interactions [9,10]. Bioinformatics and computational biology

methods are well suited to gain information about IDPs [11–15]. In light of the growing suc-

cess of predictive methods in determining the commonness of IDRs and in detecting IDRs

and their functions, a biennial experiment inspired by the critical assessment of protein struc-

ture prediction (CASP) for the benchmarking of intrinsic disorder (CAID) has been estab-

lished [16].

A rich collection of studies is available documenting the varied functional features of IDPs/

IDRs that complement the functional repertoire of structured proteins [17,18]. It has been

shown that disordered regions in proteins predominantly contain molecular-recognition fea-

tures (MoRFs) [19], post-translational modification (PTMs) sites [17], short linear peptide

motifs [13], protein- and DNA-binding regions [20–22], and flexible linkers or spacers

[23,24]. Experimental annotation of the function of IDRs being not scalable, the use of

machine learning algorithms played a complementary role in the prediction of their function

[25–27]. Another way of characterizing the function of protein regions is to utilize the annota-

tions of “sequence features” available in the UniProt knowledgebase repository [28] in terms

of sites of biological interest in proteins, e.g., active sites, metal-binding sites, domains, resi-

dues involved in molecular processing. Studies have demonstrated that proteins from different

functional classes show variable enrichment and depletion of these features in proteins’ 3D

structures [29]. Notably, no study has been published to date that systematically determines

the association between these UniProt sequence features and disordered regions of proteins,

which could identify the functional elements that are ubiquitously present in IDRs.
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Concomitantly with the investigation of the functional role of IDPs, their abundance and

evolutionary characteristics have also been extensively studied, mostly through cross-species

sequence alignments and structure comparisons [30,31]. Out of disordered regions of different

lengths, long IDRs reportedly display a high evolutionary rate [32,33], yet preserve their func-

tion. At the same time, It has been demonstrated that genetically and environmentally altered

IDPs lead to many pathological conditions through various mechanisms: perturbation of pro-

tein-protein interactions, change of the sequence’s chemico-physical character and disorder

propensity, leading to aggregation and distortion of PTM sites, and thereby causing missignal-

ing, misregulations and susceptibility to pathogens, etc. [9,18]. Recent high-throughput

genome and exome sequencing projects have enabled the detection of human genetic variants

at an unprecedented scale [34]. Subsequently, much attention has been put on the characteri-

zation of the structural regions of proteins that are intolerant to genetic variations [29,35];

however, much less is known about the disordered regions. The available genetic variation

data, along with the IDR annotation in multiple databases such as DisProt [36], MobiDB [37],

IDEAL [38], and functional site annotations of protein sequences in the UniProt database

[28], now calls for a data-driven approach to annotate and characterize IDRs that are intoler-

ant to genetic variations (or mutations). Progress towards identification of IDRs that are intol-

erant to mutations and these regions’ features (i.e., functional sites of interest) will advance our

understanding of the disease-vulnerable properties of IDRs, their role in disease etiology, and

will aid in designing drugs against IDPs.

With this study, we first sought to characterize the experimentally verified disordered

regions of intrinsically disordered proteins in human (collected from DisProt database) using

the residue position-specific annotations of sites available in the UniProt (referred to as "Uni-

Prot features"). The rationale behind this approach is that the disorder propensity of protein

regions is encoded in their residue composition, which is noticeably different from that of the

structured domain [4,39]. We therefore hypothesize that disordered regions are likely to carry

a unique set of UniProt features compared to the rest of the protein. Then by comparing the

frequency of “population” and “pathogenic” genetic variations in IDRs, we identified disor-

dered regions that are relatively more or less intolerant to mutations. Further characterization

of mutation-intolerant IDRs using the same set of UniProt features showed that mutation-

intolerant IDRs carry a distinct set of properties compared to those, that are relatively tolerant.

To the best of our knowledge, this work is the first of its kind for IDPs especially in terms of

the data analyzed: Variants from gnomAD [40] and ClinVar [41] databases and feature anno-

tations from UniProt database [28].

Results

This study has been performed on human intrinsically disordered proteins (IDPs) that were

annotated with disorder information, i.e., whether a residue/region is disordered and its cate-

gory in the DisProt database (release 2020_06) [36], and residue position-specific “UniProt

feature” information, indicating sites of biological interest in proteins, in the UniProt database

(release 2020_02) [28]. We investigated 561 out of 567 human IDPs that were annotated in

both DisProt and UniProt (Materials and Methods). These 561 proteins contain 981 disor-

dered regions (IDRs) comprising 58,993 disordered residues or DRs (S1 Table), while the rest

are referred to as non-annotated residues, or NRs.

UniProt features associated with disordered protein residues

To systematically identify the “UniProt features” associated with disordered residues, we com-

puted the fraction of disordered residues as well as their association with each feature
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compared to non-annotated residues for 561 IDPs. We investigated a set of twenty-five fea-

tures corresponding to different sites of interest in proteins according to the UniProt database.

Statistical associations between residue-wise features and residue types (disordered vs. non-

annotated) were quantified using the two-tailed Fisher’s Exact test. An odds ratio (OR) > 1.0

and corrected p-value, q< 0.05 indicates features enriched in IDRs (DR features), and OR< 1

and q< 0.05 highlights features enriched in non-annotated regions (NR features).

“Regions of interest” (annotated in UniProt to indicate protein regions with experimentally

defined roles such as mediating protein-protein interactions or biological processes, regions of

multifunctional enzymes or fusion proteins, etc.) in IDPs had the highest fraction of all disor-

dered residues (21.4% of 58,993, Fig 1A), whereas “domains” (a feature annotation in UniProt

Fig 1. Some UniProt features are more frequent in disordered regions of proteins compared to non-annotated regions. (A) Distribution of disordered

(total = 58,993) and non-annotated residues (total = 286,113) in 561 IDPs with twenty-five UniProt features. (B) Results of statistical association tests (two-

tailed Fisher’s Exact test) between UniProt features and disordered residues compared to the non-annotated residues. Circles show the odds ratios (ORs) and

are labelled with the corrected p-values (q), showing the significance of the association (a value of q< 1.0e-100 indicates the maximum significance, see

Materials and Methods). Horizontal bars show the 95% confidence interval (CI). The OR> 1.0 and OR< 1.0, along with q< 0.05, indicate the disordered

residue-associated or DR feature (orange circle) and non-annotated residue-associated or NR feature (green circle) feature (y-axis), respectively. The vertical

dashed line at OR = 1.0 indicates no association between a residue type (DR or NR) and a feature. To facilitate the visualization, minimum and maximum

values of OR along the x-axis are set to 0.05 and 10.0, respectively. Non-significant associations (q� 0.05) are indicated by gray CI bars and circles. NP binding

region� indicates “Nucleotide phosphate binding region”.

https://doi.org/10.1371/journal.pcbi.1009911.g001
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to designate protein segments that represent a specific combination of secondary structures in

3D, organized into a characteristic fold) had the highest proportion of all non-annotated resi-

dues (~30% of 286,113, Fig 1A). These data contributed to our results identifying firstly

“region of interest” as a DR feature (OR = 1.5, q< 1.0e-100, Fig 1B) and secondly, “domain”

as an NR feature (OR = 0.2, q< 1.0e-100, Fig 1B). Given that IDPs often have a mosaic organi-

zation with a hybrid of ordered and disordered domains [18], the aforementioned results may

indicate that the non-annotated regions of these IDPs are mostly composed of ordered or

structured residues.

A minor fraction (0.2%, 541 out of 345,106) of all residues in 561 IDPs studied here consti-

tute biologically active peptides, i.e. small polypeptides of� 30 amino acids with a well-defined

biological activity. Over 53% of these 541 residues are located in disordered regions and the

odds of disordered residues to be part of such peptides is 5.5 times higher than that for the

non-annotated residues (q< 1.0e-100, Fig 1B). Altogether, 8 out of 25 features had a higher

burden in IDRs (DR features, see description of all UniProt features in Materials and Methods:
“Collection of UniProt features”) including lipidation sites (OR = 5.1, q = 8.5e-05), motifs

(OR = 3.2, q< 1.0e-100), modified residues (OR = 3.1, q< 1.0e-100), cross-links (OR = 2.6,

q = 9.7e-27), sites (OR = 1.8, q = 1.6e-03), and topological domain (OR = 1.1, q = 5.6e-03). On

the other hand, 11 UniProt features were found to be enriched in non-annotated regions (NR

features, Fig 1B); active sites (OR = 0.05, q = 1.8e-05), nucleotide phosphate binding regions

(OR = 0.05, q< 1.0e-100) and intramembrane regions (OR = 0.05, q = 5.3e-15) being the three

most prominent NR features. The remaining six UniProt features showed no significant asso-

ciation with either residue type.

Distribution of UniProt features in different categories of IDRs

Having identified the disordered residue-associated (DR) features (Fig 1B), here we looked for

any variability in the distribution of UniProt features in different categories of IDRs. Annota-

tions of IDR categories were obtained from the second level of the hierarchy of Disorder

Ontology defined in the DisProt database [36], describing the function, interaction partner,

structural transition, and structural state of IDRs (see the number of IDRs in different catego-

ries in S2 Table). The frequency of IDRs with different features and categories along with the

median content of each feature, i.e., the median fraction of residues in IDRs annotated with a

feature, is shown in Fig 2. Additionally, the frequency distributions of residues in IDRs anno-

tated with twenty-five UniProt features are available in S1–S4 Figs. Note that these frequencies

are calculated based on IDRs that are annotated with a category in the DisProt database, and

strikingly, only a modest fraction of all IDRs (total = 981) are annotated with functions (28%),

interaction partners (37%) and structural transitions (19%), highlighting that current knowl-

edge about the functional roles of IDP is fairly limited.

Two DR features, “region of interest” and “modified residues” (i.e. sites that undergo vari-

ous post-translational modifications), were present in IDRs of all functions (Fig 2A). “Regions

of interest” mostly found to overlap with the entire length of IDRs (median content of this

feature > 80%, Fig 2). About 49% of 98 IDRs annotated with “regions of interest” and with a

known function (Fig 2A), are molecular recognition effectors that are known to modulate the

activity of partner molecules like inhibitors, activators, etc. At the same time, 82% of 119 IDRs

annotated with “regions of interest” and with a known interaction partner, bind to another

protein molecule (“protein binding”, Fig 2B). Two other UniProt features that we found to be

common in IDRs are: motifs (� 20 residues long sequence motifs of biological interest) and

cross-links, i.e., residues participating in covalent linkage(s) between proteins including ubi-

quitin conjugation, SUMOylation, transglutamination, thioether and thioester bonds. IDRs
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Fig 2. Median content (the median fraction of residues in IDRs annotated with a feature) of twenty-five UniProt features in different

categories of IDRs that (A) perform different functions; (B) interact with different partners; (C) undergo structural transitions; (D) adopt different

structural states. In each plot, the x-axis shows the count of IDRs of different categories as annotated in the DisProt database. The y-axis shows the

UniProt features (i.e., sites of interest in proteins) and the number of IDRs that have these features. Each cell is labeled with the frequency of IDRs of

a specific category (x-axis) and that have a given feature (y-axis). For example, 98 IDRs with known disorder functions overlaps with protein
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containing motifs and cross-links are predominantly effectors and assemblers (Fig 2A).

Another DR feature resulting from our analysis is “sites” which specify cleavage sites, inhibi-

tory sites, etc. As an example, an IDR in the Amyloid-beta precursor protein contains 9 cleav-

age sites and is annotated in the “biological condensation” disorder function category (S1 Fig).

Alongside DR features, we also noticed several non-annotated residue-associated (NR) fea-

tures (Fig 1B) to be frequently present in IDRs: “domain” is the most striking one and is

located in all categories of IDRs (Fig 2). A puzzling observation was that about 35% (17 out of

48) of all IDRs that overlap with “domains” are “entropic chains”, which are defined as carry-

ing out functions directly enabled by their conformational disorder (Fig 2A). Moreover, three

short entropic chain IDRs (< 30 residues long) had cysteine residues participating in disulfide

bonds (Fig 2A), which are in general depleted in IDRs (Fig 1B). Similarly, zinc fingers, which

are primarily located in non-annotated regions of IDPs (Fig 1B), are present in 9 IDRs with

annotated interaction partners (Fig 2B); of these, five are nucleic acid binding IDRs. Assuming

that the non-annotated regions in IDPs represent mostly ordered, or at least not entirely disor-

dered regions, these results seem to indicate that there is no well-defined boundary between

the functional space of the ordered and disordered regions of IDPs.

Prevalence of population and pathogenic genetic variations in IDPs

Given that IDPs/IDRs are abundant in nature [42,43] and also carry many features important

for protein function (Figs 1 and 2, “UniProt features”), it is timely to systematically evaluate

the prevalence of genetic variants of IDPs in the general population as well as in patients, and

contrast the putative features of IDRs that are most perturbed by disease-associated “patho-

genic” mutations with those affected by tolerated “population” mutations.

In order to measure the likelihood of population variations in IDRs, we collected variant

data from the genome aggregation database (gnomAD) [40], which represents variants

observed in healthy individuals. From gnomAD, we obtained 41,691 and 176,888 missense

mutations (an amino acid change caused by a single base substitution) in IDRs and non-anno-

tated regions, respectively, of 548 IDPs. These 548 IDPs are a subset of the initially selected 561

IDPs in our dataset for which variant data were available (Materials and Methods for variant

collection steps and S3 Table for variant counts). Similarly, we collected 20,282 and 92,314

synonymous mutations (no change in protein sequence following a single base substitution)

located in IDRs and non-annotated regions, respectively, of the same 548 IDPs. We then mea-

sured the association of amino acid acid-changing missense and silent synonymous variations

with the reference residue type (disordered and non-annotated residues). The odds ratio (or

OR) of missense variations for disordered residues compared to non-annotated residues is 1.1

(p = 1.12e-13, Fig 3A), meaning that the odds of observing a missense mutation over a synony-

mous one on a residue, increases about 10% when that residue is disordered. Additionally, we

performed the same analysis separately for singleton (allele count, AC = 1) and multiton

(AC> 1) variants. We obtained similar results for both rare (AC = 1) and relatively frequent

variants (AC> 1), that is, disordered residues sustain a slight but significant burden of mis-

sense variations compared to synonymous changes in the general population (Fig 3A).

To further investigate the rate of amino acid change in the disordered regions, we com-

puted region-wise ratio of missense to synonymous variations (nmis/nsyn) observed in the gen-

eral population for each of the 548 IDRs (Fig 3B). The ratios were separately calculated for all

IDRs (count = 945), and then also for short (length� 30 residues, IDR count = 450), medium-

segments annotated as “region of interest”, and 29 of these IDRs are molecular recognition assemblers. Darker color indicates that a higher fraction

of residues in IDRs is annotated with the corresponding feature (i.e. the median content of the feature).

https://doi.org/10.1371/journal.pcbi.1009911.g002
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length (30 < residues� 100, IDR count = 306), and long (>100 residues, IDR count = 189)

IDRs. On average, the nmis/nsyn for all IDRs was 2.3, with a maximum of 12.0, suggesting that

amino acid substitutions in IDRs may be advantageous or neutral. Overall, a higher fraction of

all population missense variations was observed in long IDRs (59%) than in medium-length

and short IDRs (29% and 12%, respectively). Moreover, the median nmis/nsyn for long and

medium-length IDRs were slightly higher (~2.0) than that of short IDRs (~1.8). However, sur-

prisingly, we also identified 39 very short, disordered regions (< 20 residues) that carried over

5 times more missense than synonymous mutations (nmiss/nsyn� 5.0, Fig 3B, S4 Table).

In addition to identifying the prevalence of “population” variations in IDRs, we also investi-

gated the presence of “pathogenic” mutations in these regions, as available in the database of

clinically identified and interpreted germline variants called ClinVar [41]. We collected four

types of protein changing variations: missense, nonsense, frameshift and inframe (see Materi-
als and Methods for variant collection steps and S3 Table for variant counts), with different

level of clinical significance such as benign or likely-benign (jointly referred to as benign),

pathogenic or likely-pathogenic (jointly referred to as pathogenic) and variants of uncertain

Fig 3. Genetic variations in disordered regions often provide functional advantages to the protein, while for many IDPs, they contribute to the disease

phenotype. (A) Association of single amino acid-changing missense variations and silent synonymous variations from gnomAD database (a database of

variants from relatively healthy individuals) with disordered residues compared to non-annotated residues of 548 human IDPs, calculated using the two-tailed

Fisher’s Exact test. Missense variations are marginally (OR = 1.1) but significantly (indicated by “�”) enriched in disordered regions, considering all variants

together, and also separately in rare (allele count, AC = 1) and frequent variants (AC> 1). (B) Distribution of ratios of missense to synonymous (nmis/nsyn)

variations from gnomAD database in all IDRs, and short (� 30 residues), medium-length (30< residues� 100) and long (>100 residues) IDRs. Irrespective of

the length, the median of missense-to-synonymous variation ratio in IDRs is over 2.0, showing that point mutations in IDRs can be advantageous. (C) Fraction

of benign, uncertain significance, and pathogenic mutations of different types (frameshift, inframe, missense and nonsense) observed in patients, affecting

disordered regions of 96 human IDPs, collected from ClinVar database.

https://doi.org/10.1371/journal.pcbi.1009911.g003
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clinical significance (VUS). In total, we gathered 5,830 variations located in experimentally

annotated disordered regions of 96 IDPs (out of 561 IDPs studied in this work, Materials and
Methods), which amount to about 37% of all clinically found variations in these 96 proteins

Introduction of a premature stop codon by a nonsense mutation and a framing error caused

by a frameshift insertion or deletion mutation, commonly lead to either the complete absence

of the protein or an altered and/or truncated copy thereof; over 95% of all such mutations hit-

ting an IDR has been found to be pathogenic (Fig 3C). About 84% and 60% of all missense

(single amino acid substitution) and inframe (a few amino acid change) variations affecting

IDRs instead are of uncertain significance, meaning that the pathogenicity of these mutations

and their implication in the disease phenotype cannot be established with the available set of

evidences [44].

Identification of IDRs ‘intolerant’ to mutation

As shown in Fig 3A and 3B, many IDRs are robust to amino acid substitutions. However, at

the same time, a considerable number of amino acid-changing variations affecting IDRs are

pathogenic (Fig 3C). It would thus be instructive to identify the IDRs in which different types

of protein-altering mutations are absent or kept at low frequency in large population samples

and that, at the same time, are commonly present in patients; these would be IDRs that are

intolerant to mutations. To find such “mutation-intolerant” disorder regions, we compared

the frequency of population and pathogenic mutations from gnomAD [40]) and ClinVar data-

bases [41], respectively, in each IDR. It is expected that the frequency of different types of

mutations will be different across the general population and patients. For example, early ter-

mination or slippage of the reading frame by nonsense and frameshift mutations is likely to be

more severe, and therefore less frequent in the general population, compared to point muta-

tions or an inframe deletion or insertion event. To account for this variability, we searched for

mutation-intolerant IDRs independently for four different types of mutation (missense,

inframe, frameshift and nonsense, Fig 4A). First, we derived the median frequency counts at

which these four types of pathogenic and population mutations occur in IDRs. Then taking

these median values as expected frequency, we searched for exceptions: that is, IDRs having

more than expected pathogenic mutations as well as less than expected population variations

of a specific type owing to intolerance to that type of mutation (Fig 4A). Simply stated, we

defined an IDR as intolerant to a type of mutation if it meets all of the following criteria: it had:

(i) a higher number of pathogenic than population mutations; (ii) a higher number of patho-

genic mutations than the expectation (i.e. the median frequency of pathogenic mutations

observed in all IDRs); (iii) a lower (or equal) number of population mutations compared to the

expectation (i.e. median frequency of population mutations observed in all IDRs). Similarly,

we identified disordered regions that comply with the opposite of all three conditions listed

above; those IDRs are referred to as tolerant to mutations or mutation-tolerant (Materials and
Methods and S4 Table for the list of mutation-intolerant and tolerant IDRs).

In total, we catalogued 34 disordered regions that are intolerant to different types of muta-

tions (Table 1); 11 of them are short (� 30 residues) and 7 are long (>100 residues) IDRs.

Most of the identified “mutation-intolerant” IDRs were intolerant to frameshift (71%, n = 24)

and nonsense (62%, n = 21) mutations, while 4 and 7 IDRs were found intolerant to missense

and inframe mutations, respectively. The IDR that had the highest number of frameshift

(n = 77) and nonsense (n = 13) variations out of all 34 mutation-intolerant IDRs (Table 1 and

S5A Fig), is located in the Methyl-CpG-binding protein 2 encoded by gene MECP2 (DisProt

ID: DP00539r004, a molecular recognition effector/inhibitor that binds with the methylated

DNA). MECP2 variants in this IDR are associated with several neurodevelopmental and
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psychiatric disorders [41,45], e.g., severe neonatal-onset encephalopathy with microcephaly,

Rett syndrome, focal epilepsy, intellectual disability, and autism (S5 Table). Strikingly, this

particular disordered region (residue: 207–310, Table 1) in MECP2 protein never acquires a

premature stop codon in the general population (Table 1), suggesting that single nucleotide

variations (SNVs) in this region leading to the termination of the protein should be under

extreme purifying selection [46].

It is important to note that most of the mutation-intolerant IDRs identified here are not

annotated with any function or interaction partner in the DisProt database (Fig 4B and

Table 1). Only 12 IDRs have experimentally verified disorder functions; 9 of these contribute

to molecular recognition: 6 effectors (modulate partners’ activity) and 3 assemblers (partici-

pate in or facilitate the assembly of complexes). Three relatively short (19 to 39 residues long)

entropic chain IDRs were also found to be intolerant to mutations; all of them are flexible link-

ers or spacers, that allow movement between adjacent binding elements or domains in the pro-

tein. One notable example is that of Retinoblastoma protein (RB1, Table 1): Multiple

frameshift and stop-gained variants of RB1 with two such altered linkers/spacers are impli-

cated in a very rare retinoblastoma condition (S5 Table). Additionally, 10 mutation-intolerant

IDRs were annotated with experimentally determined interaction partners in the DisProt data-

base (“protein binding”, Fig 4B). One of these is an effector region located in the WAS
encoded protein (WASp) that regulates actin filament reorganization and polymerization [47]

and are also annotated as undergoing a disordered to order transition. SNVs in this disordered

region leading to the truncation of the protein is associated with severe congenital neutropenia

and rare Wiskott-Aldrich syndrome (S5 Table).

Fig 4. Identification of mutation-intolerant IDRs and their categories. (A) Number of population variants from gnomAD (x-axis) compared to the number

of pathogenic variants from ClinVar (y-axis) for each IDR. The scatter plots are generated separately for four different types of mutations. The vertical and

horizontal lines in each plot show the median count of population and pathogenic variants of a type from all IDRs. Circles located to the left of the vertical line,

above both the horizontal and diagonal lines correspond to the IDRs “intolerant” to a particular type of mutation (mutation-intolerant IDRs). Circles located to

the right to the vertical line, and below both the horizontal and diagonal lines correspond to the IDRs “tolerant” to a particular type of mutation (mutation-

tolerant IDRs) In total, we identified 34 and 533 IDRs that are intolerant and tolerant to different types of mutation, respectively. (B) Number of mutation-

intolerant IDRs (total = 34) of different categories in terms of disorder functions, interaction partners and structural transitions. Hollow and solid (gray) bars

correspond to total mutation-intolerant IDRs that are not-annotated and annotated (with a category), respectively. Blue-colored solid bars represent mutation-

intolerant IDRs with known function, interaction partners and structural transitions.

https://doi.org/10.1371/journal.pcbi.1009911.g004
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Characterization of IDRs that are intolerant to mutations

Having stratified the mutation-intolerant IDRs that are predominantly affected by disease-

associated variants (Fig 4 and Table 1), next we quantified the enrichment of 25 UniProt fea-

tures in these mutation-intolerant IDRs as explained previously, compared to mutation-toler-

ant IDRs.

Table 1. Intrinsically disordered regions (IDRs) that are intolerant to mutations and their categories.

Protein IDR

(start)

IDR

(end)

IDR

(length)

Disorder function Interaction

partner

Structural

transition

Variant count (ClinVar / gnomAD)

frameshift nonsense missense inframe

BMPR1A 24 54 31 - - - 5 / 0� 1 / 0 0 / 12 2 / 0�

BRCA2 21 39 19 - Protein binding Disorder to order 11 / 0� 13 / 2 1 / 24 2 / 0�

CDKN1B 1 198 198 Inhibitor Protein binding - 8 / 7 7 / 1� 1 / 179 0 / 2

CDKN1B 25 90 66 Inhibitor Protein binding Disorder to order 4 / 2 5 / 0� 1 / 52 0 / 1

CDKN1B 55 95 41 - Protein binding - 3 / 1� 4 / 0� 1 / 52 0 / 1

CDKN1C 27 97 71 Molecular recognition

effector

Protein binding - 2 / 0� 1 / 4 0 / 68 0 / 0

CDKN2A 1 37 37 - - - 1 / 4 3 / 0 0 / 62 0 / 0

COL7A1 1940 1978 39 - - - 2 / 0� 1 / 0 1 / 23 0 / 0

CSTB 1 67 67 Prion Protein binding - 1 / 1 3 / 1� 3 / 46 0 / 1

DDX3X 1 167 167 - - - 7 / 0� 6 / 0� 5 / 0� 0 / 0

EMD 1 187 187 - - - 11 / 0� 10 / 0� 5 / 76 2 / 3

EMD 67 170 104 - - - 4 / 0� 4 / 0� 0 / 50 2 / 1�

KIT 544 565 22 - - - 1 / 0 3 / 1 21 / 7 14 / 0

LDLR 163 175 13 Flexible linker/spacer;

Tethering

- - 3 / 0� 5 / 2 14 / 11� 1 / 0

LDLR 354 393 40 - - - 13 / 1� 10 / 2 37 / 33 4 / 0�

MECP2 1 75 75 Molecular recognition

assembler

Nucleic acid

binding

- 21 / 0� 10 / 0� 2 / 26 0 / 1

MECP2 165 210 46 Assembler - - 13 / 0� 13 / 0� 2 / 46 1 / 1

MECP2 207 310 104 Inhibitor Nucleic acid

binding

77 / 0� 13 / 0� 14 / 60 4 / 0�

MECP2 261 330 70 - - - 40 / 0� 4 / 0� 12 / 42 4 / 0�

NFKBIA 1 66 66 - - - 0 / 0 4 / 1� 7 / 31 0 / 2

PAX6 1 130 130 - - Disorder to order 18 / 3 12 / 0� 23 / 69 0 / 0

RAF1 233 259 27 - - - 0 / 0 0 / 0 12 / 7� 0 / 0

RB1 245 269 25 - - - 4 / 0� 2 / 0 0 / 15 0 / 0

RB1 346 370 25 Flexible linker/spacer Protein binding Order to disorder 3 / 0� 1 / 0 0 / 11 0 / 1

RB1 355 370 16 - - - 2 / 0� 1 / 0 0 / 8 0 / 1

RB1 500 511 12 - - - 2 / 0� 1 / 0 0 / 1 0 / 0

RB1 500 513 14 - - - 2 / 1� 1 / 0 0 / 2 0 / 0

RB1 577 615 39 Flexible linker/spacer Protein binding - 2 / 0� 4 / 0� 0 / 22 0 / 0

RB1 786 928 143 - - - 6 / 0� 12 / 0� 1 / 65 0 / 1

SMAD4 297 306 10 - Protein binding Order to disorder 1 / 0 3 / 0� 0 / 4 0 / 0

SUFU 279 360 82 - - - 2 / 1� 1 / 0 0 / 58 0 / 0

TP53 60 92 33 Activator - - 17 / 0� 4 / 0� 0 / 36 0 / 2

TP53 291 312 22 - - - 8 / 4 4 / 0� 2 / 26 1 / 0

WAS 201 268 68 Molecular recognition

effector

Protein binding Disorder to order 2 / 0� 3 / 1� 1 / 17 0 / 1

� The corresponding IDR is intolerant of that type of mutation

- IDR category annotation is not available

https://doi.org/10.1371/journal.pcbi.1009911.t001
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Six out of 25 UniProt features showed significant association with residues of mutation-

intolerant IDRs (Fig 5A); interestingly, only three of these features overlapped with the eight

features that were found enriched in IDRs in general (Fig 1B). These three features are:

“regions of interest” (OR = 2.4, q< 1.0e-100, Fig 5A) in proteins with a tendency to be

involved in interactions with many partner proteins, short sequence “motifs” (OR = 2.0,

q< 1.0e-100, Fig 5A) that often act as molecular switches and regulate low affinity interac-

tions, and “modified residues” (OR = 1.7, q = 2.8e-03), i.e. sites that undergo different post-

translation modification (PTM) such as phosphorylation, methylations, acetylation. Surpris-

ingly, disulfide bonds formed between two cysteins from two different proteins or within the

same protein chain had 9-fold enrichment in mutation-intolerant IDRs (q = 2.7e-04). This fea-

ture, and “domains” are in general depleted in disordered regions (Fig 1B), which, however,

when present in IDRs and perturbed by mutations, seem to contribute to disease mechanisms.

Further, “DNA binding region” showed no significant association with any residue type in

IDPs (Fig 1B) but was identified as a characteristic feature of mutation-intolerant disordered

regions (3-fold, q = 6.5e-05, Fig 5A).

To further assess how useful the identified features can be for the blind prediction of IDRs

that are intolerant to mutations, we quantified the relative importance of UniProt features in

the classification of mutation-intolerant versus tolerant IDRs using “permutation feature

importance” method [48]. This is a model-agnostic technique to measures the importance of a

feature by calculating the decrease in the classifier model’s prediction score after permuting

the feature, which breaks the relationship between the feature and the true outcome. A feature

is “important” if shuffling its values decreases the model prediction score, because in this case

the model relied on the feature for the prediction. A feature is “unimportant” if shuffling its

values leaves the model’s score unchanged, because in this case the model ignored the feature

for the prediction. For our analysis, we calculated the frequency of all 25 UniProt features in

each IDR (e.g., how many “regions of interest” or “motifs” are overlapped with the location of

an IDR, S6 Table), and fed these frequency counts into the “permutation feature importance”

method to estimate their relative importance to stratify mutation-intolerant and mutation-tol-

erant IDRs. We used Random Forest as the classifier model [49] and “average precision” as the

prediction score (S7 Table and Materials and Methods: “Measuring Relative Feature Impor-

tance”). Average precision summarizes the precision-recall curve, commonly used for evaluat-

ing the performance of binary classifiers. The output of this analysis was the difference in the

precision of the classifier model before and after permutation or shuffling of each feature val-

ues (% decrease in average precision, Fig 5B).

Seven out of 25 UniProt features were identified as important features for the classification

of mutation-intolerant IDRs from mutation-tolerant IDRs, i.e., permutation of these features

resulted in a decrease in the average precision of the classifier’s performance by at least 5%

(Fig 5B). Particularly, the presence of “modified residue” (PTMs) and “regions of interest”

were ranked as the two most influential functional elements of disordered regions that are

intolerant of disease-causing germline mutations, with an average loss of precision of about

30% and higher upon permutation (Fig 5B). Altogether, six out of seven of these features iden-

tified as important features of mutation-intolerant IDRs by the permutation importance

method (Fig 5B) were also found as significantly enriched in mutation-intolerant IDRs com-

pared to tolerant regions (Fig 5A). Concordance between the output of two different

approaches applied in this study, OR enrichment analysis and machine learning (Fig 5A and

5B), to find the characteristic features of mutation-intolerant IDRs, validates the soundness of

our findings. Some notable cases of mutation-intolerant disordered regions with identified fea-

tures are presented in Figs 6 and S5.
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Fig 5. Mutation-intolerant IDRs carry characteristic UniProt features compared to relatively tolerant IDRs. (A) Results of

association (two-tailed Fisher’s Exact test) between different UniProt features (x-axis) and residues of mutation-intolerant and tolerant

IDRs (Fig 4A). Circles show the odds ratios (ORs) and are labelled with the corrected p-values (q), showing the significance of the

association (a value of q< 1.0e-100 indicates the maximum significance, see Materials and Methods). Vertical bars show the 95%

confidence interval (CI). OR> 1.0 and OR< 1.0, along with q< 0.05, indicate that the feature is associated with the mutation-intolerant
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Discussion

The ever-increasing number of experimentally validated disordered regions (IDRs) in different

proteomes and their remarkable functional diversity have led to a rapidly growing apprecia-

tion of the intrinsic disorder phenomenon [50,51]. Subsequently, several resources have been

developed to aggregate both experimental and computationally predicted information on dis-

ordered regions in proteins [36–38,52,53]: The Database of Protein Disorder (DisProt) is one

of these resources, primarily reporting on experimentally characterized IDRs and their biologi-

cal function, when known [36]. Strikingly, over 70% of all disordered regions of 561 human

IDPs that we collected from DisProt and studied in this work, currently have no function

annotation, which limits the understanding of how these proteins function or malfunction

when perturbed by genetic mutations.

Sequences of IDPs and IDRs have distinct compositional properties and biases which have

been the basis of many computational studies for identification, characterization and predic-

tion of IDRs and their functions [18,27,50]. Disordered regions are enriched with charged and

polar amino acids as well as depleted in bulky hydrophobic residues [5,6], leading to a weak-

ened hydrophobic effect, which is usually the main drive for the folding of polypeptides into

their compact tertiary structure (natively folded state). In this study, using the annotation of

protein sequences with biologically interesting sites and regions from UniProt [28], we identi-

fied eight “UniProt features” that are statistically enriched in IDRs (Fig 1). Our results recapit-

ulate some of the commonly known functions of IDRs, e.g. the abundance of short linear

motifs and PTM sites (“modified residues,” “cross-links,” “lipidations,” etc., Figs 1 and S1–

S4), consistently with IDRs’ role in cell signaling and molecular regulation [17,19,54]. Further

characterization of the UniProt feature “motif” was performed using the Eukaryotic Linear

Motif (ELM) resource [55,56], that organizes experimentally validated short linear motifs into

types based on their functions. This showed that 41% and 18% of the motifs overlapping with

IDRs in our dataset are ligand sites (LIG), which mediate binding of the ligand protein to its

interaction partner, and subcellular targeting sites (TRG), respectively (S6A Fig and S8

Table). Moreover, by investigating the Gene Ontology terms (GO version 2021-11-20 [57]) for

the motifs available in the ELM resource, we found that 53% of these motifs in IDRs are

involved in different biological processes such as DNA repair/replication/damage and cell divi-

sion/death (S6B Fig), in agreement with previous studies showing the link between IDPs and

these biological processes [9,58,59].

Although the UniProt feature “domain” was not statistically enriched in disordered regions

(Fig 1B), we observed an intriguing overlap between these “domains” and experimentally veri-

fied IDRs (Figs 2 and S1–S4). Delving deeper into these data, we found that many of the Uni-

Prot-annotated “domains” such as the kinase inducible domain (KID), BH3 domain, the Wasp

homology domain, overlap with disordered regions of proteins, suggesting that they are intrin-

sically disordered domains (IDDs) [60–62]. IDDs represent protein regions that conform to

the typical definition of domains, i.e. functional, structured and conserved units in their native

(magenta circle) and mutation-tolerant (blue circle) IDRs, respectively. The horizontal dashed line at OR = 1.0 indicates no association

between a residue type and a feature. To facilitate the visualization, minimum and maximum values of OR along the y-axis are set to 0.05

and 10.0, respectively. For non-significant associations (q� 0.05), CI bars and circles are grey. (B) Relative importance of different

UniProt features in stratifying mutation-intolerant and tolerant IDRs using a random forest classifier (Materials and Methods). The y-

axis shows the drop in the average precision of the classifier’s performance when a particular feature (x-axis) is randomly permutated,

that is, when the feature’s values are randomly shuffled thereby breaking the relationship between the feature and the true outcome. For

example, when the frequency of “modified residues” in IDRs is permutated, the average precision of the classification model decreased

by about 35%. This procedure allows us to rank the features according to their importance for accurately predicting mutation-intolerant

versus tolerant IDRs. In both panels, NP binding region� indicates “Nucleotide phosphate binding region”.

https://doi.org/10.1371/journal.pcbi.1009911.g005
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Fig 6. Illustration of mutation-intolerant IDRs with their characteristic UniProt features for two intrinsically disordered proteins. (A) The cellular tumor

antigen protein p53 has six disordered regions; two of them were identified as intolerant to frameshift and—nonsense mutations: residues 60–92 (an effector

IDR) and residues 291–312 (not annotated with any IDR category, Table 1). These IDRs contain “regions of interest” that are involved in interactions with

many partners (e.g. HRMT1L2, ZNF385A, CCAR2, WWOX, HIPK1, AXIN1, E4F1, HIPK2, USP7, CARM1), have several motifs (TADI, TADII, nuclear

localization signal, [KR]-[STA]-K motif, etc.), perform interchain cross-links, and contain over 20 post-translational modification (PTM) sites or “modified

residues”. All these UniProt features are identified as the characteristic features of mutation-intolerant IDR, in this study (Fig 5). Mutations affecting these IDRs

(partly or in full) in p53 are primarily associated with hereditary cancer-predisposing syndrome, Li-Fraumeni syndrome, ovarian neoplasms, and familial
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context, but with the important difference that they are disordered in isolation and only form

structure in certain conditions, such as in coupled folding and binding (to a macromolecular

partner), upon formation of disulfide bonds, or ion coordination [61,63,64]. To annotate pro-

tein regions as “domains”, UniProt uses InterPro resource [65], which employs MobiDB-lite

[66] to determine disordered regions; this might be the reason behind UniProt reporting IDDs

as “domain”. In our dataset, 105 intrinsically disordered proteins (IDPs) have 124 UniProt-

annotated “domains” that overlap with disordered regions (IDRs) of these proteins (S9 Table).

According to DisProt [36], 30 out of these 124 “domains” have been categorized as having a

“disordered” structural state and undergoing a “disorder to order” structural transition—a sig-

nature of some intrinsically disordered domains (S9 Table). Furthermore, we checked Mutual

Folding Induced by Binding (MFIB) [53] and Disordered Binding Site (DIBS) [52] databases,

which are repositories for protein complexes formed exclusively by IDPs (homomers or het-

eromers), and between IDPs and globular partner proteins, respectively. Eleven UniProt-

annotated domains, overlapping with IDRs, were also annotated in these databases as being

unstructured in isolation but forming structure upon binding (S9 Table).

Disordered regions reportedly are frequent targets for positive selection [33,67] but are also

shown to be associated with many human diseases when mutated [68–70]. Our results from

the analysis of variants from relatively healthy individuals in the general population [40], sup-

port the concept underlying the former observation, that is owing to the lack of structural con-

straints, IDRs evolve relatively fast yet are usually able to preserve their function [31]. About

53% of all IDRs (500 out of 945) in our dataset had a 2 to 12 times higher fraction of missense

than synonymous mutations (nmis/nsyn) in the general population (Fig 3B and S4 Table), sug-

gesting that the substitution of residues in these disordered regions are likely favorable to

maintain a large, evolutionarily advantageous basin of diversity in humans [30,31,67]. Interest-

ingly, we noticed that the nmis/nsyn is consistently greater than or equal to 2 for long IDRs

(>100 residues), while that for relatively short IDRs varies widely (S7 Fig). We identified 47

and 38 short disordered regions (� 30 residues) with nmis/nsyn� 5.0 and� 0.5, respectively,

in two mutually exclusive set of 38 and 29 proteins (S7 Fig and S4 Table). These results shows

that IDRs, particularly short ones, display a remarkable degree of variability in their tolerance

to amino acid substitutions.

A method to detect protein regions that are intolerant to a certain type of mutation is to

compare the frequency of pathogenic and population mutations of that type in the same

region. A “mutation-intolerant” region would harbour higher than expected pathogenic muta-

tions as well as lower than expected population mutations. Applying this method to our set of

disordered region, with pathogenic variations collected from ClinVar database [41] and popu-

lation variations collected from gnomAD database [40], we identified 34 IDRs in 20 proteins

that are intolerant to different types of mutation (Fig 4 and S5 Table). Specifically, we identi-

fied 21, 24, 7 and 4 IDRs that are intolerant to nonsense, frameshift, inframe insertion/deletion

and missense mutations, respectively (Table 1). Identification of mutation-intolerant disor-

dered regions in this way, using population genetics data is hitherto underexplored for IDPs,

albeit important to prioritize IDRs and IDPs that are essential for the organisms fitness for

experimental characterization. Indeed, our results identified disordered regions that are intol-

erant to partial or full deletion by frameshift and protein-truncating mutations in 8 IDPs

(DDX3X, KIT, NFKBIA, PAX6, RB1, SMAD4, SUFU, and WAS). According to a recently

breast cancer. (B) Emerin protein has two IDRs and both these IDRs were identified as mutation-intolerant (Table 1), carrying characteristic UniProt features

such as F-actin and CTNNB1 binding “region of interest”, LEM domain, and 15 PTM sites (“modified residues”). Pathogenic variations in these IDRs in

Emerin are associated with Emery-Dreifuss muscular dystrophy, flexion contracture, muscular diseases, cardiomyopathy, etc. (S5 Table).

https://doi.org/10.1371/journal.pcbi.1009911.g006
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developed mutational constraint spectrum using a large population sample [40], these eight

intrinsically disordered proteins are among those that, out of all human proteins, have been

classified to be intolerant to stop-gained and frameshifts mutations.

To the best of our knowledge, no previous studies have statistically assessed the features of

mutation-intolerant compared to mutation-tolerant disordered regions, which could provide

insights into the functional elements of IDRs that are particularly vulnerable to trigger patho-

genesis when mutated. Thanks to functional site and region annotations at the protein

sequence level available in UniProt knowledgebase [28], we were able to investigate any vari-

ability in the statistical burden of different functional elements (“UniProt features”) across all

IDRs and separately across mutation-intolerant disordered regions. Our results captured fea-

tures that are (i) predominantly located in all IDRs as well as in mutation-intolerant IDRs

(such as “modified residues” or PTM sites, short linear motifs, “regions of interest,” Figs 1 and

5); (ii) depleted in disordered regions in general but seemingly frequent in mutation-intolerant

disordered regions compared to the mutation-tolerant regions. For example, results of our

odds ratio enrichment analysis taking all disordered and non-annotated regions of IDPs (Fig

1B) suggest that residues involved in covalent disulfide bonds and that are located in “domain”

and “DNA binding region”, are not enriched in disordered regions. However, these functional

elements were found specifically enriched in mutation-intolerant IDRs (Fig 5A). A case when

a disordered region carries the identified features associated with mutation-intolerant IDRs

(Fig 5A), and impairment of those features by mutations lead to the pathogenesis, is that of the

emerin protein (EMD, Fig 6B). Emerin is an integral protein of the nuclear inner membrane,

which contains a 187-residues long IDR spanning a “domain” (LEM), two “regions of interest”

interacting with F-actin and Catenin beta-1, and 15 “modified residues” (Fig 6B). All these

three UniProt features have been found to be the signature of IDRs that are intolerant to muta-

tions in our study (Fig 5A), and indeed, germline variants causing deletion of Emerin or intro-

ducing small changes in the IDR of Emerin (i.e. by missense and inframe variations, Fig 6B

and S5 Table) have been found to be responsible for X-linked Emery-Dreifuss muscular dys-

trophy [71,72]. Notably, IDRs in the emerin protein have no experimentally validated function

annotation in DisProt database (Table 1), however, using genetic variation data we could

assign a level of functional importance to these regions—they are intolerant to genetic muta-

tions—and subsequently could characterize these protein regions.

The validity of our results in identifying the distinct set of features of disordered regions

that are intolerant to mutations (Fig 5A) is further supported by the outcome of a machine

learning-based approach that we applied to quantify the importance of these features in classi-

fying mutation-intolerant and tolerant IDRs. Results show that permutation of characteristic

features of mutation-intolerant IDRs, such as “regions of interest”, “modified residue”, reduces

the performance of a classifier model by 30% in stratifying mutation-intolerant versus tolerant

IDRs (Fig 5B). It can, therefore, be projected that the identified set of features of mutation-

intolerant IDRs in this study will be valuable in developing a predictor model, to classify disor-

dered regions that do not tolerate mutations from those that are robust to changes on a large

scale. Future investigation in this direction on a large scale, incorporating high-quality, pre-

dicted IDR annotations from MobiDB database [37], and experimentally validated annotations

from DisProt [36] and IDEAL [38] databases, will help detect and characterize novel disease-

associated disordered regions across the human proteome.

To summarize, in this study, we leveraged the annotation of functionally relevant sites and

regions in proteins from UniProt to systematically characterize the disordered and non-anno-

tated regions in human intrinsically disordered proteins. We then extended our analysis using

data from human genetic variants to identify IDRs with a relatively high frequency of patho-

genic mutations. Our results show that disordered regions that contribute to disease
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mechanisms upon mutation (mutation-intolerant) carry a characteristic set of functional fea-

tures compared to the disordered regions that undergo rapid evolution in the general popula-

tion (mutation-tolerant). By bringing the genetic diversity information into the classification

of IDRs that are intolerant to mutations, we propose a new way of annotating functionally

important disordered regions: our method will help to select pathogenic variant-enriched dis-

ordered regions for functional assay and will aid in generating hypotheses to target the corre-

sponding proteins with therapeutic strategies.

Materials and methods

Collection and annotation of disordered regions

Disordered residue and region annotations for 567 human IDPs were collected from the Dis-

Prot database (release 2020_06, version 8.0.2) [36], containing 1006 disordered regions

(IDRs). Finally, we analyzed 561 proteins with 981 IDRs (S1 Table), for which the disorder

annotation was available for the canonical protein isoform sequence per UniProt knowledge-

base [28]. These 561 proteins are comprised of 58,993 disordered amino acid residues and the

rest of the 286,113 residues are referred to as “non-annotated” in this study. Further, we col-

lected the annotations for IDRs, when available, with different disorder functions (seven cate-

gories: molecular recognition effector, assembler, display site, scavenger, schaperone, entropic

chain, and biological condensation), interaction partners (five categories: protein binding,

nucleic acid binding, lipid binding, ion binding, and small molecule binding), transition states

(two categories: disorder to order and order to disorder) and structural states (two categories:

order and disorder). The number of IDRs of different categories are reported in the S2 Table.

Collection of “UniProt features”

UniProt [36] records sequence annotations describing the regions or sites of interest in pro-

teins (https://www.uniprot.org/help/sequence_annotation). We collected twenty-five different

annotations frorm UniProt (release 2020_02) for each amino acid residue, referred to as “Uni-

Prot feature” in this study. These features include: active site, metal binding site, binding site

(for any chemical group such as co-enzyme, prosthetic group), site (any other interesting

amino acid residues, e.g., cleavage sites, inhibitory sites for proteases, breakpoint sites for

fusion proteins due to chromosomal rearrangement), DNA binding region, nucleotide phos-

phate binding region, zinc finger, Ca binding region, region of interest (a region in sequence

with an experimentally determined role), repeat, coiled coil, motif, domain, topological

domain, transmembrane, intramembrane, peptide (extent of an active peptide in the mature

protein), propeptide (part of a protein that is cleaved during maturation or activation), transit

peptide, signal peptide, modified residue (excluding lipids, glycans and protein cross-links),

lipidation, glycosylation, disulfide bond, cross-links (residues participating in covalent linkage

(s) between proteins include ubiquitin conjugation, SUMOylation, transglutamination,

thioether bonds and thioester bonds).

Collection of genetic variants

Genome Aggregation Database (gnomAD) v2.1 containing the variation (i.e., mutation) data

from 125,748 exomes and 15,708 genomes of relatively healthy individuals [40] was searched

to collect “population” variations. For 548 out of 561 IDPs, 350,044 population variations were

obtained. This dataset included four types of protein-changing variations: (i) missense (single

amino acid substitution led by single nucleotide change); (ii) nonsense (truncation of protein

caused by a premature stop codon); (iii) frameshift (insertion or deletion causing shifting of
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the triplet reading frame); (iv) inframe (insertion or deletion that does not cause a shift in the

reading frame, leading to a few amino acid change), and the synonymous variation (no change

in protein upon single nucleotide change) data were collected. The allele count information

for each variant were also aggregated to analyze the rare (allele count = 1) and relatively fre-

quent (allele count > 1) population variants separately.

In addition, ClinVar database [41], that records variations (primarily germline) observed in

patients and their relationship to human health, was searched to collect disease-associated vari-

ations. ClinVar data were available for 96 IDPs, harbouring 21,668 variations. We further col-

lected the phenotype or disease information associated with the variants and their clinical

significance (i.e., pathogenic/likely pathogenic, benign/likely benign, uncertain significance,

etc.), as determined by the current guidelines proposed by the American College of Medical

Genetics and Genomics community [44]. Four types of variations were collected: missense,

stop-gained/nonsense, frameshifts, and inframe. Individual counts of variations of different

types, obtained from both gnomAD and ClinVar databases, affecting disordered and non-

annotated regions of IDPs are reported in S3 Table.

Defining “mutation-intolerant” and “mutation-tolerant” IDRs

For each disordered region (IDR), we computed the frequency counts of pathogenic and pop-

ulation mutations of a type that are located in the region, denoted as Npathogenic
mutation type and

Npopulation
mutation type. Here the mutation type can be: missense, nonsense, frameshift and inframe. Using

median frequency counts of pathogenic and population mutation of a type observed in all

IDRs (medianpathogenic
mutation type and medianpopulation

mutation type) as the threshold or expected frequency, we

defined an IDR as intolerant to a type mutation if for that IDR the following three conditions

are met: (i) Npathogenic
mutation type > Npopulation

mutation type, (ii) Npathogenic
mutation type > medianpathogenic

mutation type, and (iii) Npopulation
mutation type �

medianpopulation
mutation type. Conversely, an IDR was identified as mutation-tolerant when the opposite

three conditions are met: (i) Npopulation
mutation type > Npathogenic

mutation type; (ii) Npopulation
mutation type > medianpopulation

mutation type; (iii)
Npathogenic

mutation type �medianpathogenic
mutation type. For our set of IDRs, the medianpathogenic

missense ; medianpathogenic
inframe ;

medianpathogenic
frameshift , and medianpathogenic

nonsense are 2 (Fig 4A). And the medianpopulation
missense ; medianpopulation

inframe ;

medianpopulation
frameshift , and medianpopulation

nonsense are 22, 2, 2, and 2, respectively (Fig 4A). For example, an

IDR with 30 pathogenic missense mutations and 28 population missense mutations will not be

categorized as missense mutation-intolerant as it complies with the first two criteria but not

the third one and has an above-median population missense mutation. The list of all muta-

tion-intolerant (n = 34) and tolerant (n = 533) disordered regions along with the frequency

counts of different types of mutations in these regions are given in S5 Table.

Statistical analysis

The two-sided Fisher’s Exact test of association was performed for each of the twenty-five Uni-

Prot features, taking the counts of disordered and non-annotated residues with and without a

feature, to quantify the burden of each feature in disordered or non-annotated regions of IDPs

(Fig 1B). An estimate of enrichment or burden (odds ratio, OR), 95% confidence interval (CI)

of the OR value, and the p-value showing the significance of the observed burden or associa-

tion, were obtained from the test output. All p-values (p) were corrected to generate “q” values,

calculated as p × 25 according to the Bonferroni correction for multiple testing in statistical

analysis. Therefore, a feature is considered to be a characteristic feature of disordered regions

(DR feature) when the test outputs OR> 1 and q< 0.05. In contrast, when the test outputs

OR< 1 and q< 0.05, the feature is referred to as a characteristic feature of non-annotated
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regions (NR feature). This approach of characterizing the disordered (and non-annotated)

regions by comparative enrichment analysis taking both residue types into account in the two-

tailed Fisher’s Exact test controls the possibility of obtaining a result simply because of the

abundance of a certain feature in disordered or non-annotated regions of the protein. The

same OR enrichment analysis was also performed on the “mutation-intolerant” and “muta-

tion-tolerant” disordered regions to identify characteristics features of these two classes of

IDRs (Fig 5A).

Measuring relative features importance

The relative importance of UniProt features in predicting mutation-intolerant versus muta-

tion-tolerant IDRs was measured using the “permutation feature importance” method. In this

method, the increase in the prediction error or the decrease in the prediction accuracy of the

classifier model is measured after the features’ values are randomly shuffled. The random shuf-

fling of the values of a feature breaks the relationship between the feature and the true out-

come, if any, and hence identifies the features that contribute the most to the predictive power

of the classifier model. Additionally, the “permutation feature importance” method allows for

determining the feature importance in a classification algorithm-agnostic fashion, as only the

difference in the error or accuracy of the model is tracked. Here we used random forest algo-

rithm to build the classifier model and evaluated the relative importance of twenty-five Uni-

Prot features in classifying “mutation-intolerant” versus “mutation-tolerant” disordered

regions. Specifically, we fed the frequency counts of the features for each IDR into the classifier

(i.e., number of “region of interest”, “modified residues”, etc. located in each IDR, S6 Table).

The parameters of the classifier were set to: number of estimators or decision trees = 100 and

quality measure = “gini” (S7 Table; summary of the analysis according to DOME: Data, Opti-

mization, Model, Evaluation [73]). We repeated the permutation for 10 times and computed

the mean decrease in the prediction score (i.e., average-precision, Fig 5B) generated by the

model. Average precision score summarizes a precision-recall curve as the weighted mean of

precisions achieved at each threshold, with the increase in recall from the previous threshold

used as the weight and is well suited for assessing binary classification tasks. A feature is impor-

tant if shuffling its values decreases the average precision of the model, otherwise it is unim-

portant. The classifier model and the feature importance evaluation method were

implemented using the scikit-learn machine learning library for Python (https://scikit-learn.

org/dev/).

Supporting information

S1 Fig. Distribution of frequency of residues (y-axis) annotated with twenty-five UniProt

features (x-axis) in disordered regions (IDRs, count = 278) with experimentally verified

disorder functions. Distributions are drawn separately for groups of IDRs that perform a spe-

cific function. To ensure the clarity of the visual, IDRs with less than 50 residues annotated

with a feature were considered for the plot.

(TIF)

S2 Fig. Distribution of frequency of residues (y-axis) annotated with twenty-five UniProt

features (x-axis) in disordered regions (IDRs, count = 360) with experimentally verified

interaction partners. Distributions are drawn separately for groups of IDRs that interact with

a type of molecule. To ensure the clarity of the visual, IDRs with less than 50 residues anno-

tated with a feature were considered for the plot.

(TIF)
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S3 Fig. Distribution of frequency of residues (y-axis) annotated with twenty-five UniProt

features (x-axis) in disordered regions (IDRs, count = 190) with experimentally verified

structural transitions. Distributions are drawn separately for groups of IDRs that undergo

transitions from disorder to order and from order to disorder state. To ensure the clarity of the

visual, IDRs with less than 50 residues annotated with a feature were considered for the plot.

(TIF)

S4 Fig. Distribution of frequency of residues (y-axis) annotated with twenty-five UniProt

features (x-axis) in disordered regions (IDRs, count = 981) with experimentally verified

structural states. Distributions are drawn separately for groups of IDRs in disorder and order

states. To ensure the clarity of the visual, IDRs with less than 50 residues annotated with a fea-

ture were considered for the plot.

(TIF)

S5 Fig. Illustration of mutation-intolerant IDRs with their characteristic UniProt features

for two intrinsically disordered proteins: MECP2 and DDX3X. (A) The methyl-CpG-bind-

ing protein 2 (MECP2) contains a nucleic acid-binding IDR (207–310), which functions as an

inhibitor, and is identified as a mutation-intolerant IDR (Table 1). This IDR has UniProt fea-

tures: “regions of interest” that interact with NCOR2, TBL1XR1, “modified residues” (phos-

phoserines), and “DNA binding region”; all these features are identified as the characteristic

features of mutation-intolerant IDRs, in this study (Fig 5). This MECP2 IDR is associated with

77 frameshift, 13 nonsense, 14 missense and 4 inframe pathogenic mutations causing many

neurodevelopmental disorders, according to the ClinVar database (S5 Table). (B) The ATP-

dependent RNA helicase, DDX3X contains a 167-residues long mutation-intolerant IDR

(Table 1). This IDR has no function annotation in the DisProt database (Table 1), but we

observed seven “regions of interest”, interacting with multiple partners, and many “modified

residues” (PTM sites) in this IDR, hinting to its function (protein-protein interaction, PTM-

mediated signaling, etc.). Variations in this IDR (7 frameshift, 6 stop-gained, and 5 missense

mutations) are associated with mental retardation and intellectual disability (S5 Table).

(TIF)

S6 Fig. Characterization of the UniProt feature “motif” located in the disordered regions

(IDRs). Out of 561 intrinsically disordered proteins (IDP) studied in this work, 143 proteins

had at least one short linear motif (total count = 237) according to the UniProt database

(referred to as UniProt feature: “motif”). 68 out of these 237 UniProt-annotated motifs are

recorded in the Eukaryotic Linear Motif (ELM) resource, where they are grouped into differ-

ent “ELM types” based on their functions. (A) Pi-chart showing the proportion of UniProt-

annotated motifs located in IDRs of different ELM types. The most common type of motifs

found in IDRs is LIG or ligand sites (41%), which mediate binding between the protein, har-

boring the ligand motif, and its interaction partner. (B) Proportion of motifs present in IDRs

according to Gene Ontology (GO) terms, describing whether the motif is involved in biologi-

cal processes (DNA repair/replication/damage, cell division/death, etc), molecular functions

(e.g., growth factor receptor binding, phosphatase inhibitor activity, ubiquitin protein ligase

binding), or is a cellular component (cytosol, nucleoplasm, etc.). Both charts correspond to 68

motifs that were observed as UniProt features in IDRs and were also annotated in the ELM

resource with ELM types and GO terms (S8 Table).

(TIF)

S7 Fig. Distribution of ratios of missense to synonymous (nmis/nsyn) variations from gno-

mAD database, representing genetic variants from relatively healthy individuals in the

general population, in all IDRs (n = 945), and short (� 30 residues; n = 450), medium-
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length (30 < residues� 100; n = 306) and long (>100 residues; n = 189) IDRs. (A) On aver-

age, the nmis/nsyn for all IDRs was 2.3 ± 1.4 (i.e. mean ± standard deviation), showing that

regardless of length, IDRs carry over twice as many amino acid-substituting missense varia-

tions as synonymous variations. (B) Results for all IDRs consistently hold for long IDRs with a

relatively low standard deviation (nmis/nsyn = 2.1 ± 0.6, minimum and maximum missense var-

iation count per long IDR = 8 and 1265, respectively; in green). However, short IDRs display a

wide variety (nmis/nsyn = 2.4 ± 1.8, minimum and maximum missense variation count per

short IDR = 0 and 157, respectively; in violet). Specifically, we found 47 short IDRs that carry

over five times more missense variations than synonymous variations (nmis/nsyn > = 5.0). At

the same time, 38 short IDRs carried less than or equal to one-half number of missense varia-

tions as synonymous variations (nmis/nsyn < = 0.5). Out of these 38 short IDRs, 10 disordered

regions in seven proteins (GTP-binding nuclear protein Ran, NF-kappa-B essential modulator,

High mobility group protein B1, etc.) were entirely depleted of missense variations

(count = 0), indicating that amino acid substitutions are likely not tolerated in these IDRs.

Data corresponding to these plots are available in S4 Table.

(TIF)

S1 Table. List of disordered regions (IDR, n = 981) in 561 intrinsically disordered proteins

(IDPs) analyzed in this study. For each IDR, the table records the DisProt identifier and Uni-

ProtKB identifier for corresponding IDP, name of the gene encoding the IDP, start and end

positions and length of the disordered region, and the annotation of function, interaction part-

ner, structural state, and structural transition of the IDR, when available in the DisProt data-

base.

(XLSX)

S2 Table. Counts of disordered regions (IDRs) of different categories according to their

disorder functions, interaction partners, structural transition, and structural states. The

annotations are collected for 981 IDRs of 561 human intrinsically disordered proteins from

the DisProt database.

(DOCX)

S3 Table. Counts of genetic variations located in the disordered and non-annotated

regions of intrinsically disorder proteins studied in this paper. Genetic variations found in

the general population and patients are collected from gnomAD and ClinVar databases,

respectively.

(DOCX)

S4 Table. The frequency counts and ratio of amino acid substituting missense mutations

and silent synonymous mutations in disordered regions. The table also reports the DisProt

identifier for each disordered region (IDR), the gene encoding for the protein with the corre-

sponding IDR, and the length of each IDR. An IDR with n_miss/n_syn < 1.0 harbors a lower

frequency of missense mutations than synonymous mutations and an IDR with n_mis/

n_syn > 1.0 harbors a higher frequency of missense mutations than synonymous mutations.

Distributions of n_mis/n_syn for IDRs of different lengths are shown in Fig 3 (main text) and

S7 Fig (supplemental).

(XLSX)

S5 Table. List of mutation-intolerant (n = 34) and mutation-tolerant (n = 533) disordered

regions (IDRs) identified in this study. For each IDR, the table lists the DisProt identifier,

name of the gene encoding for the IDP, length of the disordered region, and the annotation of

disorder function, interaction partner, structural state, and structural transition of the IDR,
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when available in the DisProt database. Further, we report the number of “pathogenic” (Clin-

Var database) and “population” (gnomAD database) mutations that are located in each IDR,

followed by the diseases associated with the germline pathogenic mutations affecting the IDR.

(XLSX)

S6 Table. Frequency counts of UniProt features in “mutation-intolerant” and “mutation-

tolerant” IDRs (see the last column for the annotation of IDRs). This feature set were fed

into the random forest classifier to compute the permutation importance of each feature in

classifying “mutation-intolerant” versus “mutation-tolerant” IDRs (see results in Fig 5B).

(XLSX)

S7 Table. Summary table for ML analysis performed to measure relative importance of

UniProt features in stratifying “mutation-intolerant” versus “mutation-tolerant” disor-

dered regions (IDRs), according to DOME (Data, Optimization, Model, Evaluation): Rec-

ommendations for supervised machine learning validation in biology.

(DOCX)

S8 Table. List of UniProt feature "motif" (n = 68) in disordered regions (IDRs) that were

found in the Eukaryotic Linear Motif (ELM) resource. Out of 561 intrinsically disordered

proteins (IDPs) studied in this work, 143 proteins had at least one short linear motif (total

count = 237) according to the UniProt database (referred to as UniProt feature: “motif”). 68

out of these 237 UniProt-annotated motifs are recorded in the ELM resource, where they are

grouped into different “ELM types” based on their function. For each of these 68 motifs, the

table lists the UniProt feature description, UniProt identifier, gene name, ELM accession,

identifier, type, and the start/end position of the motif as recorded in ELM. Additionally, we

report the Gene Ontology terms for each motif as available in the ELM resource. The possible

ELM types are: LIG—ligand sites, DOC—docking sites, TRG—subcellular targeting sites,

DEG—degradation sites, and MOD—PTM sites. The proportion of motifs in different ELM

types and GO terms are shown in S6 Fig.

(XLSX)

S9 Table. List of UniProt feature "domain" (n = 124) that overlap with disordered regions

(IDRs) of 105 intrinsically disordered proteins. For each domain, the table lists the UniProt

feature description (UniProt feature: domain), UniProt identifier, gene name, DisProt identi-

fier for the protein, start/end of the disordered regions that overlap with the domain, categories

of IDRs in terms of their function, interaction partners, structural state, and structural transi-

tions (DisProt annotation). Additionally, we report whether a UniProt-annotated domain is

present in the Disordered Binding Sites (DIBS) and the Mutual Folding Induced by Binding

(MFIB) databases. When a domain is present in these databases, we report the accession of the

corresponding entry in the database and the PDB ID reported in these databases, as a form of

evidence. 30 out of 124 UniProt-annotated domains have been determined to have the “disor-

der” structural state and undergo “disorder to order” structural transition, according to Dis-

Prot (highlighted in orange). Eleven UniProt-annotated domains, overlapping with IDRs,

were also annotated in DIBS and MIFB databases, highlighted in green and yellow, respec-

tively, to being unstructured in isolation but forming structures only upon binding.

(XLSX)
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